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A comprehensive study is reported of the Lagrangian statistics of velocity, 
acceleration] dissipation and related quantities, in isotropic turbulence. High- 
resolution direct numerical simulations are performed on 643 and 1283 grids, resulting 
in Taylor-scale Reynolds numbers R, in the range 3&93. The low-wavenumber 
modes of the velocity field are forced so that the turbulence is statistically stationary. 
Using an accurate numerical scheme, of order 4000 fluid particles are tracked 
through the computed flow field, and hence time series of Lagrangian velocity and 
velocity gradients are obtained. 

The results reported include : velocity and acceleration autocorrelations and 
spectra ; probability density functions (p.d.f.’s) and moments of Lagrangian velocity 
increments ; and p.d.f.’s, correlation functions and spectra of dissipation and other 
velocity-gradient invariants. It is found that the acceleration variance (normalized 
by the Kolmogorov scales) increases as RK-a much stronger dependence than 
predicted by the refined Kolmogorov hypotheses, At small time lags, the Lagrangian 
velocity increments are distinctly non-Gaussian with, for example, flatness factors in 
excess of 10. The enstrophy (vorticity squared) is found to be more intermittent than 
dissipation, having a standard-deviation-to-mean ratio of about 1.5 (compared to 1.0 
for dissipation). The acceleration vector rotates on a timescalc about twice the 
Kolmogorov scale, while the timescales of acceleration magnitude, dissipation and 
enstrophy appear to scale with the Lagrangian velocity timescale. 

1. Introduction 
Lagrangian statistical quantities are of fundamental importance in the under- 

standing of turbulence, especially turbulent dispersion and transport processes 
(Monin & Yaglom 197 1) .  Unfortunately, Lagrangian statistics are extremely difficult 
to obtain experimentally because they require measurements following the random 
motion of fluid particles (which, by definition] move with the local instantaneous 
fluid velocity). Nevertheless, some useful data have been obtained by Snyder & 
Lumley (1971) and Shlien & Corrsin (1974). More recently, Sat0 & Yamamoto (1987) 
have measured Lagrangian velocity autocorrelations in grid turbulence, by tracking 
small tracer particles optically. However, higher-order quantities such as Lagrangian 
acceleration and velocity gradients are still inaccessible to reliable measurement. 

In  this paper we present Lagrangian statistics obtained from direct numerical 
simulations (DNS) of homogeneous isotropic turbulence, paying particular attention 
to the small scales. From the simulations we obtain time series of velocity and its 

t Current Address : Mechanical Engineering, Queen’s University, Kingston, Ontario, Canada 
K7L 3N6. 
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gradients following fluid particles. These times series are analysed to obtain many 
single-particle Lagrangian statistics of velocity, acceleration, dissipation, enstrophy 
and ‘ pseudo-dissipation ’ (defined in 3 3), including correlation functions, probability 
density functions (p.d.f.’s), structure functions and frequency spectra. 

The significance of Lagrangian statistics to the problem of turbulent dispersion 
was recognized by Taylor (1921). More recently, dispersion in inhomogeneous 
turbulent flows has been studied using stochastic models for the velocity following a 
fluid particle (see e.g. Reid 1979; van Dop, Nieuwstadt & Hunt 1985; de Bass, van 
Dop & Nieuwstadt 1986 and Thompson 1987). Similar stochastic models have been 
used as a basis for the calculation of inhomogeneous turbulent flow fields (Pope 1983; 
Haworth & Pope 1986, 1987 ; and Anand, Pope & Mongia 1989). A recent advance 
in these stochastic models of Lagrangian velocity is to take account of internal 
intermittency (Haworth & Pope 1985; Pope 1988a, b) .  One objective of this study is 
to examine the Lagrangian time series obtained from DNS in relation to these 
stochastic models. 

Sometimes called full turbulence simulations, the DNS approach is to obtain 
numerical solutions of the Navier-Stokes equation directly for the three-dimensional, 
fluctuating, velocity fields without any closure modelling. With continuing advances 
in supercomputers, DNS is being used to elucidate the physics of an increasing 
number of simple turbulent flows, mostly a t  moderate Reynolds numbers (e.g. Siggia 
1981; Rogallo & Moin 1984; Kerr 1985; Rogers & Moin 1987). Pseudo-spectral 
methods (Hussaini & Zang 1987), pioneered by Orszag & Patterson (1972), are 
favoured because of their high accuracy. We use an adaptation of Rogallo’s pseudo- 
spectral code for homogeneous turbulence (Rogallo 1981). 

Direct numerical simulations offer great potential for computing Lagrangian 
statistics. Riley & Patterson (1974), who calculated velocity autocorrelations in 
decaying isotropic turbulence, were the first to exploit this possibility. Recently, Lee 
et al. (1987) used DNS to study Lagrangian two-point correlations and characteristic 
timescales. As discussed below, the Lagrangian results that we obtained earlier 
(Yeung & Pope 1987) are largely superseded by those presented in this paper. 

The turbulence simulated is homogeneous and isotropic, without mean velocity 
gradients. It is made statistically stationary by forcing, i.e. by artificially adding 
energy to the low-wavenumber components of the velocity field. Compared to 
allowing the turbulence to decay, this practice has several advantages : stationary 
time series are more easily analysed; arbitrarily long-time series can (in principle) be 
obtained; specific initial conditions are not needed; the Reynolds number does not 
decay during the simulation ; and the lengthscales of the turbulence do not grow. The 
disadvantage is that the large-scale motions are polluted by forcing? and differ - to  
some extent - from ‘natural’ turbulence. However, as Eswaran & Pope ( 1 9 8 8 ~ )  have 
verified, provided an adequate separation of scales exists, the small scales, which are 
our primary focus of inquiry, are hardly affected. Consequently, one can be confident 
that the small-scale Lagrangian statistics, such as those of acceleration and 
dissipation, are close to those of unforced turbulence. For the velocity, the low- 
frequency Statistics are affected by the forcing, while the high-frequency statistics 
are not appreciably affected. The forcing scheme used is a refinement of that 
developed and tested by Eswaran & Pope ( 1 9 8 8 ~ ) .  

Lagrangian statistics can be extracted from the simulations because DNS provides 
complete information of the time-dependent Eulerian velocity field. The Lagrangian 

t Even without forcing, the large-scale motions are significantly affected by the non-physical 
periodic boundary conditions. 
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time series are obt,ained by tracking fluid particles numerically, which is in turn 
dependent on the accurate calculation of fluid particle velocities by interpolation on 
the Eulerian grid network. The displacements at each time step are calculated from 
these velocities. Various quantities following the fluid particles can be similarly 
calculated and analysed statistically, taking an ensemble average over a sufficiently 
large number of particles. A particle-tracking algorithm has been devised recently by 
the authors (Yeung & Pope 1988) and has been shown to yield accurate results. 

The Lagrangian statistics reported here are obtained from four 12fi3 grid 
simulations, a t  Taylor-scale Reynolds numbers (R,) of 38, 63, 90 and 93, and from 
three 643 simulations with R, = 38, 54 and 59. On a 1283 grid, Reynolds numbers 
significantly greater than 90 cannot be achieved without compromising the accuracy 
of the calculations - especially the accuracy of small-scale statistics. 

Since some of our results show significant Reynolds-number dependence, i t  is 
important to appreciate the relationship between the highest Reynolds number in 
our simulations (a, = 93) and the Reynolds numbers obtained in laboratory 
turbulent flows. I n  grid-generated turbulence the Reynolds numbers are usually 
lower: a t  the first measurement station in the experiments of Warhaft & Lumley 
(1978) R, is about 55, and it decreases downstream. In the experiments of Comte- 
Bellot & Corrsin (1971), the equivalent value is R, = 72. In  a turbulent boundary 
layer, R, increases with distance from the wall, and it can be estimated that R, = 90 is 
achieved a t  a distance of about 270 wall units -well into the logarithmic-law region. 
In  a self-similar turbulent axisymmetric jet, the Reynolds number does not vary 
with axial distance. Based on empirical data (Schlichting 1979), i t  is estimated that 
R,  = 90 is characteristic of a jet with a Reynolds number based on the pipe exit 
diameter of 7700. It may be seen, then, that R, = 90 is comparable with - in some 
cases higher than - the Reynolds numbers obtained in typical laboratory experiments. 

We previdusly reported Lagrangian data from 643 simulations, for Reynolds 
numbers R, from 20 to 50 (Yeung & Pope 1987). A much wider range of results is 
given in the present paper. Besides the extension to higher Reynolds numbers made 
possible by having well-resolved Eulerian fields on 12€i3 grids, the present study has 
incorporated several improvements in methodology. These include (a) a refined 
forcing scheme ; ( b )  a better interpolation scheme having superior continuity 
properties; (c)  a larger sample size through using more particles, and ( d )  a faster 
sampling rate giving more accurate high-frequency statistics. 

This paper is organized as follows. The Eulerian numerical scheme is described in 
$2 where Eulerian spectra and scales used to characterize the simulated turbulence 
are presented. Section 3 gives an account of the methodology employed to extract 
and analyse Lagrangian data. The principal results are reported in $4. Attention is 
first focused on the statistics of acceleration to determine whether Reynolds-number 
similarity is observed under Kolmogorov (and other) scaling. Then the auto- 
correlations and frequency spectra of velocity and acceleration are presented. 
Stochastic models for Lagrangian velocity are best examined in terms of temporal 
velocity increments: this is done in $4.3. One- and two-time statistics of the 
acceleration magnitude, dissipation, enstrophy and pseudo-dissipation fluctuations 
following a fluid particle are presented in 54.4. Again, implications for stochastic 
models used to calculate turbulent flows are considered. Finally, in $4.5, we examine 
the relationship between Lagrangian and Eulerian time statistics through velocity 
autocorrelations and spectra, comparing with the predictions of the ' advection 
hypothesis' proposed by Tennekes (1975). Conclusions are summarized in $5. I n  the 
Appendix we discuss the statistical errors in the simulations. 
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2. The Eulerian simulation 
2.1. Numerical method 

The Navier-Stokes equation is solved numerically using the pseudo-spectral method 
developed by Rogallo (1981) for homogeneous turbulence. A detailed description of 
the algorithm is provided by Lee & Reynolds (1985). 

The time-dependent Eulerian velocity field, u ( x ,  t ) ,  is represented on an equispaced 
grid of N3 grid points which form a cubic computational domain of width Lo. The 
velocity field is continued periodically (i.e. u(x+zL,, t )  = u(x ,  t ) ,  where z is any 
integer vector), and consequently u(x ,  t )  has a finite Fourier representation. There 
are N 3  corresponding discrete nodes in wavenumber space. Let k be the wavenumber 
vector at a given node, and k be its magnitude. The lowest non-zero wavenumber, 
denoted by k,, is 2x/L,. The components of k are integer multiples of k,, ranging from 
(l-$V) Ic, to (") Ic,. We denote by 6(k ,  t )  the complex Fourier (wavenumber) 
coefficients of the velocity a t  time t : i.e. 6(k ,  t )  is the discrete Fourier transform of 
u ( x ,  t ) .  

For each wavenumber, the Fourier velocity 6 evolves by 

d6 
dt 
- = a^[d(t)],  

where a  ̂ (obtained from the Navier-Stokes equation) represents the velocity time 
derivative in wavenumber space and is dependent on 6 a t  all k .  This (vector) 
equation is integrated in time by an explicit second-order Runge-Kutta method. 

The numerical scheme used differs from Rogallo's in two aspects. First, there is a 
small, but essential, modification to the treatment of aliasing error. Second, the low- 
wavenumber modes are forced. 

The essence of the pseudo-spectral method is that the velocity products (that arise, 
for example, in the convective term) are evaluated in physical space, and then 
transformed to wavenumber space. This avoids the costly evaluation of the products 
in physical space as convolutions in wavenumber space ; but it introduces aliasing 
errors, which are reduced by a combination of truncation and phase-shifting 
techniques. In Rogallo's code, the phase shifts are chosen a t  random on each time 
step, so that the aliasing error on the predictor step almost cancels the error from the 
previous corrector step. This results in the grid being shifted in physical space by a 
different random amount on each time step. As stated by Yeung, Girimaji & Pope 
(1988), for our purposes it is essential instead to use the same phase shift (chosen 
randomly a t  the outset) on each time step. Otherwise, multi-time statistics would 
contain unacceptably large alias errors. Furthermore, this modification allows 
Eulerian time series to be collected by simply recording values a t  fixed grid points. 

The basic forcing scheme used to  maintain the turbulence energy against viscous 
decay has been thoroughly described and tested by Eswaran & Pope (1988~) .  For 
each non-zero wavenumber node k lying within the spherical shell of radius K ,  (i.e. 
such that 0 < k < K F ) ,  an artificial random term a^,(k, t )  is added on the right-hand 
side of (1) .  Two choices of KF are used: 21/2k, ,  for which the total number of forced 
modes, N F ,  is 92; and 2/2k,, for which NF is 18. In the work of Eswaran & Pope 
( 1 9 8 8 ~ )  (and of Yeung & Pope 1987), for each forced mode, a^,(k, t )  is specified as a 
complex vector-valued Uhlenbeck-Ornstein (UO) stochastic process (see e.g. Karlin 
& Taylor 1981). 

The UO processes are continuous, but not differentiable in time. This characteristic 
is found to have adverse effects on the smoothness properties of the Lagrangian 



Lagrangian statistics in isotropic turbulence 535 

velocity time series. To make the forcing acceleration once-continuously dif- 
ferentiable, we replace the UO process by the ‘ integrated ’ Uhlenbeck-Ornstein 
(IUO) process. A comprehensive account of the properties of the IUO process and its 
numerical implementation in the forcing scheme is given by Yeung et aE. (1988). 
The parameters in the IUO process to be specified are : the integral timescale (TF) of 
CiF(k, t ) ,  the ratio T$ of its microscale to its integral scale, and an amplitude rate 
parameter E* (the amplitude is (e*/TF);). Different Reynolds numbers can be attained 
by varying either the kinetic viscosity (v) or the forcing parameters’ (TF, E * ,  T;). It 
is found that the change from UO processes to IUO processes has little effect on one- 
time Eulerian statistics, but that  it is successful in removing high-frequency noise 
from the frequency spectra. 

Eswaran & Pope ( 1 9 8 8 ~ )  briefly review other forcing schemes, such as those used 
by Siggia (1981) and Kerr (1985). Recently, Hunt, Buell & Wray (1987) used a 
different scheme based on a steady non-uniform body-force field acting at  the large 
scales. For the present purposes, the scheme used here is more satisfactory and more 
thoroughly tested than the others mentioned. 

Numerical accuracy depends on both spatial and temporal resolution. The former 
requires that the small scales (characterized by the Kolmogorov lengthscale 7) be well 
resolved by the Eulerian grid. In an N 3  simulation, the highest resolvable 
wavenumber, denoted as k,,,, is the largest integer multiple of k,  not exceeding 
2/2N/3k0:  it  is 30k, and 60k, for 643 and 12S3 grids, respectively. The spatial 
resolution of a simulation is determined by the dimensionless parameter k,,, 
(Yeung & Pope 1987, 1988; Eswaran & Pope 1 9 8 8 ~ ;  Lee & Reynolds 1985).1 In 
physical space this parameter can be understood through the approximate relation 
 AX/^ x 3/(kmax7), where Ax is the grid spacing. It is found that the value k,,,y = 
1.0 is adequate for low-order velocity statistics, but that a value of a t  least 1.5 is 
needed for higher-order quantities such as dissipation and derivative statistics. All of 
our simulations have k,,, 7 values of approximately 1.5 or greater. 

A 643, R, = 38 simulation was performed with identical physical parameters to the 
12g3 ,  R, = 38 case, which resulted in the value of k,,, q being 1.5 on the 643 grid (but 
3.0 on the 1283 grid). A comparison of the results from these two simulations is used 
to assess the error due to finite spatial resolution. 

Before fluid particles are introduced, the Eulerian velocity field is allowed to 
evolve from some initial condition towards a statistically stationary state. The fluid 
particles are then tracked for a time T,  during which Eulerian and Lagrangian 
statistical data are sampled at regular intervals for subsequent analysis. The 
accuracy of the time integration is determined by the time step At, or by the Courant 
number C. (The Courant number is defined by C = Urn, At/Ax, where U,,, is the 
maximum (over all grid nodes) of the sum of the absolute values of the three velocity 
components.) The time-stepping error is generally negligibly small if C is kept below 
0.5 (see Yeung & Pope 1988). However, to facilitate the time-series analysis, a fixed 
time step is chosen for the averaging time T.  Thus, we stipulate C = 0.5 in the 
presimulation phase ; but after reaching stationarity, a fixed value of At is chosen such 
that the Courant number remains near the range 0.4-0.5. (For one run (643, R, = 38) 
the conservative value C = 0.25 was used.) 

t In Lee & Reynolds (1985), k,,, is equivalent to the ‘cutoff’ wavenumber k,. 
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R, = 38 

64 

0.025 
1.549 
2.501 
1.446 
0.507 
4.84 
9.55 
0.069 
0.025 
0.0500 
1.50 
0.323 
0.540 
0.362 
2.27 

0.536 
0.044 
2.42 

2 4 2  

$ 

R, = 38 

128 

0.025 
1.582 
2.651 
1.420 
0.534 
2.84 
5.32 
0.068 
0.012 
0.0493 
2.96 
0.320 
0.550 
0.383 
2.35 

0.500 
0.041 
2.29 

2 4 2  

t 

R, = 54 

64 

0.0158 
1.235 
0.770 
3.001 
0.367 
3.60 
9.81 
0.048 
0.042 
0.0478 
1.43 
0.269 
0.524 
0.434 
1.87 
0.993 
0.504 
0.035 
3.35 

4 2  

R, = 59 

64 

0.0158 
1.276 
0.775 
3.184 
0.406 
3.39 
8.36 
0.045 
0.042 
0.0476 
1.43 
0.261 
0.513 
0.528 
2.32 
0.867 
0.437 
0.029 
3.02 

4 2  

R, = 63 

128 

0.0105 
1.637 
2.673 
1.510 
0.407 
2.38 
5.85 
0.041 
0.024 
0.0257 
1.54 
0.250 
0.516 
0.321 
2.50 
0.894 
0.399 
0.025 
3.01 

2 4 2  

R, = 90 R, =93 

128 128 

0.006546 0.006546 
1.274 1.356 
0.780 0.893 
3.174 3.099 
0.343 0.297 
1.89 1.94 
5.51 6.53 
0.029 0.028 
0.027 0.029 
0.0247 0.0237 
1.48 1.42 
0.210 0.204 
0.526 0.512 
0.448 0.398 
2.08 1.69 
0.922 1.005 
0.326 0.359 
0.018 0.019 
3.55 4.12 

4 2  4 2  

t The other forcing parameters are the same for all cases listed here: T, = 0.6369. E* = 0.01306, 

$ not recorded. 
T i  = 0.4. 

TABLE 1. Forcing parameters and Eulerian flow variables 

2.2. Flow parameters 
For each of the simulations, the input parameters and principal Eulerian statistics 
are given in table 1. The turbulent kinetic energy k2, and the r.m.s. velocity u’, are 
obtained from the Eulerian velocity field by 

q 2  = 3u’* =(uiui) .  (2 ) 

From q2 and the mean dissipation rate 

we form the timescale 7, ZE @ / ( E )  and the lengthscale L, = (&f)j/(e>. The 
expectations (indicated by angled brackets) in the definitions of q2 and ( e )  
(equations (2) and (3)) are estimated by averaging over space and time. 

In isotropic turbulence, the Taylor microscale h is related to the mean dissipation 
rate ( E )  by ( E )  = 15vu”/h2, 

a relationship? we use to determine A,  and hence to obtain the Taylor-scale Reynolds 
number R, = u‘h/v. The Kolmogorov length, time and velocity scales are defined as 
usual by 7 = ( v 3 / ( e ) ) : ;  7? = ( V / ( E ) ) ; ;  and, vV = (”(€))a. 

The two-point velocity correlation tensor (with separation vector r )  is defined as 

( 5 )  

(4) 

R,(r) = ( U i ( 4  U,(X + r ) ) .  
t In fact, we obtain a Taylor microscale for each component of velocity variance, and define h 

as their average. 
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With no sum over Greek indices, integral length scales are defined by 

where ea is the unit vector in the P-direction. The integration limit is taken to be go 
(instead of 00 in the conventional definition) because the simulated flow (and hence 
R,(r)) is spatially periodic over a length Lo. For the turbulence not to be significantly 
affected by the period boundary condition, the correlation has to be small at 
separations of order $Lo. This condition is not closely met in these simulations (see 
$4.5, figure 35), but this is not of concern, since the large-scale motions are already 
affected by the forcing: we restrict our attention to the small scales. 

Longitudinal (L,)  and transverse (L,) integral lengthscales are defined by (6) with 
the choices a = P and a =I= P, respectively, and averages are taken over statistically 
identical components. The eddy-turnover time T, is based on the longitudinal 
integral scale, i.e. T, = L,/u'. In non-periodic homogeneous isotropic turbulence the 
lengthscale ratio LJL,  is 2 (see e.g. Hinze 1975). The significant differences from this 
number evident in table 1 are, due to periodicity and statistical error. 

The three-dimensional energy spectrum function E(k)  (as defined in Tennekes & 
Lumley 1972) characterizes the radial distribution of energy in shells of radius k in 
wavenumber space. I ts  integral is the kinetic energy: 

max 
$J~ = E(k)dk. (7)  

J o  

Rather than 00, the upper integration limit is k,,,, the highest wavenumber treated. 
The small scales are well resolved only if the spectrum decays fast enough as this 
wavenumber is approached. The dissipation spectrum D(k), defined by 2vk2E(k), 
similarly integrates to the volume-averaged dissipation ( E ) .  The numerical 
estimation of E(k) and D(k) is described by Eswaran & Pope (1988b). 

The dissipation skewness (S,) is a high-order quantity sometimes used to 
characterize the small-scale behaviour (Kerr 1985) : it is defined by 

S = - ( - ) . rvk4E(k)dk .  4 15v I 
35 (€) 

Finally, we define another integral lengthscale A that  is sometimes used (Monin & 
Yaglom 1975, p. 55), which is based on the energy spectrum: 

Between the different simulations, Reynolds-number changes are effected by 
varying the size ratio between the energy-containing scales (dominated by forcing 
parameters) and the small scales (dominated by viscosity). The 12S3, R, = 38 and 63 
simulations share the same forcing parameters: the increase in R, from 38 to 63 is 
achieved by lowering the viscosity, such that the small scales are reduced to a size 
just adequately resolved by the 1283 grid (kmaxq is 1.5). The 643, R, = 38 simulation 
has the same physical parameters as its 12fj3 counterpart, but half the resolution 
(k,,, q = 1.5). Any differences (beyond statistical variability) between the results of 
these two R, = 38 simulations would reveal numerical error due to inadequate 
spatial resolution. That such differences are found to be small confirms that k,,, q = 
1.5 represents adequate resolution. 
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To increase R, beyond 63, i t  is necessary to shift the energy towards the very 
lowest wavenumber band, while adjusting the viscosity to maintain the small-scale 
resolution. For the R, = 90 cases, only 18 wavenumber modes in a shell of radius 
K ,  = 42k ,  are forced (and account for much of the energy), with TF, E* and Tg 
unchanged. Because of the randomness inherent in the forcing scheme (and the 
turbulence itself), significant low-frequency temporal variations are observed in 
large-scale statistics (such as the volume-averaged kinetic energy and dissipation). 
This effect is much less pronounced for the R, = 38 and 63 cases, mainly because of 
the larger number of forced modes (92 compared to 18). The R, = 90 and 93 
simulations are statistically identical, and the differences between the results affords 
a measure of the statistical variability. Two 643 simulations were performed with the 
same forcing parameters (K ,  = 4 2 k , ) ,  but with a larger viscosity. The resulting 
Reynolds numbers are R, = 54 and 59 -the difference being entirely due to 
statistical variability. Further discussion on the effects of temporal variations of 
energy and dissipation is provided in the Appendix. 

Owing to high CPU costs, the simulations were limited to less than six eddy- 
turnover times. However, this is sufficient time to obtain very large numbers of 
samples of small-scale quantities. 

2.3. Spectrum functions 
Here we present the Eulerian energy and dissipation spectrum functions to show that 
the small scales are well resolved, and appear similar to grid-generated turbulence. 
In figure l,t the spectrum functions are shown for the 1283, R, = 38 and 90 
simulations, and also for 643, R, = 38. The plotting scales are chosen to emphasize 
the scale separation between energy-containing and dissipative eddies. The area 
under each curve is unity, when extended to zero wavenumber (note that E(0) is zero 
since the mean velocity is zero). The peaks of the spectra represent (approximately) 
the wavenumber ranges contributing most to  the energy dissipation. As is readily 
seen, the scale separation is relatively limited a t  R, = 38. At R, = 90, this separation 
is considerably wider, with the maximum of E ( k )  occurring a t  k,. However, 
logarithmic plots of E(k) a t  this Reynolds number still do not show an extended ‘five- 
thirds’ region typical of an inertial subrange. 

The accuracy of the 1283, R, = 38 simulation is beyond reasonable doubt : k,,, 9 
is 3.0. The close agreement between D(k)  for this simulation and for the 643, R, = 38 
simulation indicates that the lesser resolution (k,,, 9 = 1.5) is quite sufficient - at  
least for this statistic. The energy spectrum is less susceptible to errors arising from 
poor spatial resolution, but more susceptible to statistical errors : hence the small 
difference between the energy spectra for the two R, = 38 simulations. 

The dissipation skewness 8, (equation (7) ) ,  as a normalized fourth moment of the 
energy spectrum, provides an additional measure of small-scale accuracy. The R, = 

38 and 63 simulations give values in the range 0.550+0.025 and 0.516f0.025 
respectively. A t  comparable Reynolds numbers, Kerr (1985) found S, to be about 
0.52 and 0.51, the dependence on R, being very weak. I n  fact, his data suggests that 
S, approaches 0.5 in the high-Reynolds-number limit. This appears to be qualitatively 
consistent with our results. 

The closeness of the dissipation spectra for R, = 38 and 90 is remarkable, 
considering the large differences in the energy spectra. This suggests that the small 

t In this and subsequent figures, symbols on solid lines are used merely for identification : their 
Inmt.innn on these lines have no significance. 
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kll 
FIGURE 1. Normalized three-dimensional energy (dashed lines) and dissipation (solid lines) 
spectrum functions against Kolmogorov-scaled wavenumber. A, 643, R, = 38; 0, 1283, R, = 38; 
0,  12fia, R, = 90. Curves start at k, and end at k,,, for the respective grids. 

scales are much less sensitive than the large scales to the numerical parameters of the 
forcing scheme. 

To establish the physical relevance of the simulated small-scale structure, we 
compare the simulation spectra with those measured in grid-generated turbulence in 
wind-tunnel experiments. In figure 2, dashed lines represent data taken from the 
experiments of Comte-Bellot & Corrsin (1971), at a location where R, is 65. Good 
agreement between simulation and experiment is apparent a t  high wavenumbers. In 
contrast, the low-wavenumber spectra differ greatly, for several reasons. In the 
wavenumber range where it is active,. the forcing scheme accounts for much of the 
observed bulge in the simulation (12S3, R, = 63) energy spectrum above the 
experimental data. In  addition to forcing, the large eddies are affected by the 
periodic boundary conditions, since they are constrained to fit within the solution 
domain. 

In figure 2, we also compare the 12S3, R, = 63 data (withK, = 22/2k0)  with the 643 
calculation a t  a similar Reynolds number (R, = 59, K ,  = 4 2 k 0 ) .  Although the 
spectra from different K ,  necessarily differ for low wavenumbers, they agree well 
for both intermediate and high wavenumbers. Thus, in accordance with the more 
thorough examination of Eswaran & Pope (1988a), we conclude that the forcing has 
little effect on the small scales. 

To summarize, we have confirmed our expectations that artificial forcing and 
periodic boundary conditions have distorting influences on the large scales, but the 
small scales are not appreciably affected. The small scales of the flow field are 
accurately simulated (with k,,,y z 1.5 or greater), and are found to be repre- 
sentative of turbulence observed in the laboratory. This justifies the present study 
of small-scale statistics. 

in P L M  207 
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FIQURE 2. Normalized three-dimensional energy and dissipation spectrum functions against 
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FIGURE 3. Ratios of Eulerian lengthscales against Reynolds number, for the simulations listed in 
table 1 .  Open symbols for KJk ,  = 2 d 2 ,  solid symbols for KJk ,  = 4 2 .  A, LJL,; 0,  AIL,; 0,  
v/Ll ; V, LJ&,. Dashed lines indicate approximate Reynolds-number dependence of the data: 
logarithmic slopes &, -4 and - 1 .  
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2.4. Eulerian scales 

Figure 3 is a log-log plot of different normalized lengthscales against R,. As expected, 
the simulations with KF = d 2 k 0  (solid symbols) yield slightly greater values of the 
integral lengthscale L l / ( s 0 )  than do the simulations with K F  = 22/2k0 (open 
symbols). But a clear dependence of L J ( ! & J ~ )  on R, is not evident. The other ratios 
shown do vary with R,, but appear to be insensitive to K,/ko. 

It may be seen that the dissipation lengthscale (L, = (h2)%/(e)) increases (compared 
to L,) approximately as the square-root of R,. This implies that the the conventional 
high-Reynolds-number scaling ( ( E )  - U ' ~ / L , )  is not precisely followed. From the 
definitions of L,, A and 7 it  follows that AIL, and TILE vary as Rhl and R;: 
respectively. But because LJL ,  increases as Ri, inevitably AIL, and 7 / L l  decrease 
more slowly (approximately as Rhi and Rh' respectively). 

3. Extraction and analysis of Lagrangian data 
3.1. Particle-tracking algorithm 

Yeung & Pope (1988) studied in detail the numerical problem of tracking fluid 
particles, and described and tested an accurate scheme, Here we give only the 
essential details. 

Let x + ( y ,  t )  and u+(y,  t )  denote? the position and velocity at time t of the fluid 
particle originating from position y a t  time t = 0. Each particle is tracked by 
numerically integrating its equation of motion, which is simply 

The Lagrangian velocity u+(y, t )  is related to the Eulerian velocity u(x, t )  by 

u+(y, t )  = u(x+(y ,  t ) ,  t ) .  (11) 

A second-order Runge-Kutta method is used to calculate particle displacements. 
Let t ,  and t,+l be successive tirhe levels (t,+, = t ,+At ) .  Given the current position 
x+(t,), the predictor step yields an estimate x* of the future position x+(t,+,) : 

X* = ~ ' ( t , )  +Atu+(t,). (12) 

(13) 

The corrector step then gives the improved approximation : 

x+(t,+l) = x+(t,) +;At [u+(t,) +u(x* ,  t,+,)l. 
Interpolation is needed to determine the fluid particle velocity u+(t,) (and also 

u(x* ,  t,+l)) from the Eulerian velocity field u(x ,  t )  which is known at the P grid 
nodes in physical space. This interpolation is the dominant source of numerical error 
in the extraction of Lagrangian data. The interpolation error mainly depends on the 
spatial resolution of the small-scale motions (requiring k,,,? to be a t  least 1.0) and 
the interpolation scheme used. Two accurate interpolation schemes have been 
evaluated (Yeung & Pope 1988) : a third-order, thirteen-point, Taylor-series scheme ; 
and fourth-order cubic splines. Besides having superior accuracy, cubic splines have 
the advantage of yielding twice-continuously differentiable approximations to the 
interpolated variables. This leads to  a low level of numerical noise in the time series 

t A superscript + denotes Lagrangian quantities (i.e. those following a fluid particle). We also 
abbreviate the notation to x'(t) ,  u+(t),  etc. where appropriate. 

18-2 
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obtained. Cubic splines are used here (whereas Yeung & Pope 1987 used the Taylor- 
series scheme). 

In  homogeneous turbulence, all fluid particles having different initial positions are 
statistically identical. Ensemble averages can thus be taken over all ( N )  particles 
used. In the 12g3 simulations, we choose the initial locations to be coincident with a 
subset of 4096 (i.e. 1€i3) Eulerian grid points, which form an equispaced cubic 
sublattice. This choice has the advantage of achieving close to maximum statistical 
independence between the particles and hence minimum sampling errors for a given 
value of M .  However, for the 643 simulations we used only 1600 particles, and 
initialized the Iocations by taking samples from a uniform random-number generator. 
No gross effect of sampling errors is apparent. 

3.2. VeZocity gradient invariants 
Velocity-gradient information is also extracted from the simulations and presented. 
As in ( l l ) ,  the Lagrangian time series of any variable 6 (such as a component of 
i3ui/ax,) can be obtained from the Eulerian field 6(x, t )  by 

@+ty, t )  = W + ( y ,  t ) ,  t ) .  (14) 

The Eulerian velocity-gradient fields can be generated with high accuracy by 
performing the differentiation in wavenumber space. It is thus possible to obtain the 
time series of Lagrangian velocity gradients? (i3ui/axj)+. However, this direct method 
is computationally expensive : for each component of velocity gradient, it requires a 
discrete Fourier transform (to obtain aui/i3xj in physical space), and then the fitting 
of a cubic spline. An inexpensive alternative is to obtain the gradients by 
differentiating the cubic spline fitted to  the velocity field. The loss of accuracy is 
insubstantial for well-resolved Eulerian fields. With this procedure, the Lagrangian 
velocity gradients do not identically satisfy the continuity equation (i3ui/i3xi)+ = 0. 
A correction - albeit small - is therefore applied to the data : the corrected gradients 
are p y  = @+--(-) i ac, + s,, 

3 ax, 

where the tilde refers to the raw data before correction. 

the symmetric and antisymmetric parts of (i3ui/i3xj)+, 

rate following a fluid particle, s+(t), is given by$ 

The Lagrangian strain rates 5; and rotation rates r& are then readily evaluated, as 

According to the turbulent kinetic energy equation, the (mechanical) dissipation 

&(t) = 2vst. $3 st.. $3 (16) 

Since s+(t) is quadratic in the velocity gradients, which exhibit much greater local 
variation than the velocities, better resolution is required for accuracy. The data of 
Yeung & Pope (1988) shows that for k , , , ~  x 1.5, cubic spline interpolation gives 
about 1 % error in the velocity gradients (compared to 0.3% for velocities). 

As may be seen in (16), the dissipation rate is proportional to the second invariant 

t Note that (au,/azJ is the derivative of the Eulerian velocity field, evaluated at  the fluid 
particle location : it is different from au;/ayf,  the derivative with respect to the Lagrangian 
coordinates. 

3 The quantity q ~ + ( t )  defined by (18) was inappropriately referred to as the dissipation in Yeung 
& Pope (1987). 
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('squared magnitude') of the strain rate. We also study the analogous quantities 
formed from rotation rate and velocity gradients, namely 

S ( t )  = 2vrt r t ,  (17) 

and 

We (loosely) refer to S(t)  as the 'enstrophy' since it is a measure of vorticity (0) 

squared : 

For want of a better expression, we refer to rp'(t) as the 'pseudo-dissipation'. 

ril ri j  = !pk w k .  

These three velocity-gradient invariants, e'(t), $(t)  and p+(t), are related by 

v+(t) = $[e+(t) + C+(t)] .  

In  homogeneous turbulence, the Lagrangian and Eulerian (one-point, onetime) 
probability densities are identical. It follows readily that the three invariants are 
equal in expectationt i.e. 

(e> = ( e + ( t ) )  = (v+(l)) = (C+(t)>. (21) 

Although e'(t), S ( t )  and v+( t )  share the same mean value, other statistical 
characteristics are found to be quite different. 

3.2. Statistical analysis 
We now give a brief account of the statistical processing procedures used, During the 
simulations, a t  regular time intervals h (an integer multiple of At) ,  the Lagrangian 
data u+(t),  (i3ui/axj)+(t) (from which c+(t) and cp+(t) are readily calculated) and e+(t)  are 
stored for subsequent analysis. To resolve temporal variations of all frequencies, the 
sampling interval h needs to  be small compared with the Kolmogorov timescale (7,J : 
for the present purposes, h / ~ ~  rz 1/8 is found to be adequate. Since the Eulerian 
velocity fields are stationary and homogeneous, the Lagrangian variables are 
stationary random functions of time. Standard time-series analyses are performed on 
the data. 

Autocorrelations are calculated for three purposes : for presentation ; to estimate 
integral timescales ; and to form spectra by Fourier transformation. For the first two 
purposes we use the standard unbiased estimator (see e.g. Priestley 1981, $5.3.3) to 
calculate the autocovariance, and then normalize to obtain the autocorrelation. 
However, this unbiased estimate is known to be not necessarily positive semidefinite, 
and can lead to energy spectra with negative spectral values. Thus, to evaluate 
frequency spectra we follow standard practice and use a biased positive semidefinite 
estimator (also described in the same section of Priestley 1981). Two-time cross- 
correlation functions are estimated in the same (unbiased) manner as for single- 
variable autocorrelations. For two stationary processes X and Y.  this function is the 
correlation coefficient between X ( t )  and Y( t+7) ,  denoted by p(X, Y ;  7) (independent 
oft). (We use p as a general symbol for one- or two-time, auto- or cross-correlations. 
The meaning is always clear in context.) 

A correction procedure for numerical noise is necessary for the high-frequency part 
of the spectra. It is modelled after that used by Mestayer (1982) and is described by 
Yeung & Pope (1988). 

t When used on Lagrangian variables, angled brackets denote ensemble averages which are 
estimated by taking the mean over all particles, over all sampled time levels and over all 
statistically identical components. 
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The Lagrangian velocity increment over a time interval 7 is denoted by 

A,u'(t) = u+(t+7)-uf(t). (22 1 
(u or U+ (without subscripts) refers to any component of u,  or, in the case of mean 
values, to averages over all components.) The mth order moment of A,u+(t) is, by 
definition, the mth order Lagrangian velocity structure function, Dk(7) .  These 
structure functions are used to study the non-Gaussianity of the velocity increments, 
often by comparing the flatness factor ~ ~ ( 7 )  = D,L(7)/Dt(7)' and superskewness 
p6(7)  = D 3 7 ) / D 3 7 ) 3  with the Gaussian values (3 and 15). 

With a sufficiently fast sampling rate (small enough h) ,  the fluid particle 
acceleration a+ can be approximated by a simple central difference in terms of the 
velocit,y increment: a'(t+$h) is equated to ( l /h )  Ahuf(t). We also study the 
acceleration magnitude la+l ( = (a+-a+)i) .  

Following Tennekes (1975), the Lagrangian time microscale 7L is defined by 

taking component averages. Since it is directly related to  the curvature of the 
Lagrangian velocity autocorrelation p L ( 7 )  at  the origin (see e.g. Tennekes & Lumley 
1972), the microscale is important when autocorrelations a t  small time lag are 
examined. Although the microscale can theoretically be determined from the 
autocorrelations near the origin, it is found to  be highly sensitive to even small 
numerical errors in these autocorrelations. Instead, we use (23) for the determination 
of the microscale. 

4. Results 
In this section, we focus on the physical significance of the Lagrangian and 

Eulerian time statistics obtained from the 12g3 simulations a t  R, = 38,63,90 and 93, 
especially concerning the intermittent behaviour of the small scales. Selected data 
from 643 calculations are also included. 

In successive subsections, we discuss : (1) Reynolds-number dependence of 
acceleration statistics in regular and locally stretched time frames ; (2) Lagrangian 
velocity autocorrelations and frequency spectaa ; (3) velocity increment statistics, 
and their applications for stochastic models of fluid-particle velocity ; (4) statistics of 
acceleration magnitude, dissipation, enstrophy and pseudo-dissipation ; and (5) 
statistics of the Eulerian time velocity and its time derivative. 

4.1. Reynolds-number dependence of acceleration 
According to the Kolmogorov (1941) hypotheses, at high Reynolds numbers, small- 
scale statistics scaled by the Kolmogorov scales are universal. We have already 
observed (figure 1) that the Eulerian dissipation spectra appear universal, even at the 
lowest Reynolds number simulated. Other Eulerian statistics (e.g. the skewness of 
aul/&zl) exhibit a weak Reynolds-number dependence that is generally attributed to 
internal intermittency (Monin & Yaglom 1975), and accounted for by Kolmogorov's 
(1962) refined hypotheses. 

To examine the question of Reynolds-number dependence of Lagrangian statistics, 
we focus on the moments and autocorrelation of the acceleration. According to 
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FIGURE 4. Values of the normalized quantities a,, B,*, C,*, etc., defined in $54.14.3 against R,, 
for the 1283 and two 64* (R, = 54, 59) simulations. Open symbols for KJk ,  = 2 4 2 ,  solid symbols 
for KJk ,  = 4 2 .  A, a,; 0,  R: ; 0,  C: ; 0, exp (&ro,”,,). Dashed lines of logarithmic slopes 4 indicate 
approximate Reynolds-number dependence of a, and C:. 

Kolmogorov’s (1941) hypotheses, the acceleration variance (a+2)  (= f (a+.a+))  is 
given by 

0 2  
(a+2)  = a,A -2 = a, ( E ) $ / v ~ ,  (24) 

‘ 7  

where a, is a universal constant. The values of a, obtained from each simulation 
(from (24)) are plotted against R, in figure 4. It may be seen that there is a strong 
Reynolds-number dependence (approximately a, - lit). 

It is natural to investigate whether the Reynolds-number dependence can be 
explained by Kolmogorov’s refined hypotheses. The standard application of these 
hypotheses (Monin & Yaglom 1975) is to replace ( B ) ;  = (,+)a by (& in (24), and to 
assume that In€+ is normally distributed (with variance denoted by &,). Then, in 
place of (24) we obtain 

where is a universal constant. We find (54.4) that In E+ is, indeed, approximately 
normally distributed, and values of & 6  are given in table 4. Using these values, and 
taking < = 1,  the predicted values of a, are shown in figure 4. It may be seen that 
the Reynolds-number dependence predicted by (25) is much weaker than observed. 

While (25) is unsuccessful in explaining the observed Reynolds-number dependence 
of (a+2) ,  it may be that a different scaling is successful. We consider scalings based 
on either dissipation or pseudo-dissipation. Let #+ denote either E+ or p)+, and let q 
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FIQURE 5. Variance of locally scaled acceleration components (equation (26)) against the scaling 
exponent (q), for the 12Sa simulations. Open symbols for scaling by dissipation ( E + ) ,  solid symbols 
for scaling by pseudo-dissipation (q') : A, R, = 38 ; 0,  R, = 63 ; 0,  R, = 90 ; V, R, = 93. Data 
higher than the plot limits are not shown. 

be a parameter to be chosen. We define the normalized acceleration under generalized 
local scaling by 

Here the curly braces indicate global mean values, i.e. { D ~ / T ~ )  = ( ( c ) ~ / v ) ~ .  Both a+(t) 
and q5+(t) are preprocessed as described in the Appendix. (The calculated mean values 
of the chosen q5+, i.e. ( e + )  or (q'), are, of course, nearly equal.) We seek a scaling (i.e. 
a choice of 4' and q) that makes the statistics of a"+@) independent of Reynolds 
number (or nearly so). The scaling implied by the Kolmogorov (1941) hypotheses is 
q = 0, while for the refined 1962 hypotheses it is q5+ = E+, q = %. 

Figure 5 shows the variances of the locally scaled acceleration components 2 ( t )  
from the four 1283 simulations. Evidently, no combination of q and q5+ (including the 
choice implied by the refined Kolmogorov hypotheses) results in universality, at 
least in the Reynolds-number range of the simulations. The error bars (barely visible 
at  most points) show the standard errors which are estimated by dividing the time 
series into subrecords and processing each separately. Their limited extent indicates 
that these findings are well beyond the range of statistical uncertainty. 

Figure 6 shows the flatness factors of 2 ( t )  under the same conditions. It may be 
seen that without local scaling (i.e. q = 0) the flatness factor increases with R,, 
consistent with the notion of internal intermittency. The flatness factors are 
extremely high for the larger values of q under dissipation scaling. Such high values 
are deemed to be not accurate, in view of the large statistical errors that are evident. 
On the other hand, scaling by pseudo-dissipation leads to relatively low flatness 
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FIQURE 6. Flatness factor of locally scaled acceleration components against scaling exponents, 
Symbols same as in figure 5. 

factors. A minimum between 4.5 and 6.0 is attained a t  around q = $ or 1, where the 
Reynolds-number dependence is also relatively weak. 

In  summary, the acceleration variance (normalized by the Kolmogorov scales) is 
found to increase (approximately) as the square-root of R,. Neither Kolmogorov's 
(1962) refined hypotheses, nor a more general local scaling (equation (26)) is capable 
of accounting for this strong Reynolds-number dependence. It is found, however, 
t,hat the local scaling with 4' = q+ and q = 1 yields fairly small flatness factors of 
acceleration, virtually independent of R, : the significance of this result is discussed 
in 94.3. 

We now examine the autocorrelation function of acceleration, p,(7). Since this is 
a normalized quantity (p,(O) = l ) ,  it  is possible for it to be independent of Reynolds 
number even though the acceleration variance is not. Figure 7 shows the 1283 
simulation data, against Kolmogorov-scaled time lag. The autocorrelation functions 
have the form typical for the derivative of a stationary process with finite non-zero 
integral scale (in this case, u+(t)) : their values are negative a t  long time lags, and the 
acceleration integral timescales are practically zero (Tennekes & Lumley 1972). 

The zero-crossing time 7, (defined such that p,(7,) = 0) varies little with R, when 
normalized by 711: for all of the simulations 7,/7,, is within 2% of 2.2. On the other 
hand, the minimum of p,(7) shows significant systematic variations. 

A local scaling of both acceleration and time is sought to achieve a substantial 
reduction of Reynolds-number dependence of the acceleration autocorrelation 
function. We define a new time variable f :  
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FIGURE 7 .  Autocorrelation functions of acceleration components against time lag normalized by 
the Kolmogorov scale from the 12S3 simulations. The autocorrelations are nearly zero for time lags 
beyond the range shown. A, R, = 38; 0, R, = 63; 0, R, = 90, 0 ,  R, = 93. 

We refer to t and i as regular time and stretched time, respectively. A natural choice 
of m is f :  it is equivalent to scaling by a 'local' Kolmogorov timescale following a 
fluid partidt:. In addition, use of q = f, $+ = cp+ is strongly suggested by the flatness 
factor data as noted above. The autocorrelations of &(t )  (which is derived from a"'(t) 
by transforming to the stretched time axis i) are shown in figure 8. It may be seen 
that, with these choices of m, q and $+, a good collapse of the data is obtained. 
However, this is achieved only by normalizing the time lag 7 (in stretched time) by 
the zero-crossing time ?a. The ratio has 10 O h  variations around the value 2.5 - 
the variations being a t  least partly statistical (note the values for R, = 90 and 93). 
Detailed tests reveal that stretching the time by m = t in (27) is the most important 
factor contributing to the observed near-universality. 

Unlike the unscaled acceleration component u+(t ) ,  neither of the scaled versions, 
G'(t) and G+(t) ,  represents the derivative of a stationary process. Thus, they do not 
possess the zero-integral-scale property. However, the integral scales are found to be 
small, and do not affect the autocorreiation curve a t  the short time lags of interest. 

The goal of this subsection has been to discover a local scaling which would achieve 
near-universality in acceleration statistics, by taking into account the role of 
intermittency (through the dissipation or pseudo-dissipation fluctuations). Partial 
success has been possible only for the flatness factors and autocorrelations, using 
scaling based on pseudo-dissipation with suitable exponents (m and q )  as found 
above. The Reynolds-number dependence displayed by the unscaled acceleration 
statistics is attributed to the increase of intermittency with Reynolds number ; but 
the dependence is much stronger than that predicted by the refined Kolmogorov 
(1962) hypotheses. While the Reynolds numbers of our simulations are too low for 
these hypotheses to  be applied convincingly, i t  should nevertheless be recognized 
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FIQURE 8. Autocorrelation functions of acceleration components for same simulations as in figure 
7, but in stetched time t^ based on local pseudo-dissipation cp+ and exponents p = 3, m = t .  Time lag 
is normalized by the zero-crossing time fa, the ratios fa /rq  being as indicated. 

that  many Eulerian stat>istics (e.g. the Kolmogorov-scaled dissipation spectrum and 
dissipation skewness) show little variation of the Reynolds-number range considered 
here. 

The data presented in the subsections to follow support the conclusions that 
Lagrangian statistics display strong Reynolds-number dependence, and for the 
purpose of reducing this dependence through local scaling (on which stochastic 
models may be based), the statistical properties of the pseudo-dissipation rp' are 
more favourable than those of the dissipation E'. 

4.2, Autocorrelations and frequency spectra 

In  this subsection we present the Lagrangian velocity autocorrelations and velocity 
and acceleration frequency spectra. Numerical data are summarized in table 2. 

The Lagrangian velocity autocorrelation, pL(r) ,  important for turbulent diffusion 
studies, has been obtained in some experiments (Snyder & Lumley 1971 ; Shlien & 
Corrsin 1974; Sat0 & Yamamoto 1987). Figure 9 shows the simulation results, with 
time lag normalized by the Lagrangian integral timescale TL. Near the origin, the 
R, = 38 curve drops off more slowly than the others. This reflects the fact (see table 2) 
that  the ratio of microscale to integral scale, i.e. rL/TL, decreases with Reynolds 
number. 

For small time lags, the calculated autocorrelations fall off more slowly than do the 
data from the decaying turbulence experiments of Sat0 & Yamamoto. Several 
of their data points are also shown in figure 9. The exponential function, i.e. 
exp ( -T/TL), agrees well with both simulation and experiment beyond one integral 
timescale, even though its behaviour near the origin is qualitatively incorrect (its 
microscale is undefined). It may be observed from table 2 that T,/T, - the ratio of the 
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K, = 88 R, = 38 R, = 54 R, = 59 R, = 6 3  R, = 90 R,= 93 

N 64 128 64 64 128 128 128 
4'2 2 4 2  4 2  d 2  K,lkO 2 4 2  

hl  At 8 10 

<a+2> 

v;I7; 
T I  TL 

TLI T, 

4 4 
2 d 2  4 2  

4 4 6 
7 J h  5.00 8.62 5.97 5.95 6.97 9.16 8.56 

1.24 1.38 1.72 1.74 1.87 2.32 2.28 

12.9 8.07 12.5 11.7 8.18 7.64 8.39 
~7~ 0.377 0.352 0.288 0.290 0.291 0.247 0.231 
Tr.17, 5.45 5.15 6.03 6.46 7.02 8.57 8.36 

0.74 0.66 0.78 0.71 0.7 1 0.72 0.78 
7LlTL 0.72 0.73 0.67 0.64 0.59 0.52 0.55 
p4 of Ahu+ 7.6 8.0 10.1 8.1 11.1 17.8 11.7 

TABLE 2. Velocity, acceleration and velocity increments 

1 .o 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

P L W  

0 1 2 3 4 5 
7f T L  

FIQURE 9. Lagrangian velocity autocorrelation functions p L ( r )  against time lag normalized by the 
Lagrangian integral timescale FL, from the 1283 simulations. A, R, = 38; 0, R, = 63; 0, R, = 90: 
0 ,  R,, = 93. The dashed line is the function exp ( - r /TL) .  Experimental data from Sato & Yamamoto 
(1987): b, R, = 46; 4, R, = 66. 

Lagrangian integral timescale to the eddy-turnover time - is about 0.72 f0.06: a 
systematic variation with R, is not evident. This ratio is quite plausibly flow- 
dependent : measurements suggest it to be % 1.0 in grid turbulence (Shlien & Corrsin 
1974), but x 1.7 in the near-ground convective boundary layer (Hanna 1981). 

In the context, of turbulent dispersion, the significance of the Lagrangian velocit,y 
autocorrelation is that it determines the root-mean-square (r.m.s.) displacement of 
fluid particles (Taylor 1921). Let s be the time t normalized by the Lagrangian 
integral timescale TL, and let Z(s) be the r.m.s. displacement of a fluid particle 
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FIQURE 10. Normalized r.m.8. particle displacement C(s), plotted as Z(8)/8 against the normalized 
time s( = t/TL), for the 1283 simulations. A,  RA = 38 ; 0,  RA = 63 ; 0, R, = 90 ; 0,  R, = 93 ; + , 
exponential autocorrelation : pL(7) = exp ( -7/TL).  Small-time asymptote C(s) = s is the upper 
x-axis ; large-time asymptote Z(s) = (29)s is the dashed line. 

(relative to its position a t  t = 0) normalized by u‘TL. Then from the standard 
dispersion relations (e.g. Hinze 1975, p. 53) for stationary isotropic turbulence we 
obtain 

Z(S)~ = 2 1 p , ( s ’ )  (s-s’)ds’. (28) 

Figure 10 shows Z(s)/s plotted against s for the 12kI3 simulations, and according to 
the exponential approximation to the autocorrelation. Plotting Z(s)/s rather than 
Z(s) accentuates the slight differences between the curves. Only the lowest Reynolds- 
number case is perceptibly different from the others. The slight difference between 
Z(s) according to the exponential autocorrelation and those obtained from the 
simulations is due to the qualitative differences in the autocorrelations at  small 
times. The small-time asymptote Z(s) = s, and the large-time asymptote Z(s) = (2s); 
(deduced from (28)) are also shown on the figure. The principal conclusion is that the 
dispersion is mainly determined by u’ and TL : the effect of Reynolds number on pL(7) 
is too weak to affect Z(s) appreciably. 

It is emphasized that the velocity autocorrelation (at longer time lags) and the 
integral scale are dominated by the large-scale motions which are affected by the 
non-physical forcing and period boundary conditions. Consequently caution is needed 
in relating these statistics from the simulations to those of ‘natural ’ turbulence. 

Lagrangian velocity frequency spectra, EL(@),  and acceleration spectra, AL(w) 
( = w2l$’(o)), are obtained by Fourier-transforming the velocity autocorrelation. 
The acceleration spectra shown in figure 11 demonstrate that the noise level is well 
within tolerable limits : at the Kolmogorov angular frequency w,, ( = n/7J, the spectra 
are typically two orders of magnitude lower than their peak values, and have a slope 
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FIGURE 11. Kolmogorov-scaled acceleration frequency spectra for the 1283 simulations, on log-log 
(left-side) and log-linear (right-side) scales. A, R, = 38; 0, R, = 63; 0, R, = 90; 0 ,  R, = 93. 
Dashed vertical line marks the Kolmogorov frequency 0,. The peaks give values of B:. 

of about -5 on log-log scales. A t  frequencies higher than 2m,, the slopes of the 
spectra decrease (in absolute value), indicating the presence of noise. 

To highlight the separation of scales in the frequcncy domain, velocity and 
acceleration spectra, normalized by the respective variances, of the 1 2S3 simulations 
are shown together in figure 12. In each case, there is negligible energy beyond the 
Kolmogorov frequency, consistent with Tennekes (1975) who postulated that EL(w)  
extends only to frequencies of order w9. The most energetic eddies are seen to be those 
of characteristic time about 3TL or, equivalently (see table 2), twice the eddy- 
turnover time T,, 

As the Reynolds number increases, the acceleration spectra are shifted towards 
higher frequencies (relative to n/TL), signifying a widening timescale separation. The 
spectral shapes tend to be ‘skewed’ correspondingly. At R, = 63, the peak 
contributions to the acceleration spectra are at about wJ3 .5 ;  this corresponds to a 
timescale of about O.lSi-,, or a ratio of TL/r,, of 5.6. This separation is roughly of the 
same order as that  between the scaled plots of energy and dissipation wavenumber 
spectra in figure 1 ( $ 2 ) .  

It is important t o  confirm that the forcing scheme does not interfere with the true 
physical processes at the higher frequencies dominating the acceleration spectra - i.e. 
to show that the observed peaks in the acceleration spectra have not been 
contaminated by artificial forcing. In figure 12, we also show the spectrum of the 
forcing acceleration. This is evaluated as the frequency spectrum of a UO process of 
variance 4NFu2. (This numerical factor arises from the manner in which the forcing 
is implemented in the code.) Here this spectrum has been normalized by the same 
scaling parameters as the R, = 38 acceleration spectrum, and it is seen to be 
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FIGURE 12. Lagrangian velocity and acceleration frequency spectra, normalized for unit area and 
multiplied by frequency. Plot is log-linear, with frequency scaled by integral timescale. 
Acceleration spectra: A, R, = 38; 0,  R, = 63; 0, R, = 90; V, R, = 93. Solid symbols for velocity 
spectra. Vertical dashed lines indicate the ratio TL/r,, for R, = 38 and 93 cases ; + , spectrum of UO 
process of variance 4NFu2. 

concentrated in the low frequencies, while much lower than the acceleration spectra 
in their peak frequency range. In  other words, the forcing has a minimal effect on the 
acceleration spectra. Moreover, the case illustrated is a 'worst case ' for two reasons. 
First, the spectrum of the IUO process used in the refined forcing scheme decays 
more rapidly than that of the UO process. Second, as the Reynolds number is 
increased, the acceleration spectra are shifted towards higher frequencies, where the 
effects of forcing are even less significant. 

The velocity frequency spectrum EL(w) ,  like the velocity autocorrelation, is 
determined primarily by the large-scale motions which are affected by the forcing 
and periodic boundary conditions. It is nevertheless interesting to observe that the 
spectra for different Reynolds numbers almost collapse, in marked contrast to the 
E ( k )  curves in figure 1 ($2). Perhaps this indicates that the Lagrangian statistics 
of the large-scale motions are less contaminated by forcing than the Eulerian 
data. 

We now examine the shape and Reynolds-number dependence of the acceleration 
spectra AL(o). The spectra shown in figure 11 are normalized by the Kolmogorov 
scales, so that the areas under the equivalent linear plots are proportional to a,, (the 
acceleration variance (a+2) normalized by w,"/T,"). Like many other statistics, the 
spectra exhibit considerable statistical differences between the R, = 90 and R, = 93 
cases, as a result of statistical errors (see the Appendix). Apart from this apparent 
anomaly, the spectra increase monotonically with Reynolds number over a wide 
range of frequencies: we have already seen ($4.1) that a, varies strongly with 
Reynolds number in the simulations. It is inevitable, therefore, that the spectra do 
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not collapse. However, it is interesting to observe that the Reynolds-number 
dependence extends to the highest frequencies. 

According to the Kolmogorov (1941, 1962) hypotheses, a t  very high Reynolds 
number, there is an inertial range (with characteristic times, 7,7, ,  4 7 4 T,) in which 
the acceleration spectrum is flat: 

A L ( 4  = B,(e), (291 

where B, is a universal constant. The Reynolds numbers of the simulations are 
insufficient for the existence of such an inertial range : T , / T ~  only ranges from about 
5 to 8.5. Nevertheless, in figure 11, the spectra plotted on log-log scales do become 
flatter as the Reynolds number increases. However, the logarithmic scale is 
deceptive : on the log-linear scale, the same data do not display plateaus. Moreover, 
the maximum value of AL(w)/(e) - denoted by B,*, and shown in figure 4 - does not 
appear to be approaching an asymptotic value as the Reynolds number increases. 

4.3. VeZocity increments 
In  this subsection we examine the statistical nature of the Lagrangian velocity 
increments A,u'(t) = u+(t + 7 )  -u'(t). One motivation is to test the basic assumptions 
in stochastic models for u+(t), and to guide the development of improved models. 
First, the statistics of A,u+(t) are presented: then the implications for stochastic 
models are discussed. 

The variance of the velocity increment is, by definition, the second-order 
Lagrangian structure function Di(7 ) .  For any differentiable process (such as u+(t)), 
for sufficiently small 7 ,  Dk(7) varies as 7'. In  fact, from the definition of the 
normalized acceleration variance a, (equation (24)), we have 

Dq = ao(7/7J (7 4 5). 
v1 

The structure functions are shown on figure 13. On this log-log plot a slope of 2 is 
observed for small 7/79,  in accord with (30). (This is not inevitable: this slope is 
extremely sensitive to numerical noise.) Since a, is found to vary with Reynolds 
number, a collapse of the curves (as predicted by Kolmogorov 1941) is not possible. 

For large times (7 % TL), the structure function is simply twice the velocity 
variance. Hence, a t  large 7/71, D ~ ( T ) / V ;  equals 2uf2/v;, and it is observed to increase 
with R,, as expected. 

Figure 13 also shows data taken from a 643 calculation at  R, = 40 previously 
obtained by using UO forcing and the 'TS13' interpolation scheme (Yeung & Pope 
1987). The curve is close to  but slightly higher than the 12S3, R, = 38 values. This 
suggests that second-order statistics in the previous study are sufficiently accurate. 

According to the Kolmogorov (1941, 1962) hypotheses, at very high Reynolds 
numbers, for inertial subrange times (71 4 7 4 TL), the structure function is 

m7) = c, (E) 7 ,  (31) 
where C, is a universal constant. Figure 14 shows D 3 7 ) / ( ( e )  7) plotted against ~ 1 7 ~ .  
If (31) held, then the curves in figure 14 would show plateaus of height C,. Not 
surprisingly, at the moderate Reynolds numbers simulated, such plateaus are not 
observed. Furthermore, the maximum value of D : ( T ) / ( ( E )  7 )  - denoted by C t  and 
plotted against R, in figure 4 - does not appear to be approaching an asymptotic 
value. 

In  incompressible homogeneous turbulence, the one-point, one-time joint p.d.f. of 
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FIQURE 13. Second-order Lagrangian velocity structure functions D ~ ( T )  under Kolmogorov scaling. 
Open symbols for the 12V simulations: A, R, = 38; 0,  RA = 63; 0,  RA = 90; 0,  R, = 93; 0 ,  
R, = 40 on 643 grid, from previous data of Yeung t Pope (1987). 
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FIQURE 14. Second-order structure functions D ~ ( T )  normalized by ( E ) T ,  against Kolmogorov-scaled 
time lag, for the 12@ simulations. A, R, = 38 ; 0,  R, = 63 ; 0, R, = 90 ; 0 ,  R, = 93. The peaks of 
the curves give C,+ for each simulation. 
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FIGURE 15. Base-10 logarithms of standardized p.d.f.'s of velocity increments at se 
for the 1283, R, = 93 simulation. T/T,, (z 7 / 8 h ) :  A, i; 0, 2 ;  0, 4 ;  0 ,  8;  a, 32. 
(parabolic) denotes the standard Gaussian density. 
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the Eulerian (and Lagrangian) velocity is Gaussian (see e.g. Tavoularis & Corrsin 
1 9 8 1 ~ ) :  but, the fine-scale structure is known to be non-Gaussian. Despite ample 
experimental evidence (e.g. Tavoularis & Corrsin 1981 b ;  Anselmet et al. 1984) for the 
intermittent and non-Gaussian character of Eulerian velocity gradients, little is 
known of the intermittency of Lagrangian small-scale turbulence components, such 
as the velocity increments over short time intervals. The simulation results confirm 
the expectation that such Lagrangian statistics are also highly intermittent and non- 
Gaussian. 

Figure 15 shows the logarithms of the standardized p.d.f.'s p ( v )  of the velocity 
increments A,u+(t), at different time lags r ,  obtained from the R, = 93 simulation. 
These p.d.f.'s are roughly symmetric. At the longest time lag shown (7 x 327,) the 
p.d.f. appears to be Gaussian (i.e. In [ p ( v ) ]  oc -v2), consistent with the Gaussianity of 
the one-point, one-time p.d.f. of velocity. At the intermediate time lags (7 x 2rs and 
7 47,/) non-Gaussian behaviour is evident: In [ p ( v ) ]  appears to decay as - 1 ~ 1 .  For 
small time lags (7 % +7,/ and 7 % i7,/ (not shown)), the decay rates are possibly even 
slower than In [ p ( v ) ]  cc - 1 ~ 1 .  Wide tails indicating intermittency are seen to extend 
up to 10 standard deviations and beyond. In all respects these observations are 
similar to those made by Anselmet et al. (1984), who measured the p.d.f. of the spatial 
velocity increment [ u ( x + A x ,  t ) - u ( x ,  t ) ]  in an asymmetric jet with R, = 536. 

The flatness factor provides a quantitative measure of departure from Gaussianity. 
For very small time lags, the flatness factor of the velocity increment approaches 
that of the acceleration components, requiring an accurate calculation of the 
acceleration fourth moment. Well-defined values can be obtained from the 
simulations only if numerical noise in the time series is at an insignificant level. This 
thus provides a rigorous test of numerical accuracy. 
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FIQURE 16. Flatness factors of velocity increments, against Kolmogorov-scaled time lag. Open 
symbols for 1283 simulations: A, R, = 38; 0 ,  R, = 63; 0, R, = 90; 0 ,  R, = 93. 643 cases (see 
$4.3): A, ‘64A’; V, ‘64B’. Dashed line denotes Gaussian values. 
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Figure 16 shows the velocity-increment flatness factors, as functions of the 
Kolmogorov-scaled time lag. First we use these data to address the question of 
numerical accuracy. Two sets of 643 data are compared with the 12S3 R, = 38 data, 
and, for convenience, are referred to  as cases ‘64A’ and ‘64B’ here. Apart from grid 
size (hence spatial resolution), the conditions of case 64A differ from the 12S3 
simulation only in the use of a slower sampling rate (h  x b7) and fewer particles 
(1600). For case ‘64B’ (taken from Yeung & Pope 1987), the differences include, in 
addition, (a)  the use of UO process for forcing, and ( b )  a Taylor-series interpolation 
scheme which, although sufficiently adequate, does not guarantee continuous 
approximations to the fluid particle velocity (see Yeung & Pope 1988). 

Although only a t  slightly higher Reynolds number (R, = 40), case 64B gives 
flatness factors much higher than those of the 1283, R, = 38 simulation (and case 
64A). This over-estimation can only be attributed to the numerics. Sampling rate 
and number of particles (i.e. statistica1 error) are ruled out as possible factors since 
they are the same for 64A and 64B. The explanation lies in the use of UO forcing and 
the Taylor-series interpolation scheme for 64B, resulting in non-differentiability of 
the acceleration and higher levels of numerical noise. This also explains the anomaly 
in Reynolds-number trend in the previous calculations (Yeung & Pope 1987). 

It is reassuring to observe that the 64A data, a t  k,,,y = 1.5, differ only slightly 
from the 1283 simulation a t  k,,,r = 3.0 of the same Reynolds number. This means 
that with k,,, T,I = 1.5, the spatial resolution is adequate for fourth-order statistics : 
hence the R, = 63 data can be trusted. 

Since the R, = 90 and 93 cases are statistically identical, the observed differences 
in the flatness factors a t  small time lags (approximately 12 and 18) indicate 
significant statistical errors. These are the largest statistical errors in the results 



558 P. K .  Yeung and 8. B.  Pope 

reported, and are analysed and discussed further in the Appendix. (It should be 
noted that statistical errors in second-order quantities are much smaller: in a, it is 
most likely less than 2 YO - see table 2.) 

We now return to the physical significance of the results shown in figure 16. As 
expected, the flatness factors take values far higher than the Gaussian value (3) for 
short times lags, with a considerable increase with Reynolds number indicated by the 
12S3 simulations. Since the one-time p.d.f. of velocity is Gaussian, it is inevitable 
that, as observed, the flatness factor of A,u+(t) tends to 3 for sufficient large 7. The 
Gaussian value is reached a t  a time lag of roughly 10-20 Kolmogorov scales, which 
is also about 2 Lagrangian integral timescales. 

We next discuss the significance of the velocity increment statistics for stochastic 
models. As mentioned in the Introduction, stochastic models for the velocity of a 
fluid particle have been used in studies of dispersion (e.g. Reid 1979), and also as the 
basis for the calculation of inhomogeneous turbulent flow fields (e.g. Haworth & Pope 
1987). 

The simplest and most widely used of these stochastic models is the Langevin 
equation. When applied to the case of statistically stationary isotropic turbulence, 
it models the velocity increment A, u+(t) as a Gaussian random variable with zero 
mean and variance 

Ok(7) = co ( 6 )  70(7) ,  

where the function 7O is defined by 

(32) 

The autocorrelation function is 

= ~ X P  ( -  iwL), (34) 

TL = 7J(FPO) (35) 

and the integral timescale is given by 

(where 7, = h*/(~)). 
The utility of this model is that u+(t) is modelled as a simple (vector) Markov 

process. Because of this, however, i t  is physically unrealistic a t  high frequencies. 
Four equivalent manifestations of the qualitatively incorrect behaviour are : the 
modelled process u+(t) is not differentiable ; for small 7, the structure function varies 
as 7 rather than as 72 ; the autocorrelation has discontinuous slope at the origin ; and, 
the acceleration spectrum tends to a non-zero constant as the frequency tends to 
infinity. 

Despite these limitations, a Markov process such as that generated by the 
Langevin equation might provide a realistic model of u+(t) (in high-Reynolds-number 
turbutence) when viewed on timescales greater than 7v (or frequencies lower than ov). 
However, the data from the simulations do not support the Langevin equation in two 
respects. First, although the predicted structure function (equation (32)) is in accord 
with the Kolmogorov hypotheses (in the inertial range), i t  is qualitatively different 
from those observed in figure 14. This difference, however, may be attributed to the 
moderate Reynolds numbers of the simulations. Second, contrary to  the assumption 
of the Langevin model, the increments of A,u'(t) are observed to be non-Gaussian. 

The Langevin equation can be modified to account for internal intermittency. In 
the spirit of Kolmogorov's ( 1962) refined hypotheses, the infinitesimal increment 
du+(t) can be made to depend on the local value of dissipation. Specifically, du+(t) 
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FIGURE 17. Flatness factors of velocity increments at smallest time lag (h') in stretched time i, 
against the time-stretching exponent (m) ,  for the 1283, R, = 63 (open symbols) and R, = 90 (solid 
symbols) simulations. Stretching variable: A, E + ;  0, c ;  0, p+. 
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(given s+(t))  can be hypothesized to be a Gaussian random variable with conditional 
variance Gos+(t) dt. This hypothesis implies that the DNS time series u'(l) is Gaussian 
in stretched time l, where t^ = (c+/(s))idt. 

To test a generalization of the above hypotheses, the time series u+(t) are 
transformed into stretched time (equation (27)) based on the invariants c+, c+ or pl+, 

with a general exponent m. (The above hypothesis corresponds to the choice of E+ and 
rn = 2.) Figure 17 shows the resulting flatness factors of Ah,u+(l) (where h' is the 
smallest increment in i!) - essentially the same as the flatness factors of du+(i)/di - for 
the R, = 63 and 90 simulations. It may be seen that the pseudo-dissipation pl+ (rather 
than s+) is most successful in reducing the flatness factor, and with the choice 
m = a minimum value of approximately 5.5 is obtained. Moreover, besides yielding 
flatness factors not too far from the Gaussian value of 3, this scaling (based on rp+ and 
m = t) is effective in greatly reducing the dependence on R, (see Note added in proof 
on p. 584). A stochastic model for u+(t) based on this scaling is described by Pope 
(1988b). 

Even though the scaling is successful in reducing the flatness factor and its 
Reynolds-number dependence, large velocity increments (in stretched time) are still 
found to be significantly more probable than if they were Gaussian. This may be 
observed directly in figure 18 which shows the logarithm of the standardized p.d.f. 
of velocity increments in stretched time. As with the velocity increments in regular 
time (figure 15), for time intervals less than 57?, the p.d.f. appears to decay as 
lnp(v) cc - 1 ~ 1 .  

Finally a comment is called for on the value of C, used in the Langevin model. 
Recall that  at high Reynolds number and for inertial subrange times 7 (7, < T < TL), 
according to both the Kolmogorov hypotheses (1941, 1962) and the Langevin 
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equation, the quantity U ; ( T ) / ( ( E ) T )  adopts a constant value, C,. As already 
mentioned, such a constant value is not observed in our simulations (figure 14)- 
quite possibly because of moderate Reynolds number-but  the peak value of 
D k ( 7 ) / ( ( s )  7 ) ,  denoted by C,*, increases as Ri, to  a value of about 4 a t  R, z 90. It is 
reasonable to  suppose, therefore, tha t  if D ; ( 7 ) / ( ( e )  7 )  does adopt a constant value a t  
high Reynolds number, then this value is greater than 4. 

On the other hand, Anand & Pope (1985) deduced the value C, = 2.1 by comparing 
dispersion calculations using the Langevin equation with Warhaft's (1984) 
experimental data ,  for which R, z 45. Clearly, 2.1 is not thc high-Reynolds-number 
asymptotic value. 

4.4. Acceleration, dissipation, enstrophy and pseudo-dissipation 
This subsection is devoted to  a discussion of the statistical properties of the 
acceleration magnitude la+l(t), the mechanical dissipation e'(t), enstrophy S(t) and 
pseudo-dissipation cpt ( t ) ,  based on 1 B 3  simulation data. All of these quantities 
pertain to  the small-scale turbulence structure, and thus contain physical 
information on intermittency. Summaries of numerical data  are given in tables 3-5. 

Sinre p)+ is the arithmetic mean of e+ and <+ (equation (20)), the mean values shown 
in table 3 are not independent. The small observed differences between ( s + )  and (pl') 

indicate a small statistical error (equation (21)). All the quantities exhibit large 
fluctuations. For c+ and p)+ the standard deviation is approximately equal to  the 
mean. while for 5' it is typically 50% greater. That  is, vorticity (or enstrophy) is 
more intermittent than strain rate (or dissipation). 

Oboukhov (1962) proposed a model of log-normal distribution for dissipation 
fluctuations : a detailed account can bc found in Monin & Yaglom (1975). It has been 
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b+lW E + ( t )  C(t) v+(t) 
z-i § 2.654 2.654 2.654 

0.766 0.756 0.761 
0.772 0.771 0.771 
2.644 2.657 2.650 
0.781 0.795 0.788 
0.885 0.892 0.888 

u/z-i 0.683 0.997 1.369 0.998 
0.722 1.070 1.466 1.086 
0.689 1.007 1.447 1.041 
0.769 1.091 1.537 1.131 
0.856 1.211 1.924 1.360 
0.774 1.109 1.655 1.197 

TIT,$ 0.62 0.55 1 .00 0.88 
0.64 0.49 0.94 0.80 
0.56 0.45 0.95 0.82 
0.61 0.48 0.87 0.79 
0.59 0.48 0.77 0.75 
0.58 0.46 0.80 0.74 

t z and u denote sample mean and standard deviation. 
$ T, is the integral timescale of the representative variable. Preprocessed data (see Appendix) are 

used in the R,  = 54, 59 and 90 cases. 
The mean value of la+( is omitted. 

TABLE 3. Acceleration, dissipation, enstrophy and pseudo-dissipation. (Each entry is of six 
parts, for R, = 38, 54, 59, 63, 90 and 93 successively.) 

further postulated (Monin & Yaglom 1975, p. 615) that the model can also be applied 
to other positive scalar quantities characterizing the small scales. The acceleration 
magnitude, enstrophy and pseudo-dissipation all fall in this category. A number of 
experimental (e.g. Antonia, Satyaprakash & Hussain 1982) and numerical (e.g. Kerr 
1985) studies have addressed the accuracy of the log-normal model. However, most 
studies focus on the model’s predictions for single components of the velocity 
gradient tensor. Published data which examine directly the p.d.f. of dissipation or its 
logarithm (let alone la+l(t), “ ( t )  or ~ ‘ ( t ) )  still appear to be lacking. 

It is straightforward to use the Lagrangian time series to obtain accurate estimates 
of the p.d.f.’s of the logarithms of la+l(t), s + ( t ) ,  c(t) and cp+(t), and their moments. 
High sampling accuracy can be expected since, in view of stationarity and 
homogeneity, the number of samples (number of sampled time levels times number 
of particles) is in the range of 2 x lo6. Figure 19 shows on a logarithmic scale, for the 
R, = 90 simulation, the standardized p.d.f.’s of the logarithms of lu+l, E + ,  [+ and cp+. 
Each p.d.f. is normalized by its value at  the mean, and - to bring out the differences 
- multiplied by the respective variance. Gaussian distributions with the same 
variances are indicated by the dashed lines (which are parabolas). Thus, if the 
quantities under consideration were log-normally distributed, on figure 19, the 
p.d.f.’s would coincide with the dashed lines. 

It is evident from figure 19 that while the p.d.f. of lncp+ appears symmetric, the 
others are negatively skewed (see skewness coefficients p3 in table 4), indicating a 
relatively high probability of low values. Turn-ups at  the lefts ends of the p.d.f.’s 
represent very small values falling outside the sampling range. The absence of such 
turn-ups at the right ends shows that very large values are less probable. 

The first four, and the sixth, central moments of the logarithms are listed in table 
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FIGURE 19. Standardized p.d.f.’s of In€+, lnc+, lnv+ and lnla+l, for the 12@, R, = 90 simulation. 
Base-10 logarithm of the p.d.f. normalized by the value a t  the mean and multiplied by the 
variance, is shown against departure from mean value. A, Ins+; a ,  lnc+; 0,  lncp+; 0 ,  In la+[. The 
p.d.f.’s extend to 5 standard deviations for each variable. Dashed curves (parabolic) denote 
standard Gaussian densities. 

4. If a random variable q5 is log-normally distributed, then lnq5 has normalized 
central moments ,u3, ,u4 and ,u, equal to 0, 3 and 15 respectively. The tabulated 
moments show that the pseudo-dissipation q+ is almost perfectly log-normal, even 
at  our modest Reynolds numbers, but that ldl, E+ and c+ show varying degrees of 
departure from log-normality. The departure is slight for dissipation, but more 
marked for acceleration and enstrophy, as inferred from the p.d.f. plots. 

The argument for the log-normal model depends on the scale separation between 
large and small scales, which widens with increasing Reynolds numbers. In table 4, 
moments of In E+ and In 5’ become closer to the Gaussian values as R, increases from 
38 to 93. It is possible, therefore, that the distribution becomes log-normal in the 
high-Reynolds-number limit for all four variables. 

Kolmogorov (1962) also assumed that a%, varies linearly with the logarithm of the 
ratio L/v ,  where L is a lengthscale of the large eddies. Noting that LIT is a power of 
R, (irrespective of the specific choice of L,  say L, or LJ,  by stationarity and 
homogeneity we may expect a relationship of the form 

a:*, = a+blnR, (36) 

(where a and b are constants for the flows simulated). Figure 20 shows that, within 
the limits of statistical scatter, this appears to hold for the all the three invariants, 
as well as acceleration magnitude. Approximate values of the coefficients a and 6 for 
each variable are given under this figure. It may be noted that the value of 6 is 80% 
higher for enstrophy than for dissipation. 

The approximate log-normality found for the three invariants leads to the 
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U* 

P3 

P4 

PO 

In la+l(t) 
zt 1.973 

1.241 
1.281 
2.283 
1.508 
1.664 
0.427 
0.432 
0.412 
0.467 
0.510 
0.472 

-0.25 
-0.18 
-0.22 
-0.16 
-0.02 
-0.12 

3.55 
3.58 
3.54 
3.45 
3.47 
3.47 

26.5 
26.2 
25.8 
23.5 
23.1 
23.9 

0.62 
0.57 
0.51 
0.64 
0.59 
0.57 

In s+(t)  

0.588 
-0.690 
-0.670 

0.541 
-0.740 
-0.576 

0.828 
0.898 
0.888 
0.910 
1.031 
0.966 

-0.24 
- 0.22 
-0.26 
-0.19 
-0.06 
-0.21 

3.22 
3.23 
3.17 
3.15 
3.12 
3.14 

20.0 
19.8 
19.4 
18.5 
17.6 
18.1 

0.60 
0.56 
0.52 
0.57 
0.58 
0.58 

In U t )  
0.286 

- 1.023 
- 1.019 

0.192 
- 1.124 
-0.972 

1.656 
1.783 
1.835 
1.860 
2.066 
2.036 

-0.52 
-0.50 
-0.50 
-0.47 
-0.39 
- 0.44 

3.60 
3.56 
3.51 
3.53 
3.41 
3.44 

28.8 
27.9 
27.0 
27.1 
23.7 
24.8 
0.97 
0.97 
0.91 
0.90 
0.84 
0.86 

lnv+(t) 
0.623 

-0.669 
-0.651 

0.558 
-0.733 
-0.572 

0.7 14 
0.797 
0.799 
0.83 1 
0.970 
0.910 

-0.04 
-0.03 
-0.05 

0.01 
0.06 

-0.00 

3.04 
3.08 
2.94 
3.00 
3.02 
3.00 

15.9 
16.2 
14.3 
15.1 
15.5 
15.5 
0.96 
0.93 
0.89 
0.92 
0.90 
0.91 

TABLE 4. Acceleration, dissipation, enstrophy and pseudo-dissipation (logarithms). (For 
notation, see table 3.) 

question of whether their logarithms are also approximately joint-normal. Bivariate, 
standardized, joint p.d.f s between the logarithms obtained from the simulations 
show that they are not. Figures 21-23 show the contour plots of the joint p.d.fs, a t  
R, = 90. The contours clearly differ from the ellipses of joint-normal random 
variables, markedly so for the pairs (In€+, lnT+) and (In c+, lnq+). Especially for these 
two pairs, all contours are concentrated in the first and third quadrants, indicating 
that the three invariants are (on the average) likely to take high or low values 
simultaneously. 

The In e+-ln <+ isoprobability contours (figure 21) appear to be roughly symmetric 
about the 45" line crossing the first and third quadrants at the origin. This means 
that local strain and vorticity are about equally likely to exceed each other in 
magnitude. Looking along this line, the contours become gradually narrower. This 
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FIGI:RE 20. Variances of In€+, l n r ,  Inq', and Inla+l against R,, for the same simulations as in 
figure 4. Open symbols for K , / k ,  = 2 d 2 ,  solid symbols for K, /k ,  = d 2 .  Dashed lines of the form 
u2 = a + 6  In R, indicate approximate Reynolds-number dependence. a, In E + ,  a = -0.066, 
b = 0.238; 0, In[+, a = 0.071, 6 = 0.434; 0, Inp+, a = -0.354, 6 = 0.289; v, lnla'l, a = 0.128, 
b = 0.079. 
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FIGURE 21. Isoprobability contours of the standardized joint p.d.f. of In E+ and In r ,  for the 1283, 
R, = 90 simulation. Each variable ranges between + 4  standard deviations. Contour levels start 
from 0.02, in intervals of 0.02 (but shown magnified by 1000). 
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FIQURE 22. Same as figure 21, but for the joint p.d.f. of h e +  and lnrp+. 

FIGURE 23. Same as figure 21, but for the joint p.d.f. of In<+ and lnrp+. 
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R, = 38 

0.410 
0.779 
0.890 

0.322 
0.784 
0.777 

0.324 
0.414 
0.446 

0.323 
0.296 
0.423 

R, = 63 

0.462 
0.794 
0.902 
0.386 
0.810 
0.794 

0.368 
0.430 
0.470 

0.365 
0.321 
0.454 

R, = 90t 

0.469 
0.775 
0.92 1 
0.438 
0.835 
0.806 

0.402 
0.446 
0.496 

0.388 
0.335 
0.467 

R, = 93 

0.475 
0.790 
0.9 13 
0.412 
0.822 
0.800 

0.382 
0.432 
0.476 

0.385 
0.328 
0.465 

t Preprocessed data (see Appendix) are used for the R, = 90 case. 

TABLE 5. Cross-correlation coefficients ( 12g3 simulations) 

indicates that the correlation between strain and vorticity is strong when both are 
large, but weak when both are small. In  fact, in the third quadrant, where both 
variables are less than their mean values, the contours resemble those of the joint 
p.d.f. of two independent Gaussian random variables (i.e. concentric circles). 

The other two sets of p.d.f. contours (figures 22 and 23) exhibit steep contour 
gradients near a line of positive slope, and appear bounded by it on the right. This 
is because of the impossibility of either In s+ or In <+ exceeding lnrp+. The similarity 
between the first and third quadrant segments of the In E+-lnrp+ contours indicates 
that simultaneously high and simultaneously low values of Ins+ and lnq+ are about 
equally probable. In contrast, the 'pointedness ' of the In <+-lncp+ contours show that 
high pseudo-dissipation is more likely to be a result of high enstrophy than 
dissipation. 

Correlation coefficients between any two of the three invariants, and between their 
logarithms, are given in table 5 .  For the invariants, using (2), these coefficients may 
be readily linked to the individual variances. Thus, owing to the considerable 
temporal variations of volume-averaged quantities in simulations using only 18 
forced modes, the RA = 90 values may be inaccurate for the invariants (while the 
logarithms are much less affected). Excepting this statistical uncertainty, the 
coefficients appear to increase with RA. (Of course, being bounded by unit, the 
correlation coefficients cannot increase indefinitely.) 

We now consider the two-time correlation behaviour of acceleration magnitude 
and the three invariants (s+, <+ and rp+), by studying correlation functions and 
integral timescales (see tables 3 and 4). I n  figure 24, we show the autocorrelations for 
the RA = 90 case. The velocity autocorrelation, pL(7), is included for comparison. All 
are essentially non-negative a t  all time lags, and have shapes similar to that of pL(7). 
The dissipation autocorrelation function decreases with time lag most rapidly, 
followed by the acceleration magnitude. Dissipation and acceleration magnitude are 
characterized by shorter timescales : their integral scales are about 0.5 and 0.6 of the 
Lagrangian integral timescale TL respectively, with no strong Reynolds-number 
dependence in our simulations. 

The autocorrelations of acceleration components a+ (figure 7)  and acceleration 
magnitude la+l are obviously very different in character. Each component a+(t) is the 
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FIGURE 24. Autocorrelation functions of ~ + ( t ) ,  (+ ( t ) ,  p+(t) and la+l(t), for the 1283, R, = 90 
simulation. Dashed line represents the Lagrangian velocity autocorrelation function pL(r) .  Time lag 
is normalized by both TL and T,,. A, ~ + ( t ) ;  0,  [ + ( t ) ;  0, p+(t); 0 ,  la+l(t). 

derivative of a stationary process, thus its autocorrelation must be negative over a 
range of time lags, in order to attain a zero integral scale. As stated before (§4.1), 
a characteristic timescale of a+ is the zero-crossing time T,, which is found to scale 
with 7, (7 x 2.27,). In  contrast, la+l(t) is not the derivative of a stationary process, and 
its integral timescale Ta+, is positive. I ts  autocorrelation remains significantly 
positive up to about 2TL and its integral timescale is about 0.6TL. 

The difference between these acceleration timescales is reconciled as follows. The 
acceleration vector a+(t) can be written as la+l(t) e+(t), where e+(t) is a time-dependent 
unit vector in the direction of a+(t) .  For la+l to have a timescale significantly greater 
than that of a+ (about 27J implies that  the timescale of the components of e must 
also be of order 2 ~ ~ .  This has been confirmed directly. Thus the magnitude of 
acceleration changes slowly (on a timescale of approximately 0.6TL), while its 
orientation changes more rapidly (on a timescale of order 27,,). (At the highest 
Reynolds number simulated the ratio (O.6TL)/(27,) is only 2.4. But it is significant 
that Ta+, scales with TL, while 7, scales with 7a. )  

Although they are small-scale quantities, like la+l(t), the invariants in E+(t) ,  In [ + ( t )  
and lnv+(t) have substantial integral timescales that scale with TL instead of 7,. This 
may be understood by recognizing that the autocorrelations are dominated by the 
intermittent bursts in the time series of these variables. Such bursts are driven by the 
large-scale dynamics, and thus can be expected to be associated with longer time 
scales. 

Enstrophy and pseudo-dissipation autocorrelations are consistently higher than 
those of acceleration magnitude and dissipation, up to time lags at which all have 
become negligible. The closeness between pseudo-dissipation and enstrophy 
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FIGURE 25. Same as figure 24, but for lne+(t), ln5+(t), lnp+(t) and Inla+l(t) 

autocorrelations can be explained by the strong effects of large enstrophy fluctuations 
on pseudo-dissipation. The integral timescale of enstrophy, q, is comparable with TL, 
although Tc/TL decreases with Reynolds number (see table 3). 

Figure 25 shows the autocorrelations of the logarithms. It may be seen that they 
decay more slowly than those of the variables themselves. Comparison of tables 3 and 
4 confirms that the logarithms have longer timescales. I n  proposing to  model lnq+(t) 
as a UO process having an exponential autocorrelation function, Pope ( 1 9 8 8 ~ )  has 
shown that the integral timescale of a UO process is always greater than that of its 
exponential. Under such assumptions the ratio of the respective integral timescales 
depends only on the variance of the UO process. Our results are qualitatively 
consistent with this predicted trend, but there are quantitative differences. The 
integral timescales of la'l(t) and lnla+l(t) do not differ significantly. In  figure 26, 
integral timescales of the logarithms, normalized by TL, are shown against R,. The 
normalized timescales appear to decrease slightly with Reynolds number. 

Frequency spectra for the three invariants a t  R, = 93 are shown in figure 27. To 
compare the relative contributions from different frequencies, each curve is 
normalized by the respective variance, with the velocity and acceleration spectra 
added for reference. With Kolmogorov scaling of frequency it is found that the 
curves change very little with Reynolds number. Clearly, the dissipation spectrum 
has a significantly greater proportion of high-frequency content than the enstrophy 
and pseudo-dissipation spectra. I n  turn, the latter two have more high-frequency 
content than the velocity spectrum, but the differences are smaller. 

The above observations are entirely consistent with the already observed finding 
that the characteristic timescales are relatively short for E + ,  but comparable with TL 
for [+ and qt. Moreover, as may be expected from a comparison of the 
autocorrelations (figures 24 and 25), the corresponding spectra for the logarithms 
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FIGURE 26. Integral timescales (T,) of lns+(t), Inc+(t), lnp+(t), and lnla+l(t), normalized by the 
Lagrangian integral timescale TL, against R,. Symbols same as figure 20. Dashed lines indicate 
approximate Reynolds-number dependence for In c(t) and Inp+(t). KO systematic variation for 
Ins+(t) and Inla+l(t) is evident. 
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FIQURE 27. Normalized frequency spectra D$(w) of the three invariants (q5 denoting E+, c+ or p+) for 
the 1283, R, = 93 simulation, shown against Kolmogorov-scaled frequency (at vertical dashed 
line). Each spectrum is normalized by the variance of the respective variable. A, E + ;  0,  r ;  0, p+. 
Normalized velocity (0 )  and acceleration ( + ) spectra also given for reference. 
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FIQURE 29. Cross-correlation functions among the invariants s+(t),  c(t) and p+(t), for the 1283, 
R, = 90 simulation. Time lag is normalized by both T, and T?,. A, P(E+, [+; T )  ; [7. p(t.+, p+; T )  ; 0, 
p(5+, p+; T ) .  The cross-correlations are insignificant for time lags beyond the range shown. 
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(not shown) are shifted towards the lower frequencies. We also remark that for all 
three invariants the peak frequency ranges are lower than that of the acceleration, 
and that little contribution comes from frequencies higher than the Kolmogorov 
scale. 

In 34.3 it is observed that the two-time statistics of velocity are made more nearly 
Gaussian by a local time stretching. Since lncp+, and to a lesser extent Ins+ and 
lnc+, are nearly Gaussian, it is natural to investigate their two-time statistics in 
stretched time t̂ , as defined by (27) ($4.1). Figure 28 shows the flatness factors of the 
increments of In e+(i'), In c+(t", and lnq+(f) for asymptotically small time intervals, for 
R, = 63 and 90 as functions of the scaling exponent m. In  each case the invariant 
considered is also used as the scaling variable in (27). The flatness factors are seen to 
be lowest in the case of pseudo-dissipation. For lncp+(t^), a minimum of about 7-8, 
with a small Reynolds-number dependence, occurs near m = -:, but is not much 
different from the regular time value (at m = 0) of about 8. By contrast, the 
increments of in c+(i!') are far from Gaussian for any rn. 

Figure 29 shows the two-time cross-correlation functions between the three 
invariants. The heights of all three curves reflect the relative magnitudes of the 
correlation coefficients (at zero time lag) given in table 5 .  The dissipationvenstrophy 
correlation is much stronger for enstrophy lagging behind dissipation (7 > 0). This is 
consistent with the vortex-stretching effect : the vorticity of a fluid element, subject 
to stretching (in the direction of w )  tends to inorcase with time. 

To gain insight into the inter-relationship between spatial and temporal structures 
of the small scales, it is interesting to study the cross-correlation functions between 
acceleration magnitude and the quantities s + ( t ) ,  c+(t) and cp+(t). As a fluid particle 
enters a (small) region of large local velocity variations, it seems likely that its 
velocity would undergo rapid changes, and thus the acceleration would be large (in 
magnitude). These correlations are thus expected to be substantial, and positive. 
Figures 30 and 31 show these correlation functions, as R, = 38 and R, = 90 
respectively. All are nearly zero beyond about three Lagrangian integral timescales. 
The correlation coefficients a t  zero time lag, given in table 5, are seen to increase with 
Reynolds number. Peak values in the range 0 .354 .5  occur a t  very small positive time 
lags (one Kolmogorov scale or less). 

By a conditional sampling technique (say, given the event of a+(t) exceeding ( E ) ) ,  
the relatively high values a t  small time lags are found to  be mostly contributed by 
intermittent bursts in the time series of the variables. For dissipation, there is a 
curious secondary peak at a negative (i.e. acceleration lagging behind) time 
separation of about 2r7, whose contribution is felt between -5r9 and -rl. The 
physical meaning is not entirely clear, but this feature seems less pronounced a t  
higher Reynolds numbers. Since it is found a t  a time lag scaling with 7?, i t  is probably 
caused by the small scales. 

The acceleration-enstrophy cross-correlation function is seen to be markedly 
asymmetric, being stronger for r > 0 (enstrophy lagging). This could be the result of 
fluid particles being accelerated towards regions of high vorticity in the flow. For 
r < 0, the effect of local straining on the fluid particle acceleration is apparently 
stronger than that of local rotation. 

The behaviour of pseudo-dissipation is the result of interplay bctwccn dissipation 
and enstrophy contributions. In fact, using (20) and (21), we can derive the relation 

19 PLM 'LO7 
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FIGURE 30. Cross-correlation functions between la+l(t) and the invariants e+( t ) ,  c(t) and v+(t), for 
the 12P, R, = 38 simulation. Time lag is normalized by both T, and 7 A, &+l, e + ;  7); 0, p(la+l, 
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FIGURE 31. Same as figure 30, but for the 12V, R, = 90 simulation. 
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FIGURE 32. Same as figure 31, but for lnlal(t), Inc+(t), Inc+(t) and lnp+(t). 

(a denotes standard deviation). That is, p(la+l, v+) is a weighted (by a(€+) and a(c+)) 
combination of p(la+l, E + )  and p(la+l, c'). Since enstrophy has a higher variance, 
p(la'1, cp+) will always be closer to p(la+l,6+). In fact, table 5 indicates that p(la+l,cp+) 
is the highest. When a time lag is considered, we find p(la'1, rp+; 7) to be consistently 
closer to the higher of p(Ia'1, E + ;  7) or p(la+l, [+; 7). 

Figure 32 shows R, = 90 data for the cross-correlation functions between the 
logarithms, such as p(lnla+l, In€+; 7). A decrease in the small-time-lag range 
(compared with figure 31) is expected because bursts in the time series are much 
reduced on taking the logarithm. The secondary peak for pseudo-dissipation seen 
above becomes an inflection in the curve. Reduction of the correlation coefficient is 
greatest for enstrophy, since it is the most intermittent of the three invariants. We 
also note that the logarithms are not additive. Although the pseudo-dissipation 
correlation is still the result of contributions from dissipation and enstrophy, no 
simple relationship between the correlation coefficients for the logarithms is 
available. 

4.5. Relationship between Lagrangian and Eulerian time statistics 
There have been several attempts to relate Lagrangian statistics to Eulerian time 
statistics, since the latter are more readily measured (see, for example, Lumley 1962; 
Corrsin 1963; Hunt et al. 1987). In  the following, Eulerian-time velocity statistics 
from the simulations are compared with Lagrsngian data, and analysed in the 
context of the 'advection hypothesis ' proposed by Tennekes (1975). 

4.5.1. Advection hypothesis, spectra and timescales 
Tennekes (1975) proposed to describe the temporal turbulence structure by an 

'advection hypothesis '. Hunt et al. (1987) recently elaborated on the consequences. 
19-2 
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FIGURE 33. Scaled plots of frequency spectra of acceleration (AL(w)) and au/at (AE(w)) .  against 
Kolmogorov-scaled frequency (at vertical dashed line) for 1283 simulations. Area under each curve 
is the respective variance normalized by w,"/T:. Open symbols for A L ( w ) :  A, R, = 38: 0, R, = 63; 
0, R,  = 90. Solid symbols for AE(w).  

Applied to isotropic ' box ' turbulence with no mean flow, Tennekes' basic argument 
is that the small dissipative eddies are advected, or swept, past a fixed observer by 
the large energy-containing eddies. This leads us to expect the Eulerian velocity 
frequency spectrum, denoted by EE(o), to contain an appreciable fraction of energy 
for frequencies higher than the Kolmogorov frequency characterizing the smallest 
scales. 

I n  our simulations, Eulerian frequency spectra are readily obtained from the time 
series of Eulerian velocity a t  a cubic lattice of 4096 fixed equispaced grid points. To 
bring out the differences between Lagrangian and Eulerian spectra, in figure 33 we 
show the scaled spectra of au/at, denoted by AE(o)  ( 5 02EE(o)), and the acceleration 
spectra AL(w) for Reynolds numbers from 38 to 90. It is readily seen that in contrast 
to the Lagrangian spectra, the Eulerian spectra do extend to frequencies considerably 
higher than the Kolmogorov scale o1 (= R / T ~ ) .  Moreover, the fraction of spectral 
content beyond o,, appears to increase markedly with Reynolds number. These 
observations are consistent with the advection hypothesis. 

Tennekes further assumed that at high Reynolds numbers, the dynamics of this 
advection effect can be analysed using a variant of Taylor's frozen turbulence 
approximation described below. For quantitative predictions, the experimental data 
of Comte-Bellot & Corrsin (1971) and Shlien & Corrsin (1974) were used to calculate 
proportionality constants in the model. Here we compare simulation results with the 
predictions and then examine Tennekes' analysis to  explain the discrepancies. 

The curves in figure 33 integrate to the respective component-averaged variances 
(( (au/at)z) or ( (du+/dt)2)), normalized by the Kolmogorov scales. These normalized 
variances are also given in table 6. In  preceding sections we have seen that the 
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R A 38 63 90 93 

Direct simulation ( 1283) data 

1.38 1.87 2.32 2.28 

((au’at)z) 1.17 2.46 4.51 4.57 
v:/7: 

I ,  

TLI.7 3.75 4.14 4.46 4.60 
‘E/’q 4.09 3.62 3.20 3.24 
7L/TE 0.92 1.14 1.39 1.42 

Estimates derived from Tennekes (1975) 

((au/at’z) 3.27 5.42 7.75 8.00 
vY72 ., . 1 

7 L / 7 7 ,  9.97 12.83 15.34 15.59 
TE/7q 2.45 2.45 2.45 2.45 
TL/TE 4.07 5.24 6.26 6.36 

TABLE 6.  Velocity derivative variances and microscales 

acceleration variance ( (du+/dt)2) does not obey Kolmogorov scaling in our Reynolds- 
number range. As for ((au/at)’)), Tennekes (1975) predicted 

which is equivalent to 

The tabulated data show a rapid increase with Reynolds number, but are 40 to 65 % 
less than the values based on (39). 

In  analogy with (23) which defines the Lagrangian microscale rL, the Eulerian time 
microscale rE is defined by 

(40) 

Tennekes’ results predict rE/r7 to be constant (=  2/6), but rL/r,, to be proportional 
to Ri, which is also true if acceleration variance scales according to Kolmogorov 
(1941) hypotheses - such that a. in (24) were strictly constant. The microscales are 
compared with the Kolmogorov timescale in table 6. Here the R, = 90 and 93 
simulations differ little, suggesting that these results are relatively free from 
statistical errors. The ratios rL/r7,  .rE/r7 and rL/rE are also shown in figure 34 as 
functions of Reynolds number, for both simulation and prediction. There is evidently 
extreme disagreement in the Lagrangian microscale. This calls for a close 
examination of the reasoning behind the theoretical estimates. 

4.5.2. Exumination of Tennekes’ (1975) analysis 

acceleration (of the fluid particle located instantaneously at a given point) : 
We begin with the fact that the material derivative of velocity, Du/Dt ,  is the local 

DU au 
- = -+u-Vu = a. 
Dt at 
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FIQURE 34. Calculated and predictfed Eulerian and Lagrangian time microscale ratios against 
Reynolds number, for the 12a3 simulations. Open symbols for calculated values: A, 7J7,,; 0, 
T=/T,; 0, T J T ~ .  Predicted values (Tennekes 1975): solid symbols joined by dashed lines. 

Taking expectations leads to 

The major assumption in Tennekes’ analysis is that Taylor’s frozen turbulence 
approximation can be applied to the advection of small eddies by the large-scale 
motions. In effect, a is assumed to be negligible compared with the convective 
term, u-Vu, and then (41) becomes 

au 
- = -u.vu, 
at (43) 

or, equivalently, Du/Dt = 0. For convenience, we call (43) ‘Tennekes’ hypothesis ’. 
The acceleration arises from the pressure and viscous terms in the momentum 
equation. The validity of the analysis thus rests on whether the neglect of such terms 
is indeed justified. 

Tennekes also assumed u, uz and (au,/ax,) (&,/axl) to be statistically independent, 
in view of the assumed separation (hence decoupling) between large and small scales. 
Hence (42) reduces to (2 2) = ( U k U 1 )  (aut -- ax, aui) axz . (44) 

In isotropic turbulence this further simplifies to 

which in turn implies (38). 
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KO. of 
terms 

1 

2 

2 

Algebraic R ,=38  R A = 6 3  R A = 9 0  
form (%) W) (%) 

( u ( $ y )  50.0 40.6 33.4 

(u:@) 200.1 160.0 133.0 

( 2 u 1 + 2 >  
- 20.2 - 14.8 - 9.6 

( 2u,u8$$5) 
-20.5 -11.9 - 7.6 

(4) 117.5 76.7 51.3 

(2u ,u ,2 )  -41.9 -27.2 -17.9 

R, = 93 
(YO) 

33.8 

132.0 

- 10.2 

-7.5 

49.8 

- 18.9 

Tennekes 
(1975) (Yo) 

20.0 

80.0 

0 

- 185.0 - 123.4 - 82.6 -75.8 0 

1.270 1.018 0.978 0 
C Ineglectedl 
Z lretainedl 

1.540 

TABLE 7. Percentage breakdown of contributions to the variance of au,/at 

To test Tennekes’ assumptions leading to (45), we write (41) for one component of 
u as 

3% au, au, au 
at axL., ax, ax3 
- -u,--u2--u3-J+a1. 

Invoking isotropy (so that, for example, the second and third terms on the right of 
(46) are statistically identical), the mean square of au,/at is given by 

If the small scales were uncorrelated with the large scales, then in (47) we would have 

(similarly for the ‘transverse ’ term), and, since the Reynolds shear stress is zero here, 

(49) 

All the terms in (47) are one-point, one-time statistical moments, for which the 
Eulerian and Lagrangian p.d.f. ’s are the same in incompressible homogeneous 
turbulence. They can therefore be calculated from the Lagrangian time series of 
velocity, acceleration and velocity gradients (in fact, moments involving the 
acceleration can only be obtained from Lagrangian data). Table 7 shows the relative 
contributions of each term on the right of (47) as a percentage of the left, after 
averaging over the coordinate directions. Also shown are the sizes ascribed to each 
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term by Tennekes’ hypothesis (through the neglect of a with (48) and (49)). The 
bottom line gives the ratio of the sums of the magnitudes of the terms neglected by 
Tennekes to the ones retained. As in table 6, the R, = 90 and 93 results agree closely. 
Evidently, the terms involving acceleration are, in particular, far from negligible, 
showing that Tennekes’ hypothesis is not applicable in the simulated Reynolds- 
number range. On the other hand, (48) and (49) are seen to  be fair approximations. 

We note that the discrepancy between simulation and prediction reduces steadily 
with increasing Reynolds number. Tennekes’ hypothesis can be expected to hold at  
sufficiently high Reynolds numbers, but must be considered to be unsatisfactory for 
R, = 93 or less. 

Tennekes used experimental data a t  R, x 70 (Comte-Bellot & Corrsin 1971) to 
evaluate numerical coefficients. However, our data show that even a t  R, = 93, his 
hypothesis appears unjustified. Thus presumably it does not apply to the 
experimental data either. Consequently, there is no reason to believe Tennekes’ 
numerical results to be valid in general, even a t  Reynolds numbers high enough for 
his arguments to hold. 

In view of (40), the above analysis of ( (au/a t )*)  suffices to explain the observed 
discrepancy in the Eulerian microscale. For the Lagrangian microscale, Tennekes’ 
estimates depend heavily on the assumption of an extensive inertial frequency 
subrange satisfying Kolmogorov similarity. Again, the measurements of Shlien & 
Corrsin (1974) at R, z 70 were used to calculate numerical coefficients, but this 
Reynolds number is apparently not high enough for the analysis to be valid. As 
remarked in preceding sections, even a t  R, = 90, our data provide no evidence of an 
inertial subrange. 

To close this subsection, we stress that our results do not cast doubt on the 
physical soundness of the advection hypothesis proposed by Tennekes (1975) at  high 
Reynolds numbers. However, his analysis used experimental data a t  a Reynolds 
number that is not high enough to  support the assumptions of negligibility of 
acceleration and the existence of an inertial subrange. 

4.5.3. Time and space correlations 

The relationship among Eulerian time, Eulerian space and Lagrangian velocity 
correlations (and the respective integral scales) is not well-established (Hunt et al. 
1987). Although these correlations are readily obtained from the simulations, 
unfortunately artificial forcing precludes a faithful representation of the correlations 
at  long time or space separations. This is because the forcing scheme feeds energy 
directly to the large and low-frequency scales accounting for substantial correlations 
a t  long separations. 

Figure 35 shows the correlations obtained from the R, = 63 simulation, with 
spatial separations normalized by the half-width of the box, go. Time lag is 
converted to separation distance by multiplying by the r.m.s. velocity. The 
distorting effects of artificial forcing are especially striking for the Eulerian 
correlations. The Eulerian time autocorrelation pE(7 )  is appreciable over much longer 
time lags than its Lagrangian counterpart. As a result, the Eulerian integral 
timescale, denoted by TE, is substantially (up to 50%) larger than the Lagrangian 
integral scale. Since the simulation length ( T )  is limited, TE, being relatively large, 
is also subject to  much statistical uncertainty. Hunt et al. (1987) found TE/(A/u’)  to 
be 1.5 a t  R, = 48. For our data, this ratio is slightly greater than unity. 

The longitudinal and transverse space correlations also retain significant non-zero 
values at the maximum separation (i.e. a t  r =go) .  The computed integral 
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FIGURE 35. Four kinds of Eulerian and Lagrangian correlation functions, for the 1283, R, = 63 
simulation. Separation is measured as 2r/L, or 2u '~ /L ,  ( r  is spatial separation, 7 is time lag). A, 
P E ( 7 ) ;  0,  P L W ;  0, P I I ( T ,  0, 0 ) ;  0 ,  Pzz(r, 0, 0). 

lengthscales are thus inaccurate. The longitudinal lengthscale, L,, deviates from the 
theoretical isotropic value of twice the transverse scale, L,. Hunt et al. (1987) 
reported LJL,  = 1.64, and attributed it to some degree of anisotropy of their forcing 
scheme. 

5. Summary and conclusions 
Direct numerical simulations of statistically stationary, homogeneous, isotropic 

turbulence have been performed, and Lagrangian time series have been extracted 
and analysed. The accuracy of the simulations has been demonstrated : the spatial 
and temporal resolution is excellent (with k,,,q x 1.5 and C x 0.5), and the use of 
cubic-spline interpolation makes the particle-tracking algorithm extremely accurate. 
Simulation durations of, typically, 5-6 eddy-turnover times are adequate to 
calculate most statistics, but some higher-order statistics suffer statistical sampling 
errors. To assess these errors, two statistically identical simulations are performed in 
selected cases. 

Using 643 and 12€i3 simulations, Taylor-scale Reynolds numbers in the range 38-93 
have been achieved. The higher values R, x 90 are greater than those usually 
occurring in grid-generated turbulence, and are comparable with those found in the 
log-law region of a boundary layer a t  270 wall units, or in an axisymmetric jet with 
a Reynolds number based on the pipe exit diameter of 7700. Nevertheless, the 
Reynolds number is too low for there to be a convincing separation between the 
energy-containing and dissipative scales. A k-9 range is not observed in the Eulerian 
energy spectrum. 
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Because of the use of forcing and periodic boundary conditions, the large-scale 
motions most probably do not closely correspond to those of natural turbulence. But 
in this and previous studies it has been shown that the small scales are unaffected by 
forcing. 

A major finding is that most of the Lagrangian statistics studied (normalized by 
the Kolmogorov scales) exhibit a strong Reynolds-number dependence. For example, 
a, (the acceleration variance normalized by the Kolmogorov scales) is found to 
increase approximately as Ri - increasing by 68 % between R, = 38 and R, = 90 
(figure 4). On the other hand, Eulerian statistics such as the dissipation spectra 
(figure 1)  vary little with R,. Neithdr Kolmogorov's (1962) refined hypotheses, nor 
the more general local rescalings we considered, are successful in explaining the 
strong Reynolds-number dependence of a,. 

The acceleration frequency spectra (figure 11)  do not exhibit the plateaus expected 
in the inertial range for high-Reynolds-number turbulence. Their peak values, B,*, 
increase as Ri. The frequency spectrum of the Lagrangian velocity (figure 12) is 
affected little by the forcing or by Reynolds number, in marked distinction to the 
Eulerian wavenumber spectra (figure 2). Similarly the Lagrangian velocity 
autocorrelation functions differ little between the simulations ; and, except near the 
origin, they resemble exponential decays. 

For time lags 7 up to four Kolmogorov timescales, the Lagrangian velocity 
increment A,u+(t) is found to be far from Gaussian: its standardized p.d.f., p(zi), 
decays as exp ( -  Ivl) rather than as exp ( -  w') (figure 15) ; and flatness factors in 
excess of 10 are observed (figure 16). 

The three velocity-gradient invariants studied show quite differe,nt statistical 
properties. The pseudo-dissipation ~ ' ( t )  (proportional to the second invariant of 
au,/aq:,, equation (18)) is found to be log-normal to  within statistical uncertainty. On 
the other hand the dissipation e+( t )  (equation (16)) and the enstrophy S ( t )  (equation 
(17))  are negatively skewed, indicating relatively high probabilities of low strain and 
rotation rates. The enstrophy is most intermittent, having a standard-deviation-to- 
mean ratio of about 1.5, compared to about 1.0 for E+ and q+, The correlation 
coefficient between In€+ and In [+ is about 0.4 and increases with R,. When both 
In E+ and lii c+ are small, they appear to be statistically independent (fig,ure 21). 

The Lagrangian velocity integral timescale TL is approximately + of the eddy 
t,urnover time TE (table 1). The integral timescales of In€+, lnc+ and lnF+ are 
approximately 0.55TL, 0.9TL and 0.9TL, respectively, with perhaps a weak decrease 
with R,. These large timescales for small-scale quantities arise because of internal 
intermittency : significant fluctuations in the dissipation, etc., occur on length- and 
timescales up to the integral scales. Autocorrelations (figures 24 and 25) and 
frequency spectra (figure 27) show that, compared with enstrophy and pseudo- 
dissipation, dissipation fluctuations are characterized by shorter timescales and 
higher frequencies. 

The acceleration vector a+(t) rotates on a timescale of order the Kolmogorov 
timescale 7, : the zero-crossing time of the acceleration autocorrelations (figure 7) is 
about 2.27,. But the integral timescale of the acceleration magnitude is about 0.6TL. 

The Lagrangian data have been used to  test Tennekes' (1975) advection hypothesis 
relating Lagrangian and Eulerian time derivatives. The hypothesis assumes high 
Reynolds number, and is found to  be inaccurate at the moderate Reynolds numbers 
studied here. 

The Lagrangian time series have been examined in the light of stochastic models 
such as the Langevin equation. It is found that the non-Gaussian velocity time series 



Lagrangian statistics in isotropic turbulence 581 

u+(t) can be made more nearly Gaussian by a time-stretching based on the pseudo- 
dissipation (figure 17). This corresponds to the variance of the velocity increments 
being proportional to the local pseudo-dissipation, rather than to the mean 
dissipation. Stochastic models for rp+(t) and u+(t) based on these observations are 
described by Pope (1988a, b ) .  

Perhaps the most striking finding in this paper is the strong Reynolds-number 
dependences of many of the Lagrangian statistics, and the inability of the refined 
Kolmogorov (1962) similarity hypotheses to account for them. It is of course true 
that the simulations are not at the very high Reynolds numbers required by the 
similarity hypotheses. But the Reynolds numbers are comparable with those of 
laboratory experiments. Hence our results provide a caution that applying high- 
Reynolds-number arguments to such measurements can lead to significant errors : 
the application of Tennekes’ (1975) advection hypothesis to grid turbulence provides 
an example. 

This work was supported by the US Air Force Office of Scientific Research (grant 
number AFOSR-85-0083). Computations conducted during the research were 
performed on the Cornell National Supercomputer Facility, which is supported in 
part by the National Scientific Foundation, New York State and the IBM 
Corporation. 

The Lagrangian time series and other selected data have been recorded on 
magnetic tape. The contents of these tapes, and how they can be accessed, are 
described in the report by Yeung et al. (1988) which is available on request from the 
last author . 

Appendix 
In  some of the simulations, especially those with only 18 forced modes (i.e. K ,  = 

.\/2k,), significant temporal variations of volume-averaged statistics are observed. 
For example, figures 36 and 37 show the volume-averaged dissipation and 
acceleration variancef- for the 12S3 simulations. Up to 30 YO variations in dissipation, 
and 70% variations in acceleration variances may be seen, and are largest for the 
R, = 90 case. As might be expected, for each simulation these variations are in phase 
and highly correlated. 

These observations raise several questions. First, are these variations a non- 
physical artifact of the forcing scheme, or are they found in natural turbulence Z The 
answer lies between two suggestions. The solution domain is a cube of side 
approximately 5 integral lengthscales (table 1) .  In  ‘natural ’ turbulence - for 
example, that behind a turbulence-generating grid - if the volume-averaged 
dissipation were measured over a comparable volume, then temporal variations 
would certainly be observed. We cannot claim, however, that (in magnitude or 
timescale) the variations in the simulations match those of natural turbulence. 

It is interesting to note that Siggia (1981) and Kerr (1985) used forcing schemes 
that are very different in this respect. Siggia deliberately used forcing that resulted 
in extremely large dissipation fluctuations, arguing that this is reflective of the 
intermittent nature of turbulence. Kerr, on the other hand, maintained constant 
energy in the forced modes and hence, presumably, the dissipation fluctuations were 
small. Our forcing scheme takes the middle ground. 

t Where necessary, the volume average is estimated by averaging over all fluid particles at a 
given time. 
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FIGURE 36. Temporal variation of volume-averaged dissipation, shown as normalized departure 
from the global mean, against time t normalized by the total integration time T (i.e. length of run), 
for the 1 283 simulations. A, R, = 38 ; 0, R, = 63 ; 0,  R, = 90 ; 0 ,  R, = 93. 
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FIQURE 37. Temporal variation of volume-averaged acceleration variance, shown as normalized 
departure from the global mean, against time t normalized by the total integration time T for the 
1283 simulations. Symbols same as in figure 36. 
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The second question is : how do these variations affect statistical errors ? Clearly, 
the effect may be large. For example, i t  may be seen from inspection of figure 37 that 
over the first half of the R, = 90 simulation time T the volume-averaged acceleration 
variance is typically 50% higher than over the second half. To be sure that the 
statistical errors are small, the sampling time T should be long compared with the 
observed time of variation, which is several eddy-turnover times. This requires a 
prohibitively large amount of computer time. 

Because we cannot claim that the statistical errors are small, each simulation with 
NF = 18 was performed twice (starting from different randomized initial conditions). 
That is, the R, = 90 and 93, and the R, = 54 and 59 simulations are statistically 
identical. For each statistic reported, a comparison of the values attained from each 
pair of runs affords an estimate of the sampling error. 

I n  an attempt to reduce the sampling error, for some statistics the acceleration 
time series were preprocessed. Let a+(t) be the acceleration-component time series 
before preprocessing, (az ( t ) ) v  be the time-dependent volume-averaged acceleration 
variance, and (u ' )  be the time average of (a'(t))" (i.e. (a ' )  is the globally averaged 
acceleration variance). The preprocessing results in the modified time series d+( t )  : 

Thus at  all times the volume-averaged variance of 2 ( t )  is (a'). The discussion of 
acceleration statistics in $4.1 implicitly assumes that preprocessed data are 
analysed. 

This preprocessing does not alter the acceleration variance, but reduces its 
standard error. Similarly, other second-order statistics such as autocorrelations and 
frequency spectra are unaffected. However, it is found to reduce the higher-order 
moments, since large departures from the global mean are suppressed. At the 
smallest time lag (h) ,  the velocity-increment flatness factor approximates that of the 
acceleration. Figure 38 shows, against R,, the acceleration-component flatness 
factors obtained both with (as in figure 6) and without (as in figure 16) preprocessing. 
Considerable scatter due to statistical variations is apparent. There is no clear 
theoretical reason to suggest which choice approximates the true acceleration 
flatness factor better. However, the R, = 59 and R, = 90 data in figure 38 appear to 
deviate considerably from the Reynolds-number trend suggested by all the 
simulations as a whole, suggesting the presence of considerable statistical errors in 
these two cases. The difference that preprocessing makes is especially large (between 
13.3 and 17.8) for the R, = 90 case, suggesting that the R, = 90 curve in figure 16 is, 
on the whole, an over-estimation. By contrast, the R, = 93 curve, being only slightly 
above the R, = 63 curve, is possibly an under-estimation. 

The large temporal variation of volume-averaged dissipation shown for the 
R, = 90 case in figure 36 makes the calculation of dissipation integral timescale T, 
inaccurate. From this figure i t  is evident that, because of this variation, dissipation 
fluctuations over long time lags (comparable with T) are likely to be negatively 
correlated. This is indeed observed, and leads to under-estimation of T,. To 
compensate for this statistical effect, integral timescales given in table 3 are 
computed from the preprocessed dissipation time series 2+(t),  defined as follows. In  
analogy to (A l ) ,  let ( ~ ( t ) ) "  and ( 8 )  be the volume and global averages of E+ 

respectively. Then 2 ( t )  is defined to  be . .  
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FIGURE 38. Acceleration-component flatness factors against Reynolds number, with (0) and 
without (A) the preprocessing described in the Appendix, for the same simulations as in figure 4. 
Open symbols for K , / k ,  = 2 d 2 ,  solid symbols for K J k ,  = 4 2 .  Dashed line of logarithmic slope 4 
indicate approximate Reynolds-number dependence. 

The volume average of P ( t )  is (8) 'at all times. With this preprocessing, the 
dissipation autocorrelation is found not to take any significant negative values - 
being effectively zero a t  long time lags. 

The same treatment is applied to the calculation of autocorrelations of the 
quantities la+l(t), ( + ( t ) ,  v+(t) and their logarithms, as well as the joint correlation 
functions between these variables. Small increases (of order 0.01) are found in the 
cross-correlation coefficients (table 5 ) .  We also note that the second and higher 
moments of s+(t) and 2 ( t )  differ. For the calculation of moments of e+(t) and lns+(t), 
preprocessing would be neither necessary nor appropriate. 

Finally, we stress that the preprocessing described above is necessary only for 
simulations where relatively large temporal variations of volume-averaged of 
dissipation and acceleration variance are observed. Such variations are primarily 
associated with the use of KF = 22/2k,, affecting the l2fJ3, R, = 90, and also 643, 
R, = 54 and 59 simulations. In situations where the impact of these variations is 
small, acceleration and dissipation statistics computed with or without the 
preprocessing show only small differences. This is true for the R, = 93 case 
(apparently simply by chance), and the R, = 38 and 63 simulations made with K ,  = 
22/2k, (i.e. with greater number of forced modes). 

Note added in proof. The observation, on p. 559, concerning scaling, is equivalent 
to that made from figure 6 in 54.1 : namely that with q = 1, the acceleration in 
stretched time is - to a fair degree - approximately Gaussian. It should be noted that 
while the Kolmogorov (1962) hypotheses suggest the scaling A,u+ z ( E + T ) ~  for time 
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intervals r in the inertial range, the results of figures 6 and 17 show that A,u+/(y+)i 
can be considered approximately Gaussian even for r 4 r,,. 

R E F E R E N C E S  

ANAND, M. S. & POPE, S. B. 1985 In Turbulent Shear Flows 4 (ed. L. J. S. Bradbury et al.), pp. 

ANAND, M. S., POPE, S. B. & MONGIA, H. C. 1989 In Turbulent Reactive Flows. Lecture Pu’otes in 

ANSELMET, F., GAGNE, Y., HOPFINGER, E. J. & ANTONIA, R. A. 1984 J. Fluid Mech. 140, 63. 
ANTONIA, R. A,, SATYAPRAKASH, B. R. & HUSSAIN, A. K. M. F. 1982 J .  FZuid Mech. 119, 55. 
BASS, A. F. DE, DOP, H. VAN & NIEUWSTADT, F. T. M. 1986 Q. J .  R. Met. SOC. 112, 165. 
COMTE-BELLOT, G. & CORRSIN, S. 1971 J .  Fluid Mech. 48, 273. 
CORRSIN, S. 1963 J. Atmos. Sci. 20, 115. 
DOP, H. VAN, NIEUWSTADT, F. T. M. & HUNT, J. C. R. 1985 Phys. Fluids 28, 1639. 
ESWARAN, V. & POPE, S. B. 1988a Computers Fluids 16, 257. 
ESWARAN, V. & POPE, S. B. 19886 Phys. Fluids 31, 506. 
HANNA, S. R. 1981 J. Appl.  Met. 20, 242. 
HAWORTH, D. C. & POPE, S. B. 1985 Bull. Am. Phys. Soc. 30, 1694. 
HAWORTH, D. C. & POPE, S. B. 1986 Phys. Fluids 29, 387. 
HAWORTH, D. C. & POPE, S. B. 1987 Phys. Fluids 30, 1026. 
HINZE, 0. 1975 Turbulence (2nd edn). McGraw-Hill. 
HUNT, J. C. R., BUELL, J. C. & WRAY, A. A. 1987 In Proc. 1987 Summer Program, pp. 77-94. 

Stanford-NASA Ames Center for Turbulence Research. 
HUSSAINI, M. Y. & ZANG, T. A. 1987 A n n .  Rev. Fluid Mech. 19, 339. 
KARLIN, S. & TAYLOR, H. M. 1981 A Second Course in Stochastic Process. Academic. 
KERR, R. M. 1985 J. Fluid Mech. 153, 31. 
KOLMOGOROV, A. N. 1941 Dokl. Akad. Nauk USSR 30, 299. 
KOLMOGOROV, A. N. 1962 J. Fluid Mech. 13, 82. 
LEE, C. K., SQUIRES, K., BERTOGLIO, J.-P. & FERZIGER, J .  H. 1987 Study of Lagrangian and 

Eulerian characteristic times using direct numerical simulation of turbulence. In Proc. Sixth 
Symposium rm Turbulent Shear Flows, Toulouse, France. 

LEE, M. J. & REYNOLDS, W. C. 1985 Numerical experiments on the structure of homogeneous 
turbulence. Tech. Rep. TF-24, Dept. of Mech. Engng, Stanford University. 

LUMLEY, J. L. 1962 In  M4canique de la Turbulence, pp. 17-26. Centre National de la Recherche 
Scientifique, Paris. 

MEsTAYEn, P. 1982 J .  Fluid Mech. 125, 475. 
MONIN, A. S. & YAGLOM, A. M. 1971 Statistical Fluid Mechanics, vol. 1 (ed. J. L. Lumley). MIT 

MONIN, A. S. & YaaLoM, A. M. 1975 Statistical Fluid Mechanics, vol. 2 (ed. J. L. Lumley). MIT 

OROUKROV, A . M .  t962 J .  FluidMech. 13, 77. 
ORSZAG, S. A. & PATTERSON, G. S. 1972 Phys. Rev. Lett. 28, 76. 
POPE, S. B. 1983 Phys. Fluids 26, 404. 
POPE, S. B. 1988a Stochastic model for Lagrangian dissipation. Tech. Rep. FDA-88-07, Sibley 

POPE, S. B. 1988 b Stochastic model of Lagrangian velocity accounting for internal intermittency. 

PRIESTLEY, M. B. 1981 Spectral Analysis and Time Series. Academic. 
REID, J. D. 1979 Boundary Layer Met. 16, 3. 

41-61. Springer. 

Engineering, vol. 40, pp. 672-693 : Springer. 

Press. 

Press. 

School of Mech. & Aero. Engng, Cornell University. 

Tech. Rep. FDA-88-11, Sibley School of Mech. & Aero. Engng, Cornell University. 



586 P .  K .  Yeung and S. B. Pope 

RILEY, J. J. & PATTERSON, G. S. 1974 Phys. Fluids 17, 292. 
ROGALLO, R. S. 1981 Tech. Memo. 81315. NASA Ames Research Center. 
ROUALLO, R. S. & MOIN, P. 1984 Ann. Rev. Fluid Mech. 16, 99. 
ROGERS, M. M. & MOIN, P. 1987 J. Fluid Mech. 176, 33. 
SATO, Y. & YAMAMOTO, K. 1987 J. Fluid Mech. 175, 183. 
SCHLICHTINO, H. 1979 Boundary Layer Theory (7th edn). McGraw-Hill. 
SHLIEN, D. J. & CORRSIN, S. 1974 J. Fluid Mech. 62, 255. 
SIGGIA, E. D. 1981 J .  Fluid Mech. 107, 375. 
SNYDER, W. H. & LUMLEY, J. L. 1917 J .  Fluid Mech. 48, 41. 
TAVOULARIS, S. & CORRSIN, S. 1981a J. FZuid Mech. 104, 311. 
TAVOULARIS, S. & CORRSIN, S. 1981 b J .  Fluid Mech. 104, 349. 
TAYLOR, G. I .  1921 Proc. Lond. Math. SOC. ( 2 )  20, 196. 
TENNEKES, H. 1975 J. Fluid Mech. 67, 561. 
TENNEKES, H. & LUMLEY, J. L. 1972 A First Course in Turbulence. MIT Press. 
THOMSON, D. J. 1987 J .  Fluid Mech. 180, 529. 
WARHAFT, Z. 1984 J. Fluid Mech. 14, 363. 
WARHAFT, Z. & LUMLEY, J. L. 1978 J .  Fluid Mech. 88, 659. 
YEUNG, P. K., GIRIMAJI, S. & POPE, S. B. 1988 Eulerian and Lagrangian statistics from a high- 

resolution direct simulation of stationary homogeneous turbulence. Tech. Rap. FDA-88-02. 
Sibley School of Mech. & Aero. Engng, Cornell University. 

Y E U N ~ ,  P. K. & POPE, S. B. 1987 Lagrangian velocity statistics obtained from direct numerical 
simulations of homogeneous turbulence. In  Proc. Sixth Symposium on Turbulent Shear Flows, 
Toulouse, France. 

YEUNG, P. K. & POPE, 8. B. 1988 J .  Comput. Phys. 79, 373. 




