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a b s t r a c t

The modeling of mixing by molecular diffusion is a central aspect for transported probability density

function (tPDF) methods. In this paper, the newly-proposed shadow position mixing model (SPMM) is

examined, using a DNS database for a temporally evolving di-methyl ether slot jet flame. Two methods

that invoke different levels of approximation are proposed to extract the shadow displacement (equiva-

lent to shadow position) from the DNS database. An approach for a priori analysis of the mixing-model

performance is developed. The shadow displacement is highly correlated with both mixture fraction and

velocity, and the peak correlation coefficient of the shadow displacement and mixture fraction is higher

than that of the shadow displacement and velocity. This suggests that the composition-space localness is

reasonably well enforced by the model, with appropriate choices of model constants. The conditional dif-

fusion of mixture fraction and major species from DNS and from SPMM are then compared, using mixing

rates that are derived by matching the mixture fraction scalar dissipation rates. Good qualitative agree-

ment is found, for the prediction of the locations of zero and maximum/minimum conditional diffusion

locations for mixture fraction and individual species. Similar comparisons are performed for DNS and the

IECM (interaction by exchange with the conditional mean) model. The agreement between SPMM and

DNS is better than that between IECM and DNS, in terms of conditional diffusion iso-contour similari-

ties and global normalized residual levels. It is found that a suitable value for the model constant c that

controls the mixing frequency can be derived using the local normalized scalar variance, and that the

model constant a controls the localness of the model. A higher-Reynolds-number test case is anticipated

to be more appropriate to evaluate the mixing models, and stand-alone transported PDF simulations are

required to more fully enforce localness and to assess model performance.

© 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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. Introduction

The modeling of mixing by molecular diffusion of chemical

pecies is a central aspect of turbulent combustion modeling.

olecular mixing models play an especially important role in the

ransported probability density function (tPDF) method, since the

hemical reaction source terms are treated exactly, so that molec-

lar transport is the dominant modeling burden. Enormous effort

as been invested into the development of molecular mixing mod-

ls over the past few decades [1]. Available mixing models include

he coalescence and dispersion model (CD, or Curl’s model) [2],

modified Curl’s model [3] (MCD), the interaction by exchange
∗ Corresponding author.
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ith the mean (IEM) model [4] (or equivalently, the linear mean

quare estimation – LSME – model [5]), the interaction by ex-

hange with the conditional mean (IECM) model [6,7], mapping

losure (MC) models [8,9], multiple mapping closure (MMC) mod-

ls [10,11], the Euclidean minimum spanning tree (EMST) model

12], Fokker–Planck (FP)-equation based models [13,14], and the

arameterization of one-dimensional scalar profiles (PSPs) mixing

odel [15–17].

Criteria for assessing mixing models and desirable properties of

ixing models have been established [12,18], and these are sum-

arized in Table 1. The attributes of four of the more prominent

ixing models, and the model that is the focus of the present

tudy, with respect to these criteria are indicated in Table 1.

one of the existing models possesses all of the desirable prop-

rties, although some models (e.g., EMST) satisfy the most impor-

ant criteria, which include conservation of means, localness and
.

http://dx.doi.org/10.1016/j.combustflame.2015.12.009
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Table 1

Desirable properties of molecular mixing models, and characteristics of five mixing models with respect to these criteria. Five models are compared:

the modified Curl’s (MCD) model, the interaction by exchange with the mean (IEM) model, the interaction by exchange with the conditional mean

(IECM) model, the Euclidean minimum spanning tree (EMST) model, and the shadow position mixing model (SPMM). SPMM satisfies the most

desired properties among all the models compared.

Mixing models MCD IEM IECM EMST SPMM

I. Conservation of means � � � � �
II. Correct decay of variances � � � � �
III. Localness in composition space – – – � �
IV. Bounded in allowable composition space � � � � �
V. Turbulent dispersion consistency – – � – �
VI. Relaxation to Gaussian – – – – �
VII. Linearity and independence from other scalars � � � – �
VIII. Dependence on length scales of scalar field – – – – –

IX. Dependence on Re, Sc, and Da – – – – –

X. Differential diffusion – – – – –

Fig. 1. Relationships among several molecular mixing models. IEM: the interac-

tion by exchange with the mean model; IECM: the interaction by exchange with

the conditional mean model; EMST: the Euclidean minimum spanning tree model;

MMC: the multiple mapping conditioning model (mixture fraction based); and

SPMM: the shadow position mixing model.
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boundedness. EMST has proven to be robust and accurate over a

wide range of conditions [19]. Nevertheless, EMST has limitations.

For example, it violates the linearity and independence principles,

it does not yield Gaussian PDFs in appropriate circumstances, and

it is prone to stranding of particles in composition space [12,20].

As a particle-based method, there is no proof that EMST converges

to a limit as the number of particles tends to infinity.

A new mixing model – the shadow-position mixing model

(SPMM) – was proposed recently by Pope [20]. SPMM draws on

knowledge from and experience with the existing mixing models

as illustrated in Fig. 1. For example, in the IECM model it is argued

that fluid particles with the same velocity have a higher probability

of mixing with one another, and because of this the IECM model

satisfies turbulent-dispersion theory. On the other hand, the local-

ness in composition space enforced in the EMST model has led to

great success in capturing the effects of turbulence–chemistry in-

teractions. The central idea behind the creation of SPMM is that

fluid particles that share similar history should have a higher prob-

ability of mixing with one another. Here, the word “history” im-

plies not only velocity history as captured by the IECM model, but

also the scalar mixing history as suggested by the EMST model.

Thus, by construction, SPMM (to a good approximation) satisfies

criteria I–VII in Table 1 [20], which makes it a potentially attrac-

tive mixing model. It has already been demonstrated that SPMM

can preserve the localness in composition space (leading to strong
urning) in a homogeneous isotropic reactive scalar mixing layer

20], while the IECM model leads to local extinction. A recent a

osteriori study [21] of a temporally-evolving syngas flame also

hows that SPMM can enforce localness in composition space to

he same extent that the EMST model does.

In SPMM, the evolution of the composition of a notional La-

rangian particle (that is intended to model the behavior of a fluid

article) due to molecular mixing is described by the following

quation:

dφ∗

dt
= − c

TL

(φ∗ − 〈φ∗|Z∗, X∗〉ρ ), (1)

here c is a model constant, X∗ and φ∗ are the particle posi-

ion and composition, respectively, and 〈φ∗|Z∗, X∗〉ρ denotes the

avre average of φ∗ conditioned on Z∗ and X∗. The particle posi-

ion evolves by dX∗/dt = U∗, where U∗ is the particle velocity. The

uantity Z∗ is the shadow position, which is a non-physical quan-

ity associated with the particle, where Z∗ evolves by the stochastic

ifferential equation:

Z∗ = 〈U∗|X∗〉ρdt − a

TL

(Z∗ − X∗)dt + b(2σ 2TL)
1/2dW′. (2)

ere a and b are model constants, TL is a Lagrangian time scale,

is the r.m.s. velocity and W′ is an isotropic Wiener process: the

rime is used to emphasize that the Wiener process in the shadow

osition equation is independent of the Wiener process W that is

ssociated with particle motion.

The shadow displacement R∗ is then introduced, which is de-

ned as

∗ ≡ Z∗ − X∗. (3)

he evolution of R∗ can be derived from Eqs. (2) and (3) as:

R∗ = −(U∗ − 〈U∗|X∗〉ρ )dt − a

TL

R∗dt + b(2σ 2TL)
1/2dW′. (4)

ecognizing that conditioning on (Z∗, X∗) is equivalent to condi-

ioning on (R∗, X∗), one can reformulate SPMM as,

dφ∗

dt
= − c

TL

(φ∗ − 〈φ∗|R∗, X∗〉ρ ) (SPMM). (5)

SPMM is similar in structure to the IEM and IECM mixing mod-

ls, for which the particle composition evolution equations corre-

ponding to Eq. (5) can be written as,

dφ∗

dt
= − cφ

TL

(φ∗ − 〈φ∗|X∗〉ρ ) (IEM), (6)

dφ∗

dt
= − cU

TL

(φ∗ − 〈φ∗|U∗, X∗〉ρ ) (IECM). (7)
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Fig. 2. Turbulent DME slot-jet-flame configuration. Color indicates the instanta-

neous temperature on the outer surfaces of the computational domain. (For inter-

pretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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In all three models, the particle composition relaxes toward the

ocal (conditional) mean composition on a time scale TL. The choice

f the conditioning variable (R∗ or U∗) controls the location of

ero conditional diffusion points/lines in composition space; this

s discussed further in Section 4. The choice of conditioning vari-

ble has been guided by insight gained from direct numerical sim-

lations (DNS) and experimental studies of canonical nonreacting

nd reacting turbulent flows. For example, the observation that the

ean scalar diffusion conditioned on the velocity is linearly re-

ated to the velocity [22] motivates the choice of particle veloc-

ty as a conditioning variable in IECM. A physical interpretation

s that molecular mixing can only take place between fluid par-

icles that are sufficiently close (on the order of a Kolmogorov

cale of separation) in physical space, and therefore that reside

n the same turbulent eddy and have similar velocities [6]. The

econd key element in all three models is the mixing timescale,

hich controls the rate at which the composition relaxes to its

ocal (conditional) mean value. Different expressions for the mix-

ng rate have been used for different model variants. For exam-

le, the term cφ /TL in the IEM model (Eq. 6) is more commonly

ritten as cφω/2, where ω is a turbulent frequency (e.g., ω = ε/k

n a Reynolds-averaged formulation, where k is the turbulence ki-

etic energy and ε is the viscous dissipation rate of turbulence

inetic energy) and cφ is a model constant that can be identi-

ed as the ratio of a turbulence timescale τ = 1/ω to a turbulent

calar timescale τφ , with cφ = 2.0 usually taken as the standard

alue.

In the case of SPMM, the physical interpretation of the condi-

ioning variable R∗ is less clear, although R∗ is, by design, highly

orrelated with both velocity and scalars [20]. Moreover, model

nalysis/calibration to date has been limited to highly idealized

onfigurations (homogeneous, isotropic, constant-property systems

20]), and the extent to which the conclusions that were drawn

here regarding specifications of an appropriate mixing timescale

nd model constants can be generalized is not clear. It is desirable

o develop a better physical understanding of the shadow displace-

ent R∗, to establish protocols for how to extract R∗ from DNS

r experimental data, and to test/extend the model for variable-

roperty, inhomogeneous reacting systems with more realistic tur-

ulence fields. All of these are prerequisites to applying the model

ffectively in Reynolds-averaged and/or large-eddy simulations of

urbulent reacting flows. In addition, the potential computational

ifficulty of conditioning on a three-dimensional variable (i.e., R∗)

equires the identification of a preferred direction in the test flame,

nd conditioning only on the component of R∗ in that direction.

ith these motivations and limitations in mind, an a priori study

f SPMM using DNS is undertaken here. The configuration is a tem-

orally evolving di-methyl ether (DME) slot jet flame [23]. This

onfiguration features highly anisotropic and nonstationary turbu-

ence, one direction of spatial inhomogeneity, and strong turbu-

ence–chemistry interactions (strong local extinction and reigni-

ion), making it a challenging and appropriate target for testing

ixing models.

The remainder of the paper is organized as follows. Details

f the DNS configuration are provided in Section 2. There Favre-

veraged velocity and scalar statistics are extracted as functions of

ime, and the Lagrangian time scale TL that is required in SPMM is

iscussed and quantified. In Section 3, two different methods for

xtracting R∗ are proposed, and the evaluation of conditional dif-

usion is explained in detail. Results are then presented and dis-

ussed in Section 4. The physical meaning of shadow displace-

ent is elucidated through its structure in physical space and its

elationships with velocity and mixture fraction. Comparisons of

onditional diffusion between DNS and SPMM and specification of

odel constants are presented and discussed. Finally, a summary

nd conclusions are provided in Section 5.
. The test flame

In this section, the DNS configuration is presented first. Velocity

nd scalar statistics including turbulent transport coefficients and

agrangian time scales are then presented, and issues in extracting

ppropriately smooth profiles from noisy DNS data are addressed.

n addition to providing input that is required for SPMM, the flow

tatistics provide information on the structure of the system that

s needed for subsequent modeling studies.

.1. DNS configuration

A statistically one-dimensional, temporally evolving DME slot

et flame is considered [23] (Fig. 2). The computational domain ex-

ends 10H in the stream-wise direction (x), 16H in the transverse

irection (y), and 8H in the span-wise direction (z), where H is

he width of the central fuel jet (H = 2.54 mm). Periodic bound-

ry conditions are imposed in the x and z directions, and outflow

oundary conditions are specified in y. The system is statistically

omogeneous in the x and z directions. A central fuel jet (12%

ME, 18% H2 and 70% N2 by volume) is injected in the x direction.

he fuel jet is sandwiched between two streams of oxidizer (31%

2 and 69% N2 by volume) injected in the opposite direction. To

nitialize the flow field, small isotropic broadband turbulent veloc-

ty fluctuations are superimposed on the mean velocity field, with

he fluctuations filtered outside the central jet. Thus, the computa-

ional domain can be divided into two regions: the inner reactive

urbulent flame core, which is located at the center of the com-

utational domain in y and grows with time; and the outer inert

oflow regions with near-zero turbulent fluctuations.

The Reynolds number based on the fuel-jet properties is Re ≡
jDH/ν =13,050, where DH is the hydraulic diameter defined as
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Fig. 3. Global burning fraction as a function of time. Symbols indicate the three

time instants at which most of the analysis is performed.
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DH = 2LzH/(Lz + H) and Lz is the spanwise extent of the domain,

ν is the kinematic viscosity of the unburnt fuel mixture at inlet

temperature (450 K), and Uj is given by Uf uel − Uoxidizer (|Ufuel| =
|Uoxidizer|) based on initial conditions. The Damköhler number is

defined to be Da = χqt j, where tj is the mean jet convective time

(t j = DH/Uj) estimated to be 41 μs based on the initial conditions,

and χq is the extinction scalar dissipation rate that is 1950 s−1.

This combination of χq and tj results in a Damköhler number of

0.08. This low-Damköhler-number flame exhibits a significant de-

gree of local extinction and reignition. Similar configurations have

been studied using DNS with syngas and ethylene fuels [24,25], at

different Reynolds and Damköhler numbers. The Reynolds number

of this flame is slightly higher than those in previous studies, and

the Damköhler number is chosen to ensure significant occurrence

of local extinction.

A 30-species reduced DME mechanism [23] is used. The grid

size is uniform in all three directions, and it is chosen to be of

the same order as the initial Kolmogorov length scale η. With the

decay of turbulence, the grid size is expected to correspond to

even a smaller fraction of the local Kolmogorov length scale. The

time interval between adjacent DNS solution snapshots that are

available for analysis is approximately three times the local Kol-

mogorov time scale tη during the initial period of the flame, and

is reduced to 0.25tη at later times. Therefore, both the spatial and

temporal resolutions resolve the Kolmogorov scales, which are suf-

ficient for the purposes of this a priori study. Reynolds-averaged

(or Favre-averaged) mean quantities are estimated as averages over

grid points in x − z planes, and are functions of y and t only. How-

ever, because of the finite sample size, some care needs to be taken

in extracting mean quantities, and this is discussed further below.

A global indication of the robustness of combustion is the burn-

ing fraction, which is defined as the fraction of points on the in-

stantaneous three-dimensional isosurface of stoichiometric mixture

fraction (here ξ st = 0.375) where the local OH mass fraction is

above 75% of the peak OH mass fraction (i.e., 9.77 × 10−4).

The evolution of the burning fraction with time is shown in

Fig. 3. There unity denotes robust burning, and a value of zero

corresponds to total extinction. It can be seen that the initially

robust DME flame undergoes strong local extinction, followed by

reignition. The three time instants labeled as tBME, tME, and tRI in

Fig. 3 represent times before, at, and after maximum local extinc-

tion; most of the subsequent analysis is performed at these three

instants.

2.2. Velocity and mixture-fraction statistics

By construction, the conditioning variable R∗ is correlated

with both the velocity and scalar fields; this becomes more ev-

ident in the subsequent analysis (Sections 3 and 4). Here key
elocity- and scalar-field statistics that are needed for model for-

ulation and validation are presented. These also provide use-

ul insight into the structure of this statistically one-dimensional,

ime-dependent flame, which is useful for subsequent modeling

tudies.

Figure 4 shows the Favre-averaged mean and r.m.s. velocity

omponents and mixture fraction profiles at the three time in-

tants indicated in Fig. 3. Here u, v and w denote the x, y and

components of velocity, respectively, and the mixture fraction

is defined using Bilger’s formula [26]. Favre-averaged quantities

re denoted using a tilde, and fluctuations with respect to Favre-

veraged mean values are denoted using a double prime. For these

ean profiles, statistical symmetry (or anti-symmetry, as appro-

riate) with respect to the center plane in y has been assumed

o double the sample size and reduce noise. Even with that, some

tatistical error can still be observed (e.g., non-zero values of w̃).

By design, the stoichiometric surface for the flame lies in the

igh-shear/high-turbulence region, so that the peak of ξrms ≡
√

ξ̃ ′′2

pproximately aligns with the peaks of urms ≡
√

ũ′′2, vrms ≡
√

ṽ′′2,

nd wrms ≡
√

w̃′′2 in Fig. 4. The r.m.s. of both velocity and mixture

raction go to zero in the quiescent coflow regions. Here a cutoff

t 10% of ξ rms, max [24] is used to distinguish between the active

ombustion region and the nonreactive coflow. That is, at locations

here ξ rms < 0.1ξ rms, max (hereafter referred to as the coflow), the

urbulent fluctuations are small and the composition is essentially

hat of the oxidizer stream (verified by histograms of mixture frac-

ion at those locations). In regions where ξ rms ≥ 0.1ξ rms, max (here-

fter referred to as the flame core), turbulence is intense, and the

ixture is reactive.

Profiles of the components of the normalized anisotropy ten-

or (bi j = ˜u′′
i

u′′
j
/ ˜u′′

k
u′′

k
− 1

3 δi j) at the same three time instants are

hown in Fig. 5. It can be seen that the flow is highly anisotropic

nside the flame core. Also shown are the profiles corresponding to

standard k − ε turbulence model, where

′̃′
i

u′′
j

∣∣∣
k−ε

= −νT

(
∂ ũi

∂x j

+ ∂ ũ j

∂xi

)
+ 2

3
νT

∂ ũk

∂xk

δi j + 2

3
kδi j. (8)

ere the compact notation ui is used to represent the three com-

onents of velocity, i.e., u1 = u, u2 = v, u3 = w. The turbulent vis-

osity is modeled by νT = Cμk2/ε, with Cμ = 0.09. ε is defined

s 〈2νsijsij〉ρ , where sij is the turbulent strain rate tensor (si j =
1
2 (

∂ui
′′

∂x j
+ ∂u j

′′
∂xi

)). For the reactive mixture, this model still performs

easonably well for the shear stress (represented by b12). The

ighly anisotropic and nonstationary nature of this configuration

s very different from the idealized configurations considered in

20], and presents a significant modeling challenge for SPMM or

ny other mixing model.

Finally, the turbulent mixture-fraction fluxes ( ˜u′′ξ ′′, ˜v′′ξ ′′,
′̃′ξ ′′) extracted from the DNS are shown in Fig. 6. Both ˜u′′ξ ′′ and
′̃′ξ ′′ are non-zero at all time instants, and the magnitude of ˜u′′ξ ′′
s larger than that of ˜v′′ξ ′′. The ˜w′′ξ ′′ profiles fluctuate around

ero. A similar relationship between ˜u′′ξ ′′ and ˜v′′ξ ′′ was observed

xperimentally in a constant-gradient homogeneous shear flow

ith temperature as a passive scalar [27,28]. For the temporally

volving slot-jet flame, the direction of the scalar flux is signifi-

antly different than that of the mean scalar gradient (∂ξ̃ /∂x = 0

ere).

.3. Evaluation of the Lagrangian time scale TL

Specification of an appropriate time scale is essential for any

ixing model (e.g., Eqs. 5–7), and is particularly important in the

ontext of SPMM for the shadow displacement equation (Eq. 4).
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Fig. 4. Favre-averaged mean and r.m.s. velocity components and mixture fraction profiles at three time instants.
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Fig. 5. Profiles of components of the normalized anisotropy tensor (bi j = ˜u′′
i

u′′
j
/˜u′′

k
u′′

k
− 1

3
δi j) extracted from DNS (symbols) versus those calculated from a k–ε model (lines)

at three time instants. Left column: b11 ( ), b22 ( ), b33 (◦), b11, M ( ), b22, M ( ), b33, M ( ). Right column: b12 ( ), b13 ( ), b23 (◦), b12, M ( ), b13, M ( ),

b23, M ( ).

a

(

T

T

A Lagrangian time scale TL can be defined unambiguously in terms

of the two-time Lagrangian velocity autocorrelation function in

statistically stationary, homogeneous, isotropic turbulence [20,29].

However, the definition for Lagrangian time scales is not obvious

in a temporally-evolving, inhomogeneous, and anisotropic reacting

flow. To be used in a modeling study, the definition must be in

terms of quantities that are included in standard models. Borrow-

ing from the concepts developed in statistically stationary, homo-

geneous, isotropic turbulence [20], for this case, we propose three
 T
pproximations for the Lagrangian time scales, as listed in Eqs. (9)–

11):

L,1 = −˜v′′ξ ′′/
(

σ 2 ∂ξ̃

∂y

)
(Approximation 1), (9)

L,2 = C1(t)L(y, t)/σ = C1(t)k3/2/(σε) (Approximation 2), (10)

L,3 = C2k/ε (Approximation 3). (11)
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Fig. 6. Three components of turbulent mixture fraction flux at three time instants.
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ere, σ 2 is the y-direction velocity variance (σ 2 = ṽ′′2), C1(t) is a

ime-dependent coefficient, L(y, t) is a length scale, and C2 is a

ime-independent constant. The turbulent scalar flux ( ˜v′′ξ ′′) can be

xpressed using TL by rearranging Eq. (9):

′̃′ξ ′′ = −TLσ
2 ∂ξ̃

∂y
. (12)

Both Approximation 1 and Approximation 2 attempt to match

he turbulent scalar flux calculated using TL to that obtained di-

ectly from DNS. All of the quantities required in Approxima-

ion 1 (Eq. 9) are available from the DNS (Section 2.2). For
pproximation 2, C1(t) is a time-varying constant that is obtained

y minimizing (in a least-squares sense over y) the difference be-

ween the scalar flux obtained from DNS and that obtained from

q. (12) using TL,2. The turbulent length scale L(y, t) is specified to

e L(y, t) = C3/4
μ k(y, t)3/2/ε(y, t), using definitions borrowed from

he k–ε model. For 6tj, 8tj and 14tj, C1 is found to be 0.58, 0.72,

nd 0.99, respectively. For Approximation 3, C2 is derived to be

2 = ( 1
2 + 3

4C0)−1 according to the Langevin model of [20]. Here

0 can be taken as a constant value of 2.1, or it can be Reynolds-

umber dependent [30]. Approximation 3 is included here because

t is much easier to obtain TL,3 in a modeling study than to obtain

L,1 and TL,2 directly. Thus, it is of interest to compare the mag-

itude of TL,3 with TL,1 and TL,2. Since σ 2TL frequently appears as

ne term in the governing equations for SPMM (e.g., in Eq. (4)), an

pparent turbulent diffusivity �T is defined,

T (y, t) = TL(y, t)σ 2(y, t). (13)

hen obtained using different approximations of TL, different ap-

arent turbulent diffusivities are obtained (i.e., �T,1, �T,2, �T,3).

It is important to provide smooth profiles of TL and �T to ob-

ain reasonable distributions of the shadow displacement R∗. A di-

ect calculation using the profiles of ˜v′′ξ ′′, ∂ξ̃ /∂y and σ 2 is poorly

onditioned because of the division of two noisy profiles, both

f which pass through zero, required in Approximation 1 (Eq. 9).

o mitigate this, �T,1 is set to the mixture-averaged N2 molecu-

ar diffusivity and TL,1 is set to the jet time tj in regions where

rms ≤ 0.1ξ rms, max (outside of the flame core). Cross-validated cu-

ic b-splines [31] are then used to smooth the profiles of �T,1(y)

t each time instant. The profiles of TL,2 and TL,3 are by construc-

ion adequately smooth, so no additional smoothing procedure is

pplied to TL,2 and TL,3 (hence �T,2 and �T,3).

Profiles of TL,1 and TL,2 and TL,3 are shown in Fig. 7. The pro-

les of TL,2 are smoother than those of TL,1, and they are also more

niform across the transverse direction. The profile of TL,3 is also

uite smooth and uniform across the transverse direction, and the

rofiles of TL,3 and TL,2 generally enclose the profile of TL,1.

While the values of TL,1 and TL,2 are similar inside the reactive

hear layers, they can be quite different at other locations. To fur-

her validate the approach, the turbulent scalar (mixture-fraction)

ux ( ˜v′′ξ ′′) extracted from DNS is compared with that obtained us-

ng Eq. (12) with either TL,1 or TL,2 in Fig. 8. The turbulent flux

omputed using TL,1 is closer to the DNS profiles, because it is cal-

ulated using the scalar flux extracted from DNS. Meanwhile, the

calar flux is recovered with acceptable accuracy using TL,2, in spite

f the large differences between TL,1 and TL,2 shown in Fig. 7 near

he centerline. This is because ˜v′′ξ ′′ is essentially zero near the

enterline, and the differences between TL,1 and TL,2 in that region

ake insignificant differences in the scalar flux. Inside the shear

ayer where the scalar gradient is significant, TL,1 and TL,2 are quite

lose. The milder variation in the y-direction of TL,2 favors the use

f TL,2 in the integration of the ODEs required later in calculating
∗.

It should be pointed out here that the Lagrangian time scale

xtracted in this section is not the same as the turbulence integral

ime scale. For example, by launching tracer particles at locations

here the transverse r.m.s. velocity peaks, the auto-correlation

unction of velocity has been calculated and fitted to the Sawford

odel [32]. The inferred integral time scale for t = 8t j is approxi-

ately 3.9 × 10−5 s, which is approximately 1.5 times TL,2, and TL,2

s closer to the value calculated from the Lagrangian tracer par-

icles than TL,3. To make TL,3 approximately equal to TL,2, the im-

lied C0 values are calculated to be 10.5, 8.2, and 5.7 at 6tj, 8tj and

4tj, respectively. Given the similarity between TL,3 and TL,2, it is

xpected that it is possible to use TL,3 in a modeling study with
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Fig. 7. Favre-averaged profiles of TL at three time instants. TL, 1 ( ) corresponds

to the TL calculated using Eq. (9), TL, 2 ( ) corresponds to the TL calculated us-

ing Eq. (10), and TL, 3 ( ) corresponds to the TL calculated using Eq. (11).

Fig. 8. Favre-averaged turbulent scalar flux (mixture fraction) profiles calculated di-

rectly from DNS and calculated using TL, 1 and TL, 2 at three time instants.
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n

appropriate scaling factor or with a proper model for a Reynolds-

number-dependent C0.

Based on the analysis above, Approximation 2 is adopted to ex-

tract �T and TL in the remainder of this paper.

3. Shadow displacement and conditional diffusion

In this section, the challenge of evaluating the shadow displace-

ment in a priori tests is discussed first, followed by the introduc-

tion of two different methods (Method 1 and Method 2) for ex-

tracting the shadow displacement from DNS. The specification of

the three model constants a, b and c is then described. In Section 4,

conditional scalar diffusion of mixture fraction and species mass

fractions are examined to explain model behavior and to compare
he model with DNS. Here the definition of the conditional diffu-

ion is clarified, and the methods used to evaluate conditional dif-

usion from DNS and from SPMM (and other mixing models) are

iscussed.

.1. The challenge of the quantification of the shadow displacement
∗ in a priori tests

In an a posteriori simulation, the evolution of R∗ is governed

ot only by Eq. (4), but also by Eq. (5). The subtlety comes from
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he involvement of �T and TL in Eq. (4). Both quantities are defined

sing the scalar flux, the statistics of which can be altered through

he evolution of scalar φ using Eq. (5). In other words, conditioning

n R∗ in Eq. (5) impacts the evolution of φ, and the improved pre-

iction of φ in turns changes the evolution of R∗ through �T and

L in Eq. (4). The coupling between Eqs. (4) and (5) is the driving

echanism that ensures localness in SPMM. It is recognized that

he influence of Eq. (5) on the evolution of R∗ cannot be directly

epresented in an a priori DNS test, because scalars are determin-

stic from the DNS solution and cannot be influenced by the intro-

uction of R∗.

To test the performance of SPMM, it is essential that R∗ is prop-

rly correlated with the scalars to ensure localness. It is shown in

20] that the correlation coefficient of R∗ and ξ can be as high as

nity, depending on the choice of model constants and the specific

est case. Since the main objective of this study is to evaluate the

erformance of SPMM in terms of the prediction of conditional dif-

usion, indirect approaches (i.e., Method 1 and Method 2) that can

est represent the tight coupling between R∗ and ξ for the cur-

ent test flame are introduced. In Method 1, R∗ is obtained through

olving Eq. (4), and the impact of Eq. (5) is introduced through a

onstructed quantity X. In Method 2, neither Eq. (4) nor Eq. (5)

re used, and a surrogate of R∗ is introduced, which is constructed

ased on correlation coefficients of velocity and mixture fraction.

ethods 1 and 2 are discussed in detail in Sections 3.2 and 3.3,

espectively.

The flame considered here is statistically one dimensional, so

hat only the y component of the shadow displacement vector
∗ (denoted as R∗) is relevant. All the subsequent discussions on

he shadow displacement are in the context of statistically one-

imensional flames.

.2. Quantification of the shadow displacement R∗: Method 1 (ODE

ntegration)

In Method 1, the shadow displacement R∗ is obtained through

he following stochastic differential equation (i.e., the one dimen-

ional form of Eq. (4)),

R∗ = −aR∗ dt

TL

− v′′
dt + b(2σ 2TL)

1/2dW ′. (14)

The DNS velocity field is deterministic, and hence the only

andomness in Eq. (14) is introduced by the Wiener process, W′.
herefore, the PDF of R∗ obtained through Eq. (14) is Gaussian, and

an be expressed in terms of its mean (denoted by R) and vari-

nce (denoted by S) [20]. Specifically, R is defined to be R = 〈R∗〉W ,

here 〈 〉W denotes an average over the Wiener process. In this

tatistically one-dimensional, temporally evolving flame, the gov-

rning equations for R and S are [20]:

DR

Dt
= − a

TL

R − v′′, (15)

DS

Dt
= −2a

TL

S + 2b2σ 2TL, (16)

here the left-hand side is the usual material derivative (time-

ate-of-change following a fluid particle).

From specified initial conditions, Eqs. (15) and (16) are inte-

rated backward in time (first order) along fluid particle path-

ines for an ensemble of imaginary particles located at each grid

oint at time t. A second-order backward integration has also been

ested, and no discernable differences are observed. A trilinear in-

erpolation scheme is used to calculate intermediate particle lo-

ations during the integration process. It has been reported that

igher-order interpolation schemes are usually required to pre-

erve the trajectory of the Lagrangian particles in turbulent flows
33]. However, since both the temporal and spatial resolutions are

maller than the Kolmogorov scales here, the second-order trilin-

ar scheme should suffice for the current test flame.

For any grid point n, with specified R(n) and S(n) values, R∗(n)

an be expressed as,

∗(n) = R(n) +
√

S(n)g(n). (17)

The statistics of R∗ evolve the same way as Eq. (14), if g is taken

o be a standard Gaussian random variable. The correlation be-

ween R∗ and v is captured correctly. To represent the influence

f Eq. (5) on the evolution of R∗, g is expressed as a function of

new variable X, where X is not correlated with v and R, but is

orrelated with ξ . It should be noted that ξ is not a unique choice

o represent the scalars. However, it is a representative quantity,

specially in non-premixed flames where turbulent fluctuations of

eacting quantities are strongly correlated with fluctuations of the

ixture fraction [34]. Here a limiting case is considered, enforc-

ng the highest possible correlation between R∗ and ξ for a given

odel constant a by constructing X as:

≡ [ξ ] + α[R] + β[v], (18)

here square brackets denote a standardized variable, e.g.,

ξ ] ≡ (ξ − ξ̃ )/ξrms. (19)

oefficients α and β are determined by imposing the conditions

hat X is uncorrelated with both R and v. g is then defined as

= sign(−ρvξ )[X], (20)

here ρvξ is the correlation coefficient between v and ξ . By intro-

ucing the variable X, the correlation between R∗ and ξ is maxi-

ized to represent the level of localness that SPMM can enforce in

corresponding a posteriori case, without changing the correlation

etween R∗ and v. The initial conditions for R and S are taken to be

he corresponding statistically stationary solutions, described as:

(x, y, z, t0) = −v′′
(x, y, z, t0)TL(y, t0)

a + 1
, (21)

(x, y, z, t0) = σ 2(y, t0)T 2
L (y, t0)b2

a
. (22)

The derivation of the statistically stationary solutions can be

ound in Appendix A.

.3. Quantification of the shadow displacement R∗: Method 2

Surrogate model)

An alternative (potentially simpler) method to extract the

hadow displacement R∗ from DNS or experiments was proposed

ecently in [35]. There, a surrogate for R∗ (denoted as R∗
sg) was con-

tructed, which is a function of the correlation coefficients between

, v and R∗. The correlation coefficients involving R∗ are specified

o be functions of the correlation coefficient between ξ and v (ρvξ ),

s follows:

vR∗ = ρo
vR∗ , (23)

R∗ξ = ρo
R∗ξ

ρvξ

ρo
vξ

, for |ρvξ | ≤ ρcrit , (24)

R∗ξ = ρvξρ
o
vR∗ − sign(ρvξ )[(1 − ρ2

vξ )(1 − ρo2
vR∗ )]1/2,

or |ρvξ | > ρcrit , (25)

here ρo
vR∗ and ρo

R∗ξ denote the values that were calculated for

statistically stationary, homogeneous, isotropic, uniform-mean-

calar-gradient example in [20]. Here ρcrit ≡ ρo
vξ

ρo
R∗ξ

is used to pre-

ent non-realizable values of ρR∗ξ . The quantity R∗
sg also depends
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on the standard deviation of velocity (σv), the standard deviation

of mixture fraction (σ ξ ), v′′, and ξ ′′ at each grid point. The final

form of R∗
sg is:

R∗
sg

σR∗
= λ

v′′
σv

+ κ
ξ ′′
σξ

+ γ η, (26)

where λ, κ and γ are coefficients (which can be obtained in terms

of ρR∗ξ , ρvR∗ , with the condition 〈( R∗
sg

σ ∗
R
)2〉 = 1), and η is a standard-

ized Gaussian random variable. Here σR∗ is the standard deviation

of R∗, but the value of σ ∗
R

is immaterial since
R∗

sg

σ ∗
R

is only used for

conditioning.

To summarize, two different methods are introduced in this

study to obtain the one-dimensional shadow displacement (R∗) for

the test flame. In Method 1, one solves time-evolving ODEs for

the local mean (R) and variance (S) of shadow displacement (R∗)

with prescribed initial conditions. The correlation between R∗ and

ξ is ensured by introducing a variable X that is maximally corre-

lated with mixture fraction but uncorrelated with velocity. From

here on, R∗
ODE is denoted to represent R∗ obtained from Method

1. In Method 2, one replaces R∗ using the surrogate R∗
sg. Method

1 is more computationally intensive, but it also invokes fewer as-

sumptions. Method 2 avoids integrating ODEs in a priori studies,

which provides a simpler way to evaluate SPMM in DNS; this is

also expedient in SPMM-based modeling studies, as one does not

need to transport the shadow displacement as an additional vari-

able. However, Method 2 invokes more assumptions, and the valid-

ity of those assumptions needs to be tested. In the present study,

Method 1 is taken as the baseline, and comparisons with results

from Method 2 are presented to assess the potential of Method 2.

Next, some additional discussion of the specification of model

constants and the evaluation of conditional diffusion is provided.

3.4. Definition of the conditional diffusion

The performance of SPMM is evaluated by comparing the con-

ditional diffusion extracted directly from DNS with that extracted

from DNS according to the SPMM formulation. In this section, the

conditional diffusion is defined and discussed.

For a composition variable φ (e.g., a mixture fraction or a

species mass fraction), the molecular diffusive flux Jφ is defined

as:

Jφ ≡ −ρDφ 
 φ (for mixture fraction), (27)

Jφ ≡ −ρDφ

(

Yi + Yi

M

 M

)
(for species), (28)

where Dφ is either the thermal diffusivity (for mixture fraction) or

the mixture-averaged molecular diffusivity of composition variable

φ, and M is the mixture-averaged molecular weight. In modeling

studies, the mean diffusive flux J φ is usually defined by replacing

the values of ρ , Dφ and φ in Eqs. (27) and (28) by their corre-

sponding mean values:

J φ ≡ −〈ρ〉D̃φ 
 φ̃ (for mixture fraction), (29)

J φ ≡ −〈ρ〉D̃φ

(

Ỹi + Ỹi

〈M〉 
 〈M〉
)

(for species). (30)

With these definitions, 〈Jφ〉 �= J φ for the variable-property case,

although in high-Reynolds-number turbulent systems, 〈Jφ〉, J φ,

and their difference should all be small compared to the r.m.s.

scalar flux. The part of the diffusive flux represented by mixing

models is

J′φ ≡ Jφ − J φ. (31)

Note that the mean −〈J′φ〉 is, in general, non-zero, although it is

zero in models.
In the DNS, the rate of change of φ due to J′φ is

∂φ

∂t

)
DNS

= − 1

ρ

 ·J′φ, (32)

hereas the rate of change of the particle composition due to the

PMM model is

dφ

dt

)
SPMM

= − c

TL

(ψ − 〈φ(x, t)|X∗(t) = x, R∗(t) = R〉ρ ). (33)

e define the conditional diffusions to be the conditioned means of

hese quantities (( ∂φ
∂t

)DNS and ( ∂φ
∂t

)SPMM), i.e.,

SPMM(ψ, x, R, t) ≡
〈(

∂φ

∂t

)
DNS

|φ = ψ, X∗(t) = x, R∗(t) = R

〉
, (34)

SPMM
M (ψ, x, R, t) ≡

〈(
dφ

dt

)
SPMM

|φ = ψ, X∗(t) = x, R∗(t) = R

〉
. (35)

ere the subscript M is used to distinguish the conditional diffu-

ion corresponding to the model from that corresponding directly

o the DNS conditional diffusion. If DSPMM
M = DSPMM, then the SPMM

s perfect in the sense that it causes the joint PDF of φ to evolve

orrectly. Hence we appraise the model by comparing these two

uantities. (Note that DSPMM
M = DSPMM is a necessary and sufficient

ondition, and a weaker condition than ( ∂φ
∂t

)DNS = ( ∂φ
∂t

)SPMM, which

s impossible for a model to satisfy.)

For the IECM and IEM models, similar definitions are given

y,

dφ

dt

)
IECM

= − cU

TL

(ψ − 〈φ(x, t)|X∗(t) = x, U∗(t) = u〉ρ ), (36)

dφ

dt

)
IEM

= − cφ

TL

(ψ − 〈φ(x, t)|X∗(t) = x〉ρ ). (37)

or subsequent analysis and comparisons, the corresponding defi-

itions for the IECM and IEM mixing models are:

IECM(ψ, x, V, t) ≡
〈(

∂φ

∂t

)
DNS

|φ = ψ, X∗(t) = x, U∗(t) = u

〉
, (38)

IECM
M (ψ, x, V, t) ≡

〈(
dφ

dt

)
IECM

|φ = ψ, X∗(t) = x, U∗(t) = u

〉
, (39)

IEM(ψ, x, t) ≡
〈(

∂φ

∂t

)
DNS

|φ = ψ, X∗(t) = x

〉
, (40)

IEM
M (ψ, x, t) ≡

〈(
dφ

dt

)
IEM

|φ = ψ, X∗(t) = x

〉
. (41)

t is noted that Eqs. (34), (38), and (40) take the same form, except

hat the conditioning variables are different.

In the current configuration, the Reynolds number is moderate,

nd it is of interest to check the magnitudes of the mean and stan-

ard derivations of ( ∂φ
∂t

)D = − 1
ρ 
 · Jφ . This is done in Fig. 9 for

ixture fraction. There the scatter plots of ( ∂φ
∂t

)D versus mixture

raction are plotted at all three time instants mentioned in Fig. 3.

he conventional conditional average of the scattered data are su-

erimposed as the red lines in each plot. Three y locations on the

pper branch of the flame are frequently examined throughout this

aper. They are: the location corresponding to peak mixture frac-

ion fluctuation ξ rms,max (hereafter referred to as yPM), the locations

orresponding to 75% of ξ rms,max on the lean (referred to as yPL)
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Fig. 9. Scatter plots of − 1
ρ 
 · Jφ (normalized by 1/tj) versus mixture fraction ξ at tBME , tME and tRI and the two locations yPM and yPL . The data points on one x–z plane are

used, with 50 times downsampling. Red lines are diffusion conditional on mixture fraction. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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nd rich (referred to as yPR) sides. The y locations corresponding

o yPM, yPL, and yPR change with time as the flame develops. Only

ocations yPM and yPL are shown in Fig. 9.

The conditional diffusion data points are less scattered with in-

reasing time. Except in Fig. 9(b), the standard deviations based

n all the data at one location are on the order of 10 times the

ean values. The mean values are not negligible compared to

he standard deviations, which violates the usual high-Reynolds-
umber assumptions. In Fig. 9(b), the standard deviation is 1000

imes larger than the mean value. This is because this location

s outside the flame, and there the Reynolds number is relatively

igher than inside the flame zone, due to the lower viscosity.

t can be seen that the test case is not perfect for testing mix-

ng models under high-Reynolds-number conditions. However, the

atabase provides the best data that are currently available. For a

odeling study under similar combustion and flow conditions, the
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Table 2

Baseline model constants for SPMM.

a b c

1 0.5 3.27
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mean drift term J φ should be considered explicitly to accurately

model this flame.

3.5. Specification of model constants

Initial values for model constants a, b, and c were established

based on passive scalar results in the statistically stationary, ho-

mogeneous, isotropic, constant-mean-scalar-gradient test case in

Section. III of [20]; those values are listed in Table 2. There a nor-

malized scalar variance Vφ(t) was defined as,

φ(t) ≡ 〈φ′2〉
(Gσ TL)2

, (42)

where G is the value of the constant mean scalar gradient, φ′ is the

scalar fluctuation, and σ is the r.m.s. velocity. In the limit as t →
∞ (the stationary state), the normalized scalar variance was found

to be approximately equal to 3.3 (Vφ(∞) ≈ 3.3). By satisfying the

dispersion-consistency condition and applying the statistically sta-

tionary state condition [20], the relationship of the SPMM model

constants and flow statistics was established as follows:

b = 1

1 + a
, (43)

φ(∞) = 1

c
+ 2 + a

a
. (44)

Equation (44) sets a lower limit on a, such that c remains posi-

tive and finite: amin = 2/(Vφ − 1). Then for any value of a that sat-

isfies this requirement, the values of b and c follow from Eqs. (43)

and (44), respectively. For the baseline case, a was chosen to be

unity, so that b = 0.5 and (for Vφ(∞) = 3.3) c = 3.27.

Due to the different nature of turbulence in the current test

flame, it has been observed that the standard value c = 3.27 over-

predicts the mixing rates. To separate the effect of mixing rates

from the effect of composition-space localness, c is first estimated

by matching the scalar dissipation rate that is implied from SPMM

to that implied from DNS. With the errors in c thus minimized for

each time and location, the remaining discrepancy shown below in

the conditional diffusion is mostly attributed to the description of

the localness of the model.

To match the scalar dissipation rates between SPMM and DNS,

the governing equation for a passive scalar ξ is employed, as

shown in Eq. (45):

Dξ

Dt
= 1

ρ

 ·(ρDξ 
 ξ ). (45)

Multiplying both sides of Eq. (45) by −2ρξ and taking conven-

tional average, Eq. (45) becomes〈
−2ρξ

Dξ

Dt

〉
= 〈2ρDξ 
 ξ · 
ξ 〉 − 〈ρDξ 
2 ξ 2〉

−〈
ξ 2 · 
(ρDξ )〉. (46)

It has been confirmed using the DNS database that the second and

third terms on the right-hand side of Eq. (46) are negligible com-

pared to the first term, and the difference between 〈2ρDξ 
 ξ ·

ξ 〉 and 〈2ρDξ 
 ξ ′′ · 
ξ ′′〉 is indiscernible. Thus, 〈−2ρξ Dξ

Dt 〉/〈ρ〉
is a good representation of the scalar dissipation rate based on
ixture fraction. Using this idea, in the baseline case, c is obtained

sing Eq. (47),

ρ(x, t)φ(x, t)

(
∂φ

∂t

)
DNS

〉
=

〈
ρ(x, t)φ(x, t)

(
dφ

dt

)
SPMM

〉
, (47)

here ( ∂φ
∂t

)DNS and ( dφ
dt

)SPMM are defined in Eqs. (32) and (33), re-

pectively. Model constant c is embedded in Eq. (33), and thus can

e determined using Eq. (47). The model constant c that is deter-

ined this way is denoted c(opt).

Similar methods are applied in the evaluation of the IECM

odel in this paper, to avoid the complications from improper

hoices of mixing rates.

For a stand-alone transported PDF simulation, a possible algo-

ithm to determine the values of c on the fly is to employ the re-

ationship in Eq. (44). Because none of the original assumptions

homogeneous, isotropic, statistically stationary) holds at each step

f the temporal jet simulation, especially during early stages of the

ame development, Vφ(∞) is replaced by Vφ(t), which renders Eq.

44) as an approximation. Then Vφ(t) is calculated according to Eq.

42), where the constant gradient G is replaced by the local gradi-

nt G∗(y) = ∂〈ξ 〉
∂y

. Once a is chosen, the corresponding model con-

tant c (denoted as c(Vφ)) can be calculated according to Eq. (44).

t is of interest to compare c(opt) and c(Vφ), and this is discussed

n Section 4.5.

.6. Extraction of conditional diffusion from DNS

It is straightforward to extract the conditional diffusion for both

he IECM and IEM models, because all of the conditioning variables

n Eqs. (38)–(41) are deterministic in DNS. Simple binning is also

mployed to calculate the conditional means for SPMM, although

t is noted that the standardized Gaussian variables involved in

oth methods result in different sets of R∗ for different realiza-

ions. However, the difference in R∗ does not change the statisti-

al results if enough samples are used to obtain them, and it has

een confirmed that the statistics extracted using different sets of

tandardized Gaussian variables are identical.

For this statistically one-dimensional transient flame, at time t

nd transverse location y, there are nx × nz grid points in the ho-

ogeneous x and z directions that can be used to compute statis-

ics. For the nth point, the mass fraction or mixture fraction φ(n),

ensity ρ(n), molecular diffusivity D(n)
φ

, and molecular diffusion

( ∂φ
∂t

)(n)
DNS

are calculated. Here R(n) and S(n) are retrieved from pre-

ious calculations. The sample space (ψ) for the scalar φ is parti-

ioned into J bins, and the sample-space r corresponding to shadow

isplacement R∗ is partitioned into K bins. The DNS estimate of the

onditional diffusion at the bin centers (ψ j+1/2 and rk+1/2) is then

btained by a conventional double-conditioning technique. Simi-

arly for the SPMM, ( dφ
dt

)(n)
SPMM

is evaluated for grid point n, and

he same double-conditioning technique is applied.

A parametric study on bin size was conducted (not shown),

nd it was found that J = K = 50 bins is adequate in most cases.

t certain locations (fuel core or coflow), the bins near the mini-

um and maximum edges occasionally suffer from reduced sam-

le sizes. Since most of the evaluations are not at those locations,

0 bins are used in all the subsequent results. Uniform bins are

sed for composition variables (and for velocity, in the case of

ECM), where the minimum and maximum values over the com-

utational domain are taken as the upper and lower limits.

A similar approach is followed for the IECM model. An exam-

le of the conditional diffusion extracted from DNS for the IECM

odel (DIECM) and extracted according to the IECM model (DIECM
M

)

s shown in Fig. 10; similar figures for SPMM are shown and dis-

ussed in Section 4. Here the mixing rate (i.e., the value of cU) is

etermined by matching the scalar dissipation rate between DNS
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Fig. 10. Normalized conditional diffusion of mixture fraction (DIECM(ξ )tj) extracted from DNS and from the IECM model at tME and yPM , where yPM denotes the location of

maximum ξ rms . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Scatter plot of normalized y-direction velocity (v/vrms) versus ξ at tME and

yPM .
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nd the IECM model, as described in Section 3.5. There the one-

oint, one-time normalized (by 1/tj) conditional diffusion of mix-

ure fraction is shown as a function of mixture fraction (ξ ) and the

ormalized transverse instantaneous velocity v/vrms at tME at yPM.

To interpret Fig. 10, one can imagine that each point with co-

rdinate (vi, ξ j) is associated with a fluid particle whose instanta-

eous velocity is vi and whose mixture fraction is ξ j. The condi-

ional diffusion at point (vi, ξ j) is essentially the diffusion source

erm which controls the evolution of the particle’s mixture fraction

ue to molecular transport. As a passive scalar, the mixture frac-

ion ξ j of the fluid particle increases due to positive conditional

iffusion, and ξ j decreases due to negative conditional diffusion.

igure 10(a) shows positive diffusion in the low-ξ regions (bottom

alf), and negative diffusion in the high-ξ region. This means that

uid particles with high fuel content (high-ξ ) tend to have their

ixture fraction reduced due to the negative conditional diffusion,

o that such fluid particles mix with leaner mixtures. The condi-

ional diffusion in Fig. 10(a) is also a function of v, with higher

v| being associated with higher absolute values of the conditional

iffusion. Figure 11 shows a scatter plot of y-direction velocity ver-

us mixture fraction ξ at the same time and location. It can be

een that large velocity magnitude (greater than 2vrms) is associ-

ted with the fuel-rich side of mixture fraction, which explains the

arge conditional diffusion seen on the left and right edges of the

ontour plot in Fig. 10(a). The conditional diffusion extracted from

he IECM model (Fig. 10(b)) also shows that there is a negative

iffusion associated with fuel particles (high mixture fraction) and

here is a positive diffusion associated with the oxidizer (low mix-

ure fraction). However, two distinct differences between Fig. 10(a)
nd (b) can be observed. First, the locations of zero conditional

iffusion (white band) are somewhat different. For example, the

ECM model shows larger variation of the zero conditional diffu-

ion band with velocity for low velocity magnitudes, which sug-

ests that IECM over-emphasizes the role of velocity on molecular

ixing in that region. A second difference is that the IECM model

oes not capture the high-conditional-diffusion region for high ve-

ocity magnitudes, especially on the negative (high ξ ) side. It can

e seen that the conditional diffusion does depend on velocity, but

he nature of this dependency might not be as simple as that im-

lied by the IECM model.

The difference between the DNS conditional diffusion and the

onditional diffusion corresponding to a particular mixing model

an be used as a quantitative metric of model performance. A sim-

le global metric is the normalized residual defined as:

r̂es =
∑J×K

i=1
(DM

i
− Di)

2∑J×K
i=1

D2
i

, (48)

here DM
i

denotes the conditional diffusion calculated from the

odel for a bin i in R∗–ξ space (or v–ξ space for IECM model),

hile Di denotes the conditional diffusion extracted from DNS for

he same bin. For example, the normalized residual for the IECM

odel at the same time and location as shown in Fig. 10 is 2.13,

hich implies that the r.m.s. of the error is approximately 146%.

The normalized residuals are quantified and discussed further

n Section 4.2.

. Results and discussion

The evolution of shadow displacement is discussed first, by ex-

mining iso-contours of shadow displacement and the correlations

etween shadow displacement, velocity and mixture fraction. In

he next two subsections, the conditional diffusion of mixture frac-

ion from DNS is compared with that from SPMM using Methods

and 2, respectively. Following that, the conditional diffusion of

ndividual species are discussed. Variations in the values of model

onstants c and a are discussed in the next two subsections.

.1. Shadow displacement

Snapshots of instantaneous contours of the shadow displace-

ent on the central z = 0 plane are shown in Fig. 12, at the three

nstants in time. Here Method 1 (ODE integration) has been used,

ith the baseline values of the model constants a and b (Table 2).

he stoichiometric mixture fraction line is superimposed on each

lot, to indicate the flame locations. The flame core and the coflow
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Fig. 12. Instantaneous R∗
ODE fields (normalized by jet width H) from Method 1 on the central z plane at different times. The black lines correspond to the stoichiometric

mixture fraction (ξst = 0.375). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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are separated (approximately) by the stoichiometric-mixture-

fraction line. The values of R∗ approach zero in the coflow region.

Between the stoichiometric lines, fine-scale structure can be seen

in R∗. Figure 3 shows that local extinction begins at approximately

4.5tj, and that the flame is essentially fully reignited by approx-

imately 15tj. The shape of the stoichiometric line changes during

the local-extinction-reignition process, indicating a possible tran-

sition from a flame-folding mechanism to edge-flame propagation

[36,37]. Premixed flame fronts have also been identified during the

re-ignition stage for a similar configuration with ethylene fuel [38].

By construction, R∗ is correlated with the transverse velocity v
and with the mixture fraction ξ ; this can be seen in Fig. 13, where

profiles of the correlation coefficients between R∗ and ξ (ρR∗ξ ) and
etween R∗ and v (ρvR∗ ) as functions of y are plotted at different

nstants in time. Results for two different values of model constant

(a = 1 and a = 10) are shown, with b = 1
a+1 (the value of c does

ot affect R∗ in a priori studies). Two dashed boxes whose edges

ut through the 50% ξ rms,max locations are plotted to indicate the

ositions of the reaction zones. Only the regions within the turbu-

ent flame core (ξ rms > 0.1ξ rms,max) are of interest.

It can be seen that R∗ and v are always negatively correlated,

hile the correlation between R∗ and ξ can be either positive or

egative; ρvξ and ρR∗ξ have opposite signs at all locations. Mixture

raction is better correlated with R∗ than with v. A strong correla-

ion between shadow displacement and mixture fraction implies

ocalness in composition space during mixing with SPMM, which
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Fig. 13. Correlation coefficients between R∗
ODE (Method 1) and v (right) and between R∗

ODE and ξ (left) at different time instants. Left column: ρR∗ξ , a = 1 ( ), ρR∗ξ , a = 10

( ), and ρvξ ( ). The dashed boxes in (b) and (d) enclose the regions where ξ rms is larger than 50% ξ rms, max to indicate the flame zones.
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Fig. 14. Comparison of correlation coefficients of R∗ and ξ (ρR∗ξ ) at tRI between

Method 1 and Method 2.

4

a

u

f

s a key desirable attribute (Table 1). Here |ρR∗ξ | is higher than

ρvξ |, whereas an even larger difference was reported in [20]. This

s a consequence of the limitations of performing a priori tests for

PMM, the complexity of this flame, and/or inappropriate values

or the model constants.

With increasing a, the absolute value of peak in ρR∗ξ decreases,

hile the absolute value of ρvR∗ increases. In general, increasing

he value of a decreases the localness of SPMM in composition

pace. For a = 10, R∗ and v are almost perfectly (negatively) cor-

elated. This is consistent with the observation made in [20], that

PMM essentially reduces to IECM in the limit a → ∞. This is ex-

lored further in Section 4.6.

The magnitudes of the correlation coefficients do not change

ignificantly with time. From this, one can conclude that the local-

xtinction and reignition processes do not affect the degree of cor-

elation between R∗ and v and between R∗ and ξ . This supports

he surrogate approach (Method 2), which relies on these correla-

ion coefficients.

To compare the localness captured by Method 1 and Method 2,

he correlation coefficients between R∗ and ξ are plotted at each

location at tRI in Fig. 14. In general, the values of the correlation

oefficients calculated for both methods are quite similar. The peak

orrelation coefficient from Method 2 is slightly higher than that

rom Method 1. Close to the central y plane, the correlation coeffi-

ients from Method 1 are slightly higher than those from Method

. Neither method shows a correlation coefficient of 0.9 or above

t any locations.
.2. Conditional diffusion: Method 1 (ODEs for R and S)

The conditional diffusion calculated directly from DNS (Eq. 34)

nd that calculated according to the SPMM formulation (Eq. (35),

sing Method 1, baseline values of the model constants a, b, and c

rom Eq. (47)) are compared for mixture fraction at the three time
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Fig. 15. Iso-contours of DSPMM(ξ )tj (top row) and versus DSPMM
M (ξ )t j (bottom row) at different time instants at yPM . R∗ is normalized by its corresponding r.m.s. at that time

and location. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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instants labeled in Fig. 3. Figures 15, 16 and 17 show the condi-

tional diffusion of mixture fraction from DNS and SPMM at PM, PL,

and PR at the three time instants, respectively.

Similar to the IECM example in Section 3.6, the conditional dif-

fusion is normalized by the jet frequency (1/tj), and R∗ is normal-

ized by the r.m.s. of R∗ (R∗
rms) at each y location. For all time in-

stants, it has been found that R∗
rms is approximately half of the cor-

responding Taylor micro-length scale at the corresponding y loca-

tion. This gives an indication of the size of the region in physical

space from which the shadow displacement effectively draws in-

formation for the mixing model.

The conditional diffusion of mixture fraction extracted from

SPMM is qualitatively similar in structure to that extracted from

DNS (e.g., positive versus negative regions, zero line). SPMM gives

zero conditional diffusion where the scalar is equal to its cor-

responding conditional mean value. DNS gives zero conditional

diffusion where it actually is zero according to its definition. It

is desirable that these two zero-bands are located at the same

locations in R∗–ξ space. It can be seen that SPMM and DNS

have zero conditional diffusion at similar locations in R∗–ξ space,

but not at exactly the same locations. A larger discrepancy is

shown in the comparison between the IECM model and DNS

shown in Fig. 10. Similar behavior has also been observed in

comparing IEM and DNS results [39] (there the zero conditional

diffusion location is a point). The location of the zero condi-

tional diffusion line can be controlled by changing the values of

the model constants that determine the shadow displacement.

Another possible improvement is to build in information about

intermittency.
The similarities between the conditional diffusion contours

rom DNS and from SPMM are higher at yPM (Fig. 15) and yPL

Fig. 16) at all time instants than at yPR (Fig. 17). It is speculated

hat the intermittency effects might play a role at yPR where fuel

articles have higher probabilities to be surrounded by other fuel

articles, which results in a zero molecular diffusion at a higher

ixture fraction value, as shown in Fig. 17. SPMM captures the po-

ition of the zero-lines and the locations of peak conditional diffu-

ion values remarkably well at several locations (e.g., tME and yPM,

RI and yPM). Many highly-localized structures are observed in the

onditional diffusion from DNS. For example, the conditional diffu-

ion changes signs three times in Fig. 16(b) along the left boundary

f the contours from ξ = 1 to ξ = 0.4. These highly-localized struc-

ures are not captured by the SPMM model at the same time and

ocation. The formulation of SPMM dictates that its prediction is

airly organized (i.e., there is a conditional mean line, and negative

nd positive conditional diffusion above and below that line). As

model, SPMM is ultimately employed in a RANS or LES context,

here the grid size does not capture the smallest localized struc-

ures in any case.

Besides the locations of the zero-conditional-diffusion bands,

esults from SPMM also show better prediction of the locations

f the maximum and minimum conditional diffusion, compared to

he IECM model at same time and location (Fig. 10). As discussed

n Section 3.6, conditional diffusion does depend on velocity; how-

ver, this dependency can be further improved by adding scalar

istory information that is manifested through R∗.

By integrating the conditional diffusion over the scalar space

mixture fraction, in this case) and R∗, one can recover the
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Fig. 16. Iso-contours of DSPMM(ξ )tj (top rows) and versus DSPMM
M (ξ )t j (bottom rows) at different time instants at yPL . R∗ is normalized by its corresponding r.m.s. at that time

and location. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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nconditional mean diffusion, which should be equal to zero by

efinition and construction (property I in Table 1). For both DNS

nd SPMM, it has been confirmed that the unconditional diffu-

ion is very close to zero; small deviations result from the fact

hat the Reynolds-number of the flow is moderate, as discussed

n Section 3.4.

The global metric r̂res is also examined to evaluate the overall

greement between DNS and SPMM, at tME and tRI, at all three lo-

ations. Results are summarized in Table 3. The first two columns

f Table 3 are obtained for Method 1. Column 1 contains results

hat are calculated using the values of c described in Eq. (47)

c(opt)), while Column 2 contains results that are calculated based

n values of c calculated using Eq. (44) (c(Vφ)). Similarly, Columns

and 4 contain results based on Method 2, using c(opt) and c(Vφ),

hich are discussed further in Section 4.3. As a comparison be-

ween different mixing models, results calculated for the IECM

odel are also listed in Table 3. Column 5 is calculated accord-

ng to Eq. (47), using the definitions of IECM model (Eq. 36). The

alues of c in Column 6 (c(φ)) is obtained by

(φ) = τ

τφ
, (49)

ith τ = k/ε and τφ = ξ̃ ′′2

〈2Dξ 
ξ ′′
ξ ′′〉ρ .

The normalized residuals calculated using c(opt) are smaller

han those calculated using c(Vφ), but they are quite close to

ne another. For both time instances, the normalized residuals are

maller at yPR than at yPM and yPL. Values that are larger than

nity are observed at y and y , which are not desirable. The
PM PL
ormalized residuals obtained from SPMM using Method 1 are

maller than those obtained using the IECM model.

In summary, in Method 1, R∗ is forced to be highly corre-

ated with mixture fraction by means of the variable X (recall

ection 3.2), and the model constant c is extracted from scalar

issipation rates of mixture fraction. In Section 4.4, the condi-

ional diffusions of CO and H2O are examined using R∗ and c

btained from this section. The comparison there can be used

o further evaluate the performance of SPMM in terms of pre-

erving localness and predicting mixing rates for each individual

pecies.

.3. Conditional diffusion: Method 2 (surrogate for shadow

isplacement)

Figure 18 shows the normalized conditional diffusion of mix-

ure fraction, based on the normalized surrogate R∗
sg (Method 2), at

PM and yPR at tRI. It can be observed that the range of R∗
sg/R∗

rms is

imilar to that of R∗
ODE/R∗

rms shown in Figs. 15–17, but they are not

xactly the same.

The comparison between the DNS and modeled conditional dif-

usion iso-contours is similar to that shown in Section 4.2, with

ewer fine structures revealed. The results from DNS and SPMM

Method 2) are not visually as similar as those from Method 1, but

he normalized residuals are consistently smaller than those from

ethod 1 (Table 3, Columns 3 and 4). Fewer spots of extreme val-

es of conditional diffusion are observed in the DNS results shown

n Fig. 18. This might contribute to the smaller residual values ob-

erved in Table 3. Another possible source of improvement might
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Fig. 17. Iso-contours of DSPMM(ξ )tj (top rows) and versus DSPMM
M (ξ )t j (bottom rows) at different time instants at yPR . R∗ is normalized by its corresponding r.m.s. at that time

and location. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3

Normalized residuals (Eq. 48) at tME and tRI , at all three locations, for Method 1, Method 2 and the IECM model. For Methods 1 and 2, normalized

residuals obtained using c(opt) (Eq. 47) and c(Vφ ) (Eq. 44) are compared. For the IECM model, normalized residuals obtained using c(opt) (Eq. 47)

and c(φ) (Eq. 49) are compared.

Time and location M1, c(opt) M1, c(Vφ ) M2, c(opt) M2, c(Vφ ) IECM, c(opt) IECM c(φ)

tME , yPR 0.76 1.45 0.3 0.55 2.18 0.72

tME , yPM 2.78 3.36 0.67 0.60 3.85 2.13

tME , yPL 1.52 2.60 0.9 1.50 2.56 2.18

tRI , yPR 0.65 0.95 0.21 0.40 1.97 0.93

tRI , yPM 1.37 2.67 0.40 0.59 3.50 1.28

tRI , yPL 4.30 9.35 3.40 7.01 8.06 2.19
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come from the slightly higher correlation of R∗
sg with ξ in Method

2 as shown in Fig. 14. However, it has to be kept in mind that the

normalized residual is only one global parameter; it is not advis-

able to draw definitive conclusions from one global quantity. Both

Method 1 and Method 2 involve surrogates of the shadow displace-

ment. It is difficult to conclude which method provides a better

representation of what the shadow displacement might look like

in a stand-alone calculation. A transported PDF simulation should

be carried out to further verify the phenomena observed in this

study.

Computationally, the extraction of R∗
sg is approximately 100

times less expensive than obtaining R∗
ODE

using Method 1, because

Method 1 requires integration of ODEs in time.

4.4. Conditional diffusion of individual species

In this study, the shadow displacement is forced to be closely

correlated with mixture fraction. It has been demonstrated that
orrelating the shadow displacement with mixture fraction en-

orces a level of localness in the composition space (Sections 4.2

nd 4.3). Here, the R∗ generated in Section 4.2 and the model con-

tant c calculated using Eq. (47) are used to compare the condi-

ional diffusion of individual species extracted from DNS and from

he SPMM formulation. In this way, the localness of SPMM in terms

f species molecular mixing can be directly evaluated. Figures 19

nd 20 show the conditional diffusion comparisons for CO and

2O at tRI at yPM and yPR, respectively. Generally speaking, SPMM

an capture the shapes of the conditional diffusion in composi-

ion space for CO and H2O quite well. The model can even capture

ome of the small local structures. For example, the sign changes of

ondition diffusion of H2O near YH2O/YH2O,rms = 3, R∗/R∗
rms = 3 are

ell captured by the model. Similar details can also be observed in

he conditional diffusion plot for CO. Both iso-contour plots show

arker color than the DNS plots, which suggests an over-prediction

f mixing rates based on the mixture-fraction-based scalar dissipa-

ion rates.
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Fig. 18. DSPMM(ξ )tj (top rows) and DSPMM
M (ξ )t j (bottom rows), based on R∗

sg at 14tj at yPM and yPR . (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 19. DSPMMtj (top rows) and DSPMM
M t j (bottom rows) of CO and H2O, based on Method 1 at tRI at yPM . (For interpretation of the references to color in this figure, the reader

is referred to the web version of this article.)
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Fig. 20. DSPMMtj (top rows) and DSPMM
M (bottom rows) of CO and H2O, based on Method 1 at tRI at yPR . (For interpretation of the references to color in this figure, the reader

is referred to the web version of this article.)

Fig. 21. Comparison between values of c obtained by matching scalar dissipation

rates of H2O, CO, and mixture fraction ξ at tRI using Eq. (47), respectively.
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The mixing rates based on the scalar dissipation rates of each

species are calculated, and the implied c constants are plotted in

Fig. 21 at tRI. The same Lagrangian time scale TL,2 is used to calcu-

late c in all cases. Interestingly, the mixing rates of major species

H2O and CO are quite similar inside the flame core. The ratios of

the values of c obtained from mixture fraction and the values ob-

tained from CO or H2O are approximately between 1.5 and 2.5. It is

also observed (not shown) that the mixing rates of minor species

(e.g., OH and H) are highly influenced by differential diffusion and

the premixed flame features that exist in the flame core after re-

ignition [37], which is out of the scope of the current study. For

those species, the corresponding values of c are usually higher than

that of mixture-fraction-based c.

4.5. Variations in model constant c

The baseline values of c used in Section 4.2 were extracted

by matching scalar dissipation rates at each y-location (Eq. 47).

It is observed that the values of c obtained in this way are much

smaller than the standard model constant derived in [20]. This dif-

ference might be due to the highly-idealized flow conditions in

[20].

The values of c that are derived from Eq. (47) (c(opt)) are

compared with the values of c extracted from Eq. (44) (c(Vφ)) in

Fig. 22(a) to (c) for different time instants. c(Vφ) ranges between

0.2 and 0.4 in the flame zones, which is consistently smaller than

c(opt). The normalized residuals calculated using c(opt) are slightly

larger than those calculated using c(Vφ) (Table 3), indicating a

slightly better global prediction by using c(opt). However, the dif-

ference is not dramatic.

Since c(Vφ) is obtained through Vφ , it is of interest to examine

Vφ . The profile of Vφ is compared with that of ρ−2
Vξ

in Fig. 22(d)

for tRI. Only the central region of the flame where turbulence

is intense and the mixture is reactive is plotted. It can be seen

that the value of Vφ approaches its corresponding stationary-state
alue (3.3) in the flame zones with increasing time. At all loca-

ions and time instants, ρ−2
vξ is a good approximation to Vφ . Thus,

he modified model coefficient c can be written as a function of

vξ . Values of ρvξ can be readily extracted on-the-fly for a veloc-

ty–composition PDF method, which can then be used to form a

ynamic model constant c for SPMM.

.6. Variations in model constant a

As mentioned in Section 1, SPMM is related to other mix-

ng models including IEM, IECM and MMC. It has been shown in

ection 4.1 that the value of a controls the localness of the model.

y changing a, SPMM can approach the behavior of other mixing

odels. For example, as a approaches ∞, b = 1
1+a → 0 and c = cmin.

n this limit, R∗ and v are perfectly negatively correlated (Fig. 13),
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Fig. 22. Profiles of c calculated from Eq. (44) (c(Vφ )) versus c calculated from Eq. (47) (c(opt)) at different time instants. Vφ and ρ−2
Vξ

at tRI are shown in (d).

Fig. 23. At tME , DSPMM(YCO)tj evaluated with a = 1 and a = 10 at yPM , compared with DIECM(YCO)tj .
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o that conditioning on R∗ is identical to conditioning on v, and

herefore SPMM degenerates to the IECM model.

To further illustrate this point, results obtained with a = 1 and

= 10 for SPMM from DNS (DSPMM) are shown in Fig. 23, for tME

t yPM. All sub-figures in Fig. 23 are generated directly from the

NS database using Eqs. (34) and (38); i.e., we are not assessing

odel accuracy here. Because of the negative correlation between
∗ and v, the conditional diffusion distribution should be mirrored

o judge the similarity between Fig. 23(b) and (c). The SPMM and

ECM results are more similar to one another for a = 10 compared

o a = 1. For a = 10, the shapes of the outlines of iso-contours,

he locations of the maximum and minimum conditional diffusion,

nd the corresponding magnitudes are almost perfectly mirrored

etween SPMM and IECM. It is possible that a = 10 is sufficiently

arge for the present test flame. It has been observed that results

rom the SPMM model are quite sensitive to the value of a; in [20],

alues of a at 1.15 and 1.2 were shown to give very different re-
ults. A recent a posteriori study [21] shows that by adjusting a

nd c, the SPMM can show behaviors similar to those of EMST or

EM in terms of scatter plots of temperature. The choices of a and

play an important role when using SPMM.

. Conclusions

The newly-proposed shadow-position mixing model (SPMM)

as been examined, using a recently generated DNS database for a

emporally evolving DME jet flame. Compared to alternative mod-

ls, SPMM possesses more of the attributes desired in a mixing

odel (Table 1). Earlier work on SPMM [20] has been limited to

ighly idealized canonical systems. Here its behavior in a more

omplex turbulent flame is studied. The test flame is a tempo-

ally evolving, statistically one-dimensional slot-jet DME flame at

moderate jet Reynolds number of 13,050 [23]. The DNS features

reduced 30-species DME chemical mechanism, and the flame
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parameters were chosen to ensure that the flame undergoes sig-

nificant local extinction and re-ignition. The inhomogeneous, non-

stationary nature of the configuration including strong local extinc-

tion and reignition pose a significant challenge to SPMM, or to any

other mixing model.

A keystone for SPMM is the use of a conditioning variable called

the shadow displacement (denoted R∗), which is a constructed

stochastic variable. By design, R∗ is correlated with mixture frac-

tion and with velocity, so that conditioning on R∗ is similar to

conditioning on one or both of these key physical quantities. DNS

provides all the necessary statistics required to construct R∗ (with

some additional assumptions), so that an a priori study can be car-

ried out to understand the behavior and evaluate the performance

of SPMM. One caveat of an a priori study of SPMM is that the

mechanism of correlating R∗ and mixture fraction is missing, and

that correlation has to be enforced by applying the SPMM model.

Here two different methods (denoted as Methods 1 and 2) are pro-

posed to extract R∗ from the DNS solution, with varying levels of

approximation. In Method 1, one reconstructs statistics of R∗ by

solving ODEs for its mean (R) and variance (S). Then, the maxi-

mum possible correlation with mixture fraction is built into R∗. In

Method 2, one calculates a surrogate of R∗ using local flow statis-

tics. Method 1 requires fewer approximations, but it is more diffi-

cult to apply. Method 2 is of interest for its ease of implementation

and low computational cost.

Flow statistics show that the flow field remains highly nonsta-

tionary at the end of the simulation, and the Reynolds-stress pro-

files show that the flow field is highly anisotropic. Smooth profiles

of the turbulent diffusivity and Lagrangian time scales are prereq-

uisites for evaluating the SPMM model. Here the turbulent diffusiv-

ity and Lagrangian time scales extracted from DNS are smoothed

using cross-validation and other techniques. Quantitative compar-

isons between DNS and SPMM are based largely on the conditional

diffusion of mixture fraction and of individual species. The defini-

tion and quantification of the conditional diffusion from DNS and

from different mixing models is a nontrivial task, and a proposed

formulation is presented in this paper. The conditional diffusions

of mixture fraction from both methods are analyzed and compared,

and most of the subsequent analysis is based on Method 1.

By comparing the correlation coefficients among shadow dis-

placement, velocity and mixture fraction extracted using Method

1, it is shown that the shadow position is more strongly correlated

with composition than with velocity. The correlation coefficient be-

tween shadow displacement and mixture fraction is higher than

that between velocity and mixture fraction. The strong correlation

between shadow displacement and scalars ensures the realization

of localness in SPMM. However, due to the limitation of the a pri-

ori study, a perfect correlation between the shadow displacement

and composition cannot be achieved.

Conditional diffusion evaluated from DNS and from SPMM

(Method 1) have been compared, and good qualitative agreement

was found. To rule out the influence of inaccuracies in mixing

rate predictions, the model parameter c was obtained by match-

ing the scalar dissipation rates of mixture fraction locally in time

and space. Better predictions of the zero conditional diffusion lines,

and maximal and minimal conditional diffusion are observed from

SPMM, compared to the IECM model. The global normalized resid-

uals obtained from SPMM are consistently smaller than those ob-

tained from the IECM model.

Similar comparisons were made based on Method 2. The global

normalized residuals obtained from Method 2 are consistently

smaller than those obtained from Method 1. However, the iso-

contours of conditional diffusion are similar to those for Method

1, and some local details are missing from the iso-contours of con-

ditional diffusion extracted using Method 2. Compared to the com-

plex procedure of obtaining R∗ from Method 1, Method 2 is a viable
lternative to evaluate the SPMM in other statistically 1-D config-

rations in the future.

Suitable values for model constants c and a also were explored

n this study. It was found that a value of the model constant c

hat is calculated from the normalized scalar flux is quite close to

he value that is calculated based on matching the scalar dissipa-

ion rates. The relationship between SPMM and IECM was studied

y changing the model parameter a, which controls the correlation

etween R∗ and velocity. In this test flame, increasing a from 1 to

0 effectively reduces SPMM to IECM.

The test flame used here is not an ideal test case for testing

PMM in the high-Reynolds number limit, because of its moder-

te Reynolds number (non-negligible mean drift of molecular dif-

usion) in this flame. Stand-alone transported PDF simulations at

igher Reynolds numbers are needed to further evaluate the per-

ormance of the model.
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ppendix A. Derivation of statistically stationary solution for R

nd S

The statistically stationary solutions for R and S can be obtained

y considering the nature of the evolution equation for the shadow

isplacement R∗. A good approximation of the stationary-state so-

ution (Rss) is,

ss = 〈R|v′′〉ρ . (50)

ecause R∗ and v′′ have a joint-normal distribution, 〈R|v′′〉ρ [29]

an be shown to be:

R|v′′〉ρ = 〈R〉ρ + v′′ 〈Rv′′〉ρ
〈v′′2〉ρ , (51)

nd v′′ can be modeled using a Langevin equation as:

v′′ = −v′′
TL

dt + (2σ 2/TL)
1/2dW. (52)

ere, W is the Wiener process associated with the fluid particle

otion. From Eqs. (15) and (52), it follows that,

R〉ρ = 〈v′′〉ρ = 0, and (53)

Rv′′〉ρ = − σ 2TL

1 + a
. (54)

hus R∗
ss can be written as:

ss = 〈R|v′′〉ρ = − v′′TL

1 + a
, (55)

nd Sss can be obtained by setting the left-hand side of Eq. (16) to

ero. The resulting initial conditions at time t0 are then: where the

nstantaneous y-component fluctuating velocity v′′ is taken from

he DNS, and the turbulent diffusivity and time scale are extracted

s explained earlier. Time t0 is taken to be approximately 5tj in the

http://dx.doi.org/10.13039/100000015
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NS simulation (recall that the first time instant for analysis is 6tj),

o allow sufficient time for the DNS to purge any potential effects

rom the somewhat arbitrary initial conditions.
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