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Lagrangian statistical quantities are of fundamental physical importance in our understand- 
ing of turbulence, but are very difftcult to measure and hence infrequently reported in the 
literature. A particle-tracking algorithm is developed to extract accurate Lagrangian statistics 
from numerically calculated velocity fields. Lagrangian time-series are obtained from the 
method of direct numerical simulation, which supplies the Eulerian velocity field on a three- 
dimensional grid network. The accuracy of the Lagrangian time series depends, primarily, on 
the accuracy of the interpolation scheme used to calculate fluid-particle velocities. Interpola- 
tion schemes based on Taylor series and on cubic splines have been implemented and tested. 
Errors in computed particle displacements are quantified for simple, frozen velocity fields. The 
algorithm is applied to stationary homogeneous isotropic turbulence with the energy main- 
tained by artificial forcing. It is demonstrated that with adequate spatial resolution, accurate 
estimates of Lagrangian statistics such as velocity autocorrelations, structure functions, and 
frequency spectra can be obtained either with a third-order Taylor series interpolation scheme 
or with a cubic spline scheme. Cubic splines give higher interpolation accuracy, but they are 
more difftcult to implement in codes that rely on secondary storage. 0 1988 Academic Press, inc. 

1. INTR~D~JcTI~N 

Knowledge of Lagrangian statistical quantities, especially the velocity 
autocorrelation function, has long been recognised to be of fundamental theoretical 
importance in the understanding of turbulent diffusion and transport processes (see, 
for example, Taylor [ 11, Monin and Yaglom [2]). A Lagrangian description 
allows us to ask direct questions about the motion of material fluid elements, 
Unfortunately, Lagrangian statistics are extremely difficult to measure accurately: 
in an experiment, the instrumentation has to be able to follow the motion of fluid 
particles without disturbing the flow. By fluid particles we mean mathematical 
points moving with the local velocity of the fluid continuum (Batchelor [3]). There 
have been some useful attempts at measuring Lagrangian statistics by Snyder and 
Lumley [4], Shlien and Corrsin [S], and more recently by Sato and Yamamoto 
[6], but what they achieved is still limited. 

A powerful alternative to experiment is to extract Lagrangian statistics fro 

* Present address: Department of Mechanical Engineering, Queen’s University at Kingston, Ontario, 
Canada. 

373 
0021-9991/88 $3.00 

Copyright 0 1988 by Academic Press, Inc 
Ail rights of reproduction in any form reserved. 



374 YELJNG ANb POPE 

numerically computed velocity field. The fluctuating Eulerian velocity field must be 
available, which implies that mean flow closures like Reynolds stress models do not 
lend themselves to the task readily. Previous efforts have included those of 
Deardorff and Peskin [7] (who used sub-grid scale modeling) and of Riley and 
Patterson [IS] (who used direct numerical simulations). 

In this study we use direct numerical simulation (DNS) of turbulence, an 
approach pioneered by Orszag and Patterson’s work [9] on isotropic turbulence. 
To meet spatial and temporal resolution requirements adequately (as discussed by 
Rogallo and Moin [lo]), only moderate Ryenolds numbers are treated. We have 
been building on the code developed by Rogallo [ll], who extended DNS to 
homogeneous turbulence. Many Eulerian statistical quantities can be formed from 
the instantaneous flow fields, including those like pressure-strain correlations which 
are inaccessible to measurement. This method is described further in Section 2. 

The method of obtaining estimates of Lagrangian statistics is, in principle, 
straightforward. Given an Eulerian velocity field obtained by direct numerical 
simulation, we attempt to follow the time trajectories of a large number (M) of 
tagged fluid particles as the flow evolves. Let x ‘(y, t) and u’(y, t) denote the 
position and velocity at time t of the fluid particle originating at position y at time 
t = 0. The equation of motion of the particle is 

ax+ty, t) 
at 

= U'(Y, t), (1) 

subject to the initial condition 
X’(Y, O)=y. (2) 

The Lagrangian velocity u’(y, t) is related to the Eulerian velocity u(x, t) by 

u + (Y, t) = 0 + (Y, t), t). (3) 

The superscript “+” signifies a Lagrangian flow variable. For notational simplicity 
from now on, whenever it is clear that a single particle is being referred to, we omit 
the initial position y and write x + ( y, t) as x+(t), etc. 

Equation (1) is integrated numerically in time (for fixed y). Equation (3) 
stipulates that the instantaneous particle velocity is the same as the fluid velocity 
at the instantaneous particle position. From DNS, the Eulerian velocity u is 
available on a three-dimensional grid network at each time step; the particle 
velocity can thus be calculated by interpolating for the fluid velocity at the particle 
position. An interpolation error is inevitably incurred in this process. 

There are, however, non-trivial numerical difficulties to be overcome before we 
can have confidence in the accuracy of the results. It is known from the theory of 
material line stretching in turbulent flows (Batchelor [12]) that two neighboring 
fluid particles tend to move apart exponentially with time on the Kolmogorov time 
scale. This means numerical errors in particle positions can grow rapidly in time as 
the numerical integration proceeds. 
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Any numerical inaccuracies in the Eulerian velocity field supplied by DNS are 
clearly transmitted to the calculated particle trajectories. In this respect, having 
insufficient spatial resolution to resolve the higher wavenumber energy components 
is usually the main problem. However, we assume that the Eulerian calculation is 
of adequate accuracy and consider errors in particle displacements attributed to the 
following factors: (1) temporal resolution, or size of time step; and (2) interpolation 
error in obtaining particle velocities. These are all referred to as deterministic errors 
Additionally, when ensemble averages over the set of M particles are use 
approximations to the true Lagrangian statistics, statistical sampling errors 
resulting from having only a finite number of particles also need to be considered. 

Preliminary studies showed that interpolation error is by far the most serious of 
these errors, with ordinary linear interpolation giving unacceptably poor results. 
This is not surprising when one notes that turbulent velocity fields are inherently 
highly nonlinear with appreciable higher wavenumber content in the energy 
spectrum. Thus we are led to spend considerable effort in developing different 
interpolating schemes and studying their accuracy. 

Calculations of single-particle statistics have been reported by Riley an 
atterson [ 8 f for decaying isotropic turbulence. They used second-order-accurate 

linear interpolation for the particle velocity and did t provide direct estimates of 
the numerical errors. In the present study, we have veloped and implemented a 
third-order-accurate interpolation scheme and have antified errors in corn~~te~ 
particle displacements, showing how they are affected by the various error sour@ 
cited above. The performance of cubic interpolating splines has also been evaluate 

A brief exposition of the principles of DNS is given in Section 2. The associate 
particle-tracking algorithm we developed is described in Section 3. In Section 4, 
we discuss the interpolation problem in some detail, examine how more accurate 
interpolation schemes can be constructed, and describe a means of q~a~tif~~~g 
interpolation errors. 

Computational results are presented in Section 5. The performance of various 
interpolation schemes are compared by directly calculating the errors incurre 
each of them on given turbulent velocity fields. The particle-tracking algorith 
been tested by making calculations for three different flows. These are, in order of 
complexity: (1) a simple steady flow (non-turbulent) with helical streamlines, for 
which particle paths are known analytically; (2) a frozen velocity field with an 
energy spectrum resembling that of turbulence; and (3) stationary hornoge~~o~~ 
isotropic turbulence, in which viscous decay is compensated for by ar~~~~~a~~~ 
forcing low wavenumber modes (Eswaran and Pope [13]). 

Our results demonstrate that, with a reasonable amount of com~~tatio~a~ 
expense incurred on a powerful computer, accurate estimates of single-particle 
Lagrangian statistics can be obtained. These statistics include particle dis- 
placements, velocity autocorrelations, structure functions, and frequency spectra. 
The emphasis of this paper is on numerical aspects. In further work a yet wider 
range of statistics is studied (Yeung and Pope [3f 1). 
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2. THE DNS NUMERICAL METHOD 

The basic principle of direct numerical simulation is to solve the Navier-Stokes 
equations numerically to determine instantaneous velocities in an incompressible 
turbulent flow. With this approach no modeling is needed. We are using Rogallo’s 
[ 1 l] code for homogeneous turbulence. The account of the algorithm given below 
is brief; a more detailed exposition has been given by Lee and Reynolds [14]. 

An approximate solution to the Navier-Stokes equations is sought, in the form 
of velocity fields represented as discrete Fourier modes in wavenumber space. 
Periodic boundary conditions are required on the computational domain, which 
is a cube of length 27~. A pseudo-spectral method is employed, in which bilinear 
products (e.g., convective terms) are evaluated in physical space instead of using a 
convolution in wavenumber space. The aliasing errors thus incurred are removed 
by a combination of truncation and phase-shifting techniques (see [ll]). 

The transformed velocities in wavenumber space satisfy a set of coupled ordinary 
differential equations in time. These are solved by an explicit second-order-accurate 
Runge-Kutta (predictor-corrector) method. Let k be the wavenumber vector (of a 
node in wavenumber space), and let G(k, t) be the corresponding Fourier coefficient 
of velocity. For each k, the velocity Q evolves by the equation 

where I represents the acceleration terms in wavenumber space and is dependent on 
i? at all k. A time-stepping scheme advances the solution from time level t, to 
t n+l = t, + At. In the predictor step we calculate ‘8*, a second-order-accurate 
approximation to ii(tntl): 

ii* = ii + At si[;(t,)]. (5) 

In the corrector step, an improved approximation is formed by 

(6) 

In the pseudo-spectral method, P is obtained by forming the products in physical 
space. Thus the code swaps between physical space and wavenumber space twice 
for each of the two Runge-Kutta steps constituting one time. step. On each time 
step the velocity fields u(x, t,), u*(x), and u(x, t,+l) are available successively in 
physical space (u*(x) is the inverse transform of the predictor field 8*(k)). 

The use of explicit time differencing generally entails a Courant number 
restriction on the largest time step size permissible (see, e.g., Roache [ 151). For a 
three-dimensional problem the Courant number is defined as 
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over all grid points in physical space. For finite-difference methods, numerical 
stability requires a Courant number not exceeding unity. For spectral methods, 
stability analysis is not so well established (see, e.g., Peyret and Taylor [l6]), 
it is in line with conventional wisdom to follow the same criterion. Tests conducted 
by Eswaran and Pope [13] show that using Courant numbers greater than unity 
in Rogallo’s code can give rise to results grossly in error. 

The DNS approach is limited to moderate Reynolds number because of 
resolution requirements. Briefly, we need to resolve the smallest scales and also to 
accommodate the largest scales occurring in the turbulence. It is well known 
that the range of scales widens rapidly as the Reynolds number increases (see, e.g., 
Tennekes and Lumley [17]). 

Resolution of the small scales is an issue for the interpolation used for tracking 
fluid particles because these scales correspond to higher wavenumber components. 
For an N3 calculation (with N grid points in each direction), the highest resolvable 
wavenumber, which we call k,,,, is the largest integer not exceeding @N/3. 
y denoting the Kolmogorov microscale, the results presented below suggest that the 
dimensionless combination k maxq is a fairly good measure of the spatial resolution, 
with k,,, q > 1 being the criterion for acceptably good resolution. 

DNS has become viable largely because of the efficient Fast Fourier Transform 
(FFT) algorithm used for discrete Fourier transformations, as well as the increasing 
availability of modern powerful supercomputers. Even so, FFTs still remain t 
most time-consuming part of the code. In an N3 simulation, the CPU time per time 
step increases as roughly N3 In N. A 643 simulation takes about 30 s of CPU per 
time step on the FPS264 array processors at the Cornell National Supercomputin 
Facility. On the IBM 3090-600 at the same facility, the code takes only about 8 
CPU s per step for a 12g3 simulation. Additional CPU time spent on particle 
tracking is typically only a small fraction of the time taken by the Eulerian code. 

Data Structure and Memory Considerations 

The original version of Rogallo’s code is such that only one plane of data is 
available in memory at a time. This structuring circumvents memory limitation 
difficulties associated with the extremely large number of nodal points on fine gri 
but it is at the cost of considerable inconvenience. In the course of our study, we 
have developed an algebraically equivalent version of the code in which entire 3 
arrays are in (virtual) memory. This is feasible when sufficient memory can be 
allocated, as on the IBM 3090 available to us, where up to 999 megabytes of virtual 
memory can be accessed. 

We refer to these two versions as “planewise” and “full-cube” codes, respectively, 
The choice has a bearing on the consideration of interpolation schemes for particle 
tracking discussed later. 
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3. PARTICLE-TRACKING ALGORITHM 

The basic principle involved in following fluid particle trajectories has been set 
forth in the Introduction. Here we discuss how the task is performed within the 
framework of the Eulerian DNS. 

It is convenient to integrate the equation of motion (1) numerically by the same 
time-differencing method used in Rogallo’s code, i.e., a second-order Runge-Kutta 
scheme. Recall that x+(t) and u’(t) denote the position and velocity of a fluid 
particle at time t. Starting at time t,, the predictor step yields an estimate x* of 
x+(tn+l): 

x*=x+(t,)+dtu+(t,). (8) 

In terms of the Eulerian velocity field u(x, t,), according to Eq. (3) the particle 
velocity is 

u+(L)=u(x+(t,), t,). (9) 

From the predictor position x* and the predictor Eulerian velocity field u*(x) 
(which approximates u(x, t, + I )), th e corrector step calculation is 

We have used u*(x*) because of the limitations of the “planewise” code; but, if the 
“full-cube” code is used, u + (x*, t, + i) can be used in place of u*(x*) to give a better 
approximation. 

Each particle is tagged and assigned an initial position. Its path is then traced by 
continually updating its position by the time-advancement scheme, using particle 
velocities interpolated on the three-dimensional Eulerian grid network. Thus over 
each time step, there are two sources of numerical error: the time-stepping error 
and the interpolation error involved in evaluating particle velocities. The time- 
stepping error is of order (dt)3 over one time step (see, e.g., [ 18]), but of order 
(dt)2 when a time interval of fixed length is considered, since the number of time 
steps is inversely proportional to At. 

To extract Lagrangian statistics, a set of M particles is introduced into the flow, 
with initial positions specified according to a uniform statistical distribution. In 
working with particle statistics we are implicitly concerned with the transitional 
probability distribution of stepwise particle displacements, conditioned on the par- 
ticle position and the Eulerian velocity field at the current time level (see [2] for 
a discussion). Spatial homogeneity is crucial because it removes the probabilistic 
dependence on current (or initial) position, enabling us to treat each particle as 
representing a different realisation of the underlying Lagrangian stochastic process. 
This justifies taking ensemble averages over all the M particles. Appeal to the cen- 
tral limit theorem shows that the statistical sampling error decreases as M-‘12. 
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Thus for 1 % accuracy, say, we require of order IO4 particles, which is much less 
than the number of grid points (N3 z 2.6 x 105, for N= 64). Since A4 is much 
smaller than N3 In N, considerable computational effort per particle can be 
expended to track the trajectories accurately, without significantly increasing the 
total computational requirement. How large A4 needs to be is judged by monitoring 
the statistical convergence of the overall statistics. 

In using Rogallo’s code for the Eulerian DNS, we need to take into account the 
data structure and the periodic boundary conditions on the velocity field. Mowever, 
we stress that the particle-tracking algorithm is general. It depends solely on the 
velocity fields being available in physical space. 

Each simulation yields a set of Lagrangian time series from which La~ra~~ia~ 
statistics such as velocity autocorrelations are estimated. Some questions on this 
data analysis are addressed in Appendix A. 

4. INTERPOLATION SCHEMES 

Accurate interpolation in the context of particle tracking is a difficult task, since 
the Eulerian velocity fields vary greatly in space in a nonlinear manner, with 
infinitely many higher order derivatives present. As stated in the Introduction, 
numerical errors in particle tracking grow rapidly in time, mainly as a result of the 
diffusive nature of turbulence. It is thus imperative to have an accurate interpola- 
tion scheme. A close look at the interpolation problem is needed to devise more 
sophisticated schemes of higher accuracy. 

Spectral (Exact) Interpolation 

Let us first point out why in practice particle velocities cannot be calculated 
exactly. Unlike finite difference methods which yield only the nodal values on a 
grid, spectral methods do provide a complete description of the dependent variable 
throughout the solution domain. Consider a finite one-dimensional Fourier series 
defining a function f on an interval [0, L] on the real line, divided into N sub- 
intervals of length dx, such that X, = n dx and xN = L: 

N-l 

f(jAx)zh=Ax c fne2XinilN, j=O, 1, . . . . N- 1. 
?I=0 

The sequences (fi, j = 0, 1, . . . . N - 1 } and (fn, n = 0, 1, ..‘, N - I> form a discrete 
Fourier transform pair (see, e.g., [19]). With the Fourier coefficients being 
specified, this formula defines a continuous function of x in the interval [O, L], 

where 0 < OL < 1. The quantities in brackets on the right-hand side of Eq. (121, fn(cr), 
say, are the Fourier coefficients of f(x) on the grid shifted by an amount 01 Ax, and 



380 YEUNG AND POPE 

are equal to the coefficients fn shifted by a phase na/N. Thus the value of the 
function f at any location within the interval may be computed exactly by applying 
a phase shift in wavenumber space before transforming to physical space. This pro- 
cedure merits the term “exact” interpolation only when the function f is defined (or 
can be represented) by the finite Fourier series: as is the case in the tests described 
below. 

Unfortunately, this technique of spectral interpolation requires a full set of three- 
dimensional FFTs in order to obtain just one velocity component of a single fluid 
particle per Runge-Kutta step. The computational cost involved, which increases as 
MN3 In N, is obviously unacceptably large. Still, spectral interpolation does provide 
a valuable means of obtaining exact values needed for a direct evaluation of 
the interpolation error and forms the basis of an algorithm to test and compare 
interpolation errors of different schemes on a typical velocity field, as described in 
Section 5.1. 

General Considerations for Interpolation Schemes 

Consider a particle located within a cubic interpolation cell of unit grid spacing, 
as sketched in Fig. 1. Let xci) be the local coordinates of node i, relative to the 
center of the cell (i.e., node 9) and normalised by the grid spacing Ax. Thus, for 
example, node 9 and node 1 have coordinates (0, 0,O) and (-a, -:, -$), respec- 
tively. The function value at node i is denoted by fi= f(x”‘). In a p-point scheme, 
the values at p nodal points are used. Let them be numbered from 1 to p, and a,(x) 
be the interpolation weight at node i. Then an approximating function g(x) is 
defined in the form of a linear combination of nodal values: 

g(x) = f ai(x) (13) 
i=l 

FIG. 1. Sketch of a typical interpolation cell showing the location of nodal points. Coordinate axes 
have origin at node 9, with directions as indicated. 
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We first review the general properties of interpolation schemes and then consider 
several specific choices. It is usual to require the interpolation weights (aj> to 
satisfy a collocation condition at nodes lying in the cell or on its boundary and, 
also, to meet a consistency constraint by having their sum equal to unity (consider 
the case of a uniform field). Another desirable property is for g(x) to be continuous 
across the interfaces of neighboring interpolation cells. This property, called Co 
continuity in finite-element analysis terminology, ensures that calculated particle 
velocities change smoothly, without abrupt jumps, as a particle crosses an interface. 
It may also be desirable for some derivatives of g(x) to be continuous across cell 
boundaries as well: if the nth derivative of g(x) is continuous, it is said to be C” 
continuous (see, e.g., [ZO]). 

Different schemes differ in the choice of nodes and interpolation weights. Several 
schemes are discussed below. Apart from splines, all of them use some or all of the 
fifteen nodes shown in Fig. 1. Nodes 1 to 8 correspond to the nodes present in the 
Eulerian DNS; the role of the others (9 to 15) are stated in the paragraphs below. 
Cubic splines use the basis function coefficients at the 64 nodes that form a cube 
surrounding x, but these coefficients depend on all of the N3 nodal values t~~~~g~ 
the solution of matrix equations described later. 

Linear Scheme 

Linear interpolation in three directions has been widely used [7, S] because of its 
simplicity. This linear scheme involves only the nodal values at the 8 vertices of the 
interpolation cell (nodes 1 to 8). It approximates the dependent variable within the 
cell as a linear function in each coordinate. Since such a function has 8 coefficients, 
matching the number of nodal points used, enforcing the collocation condition 
suffices to determine the interpolation weights uniquely. The consistency constraint 
is also satisfied. 

Nonlinear variations on scales smaller than one grid spacing are completely 
ignored. This scheme is well known to be second-order accurate, i.e., the magnitude 
of the interpolation error decreases asymptotically as (d~)~ as the grid spacing dx 
tends to zero. It is Co continuous because of the piecewise linear nature of the 
approximating function. 

A Third-Order Taylor Series 13-Point Scheme 
In the search for better interpolation schemes it is natural to start by exarn~~in~ 

the use of Taylor series expansions. In view of the weaknesses of ordinary linear 
interpolation, it is intuitively clear that we can get better results by (1) improving 
spatial resolution through adding one or more nodes inside the cell so that the 
distance between a particle and the nearest node is reduced on the average; (2) 
including nodes outside the cell so that higher order derivatives may be expressed 
more accurately. 

Both of these objectives are achieved by adding an extra staggered grid of data 
shifted from the regular grid in Rogallo”s code by half a grid spacing in ea& 
direction. Nodes 9 to 15 in Fig. 1 are part of the staggered grid, with the nodal 
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values obtained by phase-shifting in wavenumber space and then transforming to 
physical space. 

A scheme of third-order accuracy is desired. By manipulating the Taylor series 
expansions of fr ...fil about node 9, the three first and six second partial 
derivatives can be expressed in terms of these nodal values. The same is done 
for the simplest mixed third derivative, a3fl& dy &, which is first order in each 
coordinate. In addition, the interpolation weights are to satisfy the consistency 
condition. We then have a set of 11 equations or constraints for interpolation 
weights at 11 nodes and can solve for those weights uniquely. 

The 11-point scheme using nodes 10 and 11 (for the second derivatives in x and 
z) is asymmetric. The same is true if nodes 12 and 13 are used instead. This unwan- 
ted asymmetry is removed by taking the averages of the interpolation weights 
resulting from these two choices, to achieve a 13-point scheme which is symmetric 
in x and z (but not y). This scheme, which we refer to as the “TS13” scheme, is 
found to be very successful in the numerical tests conducted. The complete formula 
is given in Appendix B. 

A careful examination of the formula reveals that the resulting approximating 
function does not possess the Co continuity property. The approximation g(x) thus 
has jumps as the location x passes across interpolation cell boundaries. Such jumps 
contribute partly to numerical noise effects affecting the estimation of frequency 
spectra, but are of significant impact only when a very (unrealistically) small 
Courant number of order & or less is used in a poorly resolved velocity field. Since 
an effective corrective procedure has been developed (see Appendix A), we consider 
this a tolerable drawback. 

In principle we could have also included nodes 14 and 15 to yield a completely 
symmetric scheme, but this would be very cumbersome to implement in the 
“planewise” version of Rogallo’s code since the solution domain is spanned by 
marching through successive y-planes. Moreover, numerical tests showed little 
additional benefit. 

Finite-Element Interpolation Functions 

A related approach parallels the use of interpolation functions in finite-element 
methods. The cubical cell can be divided into 6 congruent pyramids, each having 
its four vertices drawn from only the’nodes 1 to 8. Within each such pyramid, the 
consistency condition and the three first derivatives can be used to determine the 
four interpolation weights. This is referred to as the “TS8” scheme. It is less 
accurate than the usual linear scheme because the average internodal distance is 
effectively increased. The resolution can be improved by incorporating node 9. The 
resulting “TS9” scheme divides the cube into 12 pyramids of smaller size. 

Since both schemes are piecewise linear in nature, continuity of the interpolated 
function across the boundaries between adjacent pyramids is guaranteed. Piecewise 
linearity also .implies second-order accuracy for both schemes. The details of each. 
are given in Appendix B. 
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Optimal Schemes 

The rationale behind Taylor series schemes concerns the rate at which interpola- 
tion error decreases as the grid size is relined. In an &h-order scheme, the error 
decreases as (Ax)” as the grid spacing Ax tends to zero. However, with dx being 
of the same order as the smallest length scale of variation of the function (the 
Kolmogorov microscale r), there is no assurance that high-order Taylor series 
schemes will perform well. The weights in such schemes depend on spatial position 
only and take no account of the nature of spatial variations of the field variable. 

In a different approach, we seek to determine an interpolation scheme that is 
optimal (i.e., giving least error) for a given velocity field. The interpolation weights 
and the resulting error then depend on the statistical characteristics of the velocity 
field, which are well represented by the energy spectrum. Using the notation of 
Eq. (13), the squared interpolation error is given by 

4x) = [g(x) -f(xr. 

For a specified function f(x) and a selection of p nodes, by solving a symmetric p2 
linear system of equations, we can determine the weights (ui} such that the squared 
error averaged over all N3 cells of the whole computational box is minimum. The 
collocation property holds automatically since when x is the position of a nodal 
point, the smallest error is clearly zero and it occurs with g(x) equalling f(x) at the 
nodal point. The consistency condition has to be explicitly imposed, Algebraic 
details are given in Appendix B. 

Three factors limit the usefulness of this class of “optimal” schemes. First, the 
coefficients are expensive to generate, since the exact values [f(x)] have to be 
calculated via spectral interpolation. Second, when the statistics of the velocity fiel 
change appreciably, the same set of coefficients may no longer be close to opti 
Third, the p2 symmetric matrix involved is usually found to be quite ill-condition 
especially for large p and N, requiring an inordinate amount of effort to genes 
the interpolation weights successfully. 

Cubic Splines 
The “TS13” scheme was developed with the practical restrictions of the 

‘“planewise” code in mind. However, with the “full-cube” version we develop 
use of interpolating splines, which compare favorably with other schemes, is 
facilitated. 

Cubic splines provide C2 continuous approximations. For the one-d~ensio~aI 
case, the spline approximation g(x) is 

Nb-1 

g(x)= c hi(x) ei, 
i=O 

where hi(x) is the ith basis function, ej is the corresponding coefficient, and the sum 
is taken over Nb basis functions [21]. Each basis function is constructed as a 
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piecewise cubic that is twice continuously differentiable. At any location x, only 
four basis functions are non-zero. Algebraic expressions are given in Appendix B. 

The fields being considered (e.g., u(x, t)) are periodic, and hence the basis func- 
tions and their coefficients can also be considered to be continued periodically out- 
side the interval considered. There being N equispaced nodes, we choose Nb = N + 3 
basis functions centered at the nodes and their periodic extensions. Given the values 
of the periodic function f at the N nodes, the basis function coefficients can be 
determined from the N collocation conditions. This leads to an N2 symmetric 
periodic tridiagonal system of equations for the basis functions 

f Tiiej=fi (i= 1, . . . . N), (16) 
j=l 

where 

i=j 

Ii-j/ = 1 
(i,j)=(l,N) or (N, 1) 
otherwise 

(17) 

and {fi} are the nodal values. An efficient procedure for solving such a system is 
described in [22]. 

A three-dimensional tensor product spline can be formed as [21] 

L?(T Y,Z)= C C 1 hi(X) Cj(V) dk(Z)eijk, 
k=O j=O i=O 

where {bj}, {cj>> and {dk} are the one-dimensional basis functions, and eiik are the 
basis function coefficients. At the collocation points (i.e., grid nodes) denoted by x,, 
YJ, z,(L J, K= 1, . . . . N), Eq. (18a) can be written as 

Nb--l 

where 

j=O 

and 

k=O 
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From these equations it is readily seen that the Ni basis function coefficients eiik 
can be obtained by forming a sequence of 3Ni one-dimensional splines. 
Approximately 21N3 floating point operations are required in the algorithm used. 
The time spent increase as N3. 

Besides having desirable continuity properties, the sphnes are formally fourth- 
order accurate. First and second derivatives of the function f (considered below) 
can be approximated either by differentiating the spline or fitting a spline to the 
derivatives. These two methods are denoted by CSA and CSB, respectively. The 
CSB method is more accurate, but also more time-consuming since the nodal 
values of the derivatives have to be generated (by FFTs). 

5. RESULTS AND DISCUSSION 

5.1. Direct Measurement of Interpolation Errors 

A precise comparison of the performances of the various interpolation schemes 
considered can be made through computing the error incurred by each scheme in 
interpolating a typical velocity field. For a prescribed velocity field we can obtain 
exact values by spectral interpolation and then calculate the error averaged over a 
network of prescribed locations within the cubical cell. We subdivide each of the IV3 
interpolation cells into 8 x 8 x 8 sub-cells, compute the averaged squared error over 
all cells, and take its root-mean-square (rms) over these sub-cells to get a global 
estimate of the interpolation accuracy. A measure of local spatial variation within 
an interpolation cell is given by the difference between the largest and the smallest 
of the 9 nodal values occurring in it. The rms interpolation errors are normalised 
with respect to the rms value of this difference over all cells. As a measure of spatial 
variation over the interval Ax, this normalising quantity scales asymptotically as dx 
gets sufficiently small. 

For the choice of velocity field, we want one having an energy spectrum resem- 
bling (at least roughly) the spectra occurring in turbulence. A convenient spectral 
form is that proposed by Pao [23], which is implemented as 

kPsi3 exp[ - 1.5a(kq)4’3], ( CI = 2.45), 0 < k < k,,, 
k3kn,,, 

(19) 

where k is the magnitude of the wavenumber vector k and E(k) is the energy 
spectrum function. Multiplicative constants have been omitted since we are only 
interested in relative magnitudes. For use in Rogallo’s code, the spectrum has 
to be truncated at k = k,,,. The specification of E(k) is made complete through 
the selection of q, or, for given N (hence known k ,,,), through the dimensionless 
parameter k,,, q. 

A velocity field having the given energy spectrum is constructed in wavenumber 
space, using the initialisation mechanism of Rogallo’s code [ 1 I]. The amplitudes of 
B(k) are set deterministically to conform with Eq. (19), while the directions of 
wavenumber space are specified randomly in the plane normal to k so that the 
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continuity equation k . ti = 0 is satisfied. Although a given E(k) does not specify the 
velocity field uniquely in the deterministic sense, the shape of the spectrum is a 
useful indicator of the degree of difficulty of interpolation, which is generally 
considerable if there is appreciable high wavenumber content. 

Ten interpolation schemes are under consideration, namely, “TS13,” “TS8,” 
“TS9,” “linear,” splines, and “OPT15,” “OPT13,” “OPT1 l,“, “OPT9,” “OPT8” (the 
last five are “optimal” schemes with the specified number of nodes). A significant 
nondimensional group is k maxi, which is proportional to the ratio between the 
smallest scale of variation of the velocity field (q) and the smallest scale resolvable 
by the grid (l/k,,,). Normalised rms interpolation errors were calculated for 
several choices of k maxq, and are plotted in Fig. 2 for N= 32. For all schemes, errors 
decrease rapidly (especially for “TS13” and splines) as k,,,q increases beyond 1. 
This suggests the use of the condition k,,,q > 1 as a suitable criterion for “good” 
spatial resolution, meaning that (loosely speaking) when k,,,q exceeds 1, adequate 
accuracy may be achieved with the use of high-order schemes like “TS13” or splines 
at our disposal. Splines are found to perform best, while “TS13” also gives small 
errors. Close sim.ilarity is found for N= 16, thus supporting the choice of km,,? as 
a characteristic parameter. 

10-l 

FIG. 2. Normalised interpolation error on velocity field specified by Pao’s spectrum, against k,,,q, 
using a 323 grid. Interpolation schemes are identified by symbols: A OPT15; 0 OPT13; W OPTll; 
0 OPT9; 0 OPT8; 0 TS13; A TS9; I7 TS8; V linear; + splines; ---; --; --: lines of slopes -1, 
- 2, - 3, respectively. 
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For an mth order scheme, as dx tends to zero, the unnormalised error decreases 
as dx”. But since the normalising factor used scales as dx, the normalised error is 
expected to scale as Ax”- ‘. In Fig. 2, slopes for schemes of various orders appear 
to approach the correct asymptotic behaviour as k,,,~ increases beyond 2. 

The data of Fig. 2 appear as percentages in Table I. The errors of the optimum 
schemes decrease with the number of nodes, since, for p1 <p2, all p,-point schemes 
are in fact members of the wider class of p,-point schemes (with the extra nodes 
taking on zero interpolation weights). Evidently, addition of node 9 alone 
contributes to a substantial error reduction. It turns out that “OPT15” is only 
marginally better than “OPT13,” justifying the omission of nodes 14 and 15 of 
Fig. 1 in our development of Taylor series schemes. Moreover, the “TS13” scheme 
is seen to perform remarkably well, its error at k,,,~ = 1, being less than 2 % and 
only about 25 % larger than that of “OPT15.” The splines consistently have Ihe 
best performance, their error being 40 % less than “OPT15” at k,,,q = 1. 

Figure 3 shows interpolation errors for the first derivative. For splines, CSA is 
less accurate than CSB, as expected. However, the difference in accuracy is small, 
and given its numerical efficiency, CSA still appears to be the preferred option. 

We conclude that the addition of the extra staggered grid of data giving 
nodal points has achieved a large improvement over the linear interpolatiozI 
scheme. 

5.2. Particle Displacement Errors in Steady Helical Flow 

This non-turbulent flow provides a simple test case in which errors in particle 
displacements can be precisely quantified by comparing with an easily derived 
analytical solution. 

In this flow, particles lying within the cylinder with axis in the y-direction and 
inscribed by the computational box move in axisymmetric circular motion in the 

TABLE I 

Normalised Interpolation Errors (%) for Different Values of k,,,q 
for Pao’s Spectrum on 323 Grid 

Scheme 4.0 2.0 1.0 0.5 0.25 

OPT15 0.1642 0.5847 1.547 2.330 2.670 
OPT13 0.1661 0.5925 1.577 2.391 2.153 
OPT11 0.3552 0.8385 1.908 2.810 3.221 
OPT9 0.6143 1.186 2.370 3.383 3.857 
OPT8 2.060 3.638 6.083 8.014 8.932 

TS13 0.2124 0.7284 1.948 3.064 3.620 
TS9 1.631 2.929 4.990 6.687 7.508 
TS8 2.295 4.082 6.822 9.044 10.11 

Linear 2.071 3.658 6.149 8.176 9.153 
Splines 0.0154 0.1788 0.9472 1.762 2.194 

581/79/2-10 
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FIG. 3. Same as Fig. 2, but for velocity gradient: + splines (CSA); x splines (CSB). 

10-l 100 IO1 

knlax~ 

x-z plane, and in uniform translational motion in the. y direction. A given particle 
moves on a cylinder of radius r, with angular velocity o depending only on r, 
measured from the axis of the cylinder. Let O’(t) be the angular displacement at 
time t, then the equations of motion are simply 

T= o(r), (204 

(The value of v + is picked to give a desired time step size based on the Courant 
number limit.) These equations are readily integrated to give the particle position 
in Cartesian coordinates. 

The angular velocity o(r) is chosen to have a smooth profile, 

w(r) = 

/ 

1-3(~)2+3(x)*-(~)6, for r<rc, 

0, otherwise. 

Note that the inscribed cylinder is of radius n. Although circular motion in a plane 
is not periodic, the cutoff at r = rr (where o(r) and its first two derivatives are zero) 
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ensures compatibility with periodic boundary conditions in the DNS algorithm. 
The Eulerian velocity field is frozen in time, i.e., steady. 

In a series of numerical tests, 400 particles are tracked for a time interval of 
approximately 2n, which is the time taken by a particle lying midway between the 
perimeter and the axis of symmetry to complete one revolution. This is deemed 
sufficient to bring out all evolutionary features of the particle motion, and indee 
the root-mean-square particle displacements have ceased showing any furt 
significant increase with time. 

Our goal is to isolate and characterise the effects of three factors. on particle dis- 
placement errors: (1) choice of interpolation scheme; (2) size of time step; and (3) 
grid spacing. All the plots presented show root-mean-square errors in displacements 
normalised by the root-mean-square displacements from their initial positions of all 
particles up to the corresponding time. 

Error contributions from different factors add up to give the overall error. Thus, 
for example, to isolate the magnitudes of interpolation errors, it is necessary to find 
a time step small enough so that time-differencing errors are not large enou 
obscure or distort the conclusions. For a frozen velocity field, a fixed time s 
equivalent to a fixed Courant number. 

Figure 4a shows the error growth at a Courant number of 1, and N= 16, 
various interpolation schemes. The errors shown are averages over the x an 
directions. Although absolute errors increase with time (roughly linearly), nor- 
malised errors do not show appreciable increases until about half of the whole 
tracking time period has elapsed. By that time the root-mean-square displacement 
curves (not shown) have begun to level off, partly contributing to the increase in 
normalised errors. 

Except for the “OPT15 scheme which we decided not to implement in the co 
all schemes considered in Section 5.1 appear in Fig. 4a. Splines are seen to give 
least errors among all the schemes considered, while the “TS13” scheme gives errors 
as much as 10 times less than those of the simple linear scheme and is only slightly 
inferior to the “OPT13” scheme. All 8-point schemes are distinctly worse than the 
others, and are not very different among themselves. This means little ca 
achieved without using more nodal points. The big difference between “OPT9 
“‘OPT8” again shows that the presence of additional nodal points is very val 
These observations are all consistent with the results reported in Section 5.1. 

Besides tracking the fluid particles directly, as we have done, another met 
not mentioned so far, is provided, in principle, by using non-diffusive scalars. 
call this approach tracking by non-diffusive scalars and describe it further in 
Appendix C. Figure 4b shows the errors in particle displacements calculated by this 
method, for the same conditions as in Fig. 4a. A disastrous rate of error growth is 
manifest. At larger times, the Eulerian scalar field itself is so inaccurate that any 
advantages of higher order interpolation schemes are lost. This method has been 
rejected. 

More detailed analysis of the results (see [24]) shows that the time-stepping 
error is generally much less than the interpolation errors, especially for coa.rser 
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FIG. 4a. Helical flow: normalised rms error in particle displacement against time, for various inter- 

polation schemes. Results are obtained by directly following particle trajectories: A linear; A TS13; 
0 TS8; x TS9; El OPT13; V OPTIl; W OPT9; 0 OPT& + splines. 

FIG. 4b. 
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ame as Fig. 4a. but for a method of particle tracking bv non-diffusive scalars. 
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grids and less accurate schemes. Data obtained on g3, 163, and 323 grids also 
provide ample evidence of the claimed third-order accuracy of the “TS13” scheme. 

This simple helical flow, though not representative of turbulence, has nevertheless 
provided much useful information on the performance of various schemes. In the 
next subsection a velocity field bearing more resemblance to turbulence is 
considered. 

5.3. Frozen Velocity Field with Typical Energy Spectrum 

We need to assess the performance of the various interpolation schemes under 
consideration when applied to the highly nonlinear turbulent velocity fields we are 
ultimately interested in. Useful insight may be gained from working with an energy 
spectrum at least qualitatively representative of turbulence. Numerical tests are 
again conducted using the spectral form due to Pao [23], as implemented in 
Section 5.1. 

The velocity field is frozen in time. We study the particle displacement errors first 
and then discuss the particle statistics obtained from the simulations. 

In this case, as for almost all turbulent flows, a closed-form solution for the 
velocity field is not available. Exact particle paths are thus unknown. The best sub- 
stitute we have is a calculation employing a very accurate interpolation scheme 
(“TS13” or splines), a very small time step (C= i), and a very fine grid spacing 
(N= 256). Other calculated particle trajectories are then compare 
“best” calculation. It is important that the “best” calculation be ext 
for otherwise the error comparisons may be distorted. For 12g3 gri 
be necessary to use splines on 2563 as the “best” calculation for a more accurate 
comparison. 

As discussed before, k,,, n > 1 is considered to yield adequate resolution of the 
small scales. Our base case is one realisation of frozen homogeneous isotropic 
turbulence having the energy spectrum of Eq. (19), on a 323 grid with k,,,q = 1. 
The time step and grid size are systematically varied to study their effects on 
particle displacement errors. Courant numbers used were between 1 and i. 

A means of exact grid refinement for our spectral method is needed. Referring to 
Eq. (19), our energy spectrum is nonzero only up to k = 15 (the value of k,,, br 
N = 32). The same velocity field is represented, but on a liner grid, if we exten 
wavenumber range at the high end, but use the same E(k) up to k = 15, and specify 
E(k) = 0 for k > 15. This method is used to generate the flow fields for 643, 128”, 
and 2563 simulations, which have k,,,q = 2, 4, and 8, respectively. In general, in 
expanding to a finer grid, identical wavenumber spectra (and therefore the 
functional representation in physical space) are achieved by filling the extra h 
wavenumber modes present in the liner grid with zeroes. 

The results of the previous subsections suggest that “TS13” and splines are both 
very accurate interpolation schemes. Numerical tests for this subsection were there- 
fore conducted for four schemes: “TS13,” splines, “linear,” and “OPT13.” The linear 
scheme serves as a benchmark reference indicating the magnitude of the improve- 
ment achieved in other schemes, while “OPT13” is used to provide a measure of 
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how much more accuracy is possible using only the 13 points in “TS13.” Unfor- 
tunately, for N= 64 and N= 128, the system of equations used to generate the 
optimal coefficients was found to be ill-conditioned, making a satisfactory solution 
unfeasible. Instead we use the optimal coefficients from a 323 grid, but with the 
value of k maxr appropriate to the finer grid. 

Particle Displacement Errors 

Particle displacement errors are averaged over the three coordinate directions to 
reduce statistical sampling fluctuations arising from using only one flow realisation 
in each simulation. In Fig. 5, such averaged errors, normalised with respect to the 
rms particle displacement up to the corresponding times, are plotted against time 
for the three schemes mentioned above, and for N= 32, 64, and 128 grids. The 
quantity plotted, i.e., the “averaged normalised rrns error,” is denoted by E,. A very 
low Courant number of f was used. The vertical arrows indicate the magnitude of 
the difference between the linear and “TS13” schemes for each grid. This difference 
was found to increase greatly with N. The “OPT13” schemes for both N= 64 and 
N= 128 runs being not truly optimal (since the coefficients were determined from 
a 323 grid), and it may be seen that they are out-performed by the “TS13” scheme. 

Figure 6 illustrates the time-step effect for N= 128. For the “TS13” scheme and 
splines, errors are plotted at several time levels as indicated. An appreciable effect 
is evident only in the range of Courant number 4 and 1. Since splines give less 
interpolation error, the relative importance of time step size appears stronger. On 
a coarser grid, one might expect the grid-size effect to be so dominant that the 
relatively weak time-step effect might not be discernible at all. This is confirmed by 
a similar plot of N= 64 results given in [24]. 

The relative insignificance of the time-stepping errors observed may also be 
partly attributed to the fact that numerical stability constraints have, through the 
Courant number limit, already placed a quite severe limit on the time step size. 

Figure 7 shows particle displacement errors plotted against the number of grid 
points, for the “TSl3” scheme, again at five different time levels. In the N = 8 and 
N= 16 cases, the velocity fields were specified by truncating the spectrum at k,,, 
(3 and 7, respectively); consequently they do not have the same spectra as the other 
cases. Since some of the higher wavenumber content is lost, the errors are less than 
would otherwise have been expected. The corresponding data points thus lie below 
the general trend extrapolated. For the 323, 643, and 12g3 grids, good agreement 
with the claimed second-order accuracy is evident. 

Figure 8 is the corresponding plot for splines, for 323, 643, and 1283 grids only. 
There is fair agreement with the fourth-order accuracy predicted. 

Lagrangian Statistics 
Since only one realisation is used, significant anisotropy can be expected in the 

Lagrangian statistics extracted for this frozen field, despite a statistically isotropic 
velocity field specification through the energy spectrum. An aggravating factor is 
the fact that Pao’s spectrum has no lower cutoff: most of the energy is concentrated 
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FIG. 5. Frozen turbulent velocity field (Pao’s spectrum): averaged normalised rms error in particle 
displacement (EJ against time (t). Grid sizes and interpolation schemes: q N= 32, TS13; 0 N= 32, 
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FIG. 6. Frozen velocity field: averaged normalised rms error (Ed) against Courant No. (C) on 128’ 

grid. Time levels expressed as percentages of the total tracking time T ( =8.89) are (open symbols for 
“TS13”): Q 2; 0 5; 4 10; 0 20; A 33. Corresponding closed symbols are for splines. 
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FIG. 7. Frozen velocity field: averaged normalised rms error (sp) against grid size (N), for “TS13” 
scheme, using C = :, at same selected time levels as in Fig. 6 (see Fig. 6 for.symbols): ----- lines of slope 
-3; --- line of slope -2. 
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N 
FIG. 8. Same data as Fig. 7, but for splines: ------ lines of slope -4; ----- line of slope -3. 
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in the first few wavenumbers. Consequently in any realisation considerable 
anisotropy is present, even though the fields are statistically isotropic. However, 
these effects have no substantial bearings on. the conclusions we seek from 
directionally averaged results. Velocity autocorrelations were computed using the 
formulae stated in Appendix A. Figure 9 shows the result derived from the 2563 
“best” run. Integral time scales were obtained as the area under the autocorrelation 
curves. The fact that the sampled autocorrelation remains less than 0.05 from zero 
for more than half of the time lag range suggests that the total tracking time perio 
(T) is sufficiently long for memory effects of the initial conditions on particle 
velocities to die out. Increasing T any further would not alter the results 
significantly. In fact, we would be interested in particle statistics perhaps only for 
a few times the integral scale, before their velocities become statistically indepen- 
dent of (and hence uncorrelated with) their initial values. 

We notice from Fig. 5 that using the “TS13” scheme, with k,,,q = 1 (on 323 
grid), particle displacements are mostly within 1 % rms error, especially for early 
times. This suggests that errors in velocity autocorrelations are likely to be small. 
Indeed, the corresponding autocorrelation curve (not shown) differs very little from 
that derived from the 2563 calculation, with less than 3 % difference in integral time 
scales. 
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FIG. 9. Frozen velocity field: computed Lagrangian velocity autocorrelations P(T) against time 
lag(r), for the “best” calculation (Conditions: N = 256, C = 6, TS13 scheme). Calculated integral time 
scales ( TL) are indicated for each velocity component. 
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Root-mean-square particle displacements, i.e., ( (XT (t) - x+ (O))* ) ‘12, normalised 
by the length of the computational box, are shown in Fig. 10 for different ensemble 
sizes. We have averaged over the three directions. Conditions were N = 128, C= 1, 
using the “TS13” scheme. Statistical errors due to having a finite number of 
particles A4 appear to be fairly small. For calculations with a frozen velocity field, 
the choice of M is a compromise between statistical error and computational co,st. 
We have chosen to use 1600 particles for all calculations of this subsection. 

The well-known theory due to Taylor [l] on diffusion in stationary 
homogeneous turbulence predicts asymptotic behaviour for very small and very 
large times (relative to the integral time scale TL). 

For small t/TL: 

For large t/TL: 

((X+(t)-X+(0))*)1’2~ (U:)“*t, (22) 

((X+(t)-X+(0))2)1’2~ (u:>“*~. (23) 

The straight lines on Fig. 10 show that our computations agree well with these 
theoretical results. In fact, agreement is very good even in a quantitative sense, as 
Fig. 11 shows for the y-direction displacements. 

To identify further the effect of interpolation errors on the particle statistics, we 

FIG. 10. Frozen velocity field: rms particle displacement against time (t), averaged over the three 
coordinate directions. Number of particles (M) indicated by symbols: n 144; 0 400; 0 800; LI 1600; 
0 3200 (conditions: N= 128, C= 1, TS13 scheme). The M= i44 line lies slightly apart from the others. 
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FIG. 11. Frozen velocity field: rms particle y-displacement ((y’(t) -I’)*)“‘* against time (t), 
using 1600 particles. Dashed lines indicate predicted asymptotic behaviour (conditions: N = 128, C = 1, 
TS13 scheme). 

have also calculated second- and fourth-order Lagrangian structure functions. 
These are defined as 

D;Jz)= ([u+(t+z)-u+(t)]2), (24) 

ok,,(z)=(Cu+(t+t)-u+(t)14), (2-3 

and are shown together in Fig. 12 for three cases, all using C= $: (1) the 2563 
“best” calculation; (2) 643 with “TS13”; and (3) 323 with the linear scheme. 

These three cases are chosen with a view towards attempting to parametrise the 
effect of errors in computed particle displacements on the computed particle 
statistics. From Fig. 5, we note that cases (2) and (3) give rms displacement errors 
of order 0.1 % and 5 % (relative to case (1)) up to time 272. An error of 0.1 % is 
certainly very good accuracy indeed, while 5 % is marginal. 

Results for the first two cases hardly differ from each other, but the third is seen 
to show some appreciable differences while having the same qualitative behaviour. 
The differences for both structure functions are as much as about 15 % for smaller 
times. 

With the data in this frozen field study, we have thus shown that with k,,,q = 1, 
using the “TS13” scheme and a small time step, particle displacement errors can be 
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FIG. 12. Frozen velocity field: second- and fourth-order Lagrangian structure function for x-velocity 
component against time lag(z), using C= 1. Grid size and interpolation schime: (open symbols for 2nd 
order) AN= 256, TS13 (“best” calculation); 0 N= 64, TS13; 0 N = 32, linear. Corresponding closed 
symbols are for 4th order. 

kept at about 1 % and hence reasonably accurate (to within a few percent) 
estimates of Lagrangian statistics can be obtained. 

5.4. Stationary Homogeneous Turbulence with Artificial Forcing 

Having achieved satisfactory results for frozen velocity fields, we now apply our 
algorithm to a flow with more physical significance: namely, stationary 
homogeneous turbulence without mean velocity gradients. The energy in the tur- 
bulence is maintained by artificially adding energy to the low wavenumber com- 
ponents to compensate for viscous decay. We use the scheme recently proposed by 
Eswaran and Pope [ 131, who has verified that the small scales are insensitive to the 
details of the “forcing” scheme, as they should be. 

We give only an abbreviated account of the forcing scheme here; more 
information is given in [13]. An artificial acceleration hF(k) is added to the true 
acceleration I(k) given by the Navier-Stokes equations (Eq. (4)). This forcing 
acceleration is zero except at the (nonzero) low-wavenumber vector nodes lying 
within a spherical shell of chosen radius (2 $) in wavenumber space, i.e., b,(k) = 0 
unless 0 <k < 2 4. At each node with forcing, P,(k) is a vector-valued Ornstein- 
Uhlenbeck stochastic diffusion process (see, e.g., [25]). The infinitesimal 
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parameters of such a process are prescribed through the selection of a time scale 
(TF) and an amplitude (B), or, alternatively, TF and a*T, (also called a*). 

Starting from selected initial conditions the flow is found to reach a statistically 
stationary state after a few eddy-turnover times (the eddy turnover time T, is 
defined as L/u’, where L is the integral length scale and U’ is the rms velocity com- 
ponent). Temporal fluctuations in spatially averaged Eulerian statistics persist, 
become relatively small and centered around a fairly steady level, thus enabling us 
to define time averages. All of these Eulerian statistics, e.g., Taylor-microscale (A), 
Reynolds number (Re,) and dissipation rate (E), can be treated as stationary 
random functions of time. A set of fluid particles is then “‘released” into the 
simulations, which are subsequently continued with particle tracking to obtain the 
Lagrangian time series. 

We are interested in the effect of k maxq on the results. A suitable parametrisation 
enables us to choose the values of the forcing parameters (TF and a*) to obtain 
(approximately) desired values of the Kolmogorov microscale. Temporal fluctua- 
tions in the flow precludes an a priori prescription of q (or k,,,~), but it is possible 
to come close to a desired value of q. Let k, be the lowest wavenumber present 
(unity), N, be the number of wavenumber modes forced (92), and define the 
quantities 

T; = TF@/3k;/3, 

4N, 
’ = 1 + T,*(N,)1’3/0.8’ 

EF = y&*. 

The kinematic viscosity v is also to be prescribed. Figure 13 shows a plot of the 
relationship found between the nondimensional groups koq and (v~/E:)~‘~ k,, for 
three different values of the non-dimensional forcing time scale T; (0.05, 0.15, 0.25). 
We have fixed TZ at 0.15 and v at 0.025 for our simulations. From Fig. 13, we can 
select a value of E; for desired k,q, and determine the forcing parameters through 
the relations (rearranging Eq. (26)) 

TF= T;v+$/~(v~/E#/~ kL213, 

&* = v3y-‘(v3/&T*)-l. 

Simulations have been performed on 163, 323, and 643 grids. The forcing 
parameters used and some of the relevant data are given in Table II. All Eulerian 
quantities shown are time-averaged values over the tracking time period T, which 
is about 10 eddy-turnover times. The interpolation scheme used was linear for runs 
labelled F25 to F28, “TS13” scheme for all other cases. Since time-series analyses 
are most conveniently performed on data sampled at equal time intervals, the time 
step is fixed for each simulation. Its value is chosen such that the Courant number 
fluctuates in a small range near 0.5. 

The simulated turbulence is isotropic. Our data agree very well, to within about 
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FIG. 14. Forced turbulence: velocity autocorrelations p(r) against time lag (r), for the case F22 
(conditions: N= 32, TS13, k,,,q = 1). Calculated integral time scales (TJ as indicated. 
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1 %, with many well-known isotropic relations, e.g., E = 15v~‘~/A~, where U’ is the 
rms velocity. 

Figure 14 shows a typical set of velocity autocorrelation curves, for the case F22 
(refer to Table II for conditions). Comparing with Fig. 9 for the frozen fields of Sec- 
tion 5.3, we observe a much greater degree of similarity between the curve shapes 
for the three directions. Directional differences appear to be largely averaged out by 
the temporal fluctuations, and statistical isotropy prevails strongly. Referring to 
Table II, in each case the averaged (over three directions) integral time scale is 
somewhat shorter than the eddy-turnover time. 

Each set of forcing parameters represents a different physical situation a 
Reynolds number. In Fig. 15, second-order Lagrangian structure functions are pl 
ted for the three 643 simulations: F31, F32, and F33. We define D$(z) to be the 
average of the three components (Of;,, 04, Dk,), and use Kolmogorov scaling, i.e., 
plotting D:(z)/oi against r/r,, where oq and zq are the Kolmogorov velocity and 
time microscales, respectively. It is well known that Kolmogorov’s first similarity 
hypothesis predicts universal small-time behaviour for sufficiently high Reynolds 
number (see, e.g., Monin and Yaglom [26]). Moreover, for even higher Reynolds 
numbers, Kolmogorov’s second hypothesis predicts the existence of an inertial su 
range showing up as a linear segment of the second-order structure functions for 
time lags much larger than r,, and much smaller than T,. However, since the 

10” L I / i 

FIG. 15. Forced turbulence: averaged second-order Lagrangian velocity structure function D?(z), 
against time lag (z), under Kolmogorov scaling. Results from 643 simulations: A F31; q F32; 0 F33 
(see Table II for conditions). 
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highest Re, we attained was only about 50 (for the case F33), the Reynolds number 
range is presumably too low for the hypothesis to apply. Figure 15 clearly shows 
a Reynolds-number dependence. Still, with the curves corresponding to Re, z 12, 
28, and 50, the data do show that this dependence weakens as the Reynolds number 
is increased. For similar reasons, no inertial subrange (i.e., slope 1) is observed. 
For comparison, Re, was about 80 in the work of Kerr [27], whose results are 
consistent with the existence of a short inertial subrange. 

To investigate the effects of k,,,~ as a measure of spatial resolution and hence 
difficulty of interpolation, on both Eulerian and Lagrangian statistics, suitable 
quantities are needed to characterise the quality of the numerical results obtained. 
For the Eulerian DNS, it is useful to study the normalised dissipation skewness, 
defined as 

SE==; (15V/&)3’2 v j 
kmax 

k4E(k) dk. 
0 

(28) 

This quantity, as defined, is based on the fourth moment of the energy spectrum, 
and is thus influenced by how well the small scales (high wavenumber components) 
are resolved. Presumably, as the Reynolds number increases, more stringent resolu- 
tion requirements make it necessary to use finer grids. Figure 16 is a plot of S, 

0 5 10 15 20 25 30 35 40 45 50 55 60 

FIG. 16. Forced turbulence: plot of dissipation skewness (S,) against microscale Reynolds number 
(Re,); N= 16: simulations Fll, F12, F13; N = 32: simulations F21, F22, F23, F24, F29; N= asimula- 
tions F31, F32, F33, F39. (See Table II for k,,,q values.) Dashed line: data with k,,,.,q ss l/,/2; dotted 
lines: data with k,,,q x 1. 
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against Re,, for the three grids we used. For k,,,q > 1 on the 323 and 643 gri 
there is good agreement with data reported in Kerr’s study [27]. However, results 
are seen to be entirely unsatisfactory for k,,,q appreciably less than 1. 

Evidently, then, a value of k,,,q at least 1 is needed to achieve adequate 
accuracy in the calculated Eulerian velocity fields, on which the particle-tracking 
calculations are based. Consequently accurate Lagrangian statistics call for k,,,q of 
at least 1, possibly more. 

In Fig. 17, calculated averaged (over three directions) autocorrelations at time 
lags z/z,, = 1, 5, and 10 are plotted against Re,, and compared with the most 
accurate 643 results available. Error bars illustrate the magnitude of the statistical 
errors in the autocorrelations, which are manifested as variability (one standard 
deviation) amongst the three directions. Clearly, the trend is for the errors to 
increase with Re,. This is readily related to the role of spatial resolution, since 
higher Re, implies smaller q (the small-scale turbulence structure becomes finer in 
size) and hence smaller k,,,r] for a given grid. ’ 

Systematic differences are observed between results using the “TS13” and linear 
schemes on a 323 grid. The linear scheme is found to yield invariably a higher 
autocorrelation, as illustrated in Fig. 17, and the integral time scales are in fact 
larger by 5 to 10 %. This is attributed to the fact that the linear scheme generates 

0.9 

0.8 

0.6 - 
P 
x 0.5 - 

0.4 - 

0.3 - 

0.2 - 

0.1 - 

0 5 10 15 20 25 30 35 40 45 50 55 60 

FIG. 17. Forced turbulence: velocity autocorrelations p(t) against Re,, at selected time lags as 
indicated. Grid size and interpolation scheme: I N= 16, TS13; n N = 32, TS13; 0 N= 64, TSl3; 
0 N= 32, linear (see Table II for k,,,q values). 

581/19/Z-,I* 
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a piecewise-linear interpolated velocity field which varies less rapidly in space, so 
that the interpolated particle velocity changes less rapidly as the particle moves 
around. Thus the memory time for particle velocities becomes longer than it should 
be, and is reflected in a larger sample autocorrelation. Similarly, relative to the 643 
grid, use of the 323 grid tends to lead to overpredicted autocorrelations. The 163 
grid results behave erratically, presumably because the grid is really too coarse, 
there being only 7 useful wavenumber modes in each direction. 

The effect of k maxr on computed velocity structure functions is illustrated in 
Fig. 18 by the cases F12, F22, and F32 which were solved on 163, 323, and 643 
grids, respectively, for the same set of forcing parameters using the “TS13” scheme. 
For second-order structure functions, the cases F22 and F32 (k,,,q z 1 and ~2) 
virtually collapse together, thus lending further support to our assertion that 
k,,,q = 1 is a suitable criterion for adequate spatial resolution. The case F12 with 
km vl z 4 deviates considerably from the expected ~~ slope and the other two cases. 

The case F26 has the same conditions as F22, but the linear scheme was used. 
Significant differences between the two cases are seen in Fig. 18. The structure 
function is consistently underestimated by the linear scheme, just as the auto- 
correlations are found to be overestimated. The differences are about 13 % for most 
of the small time lag (7 < rV) range. 

3 

FIG. 18. Forced turbulence: averaged second- (Di(r): open symbols) and fourth- (Do: closed 
symbols) order Lagrangian velocity structure functions, under Kolmogorov scaling. Results from 4 
simulations: A F12; 0 F22; 0 F32; V F26 (see Table II for conditions). The F22 and F32 lines 
collapse together, but F26 is consistently lower. of(t) is divided by (r/r,)“. 
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The evidence so far indicates that with k maxq = 1, we can achieve ade 
accuracy for second-order quantities like the autocorrelation and second-order 
structure functions, by using the “TS13” scheme for interpolation. Considerable 
errors would result if the linear scheme is used instead. This is an important finding 
because it could mean that, by virtue of the higher interpolation accuracy with 
“TS13,” we can simulate flows of a given Reynolds number on a coarser grid (hence 
much less computational costs) than what might have been necessary otherwise. 

Corresponding fourth-order structure functions are also shown under 
Kolmogorov scaling in Fig. 18, up to z/z, = 10. We denote the average over the 
three components by Di(z). In view of the predicted r4 slope for small times, the 
ordinates are divided by (T/T,)~ to highlight the differences, i.e., D$(z)/u~/(z/z,,)~ is 
plotted against r/z,. At small times a flat line is predicted. Relative to the case F32 
with k maxi z 2, km,,? w 1 gives results 27 % in error for smaller times lags (z d rll) 
using the “TS13” scheme, but as much as 78 % using the linear scheme. Results for 
k,,,q z $ do not even give the correct qualitative behaviour. 

As a higher order quantity, it is not surprising to find that accurate calculation 
of the fourth-order structure function requires a better degree of spatial resolution, 
and that the simple linear interpolation scheme yields unacceptable results. 
Apparently, even using “TS13,” k,,,q needs to be at least 2 for acceptable accuracy 

t 

10-41 I I 

1O-2 10-l 1oa 101 
wz$T 

FIG. 19. Forced turbulence: computed Lagrangian acceleration spectrum AL(w) (averaged over 3 
directions) against Kolmogorov scaled frequency, for 9 simulations: 0 Fll; a F21; 6 F31; 0 F12; 
0 F22; A F32; n F13; D F23; 0 F33 (see Table II for conditions). 
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FIG. 20. Forced turbulence: computed Lagrangian velocity spectrum EL(w) (averaged over 3 direc- 
tions) against Kolmogorov scaled frequency, for 3 simulations: A F12; 0 F22; 0 F32 (see Table II for 
conditions). 

in the fourth-order structure functions. In fact, the case F21 (k,,,~ z 2) still shows 
about 10 % difference from the case F31 (k,,,~ x 4). 

Acceleration frequency spectra, after applying a partial noise removal treatment 
described in Appendix A, for nine cases (3 sets of forcing parameters, 3 grid sizes) 
are plotted in Fig. 19, with the angular frequency m scaled by the Kolmogorov fre- 
quency (n/r,). Evidently the curves tend to converge with increasing k,,,~, and 
large deviations occur for cases with k maxr appreciably smaller than unity. It 
appears that k maxq of at least 2 is needed for really satisfactory results. Flat plateaus 
expected in an inertial subrange are not observed, because the Reynolds numbers 
are not high enough, as mentioned before. 

A small sampling interval, about i of Kolmogorov time scale, is used to capture 
the high-frequency motions adequately. Thus, despite practical difficulties at the 
high frequency end in spectral estimation (see, e.g., [28, 29]), we have achieved 
spectra largely satisfactory up to the Kolmogorov frequency (n/r,). The effect of 
k,,,q on the velocity spectra is illustrated in Fig 20, for the cases F12, F22, and 
F32, of differing k,,, ye but nearly equal Re,. Again, km,,? of 1 appears adequate. 
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6. CONCLUSIONS 

Applied within the framework of Eulerian direct numerical simulation of 
homogeneous turbulence, our particle-tracking algorithm has been thoro~gbly 
tested, as described in Section 5. The main conclusions that can be drawn are as 
follows. 

First, interpolation by cubic splines gives the least errors on all the numerical 
tests conducted and has the additional advantage of being C2 continuous. 

Second, since splines are difficult to use in the original “planewise” version of 
Rogallo’s DNS code (owing to data structure and memory limitations), an accurate 
alternative scheme is needed. For use with the “planewise” code, the “T 
(Taylor series 13-point) interpolation scheme we developed is highly successful, 
yielding results demonstrably superior to those given by linear interpolation, which 
is unacceptably poor. This improvement is largely derived from the reduction of 
internodal distances by the addition of shifted planes of data to Rogallo’s 
code. Third-order accuracy has been ascertained with the flows of Sections 5.2 and 
5.3. While it does not yield continuous approximations, “TS13” is considered of 
adequate accuracy for most purposes. 

Third, studies with the helical flow have enabled us to isolate separate contribu- 
tions to errors in computed particle trajectories. Interpolation error is seen to be the 
major source of errors. The time-stepping error is generally much less significant. 
This is presumably because the time step is restricted to small values by enforce- 
ment of the Courant number stability limit. A Courant number of i appears small 
enough for the time-step dependence of the results to be negligible. 

Fourth, our algorithm has been sucessfully applied to extract Lagrangian 
statistics for frozen turbulence and stationary homogeneous turbulence without 
mean velocity gradients. A successful forcing scheme is used for the latter flow to 
compensate for viscous decay. Results agree well with Taylor’s theory of one-dimes- 
sional turbulent diffusion, as well as the small-time behaviour of the structure 
functions as predicted by Kolmogorov’s first similarity hypothesis. The Reynolds 
numbers treated are not high enough for an inertial subrange to be observed. 

Finally, the nondimensional group k,,, q is found to be a useful parameter for 
characterising the degree of spatial resolution in the velocity fields. A criterion for 
acceptable resolution of most small-scale statistics may be proposed as k,,,~ > 1. 
When this criterion is met, adequate accuracy may be achieved using the “TS13” 
scheme and a sufficiently small time step, for second-order quantities such as the 
velocity autocorrelation and second-order structure functions. A higher value of 
k,,,q is needed for higher order quantities. For instance, it needs to be at least 2 
for about 10 % error in the fourth-order structure functions. 

The emphasis of this paper has been on using simple flows to demonstrate means 
of attaining adequate numerical accuracy. This objective has been achieved. In su 
sequent work, we have used [31] 1283 simulations to attain higher Reynolds num- 
bers without sacrificing spatial resolution. Many important physical questions can 
be addressed as we apply our algorithm to more realistic and interesting flows. This 
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algorithm can be readily extended to study the processes of scalar mixing and 
material line stretching, for example. 

APPENDIX A: ESTIMATION OF LAGRANGIAN STATISTICS 

Some issues of statistical estimation are addressed here. As a fluid particle is con- 
vected in a homogeneous turbulent velocity field, its velocity may be regarded as a 
vector-valued continuous-parameter continuous-state stationary random process 
u+(t). For such a process, the velocity autocovariance R(r) and autocorrelation 
p(z) can be computed as a function of time lag (7) only, and, moreover, it becomes 
asymptotically uncorrelated with itself for large time lags. The Lagrangian integral 
time scale TL (defined as J’F p(z) dz) is estimated by integrating the autocorrelation 
with respect to time, provided the integral converges. 

In practice, the tools of time-series analysis are used to estimate these statistics 
from finite-length data records of particle velocities taken at equal sampling intervals 
of size h. In view of the small size time step and the large number of steps taken 
in each simulation, it is usually neither necessary nor practical to extract output at 
every time step. Instead, the interval h is chosen as a multiple of the time step dt. 
Let the jth sampled time level be tj = j/z, with j = 0, 1, . . . . n (with j = 0 representing 
the initial values), and ( )M denote averaging over M particles. Sample 
autocovariances & and autocorrelations b (which approximate R(r) and p(r), 
respectively) are calculated by the formulae 

&j/q = ; ^$’ 
t u+(rh) u+((r- ljl)h) , 

i--O > M 

1 . 

p-(jh)=$gy, j=O, 1 2 .--, n. 042) 

This choice of estimator, though biased for finite IZ, is in popular use (see, e.g., 
[28]). Essentially, it weights down the sample autocovariances at larger time lags 
(which are more erratic because of fewer samples being available) to achieve the 
positive semi-definiteness property possessed by the true autocovariance function. 

The Fourier cosine transform of the velocity autocovariance (an even function) 
gives the Lagrangian velocity frequency spectrum EL(m) (o is the angular 
frequency). For ok = kz/nh (k = 0, + 1, . . . . +n), we calculate the spectral estimate as 

EL(u,) = & 2 
[( 

‘cl l&h) cos(u,tj) 
j=l 

(A31 

Similarly, transforming the acceleration autocovariance yields the acceleration 
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spectrum AL(a). Since the calculated spectra are, to some extent, contaminate 
with numerical noise, they do not precisely satisfy the exact relationship 

AL(W) = dEL(o). (Ad) 

It is found that AL(~)/& provides a more accurate estimate of the high frequency 
part of the velocity spectrum than does EL(a) obtained directly from the velocity 
autocovariance. Hence we follow Mestayer [30] in obtaining the low frequency 
part of the velocity spectrum from the velocity autocovariance, and the high fre- 
quency part from the acceleration autocovariance. Noise effects causing unphysical 
overestimation of the high frequency part are much reduced. 

The sampling time interval h chosen determines the highest frequency we can 
estimate, viz., x/h. Figure Al shows the effect of varying h on the velocity spectra 
derived for the forced turbulence simulation F22, with N= 32, 400 particles and the 
“TS13” scheme being used. Values of h/z, are approximately &, & :, 1, and 1. 
Figure A2 shows the corresponding acceleration spectra, the range of spurious 
behaviour (due to residual noise effects) is “delayed” towards the higher frequencies 
as h is decreased, i.e., as the sampling rate is made faster. The velocity spectra are 

I” IU - 

FIG. Al. Forced turbulence: computed Lagrangian velocity spectrum EL(w) (averaged over 3 direc- 
tions) against Kolmogorov scaled frequency, for conditions of F22, but different sampling time intervals, 
as fractions of Kolmogorov time scale: n 1; q 4; 0 $; n Q; 0 fs. Dashed vertical line indicates 
Kolmogorov frequency z/r,. 
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10-z 

FIG. A2. Forced turbulence: same as Fig. Al, but for acceleration spectrum. 

deemed satisfactory if they decrease steadily at least up to the Kolmogorov 
frequency. For the case presented, h/z, = $ is small enough to ensure this. 

APPENDIX B: DETAILS OF INTERPOLATION SCHEMES 

Complete Formula-for “TS13” Scheme 

We follow the notation of Section 4, using local position coordinates with origin 
at node 9 (of the interpolation cell in which the fluid particle lies) and in units of 
one grid spacing. The position of the particle is denoted as x = (x, y, z). It suffices 
to give the interpolation weights for nodes 1 to 13. We have 

a,= [--x-y-z+2y2+2xy+2xz+2yz-4xyz]/4, 

a2= [-x-y+z+2y2+2xy-2xz-2yz+4xyz]/4, 

a3 = [x - y + z + 2y2 - 2xy + 2xz - 2yz - 4xyz]/4, 

ad= [x-y-z+2y2-2xy-2xz+2yz+4xyz]/4, 

ax= [--x+y-z+2y2-2xy+2~~-2yz+4xyz]/4, 

a6= [-x+y+z+2y2-2xy-2xz+2yz-4xyz]/4, 
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u7 = [x + y + z + 2y” + 2xy + 2xz + 2yz +4xyz]/4, 

a, = [x + y -z + 2y* + 2xy - 2xz - 2yz - 4xyz]/4, 

a,= 1 -x2-2y*-22, 

a,, = (z” -Y2)/Z 

a11 = (x2 -Y’)P, 

U 13 =a11. 

It may be noted that the collocation condition holds for all nodes lying in the cell 
or on its boundary (1 to 9), but not the external nodes (10 to 13). 

“‘TS8” and “TS9” Schemes 

The essential principles involved have been set forth in Section 4. For each 
scheme, depending on in which pyramid the fluid particle lies, a different interpola- 
tion formula is used, but all such formulae are clearly similar and are derived in the 
same manner. For brevity we will give only one such formula for each. More~ver~ 
although there are many different ways to accomplish the required partitioning of 
the interpolation cell, the precise choice is quite arbitrary and is not expecte 
have any effect on the interpolation accuracy. 

For the above reasons it suffices to state the partitions that we have chosen and 
the resulting formula in one of those pyramids for each scheme. 

The partitioning is uniquely determined by specifying the vertices of each of the 
pyramids (there are 6 such pyramids for “TS8” and 12 for “TS9”). For “TSX,” the 
vertex combinations used are: nodes (1,2,4, 5), (2, 3, 4, 5 ), (3, 4, 5, 8), (2, 5, 6, 7), 
(2, 5, 7, 8), and (2, 3, 7, 8). Within the pyramid (1, 2,4, 5), the interpolation 
formula is 

g(x)=(1---Y--z)fl+zf2+xf~+Yf,~ (A51 

(the subscripted f’s stand for nodal values). The leading truncation error is of 
second order. 

For “TS9”, the vertex combinations used are: nodes (1, 2, 5,9), (l,2, 3,9), 
(1, 3,4,9), (L4, 5,9), (4, 5, 8,9), (374, 8, 9), (2, 5,6,9), (5, 6, 7, 9), (5, 7, 8, 99, 
(2, 3, 6, 9), (3, 6, 7,9), and (3, 7, 8, 9). Within the pyramid (1,2, 5,9), the interpola- 
tion formula is 

The leading truncation error is also of second order. 

Derivation for “Optimal” Schemes 

Let an overbar denote an average over N3 interpolation cells. We use the nota- 
tion of Eqs. (13) and (14) and write f(x) as f: For given x, the task is to minimise 



414 YEUNG AND POPE 

5 subject to the constraint CT= 1 ai = 1 (with the nodes numbered from 1 to p). 
Substituting Eq. (13) into (14) gives 

i=l k=l i= 1 

from which 

;.=2 k$l ak fjfk -2flj. 
J 

We are to minimise 

X=E+A (i, ai-1) 
where A is a Lagrange multiplier. 

Forming ax/au, and ax/an leads to the matrix equation 

[Z lf] [:]=[;I~ (A7) 

where C, = fifk, Ai= ai, Bi=fli, I is a vector of p unity elements and IT is its 
transpose. Equation (A7) is readily solved by methods appropriate for symmetric 
linear systems of equations, such as Cholesky factorisation. 

Cubic Spline Basis Functions 
One-dimensional expressions are given below. Let the nodal points be numbered 

as x1 to xN, and define x0 = x1 - Ax, x N+l=~N+Ax, x,+,=x,+2 Ax. With 5 
defined as (x - xi)/Ax, for i = 0, 1, . . . . N+ 1, N+ 2, the ith basis function at position 
x is given by 

-2<5< -1 
-1<5<0 
0<5<1 
1<5<2 
otherwise. 

(A81 

APPENDIX C: PARTICLE-TRACKING BY NON-DIFFUSIVE SCALARS 

Besides tracking fluid particles by directly calculating incremental displacements 
at each time step, as we have done, we have also considered an indirect approach 
using non-diffusive scalars, By definition, the material derivative of a non-diffusive 
scalar is zero. Thus wherever a fluid particle goes, the value of the scalar associated 
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with it remains unchanged. This invariance property is evidently shared by the 
initial position coordinates of the fluid particle. 

Let 4(x, t) be the initial position (at t = 0) of a fluid particle located at position 
x at time t. Thus 4(x + [t], t) = x+(O) = y. Since position x is occupied by different 
particles at different times, $(x, t) fluctuates and may be decomposed into mean 
and fluctuating parts as 4(x, t) = (4(x, t)) +$‘(x, t). For the flows considered 
(homogeneous isotropic turbulence), the expected location of a fluid particle is 
always its initial location. Hence (4(x, I)) = x. Differentiating, we see that it is 
appropriate to specify the mean gradients c?(cJ~~)/~x~ as the Kronecker delta tensor. 
Moreover, the initial fluctuations $‘(x, 0) are zero since 4(x, 0) = x by definition. 

With these relationships it follows that -$‘(x, t) gives the displacement (from 
its initial position) of a fluid particle which at time t is at position x. When a 
specific particle with given initial position y is concerned, the displacement 
is -+‘(x + (y, t), t). The fluctuating scalars following the fluid particle are obtaine 
by interpolation, in exactly the same manner as for particle velocities. 

While this method is sound in principle, in practice it is numerically il~-~o~~~~ 
tioned. Without the action of a molecular diffusivity, transport is solely by advec- 
tion, and large gradients of the fluctuating scalars develop. The scalar spectra are 
observed to exhibit excessive growth at the high wavenumber end, because of the 
absence of a molecular dissipative mechanism. Spatial resolution thus quickly 
deteriorates, making the Eulerian scalar fields become progressively degraded in 
numerical accuracy. 

This “Eulerian” approach, even if successful, would not be numerically economi- 
cal because incorporating the scalars leads to a substantial increase in the computa- 
tional requirements for the Eulerian code. We originally intended to use it to check 
against the directly calculated particle trajectories. However, as we can see from 
Fig. 4b, the accuracy is so poor that this method is not a feasible alternative at all, 
and had to be abandoned. 
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