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Direct numerical simulation (DNS) data at grid resolution up to 2048° in isotropic turbulence are
used to investigate the statistics of acceleration in a Eulerian frame. A major emphasis is on the use
of conditional averaging to relate the intermittency of acceleration to fluctuations of dissipation,
enstrophy, and pseudodissipation representing local relative motion in the flow. Pseudodissipation
(the second invariant of the velocity gradient tensor) has the same intermittency exponent as
dissipation and is closest to log-normal. Conditional acceleration variances increase with each
conditioning variable, consistent with the scenario of rapid changes in velocity for fluid particles
moving in local regions of large velocity gradient, but in a manner departing from Kolmogorov’s
refined similarity theory. Acceleration conditioned on the pseudodissipation is closest to Gaussian,
and well represented by a novel “cubic Gaussian” distribution. Overall the simulation data suggest
that, with the aid of appropriate parameterizations, Lagrangian stochastic modeling with
pseudodissipation as the conditioning variable is likely to produce superior results. Reduced
intermittency of conditional acceleration also makes the present results less sensitive to resolution

concerns in DNS. © 2006 American Institute of Physics. [DOI: 10.1063/1.2204053]

I. INTRODUCTION

Because of its dual roles as the force per unit mass ex-
pressed by the Navier-Stokes equations and as the rate of
change of fluid particle velocity, acceleration is a fundamen-
tal quantity in the study of turbulence in both Eulerian and
Lagrangian frames of reference. Indeed in recent years the
statistics of acceleration have received considerable
attention.' " Results from both numerical simulation (e.g.,
Ref. 3) and experiment (e.g., Ref. 4) have shown that the
acceleration is highly intermittent, to a greater degree than
observed in Eulerian velocity gradients and certainly not an-
ticipated by classical Kolmogorov scaling. Statistical theo-
ries have been developed (Hill®) which interpret acceleration
intermittency in terms of non-Gaussianity in the velocity
field and the properties of pressure gradient fluctuations.
However, the current understanding is still incomplete in key
aspects such as the Reynolds-number dependence of accel-
eration variance in Kolmogorov variables (see, e.g., Sawford
et al'"). A satisfactory and quantitative description of the
intermittency characteristics of acceleration is essential for
second-order stochastic modeling based on acceleration in a
Lagrangian frame (Sawford," Pope,7 Reynoldslo). Clearly,
for this purpose access to detailed and reliable data over a
wide range of Reynolds numbers is highly desirable.

The definition of fluid particle velocity as the velocity of
the fluid at the instantaneous particle position implies that

“Electronic mail: pk.yeung@ae.gatech.edu

1070-6631/2006/18(6)/065103/14/$23.00

18, 065103-1

large acceleration is a natural consequence of fluid particles
moving in a local region of large velocity gradients. As a
result, it is useful to study the statistical relationships be-
tween acceleration and velocity gradients, which from a ten-
sorial point of view can be decomposed into symmetric and
antisymmetric parts, i.e., the strain rate 5= %(ﬂu,/ x;
+du;/ dx;) and rotation rate r,jE%(&u,-/&xj—auj/&xi), where
u(x,7) denotes the Eulerian velocity field. The intensity of
local straining is best measured by the second invariant of
the strain-rate tensor, which upon multiplication by the vis-
cosity v gives the instantaneous energy dissipation rate

€= 2VSl'jsij’ (1)

which is in turn a key parameter in turbulence scaling (e.g.,
Sreenivasanls). Similarly, the second invariant of the rotation
rate tensor can be used to define

§=2Vrl'jrij= Vw;w;, (2)

which for convenience is referred to as the enstrophy (pro-

portional to the square of vorticity w;), whereas the full ve-

locity gradient tensor gives
J u; du i

p=v 3)

ox ¥ ox j ’
which is known as the pseudodissipation. In homogeneous
turbulence the quantities €, { and ¢ have the same mean
value but different statistics, for which Lagrangian results
were first obtained by Yeung and Pope.16 Dissipation rate
fluctuations are a direct measure of intermittency in turbu-
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lence and often used to represent such effects in stochastic
modeling.”’10 However, some authors (Pope and Chenlg)
have found the pseudodissipation to be a more convenient
alternative, especially when log-normality concepts are used
in the model formulation. In addition, the pseudodissipation
is often used, in the form of the second invariant of the
velocity gradient tensor (mostly denoted as Q), in studies of
local flow topology in turbulence (e.g., Refs. 19 and 20).

In this paper we use data from direct numerical simula-
tions (DNS) to study the statistics of acceleration, dissipa-
tion, enstrophy, and pseudodissipation, with special interest
in the statistics of acceleration conditioned upon the latter
three quantities. Incidentally, relationships among accelera-
tion, dissipation, and enstrophy were also explored recently
by other authors using DNS, but at low Reynolds number.”!
In our database the Taylor-scale Reynolds number (R))
ranges from about 38 on a 64° grid to almost 700 at resolu-
tion 2048 as reported recently by Yeung, Donzis, and
Sreenivasan.”> A summary of the numerical approach and
simulation parameters is given in Sec. II. It is well known
that the Reynolds number achievable on a given grid is
largely determined by the desired degree of accuracy at
which the small scales are resolved. In Appendix A we ad-
dress possible effects of resolution on results in this paper in
view of stricter resolution requirements for DNS recently
suggested in the literature (Yakhot and Sreenivasan®). Re-
sults in the Appendix confirm that the main results in this
paper (given in Secs. III and IV) are reliable, but normalized
variances of acceleration and the logarithms of dissipation
quantities may be underestimated by about 10%.

In Sec. III we present single-point moments of €, {, and
¢ at different Reynolds numbers and compare these with
predictions from log-normal theory often used in stochastic
modeling. In Sec. IV we consider the variance, flatness fac-
tor, and probability density function (PDF) of acceleration
fluctuations conditioned on each of the three variables €, { or
¢. Part of this work is motivated by current interest'® in
stochastic modeling of acceleration using knowledge of the
PDF of dissipation, and a Gaussian model for the PDF of
acceleration conditional on the energy dissipation. Our re-
sults, including a highly successful fit to the acceleration
PDF conditioned on pseudodissipation by a “cubic-
Gaussian” distribution (details given in Appendix B), suggest
improved model predictions are likely if conditioning on
pseudodissipation is used instead. While our focus in this
paper is on Eulerian aspects of the acceleration, a brief dis-
cussion of implications for Lagrangian modeling is also in-
cluded in Sec. V where we summarize the conclusions of this
work.

Il. NUMERICAL APPROACH AND PARAMETERS

The numerical simulation and data analysis approaches
used in this paper are broadly similar to those in previous
work (e.g., Ref. 3), but extended to grid resolutions 1024
and 2048 using advanced Terascale supercomputer facilities
currently available. Stationary homogeneous isotropic turbu-
lence forced stochastically at the large scales (Eswaran and
PopeZ4) was simulated using the Fourier pseudospectral al-
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TABLE I. Basic simulation parameters at different grid resolutions.

Grid 643 2563 5123 10243 20483
R, 40 139 238 385 680
Li/n 22 101 191 449 747
(OL,/u" 0.709 0.463 0431 0.443 0.393
S, 0.537 0.521 0.549 0.580 0.622

gorithm of Rogallo25 in a parallel code adapted for the effi-
cient use of as many as 2048 parallel processors. Postpro-
cessing codes are used to process archived instantaneous
Eulerian velocity fields separated by time intervals of order
half a large-eddy turnover time and treated as independent
realizations for ensemble averaging. Differentiations neces-
sary to calculate velocity gradients in the definitions of €, ,
and ¢ are readily performed in Fourier space. Acceleration is
calculated via the Navier-Stokes equations as the sum of the
pressure gradient and viscous contributions to the specific
force causing the acceleration. Pressure fluctuations are re-
covered by solving a Poisson equation in a pseudospectral
manner, with aliasing errors carefully controlled by a combi-
nation of phase-shifting and truncation techniques in wave
number space.

The processing of conditional statistics is in principle
straightforward but some care is needed to address the issue
of limited sampling at the tails of the PDF of the condition-
ing variable. For the conditional PDFs of acceleration we use

the notation fa‘x(&DA(), where a is any coordinate component
of the acceleration, X is any of the three invariants €, {, and
¢, and carets (") denote sample-space variables. Because of
intermittency, the PDFs of these conditioning variables pos-
sess wide tails, where accurate sampling is difficult because
of the limited number of samples. However, because of ap-
proximate log-normal behavior it is convenient, and easier,
to condition on the logarithms instead, with results presented
in terms of Y=log;,(X/(X)). The sampling range we use cor-
responds to {—5,5} for the standardized logarithm of X, i.e.,
Z=(In X—{(In X))/ 0y, x, where oy, x denotes the standard de-
viation of In X. Since Z is approximately Gaussian we can
use the properties of the Gaussian distribution to choose
wider bins near the tails of the distribution so that better
sampling within each bin leads to smoother results for the
sampled PDF and conditional expectations.26 It is still inevi-
table, though, that higher-order moments are subject to larger
uncertainty due to greater sensitivity to the tails of the PDF
of the conditioning variable. Confidence intervals are calcu-
lated and used”’ as diagnostic measures of statistical data
quality.

Table I summarizes some basic parameters of the simu-
lation database analyzed in this paper. The range of length
scales present in the flow is given by the ratio between the
longitudinal integral length scale (L;) and the Kolmogorov
scale (7). The normalized mean dissipation rate (€)L/u’?
(where u’ is the standard deviation of a velocity component)
is of order 0.4. This is consistent with known DNS data in
both decaying and forced isotropic turbulence (see
Sreenivasanzg), although different values are known in ex-

Downloaded 16 Jan 2007 to 128.84.137.125. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



065103-3 Acceleration and dissipation statistics

perimental data in other geometries.29 The dissipation skew-
ness S, (which should not be confused with the skewness of
dissipation fluctuations) is (see Kerr’’) a measure of the
shape of the energy spectrum E(k) through the integral
Jk*E(k)dk which is sensitive to contributions from high
wave numbers. In the case of isotropic turbulence at suffi-
ciently high Reynolds number S, is also (Batchelor3l) equal
to the negative of the skewness of a longitudinal velocity
gradient (e.g., du,/dx,), which in turn is known to increase
slightly at higher Reynolds numbers.* The results are sub-
ject to considerable statistical variability which is caused by
both the stochastic nature of the forcing scheme and the limi-
tations of a finite-size domain whose linear dimensions are
only a few times as much as the large-eddy length scales.
Since this variability extends to the Reynolds number as
well, for some of our results (in Sec. III, especially) scatter
plots where each realization is represented by one data point
provide more information than plots of ensemble averages at
an averaged Reynolds number for each simulation. Some
basic aspects such as evidence of an inertial range in the
energy spectrum have been reported recently in Ref. 22.

In the simulations listed in Table I the degree of resolu-
tion of the small scale motions _is given by the parameter
ka7 at about 1.5 where kp,,=V2N/3 is the highest resolv-
able wave number (allowing for dealiasing treatments) on an
N? grid of length 27 in each direction. Correspondingly the
ratio of grid spacing (Ax) to the Kolmogorov length scale
(m) is given by (2’7T\/§/ 3)/(kmax ) = 2. Although this means
motions at scale sizes smaller than 7 are not well resolved
this is also common practice in the field for simulations
aimed at reaching the highest Reynolds number possible for
a given amount of computational resources available. In Ap-
pendix A we compare results from three simulations at nomi-
nally the same Reynolds number but different values of
kmaxm that correspond to Ax/#n=2, 1, and 1/4. The errors
involved are found to be relatively small.

lll. MOMENTS OF DISSIPATION QUANTITIES
AND ACCELERATION

The variance of the logarithm of dissipation is a basic
measure of intermittency which is known to increase with
Reynolds number. According to the Refined Similarity
Hypotheses (RSH) proposed by Kolmogorov> this depen-
dence can be expressed as

ol . =A+(Bu2)nR,, (4)

ne

where A depends on large-scale motions of length L, 7 is the
Kolmogorov scale, u is called an intermittency exponent,
and the scale estimate L/7~ Ry has been used. Figure 1
shows results for the variance of the logarithms of €, {, and
¢, with data from each simulation at a different grid resolu-
tion represented by a separate cluster of points. Correspond-
ing ensemble averages which are useful for model compari-
sons are given in Table II. It is clear that all three quantities
display a logarithmic dependence on the Reynolds number,
with a faster rate of increase for the enstrophy but about the
same between energy dissipation and pseudodissipation.
Equation (4) and its analogs for ¢ and ¢ correspond to
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FIG. 1. Reynolds number scaling of the variances of (from top) In € (A),
In¢ (O) and In ¢ (CJ) obtained from DNS at grid resolutions from 64° to
20483 (see Table I). Each data point represents one realization of an instan-
taneous velocity field in statistically stationary state. Dashed lines represent
[see Eq. (4)] A=-0.863, u=0.25 for In € and In ¢; A=0.036, «=0.3 for In {.

dashed lines of slope (3u/2)In 10 shown in the figure. Ex-
cellent agreement is seen with u=0.25 for the dissipation as
reported in experiments,34 and with a larger value ©=0.3 for
enstrophy.

Obukhov™® introduced the concept of log-normal distri-
butions for intermittent, non-negative variables that represent
the small scales in turbulence. Despite having some known
physical limitations™® log-normal assumptions are often use-
ful in stochastic modeling. A basic test of log-normality is
presented here in Figs. 2 and 3 via data on the skewness (u53)
and flatness (u4) factors of the logarithms, in the same
scatter-plot format as in Fig. 1. Both of these figures suggest
that (as in Yeung and Popem) @ is in general closest to log-
normal, followed by e. Log-normality for { is also seen to be
a better approximation at high Reynolds numbers although a
definitive statement on the asymptotic Ry — % limit cannot
be made on the basis of the data available.

For a further check on log-normality we show in Fig. 4
PDFs of the logarithms of €, ¢, and ¢, using ensemble-
averaged results at the highest Reynolds number in our
2048 simulation. These PDFs display departures from sym-
metry which are consistent, in both magnitude and sign, with
the skewness factors in Fig. 2. For example, for enstrophy
(which is the most intermittent of these three variables), the
log-normal model underestimates the likelihood of very low
values corresponding to large, negative In { while overesti-
mating the far tails of the PDF representing the most intense
fluctuations of . Comparison of Fig. 4 with similar plots at
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TABLE II. Ensemble-averaged moments at different grid resolutions. Numbers in the bottom two rows marked

by the { are from Lagrangian data.

Grid 643 256 5123 1024 2048°

Ry 40 139 238 385 680
o 0.815 1.071 1.237 1.390 1.616
o 1.653 2.224 2.440 2.610 2.858
O 0.704 1.032 1.209 1.364 1.596
ay 1.27 2.74 3.40 3.97 4.54
wa@) 7 20 40 68 107

T ag 1.34 2.68 3.37 3.84 4.42
T wala) 7 19 36 47 60

lower Reynolds numbers (not shown) is also in accord with
Figs. 2 and 3 in indicating that departures from log-normality
become weaker at increasing Reynolds number.

Before we present the statistics of acceleration condi-
tioned upon the velocity gradient invariants €, ¢, and ¢, it is
appropriate to use data from the latest simulations to update
some previous DNS results on (unconditional) acceleration
statistics also computed in an Eulerian frame. A basic and
still unresolved issue is whether the acceleration variance
obeys a result obtained by direct application of Kolmogorov
scaling,3 7 i.e., whether the quantity

(a®)

do= (&2 11 (5)
is a universal constant at sufficiently high Reynolds number.
Several different results for the scaling of acceleration vari-
ance have been given in the literature.**>*3%61 I particular,
based on data at Ry up to 240 from 512 simulations, Vedula

and Yeung3 suggested an Ri’z dependence dominated by

pressure gradient intermittency whereas the much smaller
viscous part is likely to be universal. Figure 5 shows a scatter
plot of all data points available from the present simulations,
while corresponding ensemble averages are found in Table
II. It is clear that data points from 10243 and 2048° simula-
tions follow a weaker Reynolds number dependence than
previously proposed. Instead, the DNS data are well repre-
sented by two formulas given by Sawford et al.,"! namely

ag=>5/(1+110/Ry), (6)
which in principle implies an asymptotic limit of ay=5, and
ag=1.9R)"/(1 + 85/R'), (7)

which approaches a power law of exponent 0.135 suggested
by a multifractal intermittency model by Borgas.40 As Saw-
ford et al."! noted, these two formulas (solid curve and dot-
ted curve) are, fortuitously, almost identical up to R, nearly
10°, which implies that the present Reynolds numbers are
still not sufficiently high to resolve the issue. We also see, in

- FIG. 2. Skewness factor of the logarithms of €, { and ¢
corresponding to the data in Fig. 1.
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the lower panel of this figure, that values for the viscous part
(which is solenoidal) from the 2048 simulation are slightly
larger than suggested by other data points. This can be re-
lated to a slight increase’ at high Reynolds number for the
dissipation skewness (see Table I).

The general relation for the mth order moment of a log-
normal distribution (e.g., Pope*')
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FIG. 4. Standardized PDFs of In € (A), In £ (O) and In ¢ (CJ) from 20483
simulation at Ry = 680. The dashed curve (a parabola) represents a standard
Gaussian distribution for comparison.

(X™MKXY™ = exp[%m(m - 1)0'12n x] (8)

allows us to assess to what extent the observed scaling of a
can be explained by an intermittency correction based on
log-normal theory. Setting m=3/2 in Eq. (8) gives
()1 <e>3/2:exp(%o'12n ., whereupon we can write

~ ) 3
Go= 3ny, 1 = exp(- gﬂfn e)' )

In other words log-normal theory predicts asymptotic con-

stancy for 50 such that a, is proportional to exp(%o’lzn E)
(which increases with the Reynolds number). This is tested
in Fig. 6, which shows a as a function of o7, . compared to
the dashed line ay=2.3 exp(%o-lzn E). It is far from convincing
that the data are approaching an asymptote a0~exp(%(rfn E),
but at the same time this behavior cannot be ruled out. In any
case, substitution for ofn . from Eq. (4) leads to a predicted
Reynolds number scaling Ri"/ 16 Use of the empirical value
u=0.25 gives (9u/16)=0.141, which is close to and again
difficult to distinguish from the R?\'BS asymptote based on
Eq. (7) above. (It may be noted that even at Ry=1000 the
scaling factors R())\'141 and R?\'BS differ by only 4%, which is
well within the range of numerical uncertainty.)

Almost all of the acceleration results in this paper are
obtained from Eulerian processing as described at the begin-
ning of Sec. II. However, at the bottom of Table II we also
include results from Lagrangian processing, where we calcu-
late acceleration by finite differencing of the fluid particle
velocity which is in turn obtained by cubic-spline interpola-
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FIG. 5. Reynolds number dependence of the Kolmogorov-scaled accelera-
tion variance (a,) and its solenoidal part (ag)) due to viscosity. The data are
compared with: aONR,l\/2 (dashed line), Eq. (6) (solid curve), Eq. (7) (dotted
curve), and a0~R2']35 (dotted line). The dashed line in the bottom panel is
0.53 (see Ref. 3).

tion from Eulerian velocity fields. It is well known that in
homogeneous turbulence one-particle, one-time Lagrangian
statistics are in principle equivalent to single-point Eulerian
statistics. However, small differences in our results can occur
for several reasons, including statistical sampling, errors
from interpolation, errors from time differencing of the ve-
locity time series, and numerical forcing used in the equa-
tions of motion which determine the particle velocity. It is
encouraging to note that Eulerian and Lagrangian accelera-
tion variances in Table II agree to within just a few percent.
At the same time, because the types of errors cited here lead

W71 T 1 T 1

ao ey |

FIG. 6. Kolmogorov-scaled acceleration variance versus variance of the
logarithm of dissipation. The dashed line is ay=2.3 exp(%ofn 6) [see Eq. (9)].
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FIG. 7. Normalized conditional acceleration variance given the energy dis-
sipation. Lines A—E are for simulations at grid resolutions 643, 256, 5123,
10243, and 2048% with Reynolds numbers as given in Table I. A dashed line
of slope 1.5 is drawn for comparison with Kolmogorov’s refined similarity
theory.

to local smoothing in both time and space, it is not a surprise
that the Lagrangian flatness factor is systematically smaller,
especially at high Reynolds number.

IV. CONDITIONAL ACCELERATION STATISTICS

Knowledge of conditional averages is valuable because
they provide a quantifiable measure of the statistical cou-
pling between fluctuations in one flow variable and another,
and because they arise as unclosed terms in stochastic mod-
eling applied to PDF equations. For example, Sawford
et al.'' considered acceleration fluctuations given the veloc-
ity, in directions parallel and perpendicular to the fluctuating
velocity vector, whereas Borgas and Yeung42 focused on re-
sults for use in modeling of two-particle dispersion. Here we
study the acceleration given the dissipation, enstrophy, or
pseudodissipation. These choices are motivated in part by a
desire to provide useful information for stochastic
modeling,ls’10 and to understand in greater detail the differ-
ent physical effects of strain-rate and rotation-rate fluctua-
tions which are dominated by the small-scale motions.

Figures 7-9 show data at several Reynolds numbers (see
Table I) for the conditional acceleration variance normalized
by its unconditional mean, i.e., {(a*|X)/{a*) as functions of
X/{X) where X=¢, ¢, or ¢. All of the curves shown are
relatively smooth, which indicates satisfactory statistical
sampling. As expected, the acceleration increases with all
three conditioning variables, especially when the latter are
large, thus demonstrating that local relative motion contrib-
utes naturally to rapid changes in fluid particle velocity. The
dependence on X is relatively weak for small X, and the
conditional variance at X=(X) is close to the unconditional
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value. It is clear that the contrast between results at small and
large X (where a power law may provide a reasonable fit)
becomes greater at higher Reynolds numbers.

While most curves in Figs. 7-9 follow the general trends
noted above, some systematic differences can also observed.
For each given conditioning variable increased intermittency
at high Reynolds number is reflected in a wider spread along
the X/(X) axis (due to a larger variance of In X) and a greater
increase of the conditional variance at large (X) as fluctua-
tions of greater intensity arise. Results for all three condi-
tioning variables X=¢, { or ¢ at the highest Reynolds num-
ber available are shown together for comparison in Fig. 10.
A dashed line represents a power law of 1.5 predicted by the
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FIG. 9. Same as Fig. 7, but for conditioning on the pseudodissipation.
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hypotheses of Kolmogorov3 3 and Obukhov.” Although the
last few data points at largest €/{e) and ¢/{¢) appear to
approach this slope the overall trend is consistent with a
lower slope. Furthermore, conditioning on enstrophy pro-
duces a clearly less rapid increase, with a slope of roughly
1.2. In other words, “large dissipation” tends to give a larger
acceleration than “large enstrophy” does. This suggests ac-
celeration fluctuations of the highest intensity are more likely
to be a result of fluid particles moving in regions of large
strain rate (dissipation) than large rotation rate (enstrophy).

For modeling purposes, it is useful to obtain an accurate
parameterization of the conditional variance on the pseudo-
dissipation in terms of both the conditioning value and the
Reynolds number. A closer examination of the results in
Figs. 7-9 suggests that an empirical fit of the form
a(o/ {1+ B(@/{®))!*> may be applicable, where « and
B are factors depending on R,, specifically

2 0.15 125
BB o
(@2~ R\ () 20/\¢g)

which in Fig. 11 is shown to represent the DNS data at
R) =140 remarkably well. The closeness of the fit is illus-
trated by the facts that the average error is just 6%, and that
the maximum error is 21% (in the last two data points of
largest @/(¢p) at the highest Reynolds number), even as the
conditional variance varies over four orders of magnitude.
The two terms contributing to the empirical expression
above for (a?| @) above are dominant at small and large val-
ues of ¢/(¢) respectively. For large ¢/(¢) as the Reynolds
number increases the second term becomes more important
but there is no evidence for a power-law exponent to increase
from 1.25 to the value 1.5 suggested by the conventional
interpretation of the refined Kolmogorov hypotheses. (Note
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FIG. 11. Acceleration variance conditional on the pseudodissipation, ¢, nor-

malized by the Kolmogorov acceleration a,=((e)*/v)""*. [Note azﬂ

=(€e)*?v~12.] The symbols are the DNS data; the lines are the empirical fit,
Eq. (10). The lowest curve and the y axis correspond to the 64° simulation.
The other four curves are for the 2567, 512°, 1024°, and 2048 simulations,
successively shifted upwards by a factor of \10.

that, as originally formulated,** the refined Kolmogorov

hypotheses pertain only to inertial-range statistics.)

A consistency check can be applied to the empirical re-
lation (10) for the conditional variance by requiring that, in
combination with a model for the PDF of ¢ as the condition-
ing variable, it reproduces the DNS data on the unconditional
variance. From the assumption of log-normality for ¢ and
empirical data on the Reynolds number dependence of 0']2n o
[in the form of Eq. (4), with «=0.25] one obtains the fol-
lowing prediction for the unconditional acceleration vari-
ance,

a* 1.3 R
<6>§,2ﬁ=@+0.8816306 ln(2—8>. (11)
It may be noted that the increase in 0'12n » With Ry, is expressed
by the weak contribution R?\'OG, whereas (over the Reynolds
numbers considered) the dominant term in Eq. (11) is
In(R,/20) which is derived from the empirical fit [Eq. (10)]
to the conditional acceleration variance.

Recent developments in stochastic modeling associated
with the so-called superstatistical approach9’10 have included
the assumption that the acceleration is conditionally Gauss-
ian, i.e., the conditional PDF of acceleration given the dissi-
pation is taken to be Gaussian for all values of the dissipation
(Reynolds et al.®). The concept of a Gaussian conditional
acceleration can be interpreted as implying that intermittency
in acceleration is due purely to intermittency in the chosen
conditioning variable. (For example if we consider two nor-
malized random variables X and Y and represent their rela-
tionship as Y=bX+¢ where b is a fixed coefficient and £ is
an uncorrelated Gaussian random noise, then the conditional
PDF of Y given X equal to some prescribed X, is Gaussian;
this implies any intermittency in ¥ must be due to the same
in X.)

Phys. Fluids 18, 065103 (2006)
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FIG. 12. Conditional flatness factor of acceleration given € (A), ¢ (O) or ¢
(). from 20483 simulation at R, =~ 680.

A convenient test of conditional Gaussianity is through
the conditional flatness factor

(a'le= &)

(a’le= &

palale= &) (12)
which we also write as u(a|€) for short and would be 3.0 if
the conditional PDF is exactly Gaussian. Because of the de-
nominator in its definition, the conditional flatness factor is
not constrained by expressions of the type (a™)=[(a"|€
=é&)f(é)dé that relate conditional and unconditional mo-
ments of order m. However, the observed behavior of
wa(al€) is expected to lie between two extremes: namely (i)
equal to unity in the degenerate case where a is a determin-
istic function of € (although the terminology of “flatness fac-
tor” would then be inappropriate), and (ii) equal to the (high)
unconditional flatness factor if @ were statistically indepen-
dent of e. It should also be noted that, because (according to
the data in Figs. 7-10) the denominator in Eq. (12) is a
strong function of the conditioning variable, acceleration
fluctuations contributing to a large conditional flatness may
not necessarily be very large in absolute terms.

Figure 12 shows conditional flatness based on €, and on
¢ and ¢ [defined similarly as in Eq. (12)] in the 20483 simu-
lation. Clearly, the observed values are much smaller than
the unconditional flatness (given in Table II), and condition-
ing on ¢ produces the closest approximation to conditional
Gaussianity. Both uy(a|€) and u4(a|{) are largest at rela-
tively small values of the conditioning € and ¢, respectively,
whereas the dependence of uu(a|¢) on conditioning ¢ is
relatively weak. This behavior of u4(a|e€) and u4(a|l) sug-
gests that intermittent fluctuations of the acceleration can
occur in either regions of low strain rate (but high rotation),
or, with greater probability, regions of low rotation rate (but
high strain). In other words, although both large € and large
{ can independently cause large acceleration, usually these
effects do not occur together.
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FIG. 13. Conditional flatness factor of acceleration given € (top) and ¢
(bottom), in simulations at resolutions 64° to 20483 with Reynolds numbers
as given in Table I. The data values increase monotonically with Reynolds
number.

Since the pseudodissipation incorporates contributions
from both strain rate and rotation rate it can be expected to
capture intermittency in the acceleration more completely.
This should in turn lead to a lower conditional flatness factor
wa(a| ), which is indeed observed in Fig. 12. Close obser-
vation shows that u4(a|¢) appears to take a mild maximum
at moderately large values of the pseudodissipation, on the
order of 10(¢), which may again correspond to samples
where an intense fluctuation occurs for either strain rate or
rotation rate, but not both simultaneously. Nevertheless, the
profile of uy(a|¢) can be considered approximately flat. This
is convenient in practice because it allows the use of a sim-
pler model for the conditional PDF with no dependence on
the conditioning variable.

For information on the Reynolds number dependence of
the conditional flatness factors we show in Figs. 13(a) and
13(b) data on uy(al€) and uy(a|¢) from simulations at dif-
ferent grid resolutions. A general increase with the Reynolds
number consistent with the unconditional flatness is ob-
served, with greater sensitivity in the case of us(al|e). This
suggests that models which assume conditional Gaussianity
for acceleration given the dissipation are likely to incur
greater errors at high Reynolds number.

From Figs. 12, 13(a), and 13(b) it is clear that the as-
sumption of conditionally Gaussian acceleration is more (al-
though not totally) satisfactory if the pseudodissipation in-
stead of dissipation is used as the conditioning variable.
Further information can be obtained from the conditional
PDFs, ie., f,(d|€) and f,,(d|$) which can be readily ob-
tained as the ratio of the joint PDF (of ¢ and X=¢, { or ¢) to
the marginal PDF of each conditioning variable. In Figs. 14
and 15 and we show these conditional PDFs extracted from
the 2048 simulation and compared with the unconditional
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FIG. 14. Standardized conditional PDFs of acceleration given the dissipa-
tion from 2048 simulations at Ry =~ 680. Lines A-E are for &/{€)={0.0359,
0.136, 0.469, 1.62, 6.05} (corresponding to Z=(In €—=(In €))/ oy, ={-2.054,
—-0.994, 0, 0.994, 2.054}). The data are compared to the unconditional PDF
of acceleration (unmarked solid line) and a standard Gaussian (dashed
curve). The fluctuation d is normalized by a rms value (a’) specific to each
curve.

acceleration PDF (unmarked solid line). To facilitate an as-
sessment of conditional Gaussianity we have normalized the
acceleration fluctuation by its conditional rms for five chosen
values of the conditioning variables, corresponding closely
to fluctuations of In € or In ¢ at =2, —1, 0, 1, and 2 standard
deviations from their mean. It can be seen that both sets of
conditional PDFs display much less intermittent behavior
(with weaker tails at large fluctuations) than the uncondi-
tional PDF. This is especially true for conditioning on the
pseudodissipation, which however still exhibits a significant

10° ¢
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FIG. 15. Same as Fig. 14, but for conditioning on the pseudodissipation.

Lines A-E are for ¢/{¢)={0.0362, 0.134, 0.458, 1.56, 5.79} (corresponding

to Z=(In ¢—(In ¢))/ o, ,={-2.054, —0.994, 0, 0.994, 2.054}).
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FIG. 16. Standardized conditional PDFs of acceleration, fu‘w(d|¢>), condi-
tioned on pseudodissipation. The symbols are from the 2048°> DNS; the lines
are the cubic Gaussian PDF with the same flatness factor as the DNS data.
The values of the conditioning variable are (In ¢—(In ¢))/ 0y, ,={-2.054,
-0.994,0,0.994,2.054}. On each plot, the lower curve and the y axis cor-
respond to the lowest conditioning value. The curves for the other condi-
tioning values are successively shifted upwards, by an amount of 0.2 on the
linear plot (on the left), and by a factor of 100 on the logarithmic plot (on
the right).

departure from Gaussianity. A remarkable degree of collapse
of these conditional PDFs for different values of the condi-
tioning variables is also apparent except for very small and
very large conditional fluctuations. The tails of the condi-
tional PDFs for the two largest conditioning values are seen
to lie “inside” those for smaller values of the conditioning
variables. This is consistent with the decrease of conditional
flatness factor at large € or ¢ seen in Figs. 12, 13(a), and
13(b).

The shapes of the PDFs of acceleration conditional on
pseudodissipation are further examined in Fig. 16 (on both
linear and logarithmic scales). The standardized PDFs shown
are from the 2048% simulations; the five PDFs for the five
values of the conditioning variable are offset vertically for
clarity; and, since the PDFs are symmetric, they are plotted
against |d@|/o,, (where o, is the conditional standard de-
viation (a?| @)""?). The lines shown in the figure are the cubic
Gaussian PDFs having the same values of the flatness factor
as the experimental PDFs. The definition and properties of
the cubic Gaussian distribution are given in Appendix B. A
cubic Gaussian random variable is simply the weighted sum
of a Gaussian random variable and its cube. As may be seen,
the cubic Gaussian provides a remarkably accurate represen-
tation of the conditional PDFs extracted from the simula-
tions. The principal observable difference is that, for the
lower values of the conditioning variable, the far tails of the
PDFs from the DNS (beyond 12 standard deviations, say) are
somewhat above the cubic Gaussian.

For simulations at lower Reynolds number the agree-
ment between the data on fa‘¢(d|<fo) (not shown) with the
cubic Gaussian is comparable to that shown in Fig. 16. On
the other hand, for f, and f,; although the cubic Gaussian
provides a less accurate representation, it is still qualitatively
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FIG. 17. Plot of conditional superskewness (u4) versus conditional flatness
(ju4) of acceleration, for the conditioning variable being X=¢€ (A), ¢ (O),
and ¢ ([J). DNS data from simulations at 5 grid resolutions and at 5 values
of the conditioning variable as in Fig. 16 in each case are shown. Larger
numerical values are generally those found at higher Reynolds numbers. The
existence of one extreme data point at ug(a|€) nearly 10° is an indication of
statistical uncertainty in the higher-order moments. The solid line represents
the cubic-Gaussian fit to the conditional PDF.

correct and significantly more accurate than an Gaussian as-
sumption.

To help assess the closeness of fit for higher-order con-
ditional moments we show in Fig. 17 DNS data on the su-
perskewness plotted against the flatness factor for the condi-
tional acceleration PDF. Results for all three conditioning
variables and all Reynolds numbers available are included.
Also shown is the line corresponding to the cubic Gaussian.
As may be seen, the data for conditioning on pseudodissipa-
tion have relatively low flatness factors (less than 9, as pre-
viously mentioned) and lie close to the cubic Gaussian line.
In contrast, conditioning on dissipation or enstrophy gener-
ally leads to a larger flatness factor, as well as a superskew-
ness which lies above the cubic Gaussian line.

The cubic Gaussian is a new distribution in turbulence
research. While its ability to represent the data in Fig. 16 is
quite striking, we offer no physical or statistical explanation
for the observed agreement. In stochastic models for accel-
eration, the cubic Gaussian is readily achieved as the cubic
of a Gaussian stochastic process. Since PDFs with approxi-
mately stretched exponential tails are ubiquitous in turbu-
lence, a question for future research is whether there are
additional statistics with the cubic Gaussian distribution.

V. CONCLUSIONS AND DISCUSSION

In this paper we have used data from direct numerical
simulations of isotropic turbulence to investigate the statis-
tics of acceleration, with a focus on conditional statistics
which relate acceleration intermittency to parameters of local
relative motion in the flow. The dissipation, enstrophy and
pseudodissipation [Egs. (1)-(3)] are used as conditioning
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TABLE III. Comparisons of statistics of dissipation, enstrophy, pseudodis-
sipation, and acceleration obtained from simulations of different grid reso-
lution at nominally the same Reynolds number (R, = 140).

Grid 2563 5123 2048’
Kmax 7 1.4 2.8 11.0
7. 1.07 1.13 1.14
O ¢ 2.22 232 2.36
O 1.03 1.10 115
ws(in e -0.15 -0.10 -0.12
ws(In Q) -0.39 -0.37 -0.36
ws(In @) 0.04 0.08 0.06
wy(in ) 3.10 3.11 3.10
wy(In Q) 3.36 3.37 3.34
a(In @) 2.99 3.03 3.00
a, 2.74 3.13 3.03
(@) 20 27 26

variables. The grid resolution is up to 20483 and the corre-
sponding Taylor-scale Reynolds number is close to 700.
Some of the simulation data are examined closely from a
modeling point of view and compared with predictions from
Kolmogorov’s refined similarity theory at high Reynolds
number.

Statistics of the logarithms of dissipation, enstrophy, and
pseudodissipation in our DNS database are found to be con-
sistent with a well-defined intermittency exponent which is
essentially the same for dissipation and pseudodissipation
(u=0.25) but larger for enstrophy (x=0.3). As in previous
results at lower Reynolds number'® the pseudodissipation is
closest to having a log-normal distribution which also be-
comes a better approximation for enstrophy as the Reynolds
number increases. The present data are also used to revisit
the unresolved issue of Kolmogorov scaling of the (uncon-
ditional) acceleration variance. However, the present Rey-
nolds numbers are still not sufficiently high to distinguish
clearly between some estimates proposed in the literature
based on intermittency models for energy dissipation fluctua-
tions.

Acceleration variances conditioned on dissipation, en-
strophy or pseudodissipation generally show a strong depen-
dence at large values of these conditioning variables, which
is consistent with the expectation of rapid changes of veloc-
ity for fluid particles moving in local regions of high strain,
rotation, or large velocity gradients in general. However, the
observed dependence departs from the prediction of the re-
fined Kolmogorov hypotheses, especially at small values of
the conditioning variable. For application in modeling we
have developed two-term functional fits [Egs. (10) and (11)]
for the acceleration variance conditioned on pseudodissipa-
tion and the corresponding unconditional variance assuming
a log-normal distribution for pseudodissipation fluctuations.

The assumption of conditionally Gaussian acceleration
(Reynolds e al.*)) is tested by computing conditional flat-
ness factors and probability density functions (PDF). It is
found that the assumption holds best (although not perfectly)
if the pseudodissipation instead of energy dissipation is cho-
sen as the conditioning variable. Conditional flatness factors,
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FIG. 18. Normalized conditional acceleration variances for each condition-
ing variable (from top to bottom) X=¢, € or ¢ from simulations at the same
Reynolds number (R, = 140) but different grid resolutions (see Table III).
Solid, dashed, and dotted lines denote simulations with 256, 5123 and
2048> grid points, respectively (corresponding to A,/7=2, 1, and 1/4). For
clarity, curves for conditioning on enstrophy and dissipation are shifted up-
wards by factors of 10 and \10.

which are much lower than the unconditional values, indicate
the extent to which acceleration intermittency is the result of
intermittency in the chosen conditioning variable. Flatness
factors conditioned on pseudodissipation up to 8 are ob-
served (compared to the Gaussian value of 3). Our data sug-
gest that intense acceleration may occur either in regions of
high dissipation and low enstrophy or high enstrophy and
low dissipation. However both of these lead to high pseudo-
dissipation which thus captures most occurrences of large
acceleration. The PDF of acceleration conditioned on ¢ is
found to be remarkably insensitive to the value of ¢, only
weakly dependent on the Reynolds number, and represented
remarkably well by a “cubic Gaussian.” As described in Ap-
pendix B, this distribution is the PDF of the weighted sum of
a Gaussian random variable and its cube.

In summary, the results of this paper indicate a strong
connection between the turbulence fluctuations of accelera-
tion and pseudodissipation, which is expected to lead to a
fruitful path for including the effects of intermittency and
Reynolds number in stochastic modeling. The data given in
this paper are almost exclusively Eulerian. Corresponding
Lagrangian studies including modeling based on the present
results are to be reported separately.
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FIG. 19. Conditional flatness factors of acceleration
given (from top to bottom) X=¢, € or ¢ for the same
datasets as in Fig. 18. Solid, dashed, and dotted lines
denote simulations with 256°, 5123, and 20483 grid

points respectively.
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APPENDIX A: RESOLUTION EFFECTS
ON DNS RESULTS

In DNS at a given Reynolds number and grid resolution,
it is known that™* uncertainty in results for higher-order
moments increases with the order of the moment. This oc-
curs for both deterministic and statistical reasons, namely,
that numerical methods of finite accuracy may not be captur-
ing the most intense intermittent fluctuations, and that
higher-order moments are sensitive to the occurrence of such
large fluctuations which are relatively rare and hence difficult
to sample adequately. Recently, Yakhot and Sreenivasan®
have proposed theoretical arguments based on high Reynolds
number intermittency which suggest more stringent resolu-
tion requirements than levels commonly practiced in DNS.
Here we do not attempt rigorous testing of the new theory,
but instead limit ourselves to checking resolution effects by
comparing results at different grid resolutions for a moderate
Reynolds number (R, = 140). As stated in Sec. II the resolu-
tions employed correspond to A/ p=2, 1, and 1/4; the actual
values of k.7 are, as given in Table III, 1.4, 2.8, and 11,
but for convenience we refer to them below as (nominally)
~1.5, 3, and 12.

Table III shows comparisons for quantities correspond-
ing to those in Table II, and Figs. 2 and 3. As measures of
intermittency the computed values of logarithmic variances

of € {, and ¢ are expected to increase with a degree of
resolution. These increases are seen to be of order 10% be-
tween k., 7= 1.5 and 12, with most of the difference being
between results at k,,, 7= 1.5 and 3. Skewness and flatness
factors of the logarithms show very little change, which sug-
gests resolution has little effect on conclusions regarding log-
normal behavior (or deviation therefrom). The acceleration
variance increases by about 10%—15%, whereas the accelera-
tion flatness factor (which is a more sensitive indicator of
intermittency) increases more strongly, by about 30%. Both
the variance and flatness factor are slightly less at k.7
~12 than at k,,»=3, which suggests that results at these
two resolution levels are within statistical margins of each
other.

Figure 18 shows comparisons for conditional variances
(corresponding to data in Figs. 7-9). To help separate each
group of curves from one another we have shifted data for
conditioning on enstrophy and dissipation by constant factors
as stated in the figure captions. It is clear that the resolution
effects are relatively small, and that results at k,,,, 7=3 and
12 differ very little except for some sampling noise at ex-
tremely large values of each conditioning variable. Very
similar features are also found at the fourth-moment level,
for conditional flatness factors which are shown in Fig. 19.
Agreement between results at different resolution levels is
particularly striking for acceleration conditioned on the
pseudodissipation, which is the least intermittent compared
with conditioning on dissipation or enstrophy. Clearly, this
result is also a favorable indicator of the robustness of mod-

eling based on pseudodissipation as the conditioning vari-
able.
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FIG. 20. Unconditional PDF of acceleration (outer lines) and corresponding
conditional PDFs (inner lines) given relatively high dissipation [In e
—(In €)]/ 0y, =2 for the same datasets as in Fig. 18. Solid, dashed, and
dotted lines denote simulations with 256%, 5123, and 2048° grid points re-
spectively. As in Figs. 14 and 15 the fluctuation d is normalized by a rms
value (a’) specific to each curve, and a dashed parabola for the standard
Gaussian is shown for comparison.

Conditional flatness factors in Fig. 19 are much less sen-
sitive to resolution effects than unconditional flatness factors
in Table III. Correspondingly, one can expect that conditional
PDFs are also less sensitive to resolution than the uncondi-
tional PDF. This contrast is confirmed in Fig. 20, which also
shows that unconditional PDFs for k., 7=~3 and 12 are al-
most identical up to about 30 standard deviations from the
mean (although significant differences may still arise in the
extreme tails of the PDF representing yet-larger fluctuations).

The fact that differences between k,,7=~3 and 12 are
very small and most likely within statistical error confirms
that k., 7=~3 can be considered “accurate,” and that com-
parison between k., 7= 1.5 and 3 is a fair measure of error
in the former. Overall, the results in this Appendix suggest
strongly that, despite recent concerns about effects of inter-
mittency on resolution requirements in DNS, the main con-
clusions of this paper remain valid. It is, of course, quite
possible that these effects will become stronger at high Rey-
nolds number, where high-resolution data needed for rigor-
ous testing are not yet available. However, it is also clear that
the reduced intermittency of conditional variables leads to
much more robust results, especially for modeling based on
the pseudodissipation.

APPENDIX B: PROPERTIES OF THE CUBIC
GAUSSIAN DISTRIBUTION

In Sec. IV the cubic Gaussian distribution as defined
below has been found to provide an excellent representation
for the PDF of acceleration conditioned on the pseudodissi-
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pation. Below we provide the definition of this distribution
and a brief account of its basic properties.

Let X be a standardized Gaussian random variable. Then,
for a given value of the parameter p (0=p=1), the random
variable

Z=C[(1-p)X+pX7], (B1)

is called a standardized cubic Gaussian [denoted as G3(p)],
where the constant C (dependent on p)

C=(1+4p+10p>)~'72, (B2)

is determined by the standardization condition {(Z?)=1. Thus
Z is the weighted sum of a Gaussian X and its cube X3, where
the weighting factors C(1-p) and Cp are decreasing and
increasing functions of p, respectively.

Let G(x) and g(x) = ée‘le 2 denote the cumulative dis-
tribution function (CDF) and the probability density function
(PDF) of the standardized Gaussian. Then the CDF of the
cubic Gaussian is

F,(z) = Prob{Z < z} = G(i(z,p)), (B3)
where £(z,p) denotes the unique solution to
z=C[(1-p)&+pf]. (B4)
The PDF of Z,f,(z), is given by
exp(— %)€2>
fp(2) =g(R)drldz = (B5)

V27C(1 = p+3pf2)

Properties of the G3(p) distribution include the follow-

ing:

(1) The PDF f,(z)=f,(=z) is symmetric and standardized
[(Z2)=0,var(Z)=1].

(2) All moments u,(p) =(Z") exist and are simply related to
those of the Gaussian. In particular the flatness factor is

wa(p) =3(1 + 16p + 156p* + 896p° + 2396p*)C*,  (B6)

which, with increasing p, increases from the Gaussian
value u4(0)=3, to the value u,(1)=46.2. Hence there is
a one-to-one correspondence between p and u4(p).

(3) For p=0, G*(0) is the standardized Gaussian. For p=1,
the PDF of G3(1) is

1
151/6exp(_ 5151/3|Z|2/3>

3(277_) 1/2|Z|2/3

filz) = (B7)

Note that f,(z) has an integrable singularity at z=0.
(4) For 0<p<1, f,(z) is finite, monomodal, with tails (i.e.,
|| —2)

I
em(— E(Cp)‘2’3IZI2’3>

3(277)1/2(Cp) 1/3|Z|2/3

fr(@) ~ (B8)
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