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Lagrangian statistics are reported from a direct numerical simulation database with grid resolution
up to 20483 and Taylor-scale Reynolds number approximately 650. The approach to Lagrangian
Kolmogorov similarity at high Reynolds number is studied using both the velocity structure function
and frequency spectrum. A significant scaling range is observed for the latter which is consistent with
recent estimates of 6–7 for the scaling constant C0. In contrast to some previous results at low Reynolds
number, the current results suggest that at high Reynolds number the dissipation autocorrelation is
a two-scale process influenced by both the Lagrangian velocity integral time scale and Kolmogorov
time scale. Results on the logarithm of the pseudo-dissipation are in support of its modeling as a
diffusion process with one-time Gaussian statistics. As the Reynolds number increases, the statistics
of dissipation and enstrophy become more similar while their logarithms have significantly longer
time scales.

1. Introduction

The study of turbulence from a Lagrangian viewpoint has a long history, with the well-known
works of Taylor [1] and Richardson [2] both pre-dating Kolmogorov [3] whose hypotheses
of small-scale universality at high Reynolds number are extremely important in the field.
However, understanding of the high-Reynolds-number behaviour of Lagrangian statistics has
lagged behind that for Eulerian spatial properties often used to characterize turbulence at
the small scales [4]. In particular, application of Kolmogorov’s inertial-range similarity to
Lagrangian statistics in time is still uncertain, and known (e.g. Yeung [5]) to require higher
Reynolds numbers. A principal reason for these difficulties is that the range of time scales in the
Lagrangian description is generally more limited, and increases less rapidly with the Reynolds
number, than the range of length scales for Eulerian quantities. This makes it necessary, both
in laboratory experiments [6, 7] and computations (e.g. [8], and this paper) to strive toward
higher Reynolds numbers in building a database which makes a systematic study of Reynolds
number dependence possible. Recently, advances in both experiment and computation have
helped stimulate much interest in topics such as the scaling properties of high-order Lagrangian
structure functions [9] and acceleration intermittency (e.g. [10, 11]) which are characteristic
of turbulence at high Reynolds number.
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2 P. K. Yeung et al.

Direct numerical simulations (DNS) with particle tracking [12, 13] are a well-accepted tool
for extracting Lagrangian statistics, especially when detailed and quantitative information of
the type needed in stochastic modeling [14] is desired. Currently, advances in supercomputer
power at the Terascale level are allowing higher Reynolds numbers in the simulations and
hence new opportunities to address important scaling issues more conclusively than before.
One example of fundamental importance is the so-called Lagrangian Kolmogorov constant
(C0) in the inertial-range prediction for the second-order structure function (mean-square of
the Lagrangian velocity increment over a time interval τ ). The prediction is

DL
2 (τ ) = C0〈ε〉τ, (τη � τ � TL ), (1)

where 〈ε〉 is the mean energy dissipation, τη is the Kolmogorov time scale and TL is the
Lagrangian integral time scale (of the velocity). Knowledge of C0 is very important in modeling
because it controls the magnitude of TL in stochastic models (e.g. see [15]). A convincing
inference of C0 requires a significant scaling range which would appear as a plateau in a plot
of DL

2 (τ )/(〈ε〉τ ). The degree of uncertainty in C0 in the literature (e.g. [16]) is much greater
than that for Eulerian versions of the Kolmogorov constant such as those for the longitudinal
energy spectrum (CK ≈ 0.53, [17]) or spatial structure function (where C2 = 4.02CK ). Higher
Reynolds number data under well-controlled numerical or laboratory conditions are needed
to establish the asymptotic behaviour of C0 with increasing Reynolds number and to test
estimates and parameterizations given in the literature. While questions have been raised
[18, 19] concerning possible effects of anisotropy and inhomogeneity on the universality of
C0, it is important to resolve the issue of high Reynolds number asymptotic behaviour first.
This task is best carried out by considering the simplified case of forced, stationary isotropic
turbulence.

In this paper we examine several issues using the latest data from simulations at grid
resolution up to 20483. Our simulation database covers Taylor-scale Reynolds numbers (Rλ)
from about 40 to slightly below 700, which is probably the highest Reynolds number to date for
Lagrangian statistics from DNS. Our first objective is to study the issue of C0 as outlined above,
in terms of both the Lagrangian structure function and the Lagrangian frequency spectrum
E L (ω) which may also approach an inertial range with a scaling constant that can be related
to C0. The results are quite consistent with recent estimates ([20, 21]) for this flow. A second
objective is to re-examine the scaling of Lagrangian autocorrelations and integral time scales
for several quantities representing local relative motion in the flow. In particular, we investigate
fluctuations of the energy dissipation rate (ε ≡ 2νsi j si j ), enstrophy (ζ ≡ νωiωi ), and pseudo-
dissipation (ϕ ≡ v(∂ui/∂x j )2), where in these definitions ν, si j , ωi and ∂ui/∂x j represent
kinematic viscosity, strain-rate, vorticity and the full velocity gradient tensor respectively. It is
well known that in homogeneous turbulence the quantities ε, ζ and ϕ have the same one-time
mean values, but their higher-order moments and two-time statistics (e.g. autocorrelations)
may differ. In earlier work [13] at low Reynolds number (Rλ 38–93) the integral time scales of
ε, ζ and ϕ were found to be comparable to that for the velocity (i.e., TL ), with enstrophy being
correlated significantly longer than the others. However, both of these trends appeared to be
weaker in later work [21] when the Reynolds number was increased. In this paper we show
conclusively that the high Reynolds number behavior is different, with the Kolmogorov time
scale playing a greater role. Our results are complementary to those in a recent Eulerian study
[11] and are expected to be useful for new efforts on incorporating intermittency effects in
stochastic modeling based on the acceleration [22, 23]. From a modeling perspective our main
interest is in the statistics of ε, ζ and ϕ all considered separately. However, their joint statistics
such as the dissipation-enstrophy cross-correlation [13] also contain interesting information
and will be reported in a subsequent paper.
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Reynolds number dependence of Lagrangian statistics 3

In the following we first provide a brief description of our simulation database (section 2).
Two separate sections (3, 4) are then devoted to the two objectives stated above: namely to
study the Reynolds number dependence of (i) the velocity structure function and frequency
spectrum and (ii) autocorrelations and integral time scales of dissipation rate (ε) and the related
quantities ζ and ϕ. Conclusions are summarised in section 5.

2. The simulation database

The numerical simulation and post-processing algorithms employed here are essentially the
same as described in previous papers (e.g. [13, 21]). We use the well-known Fourier-spectral
algorithm of Rogallo [24] in a parallel code adapted to the use of as many as 2048 processors.
Stationary homogeneous isotropic turbulence is obtained by stochastic forcing at the large
scales using the method of Eswaran and Pope [25] where a forcing term of finite time scale
(which ensures differentiability in time) is added to the Navier–Stokes equation in Fourier
space. Fluid particles are tracked in the flow with their velocities obtained by cubic spline
interpolation [12] which is fourth-order accurate and twice-differentiable. The latter property
ensures that fluid particle velocities calculated at successive time instants and at positions
a short distance apart are differentiable, such that the acceleration can be readily obtained
from the velocity time series by simple finite difference in time. With adequate resolution
in space the same interpolation technique can be used to obtain velocity gradients following
fluid particle trajectories, and hence Lagrangian statistics of the quantities ε, ζ and ϕ which
are considered in section 4.

Table 1 lists some basic parameters of our simulations including the range of physical length
and time scales in the flow, based on the longitudinal integral length scale (L1), Kolmogorov
length and time scales (η and τη), the large-eddy turnover time (TE ≡ L1/u′ using rms velocity
u′) and the Lagrangian integral time scale (TL ) obtained from the velocity autocorrelation.
Some of these quantities were also reported recently in [11] but differ slightly here because of
statistical sampling. For better consistency we have modified the forcing parameters for 643

and 1283 runs from those of previous work [13] such that all simulations listed now have the
same forcing amplitudes with different viscosities (ν) as the only direct cause of differences
in Reynolds number. It is clear that the range of length scales present is much wider than
that of time scales, such that an inertial range in the Eulerian energy spectrum is quite well
captured [26, 27]. The ratio of Lagrangian to Eulerian large-eddy time scales, i.e. TL/TE may
be regarded as roughly constant although this depends on the large scales which are forced
and thus may be flow-dependent.

Information in table 1 includes three numerical parameters for which practical choices have
to be made based on the amount of CPU resources available. First is the non-dimensional

Table 1. Basic simulation parameters as discussed in Sec. 2.

N 64 128 256 512 1024 2048
Rλ 43 86 140 235 393 648
ν 0.025 0.0071 0.0028 0.0011 0.000 437 0.000 1732
〈ε〉 1.31 1.17 1.17 1.20 1.26 1.10
L1/η 24 52 98 201 450 732
TL/τη 5.4 8.6 13.1 19.8 31.1 43.8
TL/TE 0.720 0.770 0.802 0.763 0.697 0.763
kmaxη 1.77 1.41 1.41 1.40 1.37 1.44
T/TL 32.3 36.3 15.5 10.7 10.0 5.3
Mp 32768 32768 32768 106 496 212 992 425 984



D
ow

nl
oa

de
d 

B
y:

 [C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
] A

t: 
03

:2
3 

26
 J

an
ua

ry
 2

00
8 

4 P. K. Yeung et al.

parameter kmaxη (where kmax = √
2N/3 is the highest wavenumber resolved on an N 3 grid

allowing for de-aliasing procedures necessary for pseudo-spectral methods) which is kept
close to 1.5. This value is typical of much of the DNS literature in the degree to which the
small scales are resolved, although it may not be sufficient [28] for high-order moments (of
highly intermittent quantities) which however are not considered in this paper. Second is
the overall simulation time T measured in units of TL . Obviously, a large value of T/TL is
desirable but also expensive for large simulations, whereas the effects of a moderate T/TL

are mild for quantities which have time scales that are short compared with TL (such as the
dissipation rate at high Reynolds numbers). Finally, statistical errors are dependent on the
ensemble size (Mp) of fluid particles tracked in the flow. An increase in Mp for the larger
simulations is necessary so that the ensemble of particles can provide adequate sampling of
the wider range of length scales present at higher Reynolds numbers.

3. Structure function and frequency spectrum

The second-order Lagrangian structure function has fundamental significance as the mean
square of Lagrangian velocity increments u+(t + τ ) − u+(t) which most stochastic models
attempt to predict. (Note that here and elsewhere the superscript + denotes Lagrangian flow
variables.) It is well understood that at small time lag τ � τη (the Taylor-series limit of dif-
ferentiability in time) DL

2 (τ ) ≈ 〈a2〉τ 2, i.e. proportional to the acceleration variance, whereas
at large τ 
 TL (the diffusive limit of decorrelation at large time lags) DL

2 (τ ) ≈ 2〈u2〉. As a
result of these limiting behaviors the normalised structure function DL

2 (τ )/〈ε〉τ (motivated
by Equation 1) necessarily rises and falls like τ and 1/τ at the limits of small and large τ

respectively. This means a peak (C∗
0 ) or local maximum at intermediate time lags can always

be expected, and is not by itself a sufficient indicator of a Lagrangian inertial range which
requires a plateau of significant width.

Figure 1 shows the normalized structure function in Kolmogorov scaling, for the six simu-
lations listed in table 1. It is clear that as the Reynolds number increases, these curves become
more spread out (more so on the right) and increase in height, with a peak at several times
that of τη. At the small τ limit the lack of a perfect “collapse” is consistent with at least a
weak deviation from Kolmogorov scaling of the acceleration variance even at high Reynolds
number, as discussed elsewhere (e.g. [11, 29]). Systematic growth of these curves toward large
τ/τη is due to the increase with respect to τη of TL which is the controlling time scale in the
diffusive limit. In the inset it can be seen that although in the data range of our simulations C∗

0
continues to increase with Rλ the increase is weaker at high Rλ. This suggests approach to an
asymptotic constant is possible—incidentally at a value which is (within statistical error) quite
consistent with recent estimates of 6–7 [5, 20] which are in turn in agreement with an earlier
extrapolation based on stochastic modeling [15]. In addition, our 5123 data at Rλ ≈ 240 give
C∗

0 ≈ 5.0 which is also quite comparable to 5.2 ± 0.8 at Rλ 284 quoted by Biferale et al. [30]
also from DNS.

It should be noted that a substantial source of uncertainty in the task of inferring C0 (or C∗
0

as a function of Reynolds number) is in the value of 〈ε〉. In experiments it is often impossible
to measure 〈ε〉 directly based on all components of velocity gradient fluctuations; in our
DNS substantial variations in time are present [13] when averaged in space either from fixed
grid points or instantaneous fluid particle positions. One way to check this is to divide the
Lagrangian velocity time series into a number (say 8) of shorter segments and use the value of
〈ε〉 averaged over such shorter intervals of time. Values of C∗

0 obtained in this way are plotted
in figure 2 versus the Reynolds number also averaged locally in time. The trend observed here
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Reynolds number dependence of Lagrangian statistics 5

DL
2 (τ)

τ
Rλ

Rλ

C∗
0

Rλ

τ /τη

Figure 1. Second-order Lagrangian structure function scaled by Kolmogorov variables at six different Reynolds
numbers for the simulations listed in table 1. Open circles mark the location of the peak in each curve. Arrows point
in the direction of increasing Reynolds number. The inset shows these peak values (C∗

0 ) versus the time-averaged
Reynolds number in each simulation, compared with a dashed line at the value 7.0.

is in broad agreement with the Reynolds number dependence inferred from figure 1. Within
each cluster of points (for each simulation) larger values of C∗

0 appear to be correlated with
higher Rλ and lower 〈ε〉: for this reason, the stronger trend observed in the 20483 simulation
may be an artifact of limited simulation time (T ) for averaging as noted in table 1. At the same

C∗
0

Rλ

Figure 2. Scatter plot of C∗
0 values versus Reynolds number obtained by dividing each simulation dataset into eight

sub-periods and using the average 〈ε〉 for each time period.
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6 P. K. Yeung et al.

ω2EL(ω)

ω/ω η ω/ωη

Rλ Rλ

Rλ

Rλ

Figure 3. Lagrangian frequency spectrum of the velocity in Kolmogorov variables at different Reynolds numbers
as in figure 1, using (a) log–log scales and (b) log–linear scales. Arrows point in the direction of increasing Reynolds
number. The horizontal dashed lines are drawn at height 2.1.

time this also indicates the need for a future simulation at yet higher Reynolds number and
grid resolution.

An alternative test of Lagrangian Kolmogorov similarity is through the velocity frequency
spectrum, which is computed as the Fourier cosine transform of the velocity autocovariance
〈u+(t)u+(t + τ )〉 (an even function of τ if the turbulence is statistically stationary). In the
inertial range of frequencies 1/TL � ω � ωη (where ωη = π/τη) the Kolmogorov similarity
result is

E L (ω) = B0〈ε〉ω−2 (2)

where the constant B0 is equal to C0/π [31]. In figure 3(a), 3(b) we show the normalized
spectrumω2 E L (ω)/〈ε〉 in log–log and log–linear scales respectively. It is clear that a significant
scaling range exists for the 20483 data at highest Reynolds number, perhaps to a degree never
observed before at least in DNS. Although there is no strong evidence that asymptotic values
have been reached, the data suggest B0 ≈ 2.1 and hence C0 ≈ 2.1π = 6.6, which is about
10% higher than the peak of the curve at highest Reynolds number in figure 1. The 20483

curve is very flat even when viewed on a linear scale as in figure 3(b) where the values differ
by less than 5% over one decade of frequencies, and the extent of this scaling is also similar to
experimental data by Mordant et al. [32] quoted at Rλ 740. The increase in degree of flatness
of this curve compared to the 1024 results seems very remarkable: this is not fully understood
but may be related to the shift in peak locations seen in figure 1. A close comparison between
figures 1 and 3(b) also shows that values of C0 based on the frequency spectrum are slightly
higher and less sensitive to Reynolds number than those obtained directly from the structure
function. This difference in behavior is consistent with observations made by Lien and D’Asaro
[16].

Although we present only second-order Lagrangian statistics in this paper it is clear that
higher order Lagrangian structure functions can be used to study Lagrangian temporal inter-
mittency, in the same way as Eulerian structure functions are commonly used to study the
intermittency of spatial structure in turbulence. For example the classical Kolmogorov 1941
result for the nth-order Lagrangian structure function is a (〈ε〉τ )n/2 behavior in the inertial
range, and anomalous scaling can be discussed by comparing actual scaling exponents ver-
sus n/2. We caution, however, that because Lagrangian quantities are more intermittent and
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Reynolds number dependence of Lagrangian statistics 7

require higher Reynolds number for similarity scaling, definitive conclusions free of ambiguity
will be difficult to achieve.

4. Autocorrelations of dissipation quantities

An accurate knowledge of the Lagrangian properties of flow variables representing the small
scales is important in current efforts in improving stochastic models via the incorporation of
effects of intermittency: e.g. in [23], where a joint stochastic model of velocity, acceleration
and the pseudo-dissipation is proposed. We consider here Lagrangian autocorrelations of the
energy dissipation rate (ε), enstrophy (ζ ) and pseudo-dissipation (ϕ), including in some cases
their logarithms which are of interest in modeling approaches that invoke Kolmogorov’s log-
normal hypotheses [33]. Physically, these autocorrelation functions can provide qualitative
information on, say, the typical time interval that a fluid particle may spend in a region of
high strain rate (and/or vorticity), which is sensitive to the localized nature of such regions
in space. Because these autocorrelations have approximately exponential forms, the simplest
and most important measures of their correlation times are their integral time scales, which
are obtained by numerical integration of a so-called unbiased estimate of the autocorrelation
up to a sufficiently long time lag as described in [12]. In table 2 the integral time scales of
these quantities are compared with the velocity integral time scale (TL ) and Kolmogorov time
scale (τη).

Figures 4(a) and 4(b) show the autocorrelation of energy dissipation rate with time lag
normalized by TL and τη respectively. In figure 4(a) it is clear that the time scale of this
autocorrelation decreases steadily relative to TL as Rλ increases. This observation confirms a
trend noted in [21] and supersedes previous results at low Reynolds number [13] where the
range of time scales (between TL and τη) was not sufficient to detect an unambiguous behavior.

In figure 4(b) we assess the degree to which the autocorrelation of the dissipation (as a
feature of the small scales in turbulence) scales with the Kolmogorov time scale. The behavior
at small τ , when the autocorrelation drops from 1 to 0.5 in about 2τη, is apparently universal
under this scaling. For longer time lags the Reynolds number trend in figure 4(b) is clearly in
reverse to that versus τ/TL in figure 4(a). Correspondingly, as the Reynolds number increases
the dissipation integral time scale (see Table 2) increases relative to τη, showing that behavior
at larger time lags does not scale with τη. This suggests that the Lagrangian time history
of dissipation is best considered as a process with two time scales, with TL and τη each
accounting for different aspects of the observed behavior. These observations are consistent
with Pope [34] where it is suggested that the structure of dissipation (and related quantities)
can be explained in terms of two time scales, with the relative contributions of each being

Table 2. Integral time scale information for energy dissipation (ε), enstrophy (ζ ), pseudo-dissipation (ϕ) and their
logarithms, normalized by Lagrangian velocity integral time scale (TL ) or Kolmogorov time scale (τη).

Grid 643 1283 2563 5123 10243 20483

Rλ 43 86 140 240 393 648
Tε/TL 0.484 0.448 0.347 0.296 0.241 0.208
Tε/τη 2.60 3.85 4.55 5.86 7.49 9.11
Tln ε/TL 0.544 0.534 0.464 0.453 0.420 0.441
Tln ε/τη 2.93 4.68 6.08 8.97 13.0 19.3
Tζ /TL 0.974 0.773 0.542 0.370 0.247 0.181
Tε/Tζ 0.497 0.580 0.646 0.800 0.975 1.15
Tϕ/TL 0.827 0.720 0.527 0.393 0.285 0.225
Tln ϕ/TL 0.915 0.829 0.679 0.599 0.516 0.512
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8 P. K. Yeung et al.

ρ (τ )

τ /TL τ /τη

Rλ Rλ

 

Figure 4. Lagrangian autocorrelation of dissipation, with time lag normalized by (a) the Lagrangian (velocity)
integral time scale and (b) the Kolmogorov time scale. Arrows point in the direction of increasing Reynolds number.

dependent on the Reynolds number. As a purely empirical observation we also note that in all
cases (from Table 2) Tε appears to be about 1.2–1.3 of

√
TLτη. Provided that the ratio TL/τη

is large then this result is qualitatively consistent with a multifractal theory prediction ([35])
that τη � Tε � TL at high Reynolds number.

In stochastic modeling it is useful to note that, despite some caveats associated with higher
order moments [36], low-order statistics of the dissipation rate can be described reasonably
well using a log-normal assumption. Table 2 includes data on the integral time scale of ln ε

which is found to follow TL approximately while increasing strongly relative to τη at higher
Reynolds number. There is considerable interest in modeling ln ε+(t) [22] or ln ϕ+(t) [23, 37],
as a first-order Markovian process characterized by exponential decay in the autocorrelation.
To test this, we show in figures 5(a) and 5(b) the autocorrelations of ln ε and ln ϕ with time
lag τ normalized by the respective integral time scales.

It can be seen in figure 5(a) that the autocorrelation of ln ε is closest to exponential for the
lowest Reynolds number (line A) but deviates somewhat for all higher Reynolds numbers.
This result suggests that Lagrangian modeling approaches which treat ln ε+(t) as a diffusion
process with Gaussian statistics and known integral time scale (e.g. [22]) may be less accurate
at high Reynolds number. In contrast deviations from exponential appear to be small for all
Reynolds numbers in figure 5(b): that is, the Markovian modeling assumption has greater
validity for ln ϕ+(t). This observation helps explain improvements obtained in modeling [23]
based on the logarithm of the pseudo-dissipation, which as the sum of all velocity gradients
squared captures the effects of both local strain and rotation experienced by each fluid particle.
A recent study of Eulerian statistics [11] has also shown that as a conditioning variable in the
modeling of acceleration statistics the pseudo-dissipation has the advantage that it captures the
intermittency of acceleration fluctuations most completely, such that the resulting conditional
probability density (of acceleration given the pseudo-dissipation) is the easiest to describe.

In [11] some of the Eulerian properties of dissipation, enstrophy and pseudo-dissipation
were studied over a Reynolds number range similar to the present data. Figures 6(a) and
6(b) compare the Lagrangian autocorrelations of these quantities including their respective
logarithms at the lowest and highest Reynolds numbers available. In figure 6(a) (at Rλ ≈ 40)
the observations are similar to those found in previous work at lower Reynolds number by
Yeung & Pope [13], namely that dissipation has a shorter correlation time than enstrophy
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Reynolds number dependence of Lagrangian statistics 9

ρln (τ )

τ / ln

ρln ϕ(τ )

τ / lnϕT T

Figure 5. Lagrangian autocorrelation of (a) logarithm of dissipation and (b) logarithm of pseudo-dissipation, with
time lag normalized by the integral time scale (T ) in each case. Lines A–F denote the six simulations listed in
table 1 in order of increasing Reynolds number. A dashed curve (partly hidden) shows the exponential approximation
exp(−τ/T ) for comparison.

and pseudo-dissipation, with enstrophy being correlated for longest, while the difference in
behavior between each quantity and its logarithm is weak. In contrast figure 6(b) (at Rλ ≈ 650)
shows different trends at high Reynolds number: in this case ε, ζ and ϕ now have similar time
scales, and de-correlate more rapidly than their logarithms. These observations are consistent
with a general trend for dissipation and enstrophy to have similar statistics at high Reynolds
number, while an increase in intermittency accounts for a greater difference between each

Figure 6. Comparison of the autocorrelations of the variables ε, ζ , ϕ (lines A–C) and their logarithms (D–F), at (a)
the lowest and (b) highest Reynolds number in the present simulation database. Insets show the same data with the y-
axis on a logarithmic scale and down to 0.01 (below which the autocorrelation values can be considered insignificant;
exponential-decay behavior would be indicated by a straight line.
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quantity and its logarithm. Finally, linear–log plots of the same data in the insets of this figure
suggest approximate exponential decay (proportional to exp(−τ )) over a significant range of
time lags where the autocorrelation decreases from close to 1.0 to less than 0.05.

5. Conclusions

In this paper we have provided a first report of Lagrangian statistics in stationary isotropic
turbulence at the highest Reynolds number in the largest simulations to date using advanced
Terascale supercomputer power provided at two national centers. We examine DNS data at
grid resolutions from 643 to 20483 and at Taylor-scale Reynolds numbers from about 40
to 650. As in the past, we have tracked fluid particles using cubic-spline interpolation for
the particle velocity and have saved time series of all the components of the velocity and
velocity gradients—which also allow us to extract fluctuations of the dissipation, enstrophy
and pseudo-dissipation representing local relative motion the flow. Tables 1 and 2 provide
respectively information on the range of length and time scales, and on integral time scales of
dissipation and related quantities.

The first objective in our data analysis has been to update previous results and compare
with estimates of the Lagrangian Kolmogorov constant (C0) in the second-order velocity
structure function. Although the Reynolds number in the present data is still not sufficient
to produce a fully unambiguous scaling range the results are, within a reasonable margin of
error, nevertheless consistent with recent estimates of an asymptotic value in the range 6–7.
We attempt to infer C0 from the peaks of both the structure function and velocity frequency
spectrum scaled by Kolmogorov variables, with the latter giving a slightly higher value. To
address the effects of uncertainty caused by time-dependence of the space-averaged energy
dissipation rate we divided data from each simulation into sub-intervals; the results are found
to be self-consistent.

Our second objective is to study the Reynolds number dependence of autocorrelations and
integral time scales of dissipation, enstrophy and pseudo-dissipation. As the Reynolds number
increases, the Lagrangian time scale of dissipation decreases relative to the velocity integral
time scale but increases relative to the Kolmogorov time scale, thus suggesting modeling
as a stochastic process with two time scales. The logarithm of the pseudo-dissipation has
an autocorrelation which is close to exponential and provides support for modeling as a
diffusion process. In contrast to previous results at low Reynolds number, at the highest
Reynolds number in this paper we find that the autocorrelations of dissipation, enstrophy and
pseudo-dissipation are close together whereas the autocorrelations of their logarithms have
significantly longer time scales. These Reynolds number effects are consistent with other
observations that the statistics of dissipation and enstrophy become progressively closer to
each other. The results presented in this paper can be combined with our recent work on
Eulerian conditional acceleration statistics to help develop a new stochastic model that can
account for intermittency successfully through the pseudo-dissipation.
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