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This paper is concerned with the efficient computational implementation of combustion chemistry, for use in 
PDF methods and other applications. A new method of coupling reactions and mixing processes based on 
manifold points with detailed chemistry is developed. Investigations are made of three different kinds of 
methods: the direct numerical integration of the coupled reaction and mixing equations: the direct numerical 
integration of the equations obtained by using operator-splitting to split reaction and mixing; and the new 
method--solving the split system based on manifold points with detailed chemical kinetics. Errors between 
the solutions are studied. It is found that chemical reactions have a significant influence on the accuracy of 
operator-splitting methods. The solution of the split systems based on manifold points provides an accurate 
representation for the solution of the full coupled equations. This means that tabulations can be made on 
manifolds with no simplification made to the chemistry. © 1998 by The Combustion Institute 

1. INTRODUCTION 

In the last decade, great progress has been 
made in combustion research, especially in the 
computation of  laminar flames [1, 2, 3, 4], and 
in the probability density function (PDF) 
method for turbulent combustion [5, 6, 7]. For 
one-dimensional laminar flames, by consider- 
ing the transport mechanism, the detailed 
chemical kinetic mechanism and the interac- 
tions between these two basic processes, today 
it is a routine matter to calculate flame veloci- 
ties, extinction, ignition, temperature and 
species distributions, from the governing equa- 
tions. Results are in good agreement with those 
obtained from experiments [8, 9]. However, for 
turbulent combustion, because of  the complex- 
ities of  turbulent flow, chemical reactions, and 
the interaction between them, in the foresee- 
able future it is impossible to calculate the 
combustion flow field by directly integrating 
the basic governing equations. So averaging 
and modeling are necessary in turbulent com- 
bustion studies. Averaging, on one hand, sim- 
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plifies turbulent combustion calculations, on 
the other hand, it introduqes the infamous 
closure problems, especially the closure prob- 
lem with chemical reaction terms. Since in 
PDF calculations of  turbulent combustion the 
averages of  the chemical reaction terms can be 
calculated, PDF methods overcome the closure 
problerr~ with the reaction terms. It has been 
shown that the PDF method is the most 
promising metbod to calculate turbulent com- 
bustion [6]. PDF methods have been success- 
fully employed to calculate laboratory turbu- 
lent flames: tt~Ley can predict phenomena such 
as super equilibrium radical levels, and local 
extinction [7]. Because of  these advantages, 
PDF methods are becoming used increasingly 
in industrial eombustor codes. 

Although PDF methods have shown great 
promise in studies of  turbulent combustion, 
there is still a challenge to be overcome--cou-  
pling the detailed description of  the turbulent 
combustion flow field provided by PDF meth- 
ods with detailed chemical kinetic mechanisms. 
The problem can be stated thus: in a PDF 
calculation of  turbulent combustion, let ~b(t) 
represent the composition of  a particle at time 
t, then what is the increment in composition 
A~b(t) due to reaction over a time step St? In 
principle, this question can be answered by 
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directly integrating the ordinary differential 
equations stemming from the detailed kinetic 
mechanism. But in practice, since a typical 
combustion system involves dozens of chemical 
species and hundreds of chemical reactions, 
and it is needed to do such integrations on the 
order of 10 9 times, the direct numerical inte- 
gration of the equations would require a huge 
amount of supercomputer time (several hun- 
dred days) and thus make it impossible in 
practical use. So simplifications of detailed ki- 
netic mechanisms have been made in the past 
in order to reduce the demand on computer 
time. In practice there is a preprocessing stage 
in which results from the calculations of sim- 
plified chemistry are tabulated as functions of 
a few variables. Then these tables are used in 
turbulent combustion calculations. 

There are basically two different ways of 
doing the simplification of detailed chemistry: 
the reduced mechanism method [10, 11, 12] 
and the intrinsic low-dimensional manifold 
(ILDM) method [13]. For the reduced mecha- 
nism method, the simplification made to the 
detailed chemistry is achieved by introducing 
steady-state assumptions for some species, usu- 
ally the intermediate species, and the partial 
equilibrium assumptions for particular reac- 
tions. The reduced mechanism method has 
been employed in laminar flame calculations 
and in turbulent combustion calculations [11, 
14]. It has several disadvantages because of its 
fundamental philosophy. For the reduced 
mechanism method, one needs to know in ad- 
vance which species are in steady-state, and 
which reactions are in partial equilibrium. Re- 
duced mechanism systems are derived manu- 
ally from the given detailed chemistry. For 
different fuel/oxidizer systems, or even for the 
same fuel/oxidizer system under different con- 
ditions, different reduced mechanisms should 
be used. Thus it requires a considerable amount 
of human time and labor to develop and test 

served, there is a wide range of time scales for 
chemical reactions, from 10 -9 second to sec- 
onds. Fast reactions, or reactions with small 
time scales, quickly bring composition points 
down to attracting manifolds in the composi- 
tion space. Then composition points move 
along on manifolds. By assuming that the 
movement of the composition point away from 
manifolds to be zero, detailed chemistry can be 
simplified. The manifold method overcomes the 
drawbacks of the reduced mechanism method. 
It requires no preliminary knowledge of which 
chemical species are in steady-state and which 
chemical reactions are in partial equilibrium. 
The only given assumption is the dimension of 
the manifold. 

The manifold method has been successfully 
used in both laminar flames and turbulent 
combustion studies [7, 15, 16]. In these studies, 
a manifold with fixed dimension, for example, 
two dimensions, has been considered. The re- 
sults from manifold calculations are tabulated 
in a preprocessing stage. Then the method of 
tahle-!ook-up is used in PDF calculations. 
There are still some difficulties and inconve- 
niences with this approach to implementing 
manifold methods: 

• in general, it is not straightforward to 
parametrize the manifold, 

• in different regions of the composition space, 
manifolds of different dimension are appro- 
priate, 

• the table generation (which is not fully auto- 
mated) must be performed for each set of 
conditions of interest (fuel, pressure, equiva- 
lence ratio, etc.), 

• the whole of the manifold is (wastefully) 
tabulated since it is not known a priori which 
regions are needed. 

So wc have been motivated to investigate new 
implementations of manifold methods which 
can overcome these difficulties and inconve- 

such systems. Assumptions of partial-equi- . 
n lPn r ,~ ,  

librium and steady-state used in the reduced . . . . . . . .  s. 
mechanism method are only valid in particular 
reaction ranges. Also the accuracy cannot be 2. OUTLINE OF THE PAPER 
given and controlled. 

The manifold method is based on a more This paper addresses several issues related to 
intrinsic study of the chemical reaction process the accurate numerical implementation of 
happening in combustion [13]. As it is ob- combustion chemistry. 
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2.1. Splitting Strategies 

Most numerical implementations of  table-look- 
up chemistry correspond to the zero-order 
splitting strategy. That  is, the evolution equa- 
tions for the fluid composition with the omis- 
sion of the reaction term are advanced for a 
small time step 6t: and then the increment in 
composition over the time 6t is added to the 
result. In PDF methods, the first part corre- 
sponds to mixing, and so this strategy is re- 
ferred to as mix-then-react. 

Important  questions addressed here are: 
How large are the numerical errors introduced 
by this splitting? And, do higher-order splitting 
strategies offer advantages? Splitting strategies 
are described in Section 4, and numerical re- 
sults are given in Section 6. 

2.2. Variable-Dimension Manifold 

In previous implementations of  the intrinsic 
low dimensional manifold, a manifold of fixed 
dimension is considered. It is preferable to 
define the manifold instead in terms of a time 
scale r*,  which is specified to be somewhat 
smaller than the smallest fluid-mechanical time 
scale in the problem (usually the mixing time 
scale Zm~x). The definition of this manifold is 
given in Section 5.1. 

In order to implement the manifold method 
it is necessary to solve the "closest manifold 
point" problem. That  is, given ~'* and a compo- 
sition ~b ° ' ,  determine the closest point to ~b ~°~ 
that is on the manifold. The solution to this 
problem is given in Section 5.2. 

2.3. Solution of the Mixing and Reaction 
Equation 

In the overall method currently being devel- 
oped, properties of the manifold are stored 
using "in situ adaptive tabulation" (ISAT). As 
the PDF 'calculation is performed,  an unstruc- 
tured table is generated, containing N pairs of  
compositions and their corresponding incre- 
ments, {~"~, A ~bt"), n = 1, 2 . . . . .  N}. The table 
is stored in a structure that is initially empty 
( N  = 0). For each particle on each time step in 
the PDF calculation, the increment A~b is 

sought based on the particle's composition ~. 
The table is searched for an entry 4, ~" suffi- 
ciently close to 4,. If  one exists, then A~b "~ is 
used to approximate A~h. If a sufficiently close 
table entry does not exist, then A~p is com- 
puted by the direct integration of equations 
from detailed chemistry, and the result is added 
to the table. This tabulation scheme is not 
further described or used here. Rather  we ad- 
dress the question: how can information about 
the manifold be used to determine the evolu- 
tion of composition ~b(t) due to mixing and 
reaction? The result, described in Section 5.3, 
is an exact solution to the equations linearized 
about a manifold point. 

The accuracy of this solution compared to 
the detailed kinetics is investigated in Section 
6. 

2.4. Pairwise Mixing Stirred Reactor (PMSR) 

A simple test case that has been used previ- 
ously is the partially stirred reactor (PaSR) 
[17]. For a PaSR, the system can either be 
premixed or diffusion. The mixing model used 
is the interaction-by-exchange-with-the-mean 
( IEM) model [17]. In the statistically stationary 
state of  a PaSR calculation, the composition 
~b(t) of  a particle is a unique function of the 
particle's age (i.e., t ime since it entered the 
reactor). As a consequence, all particle compo-  
sitions lie on a one-dimensional manifold since 
chemical reactions always pull particle compo- 
sition toward the equilibrium state which is a 
zero-dimensional manifold; and so, in fact, the 
PaSR is not a strenuous test of  simplified 
chemistry schemes. 

To  provide a bet ter  test case we have devel- 
oped a different implementat ion of the PaSR, 
referred to as the "pairwise mixing stirred re- 
actor" (PMSR). This is described in Section 3 
and used for all of the tests reported in Section 
6. 

3. THE PAIRWISE MIXING STIRRED 
REACTOR 

The PMSR is characterized by a residence 
time rrc~, a pairing time ~'pa~r, and a mixing time 
rmix. In numerical implementations the reactor 
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consists of M particles, which arc arranged as 
L = M / 2  pairs of particles. 

At the initial time t = 0, the particle compo- 
sitions 4/"~(0) are initialized to the chemical 
equilbrium state. 

With At being a time step, "reactor events" 
take place at the discrete times, At, 2At . . . . .  
These events consist of outflow, inflow, and 
pairing. At each event, mou t = LAt/rrc ~ parti- 
cAe pairs (selected at random) flow out of the 
reactor (i.e., they are discarded). A "'candidate 
pile" is created consisting of 2 r a i n  particles 
with the specified inlet composition (where mi, 
= m,ut) , and mpair = LAt/rpair pairs ran- 
domly selected from the reactor. Then the 
particles in the candidate pile arc paired ran- 
domly, and are then added to thc reactor. 
After this event, the reactor again consists of 
L pairs of  particles. 

Between reactor events, the particle compo- 
sitions evolve continuously. With i and j being 
the indices of  a pair of  particles, their composi- 
tions evolve according to the equations 

ddpO~/dt = S(~b ti~) + (4) ~i~ - ~ ( i ) ) / 7 " m i  x ,  (1) 

dd)~J~/dt = S t +  ~ )  + (4' "~ - 4; ' ) / r , , ,~ , ,  (2) 

where S is the chemical reaction term, and rmi x 
is the mixing time scale. 

Notice that the mixing--i.e., the second 
terms on the right-hand sides of  Eqs. 1 and 2 
- - i s  between pairs of particles, rather than 
with the mean (as in the PaSR). Hence we 
refer to this test case as a pairwise mixing 
stirred reactor (PMSR). Compared to the 
PaSR, the particles access a greater region of 
composition space. 

In the calculations reported in Section 6, the 
PMSR parameters are specified as M = 100, 
rr~ ~ = 10 -2 (s), yp~i~ = l0 3 (s), 7mi x = 10 3 (s), 
A t =  6.0 × 10 -4 (s). 

4. OPERATOR SPLITFING SOLUTIONS 
FOR THE FULL COUPLING EQUATIONS 

In order to use the table-look-up method, it is 
necessary to split Eqs. I and 2 so that for a 
given composition point, the increment of  it 
only depends on the given value of  this compo- 
sition point and the information about mixing. 

Operator splitting techniques, also known as 
the method of fractional steps, were intro- 
duced in fifties [18, 19]. The mathematical 
fe, undations are summarized in [20]. Operator 
splitting methods offer a wide variety for split- 
ting a system. Here we investigated ,several 
kinds of  operator splitting methods: the zero- 
order splitting method, the first-order splitting 
method, predictor-eorrector methods, and 
Strang's sequential splitting method. Splitting 
errors depend on fractional time steps. To 
investigate the errors, we divide the time step 
in the PMSR, At, into several subtime steps, 
6t, 6t = At/nsu b, where n~u b is the number of  
subtime steps. 

For the zero-order splitting method, Eqs. l 
and 2 are split into a pure mixing system: 

dcb"~/dt = (tb ~/' - tb"')/rmi ~, (3) 

d~b'J~/tlt = - (tb ' j '  - ~b"0/'/'mix, (4) 

and a pure chemical reaction system: 

dd)"~/dt = St&m), (5) 

dd)tJ~/dt = S(~btJ~). (6) 

In the first fractional step, the pure mixing 
system is integrated over a time step St, to get 
~b~nli~x and -~m~x,d'~J)" then, in the second fractional 
step, the pure reaction system is integrated 
(from initial conditions t~mixti~ and "rmix-th(J) ) over a 
time step 6t to get 4,"~(t + 6t)  and thm(t + 
6t). The traditional table-look-up method is 
basically this zero-order splitting method. 

For the first-order splitting method, the first 
fractional time step is the same as that in the 

t~mix zero-order splitting method. The values of  "~ 
a n d  tfh{ J) -~m~x are obtained after the first fractional 
step. In the second fractional step, the system 
is split as 

dd~"~/dt = S(~b ")) + F, (7) 

d~btJ)/dt = S(~b tj~) - F, (8) 

where F is the constant mixing vector defined 
a s :  

r = -[&'J",mix - d?~x)/6t'. (9) 



20 B. YANG A N D  S. B. POPE 

This system is integrated over a time step ~t to 
get the solutions ~b")(t + t~t) and th(/)(t + ~t). 

Two different predictor-corrector methods 
were investigated. For both methods, the first 
fractional step is the same as that in the first- 
order splitting method. In the second frac- 
tional step, for the first predictor-corrector 
method, the split systems Eqs. 7 and 8 are 
integrated over a time step 8t to get the pre- 
dict values: ,hi(, i) and ebb, J); then the mixing 
vector F is calculated based on [qbti)(t)+ 
¢b),i)]/2 and [~b(J~(t) + ~b~,J)]/2; in the corrector 
step, the split systems are solved over a t ime 
step 8t to get the finaJ solutions ~p(i)(t + St) 
and ~bt/)(t + ~St). 

For the second predictor-corrector method in 
the second fractional step, the split systems 
Eqs. 7, 8 are integrated over half the time step 
~ t / 2  to get the predict values: ~b~, i~ and d~(J). - rp  , 

then the mixing vector F is calculated based on 
,1 ti~ and d~(J' In the corrector step, the split - rp  . 

systems are integrated over a full time step ,St 
to get the solutions ~b(°(t + ~;t) and ~b(J)(t + 
~t). 

Strang's sequential splitting method [21] is 
performed as follows: advance the pure mixing 
system by half the time step, 8 t /2 ,  to get 

)"' I/2) and ~b~i~/2>;"then starting from &ese 
conditions, integrate the pure reaction system 
over a full time step, ,St, to get d,"~ and ,~(J)" "wrc c -t~'rcc, 

finally, from these conditions, integrate the 
pure mixing system by half the time step, ~t /2 ,  
to get 4~")(t + ~t)  and 4~(J'(t + ~t). This 
method can also be thought of  as mix-react-mix. 

The numerical errors incurred in these dif- 
ferent methods have been quantified, and are 
presented in Section 6. 

5. SOLUTIONS OF THE SPLIT SYSTEMS 
BASED ON MANIFOLD POINTS 

5.1.  M a n i f o l d  P o i n t s  

In order to restrict the points to be tabulated 
in a relatively small region in the composition 
space, we represent our  solutions by informa- 
tion of manifold points. The manifold method 
is described in detail in [13]. Manifold methods 
have been used in the calculations of  laminar 
flames [16, 15] and turbulent flames [7]. 

For a chemically reacting system, the time 
scales of  reaction processes cover a wide 
range. For a given point in composition space, 
because of the existence of fast reaction 
components,  the point moves quickly to a low- 
dimensional manifold; most of  the slow reac- 
tion processes take place in the low-dimen- 
sional manifold. The low-dimensional manifold 
is identified by studying the Jacobian matrix of  
the chemical reaction source term, S. This is 
shown in the following. 

Let the composition of a particle be ~b = {Yt, 
Y2 . . . . .  Y , ,  h} T, where Y/, i = 1, 2 . . . . .  n~, is the 
mass fraction of species i, n~ is the number  of  
species, and h is the specific enthalpy. Let 
n = n s + l be the dimension of ~b. For a ho- 
mogeneous,  adiabatic, isobaric system, the evo- 
lution of th is determined by the equation: 

d4, 
- -  = S ,  ( 1 0 )  
dt 

where S is the source term due to chemical 
reactions (with enthalpy conservation giving S n 
= 0). For a given composition point, ~, the 
Jacobian matrix J is 

tgSi 

The Jacobian matrix has n eigenvalues, A i, 
i = 1, 2 . . . . .  n, and the corresponding n eigen- 
vectors. These eigenvalues identify n timescales 
of  the movement  of  a particle in composition 
space. The corresponding eigenvectors define 
the directions associated with the eigenvalues 
[13]. A manifold point in the composition space 
is the point at whieh the movements  in direc- 
tions corresponding to small timeseales vanish. 

It is common sense that for a chemical reac- 
tion system, in some regions of  the composi- 
tion space, the movement  goes very fast, as 
those near equilibrium; while in other regions 
of  the composition space, reactions progress 
slowly. If we use a fixed dimension for the 
manifold in the whole composition space, large 
errors can be expected in slow reaction re- 
gions. So it is preferable to change the dimen- 
sion of a manifold according to the reaction 
rate. This can be done by introducing a time 
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scale ~-*. The time scale ¢* should be smaller 
than the smallest fluid-mechanical time scale 
in the problem, here the mixing time scale ~'mix" 

At every point in the composition space a 
f a s t  s u b s p a c e  and a s l o w  s u b s p a c e  are defined 
based on 7* and the eigenvalues and eigenvec- 
tots of the Jacobian J at that point. If the 
eigenvalue Ai has real part greater than - l / r *  
(i.e., Re(A i) > - l / r * ) ,  then the correspond- 
ing eigenvector is in the slow subspace. Con- 
versely, if Re(Ai)< - l / r * ,  then the corre- 
sponding eigenvector is in the fast subspace. 
We denote by nm the number of eigenvalues 
with Re(Ai)> - l / r * ) :  so that nm is the di- 
mensionality of the slow subspace. The dimen- 
sionality of the fast subspace is n t = n - n , , .  

Put another way, the fast and slow subspaces 
are the invariant subspaces of J corresponding 
to eigenvalues with real part less than, and, 
respectively, greater than, - l / r * .  

The eigenvectors can be taken as basis vec- 
tors in the two subspaces, but computations 
are more stable if orthonormai bases are em- 
ployed. Let the orthonormal basis for the slow 
subspace be: 

V ' =  [q~,q~ . . . . .  q~,~], (12) 

and let 

I I vf = [ ql'q' . . . . .  q~t]' (13) 

be the orthonormal basis for the fast subspace. 
V s and V / can be readily computed by the 
Schur decomposition method [22]. It is briefly 
described below. 

The Jacobian matrix J can be decomposed 
by the Schur decomposition into the following 
form: 

Q r j Q  = D + N, (14) 

where, Q is a n × n  unitary matrix, D =  
diag(A I, A2,.. . ,  A,), and N is a n x n strictly 
upper triangular matrix. If Q is partitioned 
like: 

Q = [ql,q2 . . . . .  q . ] ,  (15) 

then qi are referred to as Schur vectors [22]. If 
in the matrix D, the eigenvalues are organized 

in the order of descending real parts, then the 
subspace spanned by the first n m Schur vec- 
tors, q],q~ . . . . .  q~,, is the slow invariant sub- 
space. If in the matrix D, the eigenvalues are 
organized in a different way such that t h e n  I 

eigenvalues with the smallest real parts appear 
first in D, then the corresponding subspace 
spanned by the first n I Schur vectors q{, 
q( . . . . .  q l ,  is the fast invariant subspace [22]. . n !  

Taking the reaeuon-rate vector S as an ex- 
ample, any n-vector can be expressed as the 
sum of slow and fast components 

S = S ~ + S?. (16) 

Here, S t and S I are in the slow and fast 
subspaces respectively. Consequently, S r can 
be written 

S f = V/S:, (17) 

where S: is an nr-vector giving the compo- 
nents of S / in the VLbasis. These components 
are determined as follows. Let the n × n ma- 
trix V be 

V - [WW],  (18) 

and let its inverse be 

V -~ = W =  Wf , (19).. 

where W ~ is an n,,, × n matrix, and W / is an 
n: × n matrix. Then the components S/ are 
given by 

g:  = WfS. (20) 

The manifold is defined as the points in the 
composition space where the fast reactions are 
equilibrated. In terms of equations, a point on 
the manifold satisfies S / = 0, or equivalently 
S / =  0, or 

W/S = 0. (21) 

To summarize, at every point in the compo- 
sition space, in terms of the local Jacobian J 
and the time scale r* we define the slow and 
fast subspaces and the corresponding matrices 
W, V r, W s, and W f. A point is part of the 
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manifold if, and only if, Eq. 21 is satisfied at 
that point. 

5.2. The Closest Manifold Point 

The composition d' of a particle in a PDF or 
PMSR calculation corresponds to a point in 
composition space. This is usually close to but 
not exactly on the manifold with the dimension 
determined by the given time scale z*. As 
mentioned in Section 2, we want to describe 
the evolution of &"~)(t) in terms of quantities 
on the manifold (which will be tabulated). 
Hence we need to find the closest manifold 
point. The closest manifold point &tin) of the 
given point &(0) is a point which satisfies the 
following conditions: 

(a) &~,n~ has the same enthalpy and element 
compositions as ~b ~°). 

(b) It is on the manifold. 
(c) It is realizable, which means that mass 

fractions of species are non-negative. 
(d) It is as close as possible to ~0~ while 

satisfying conditions (a) to (c). 

Let W s and W / be the matrices defined by 
Eq. 19 and let W e be the matrix determining 
the element mass and enthalpy conservation, 
then the closest manifold point to th t°~ is de- 
termined as the solution q~t'~ to the following 
problem. 

Minimize the 2-norm of ~b t ' ' '  - th °'', subject 
to the conditions: 

W"(4, t''' - 4, ~°)) = 0, (22) 

W/S(d ,  t ' ) )  = 0, (23) 

~b~ > 0, i = 1,2 . . . . .  n~. (24) 

A~b "~, Eqs. 22 and 23 become 

W"A,b "1 = 0, (26) 

[W/J]A~b"' = W/{J (~b" ' -  4, ~''') - S(d,"D}. 
(27) 

Equations 26 and 27 are underdetermined. 
Generally, they are solved by the singular value 
decomposition method to get a minimum norm 
solution [22]. If this solution has negative mass 
fractions (in violation of conditions Eq. 24) 
then instead we use the quadratic program- 
ming method [23, 24] to get the minimum 
norm solution for Eqs. 26 and 27 under con- 
straints (24). 

5.3. Coupling Mixing and Reaction in 
Manifolds 

This section describes how the coupling of 
mixing and reaction are treated to get the 
value of ¢k'°'(6t) for a given particle, q~,0), 
based on its closest manifold point, ~b tin). 

The sy~,em obtained from operator splitting 
methods can be written in the general form: 

dd~ S + F. (28) 
dt 

For the zero-order splitting system, and the 
system from Strang's algorithm, F is zero; for 
the first order split system, F is the mixing 
vector defined by Eq. 9. 

With 8 ~ -  ~b-  . ~ " ,  the linearization of 
Eq. 28 about ~ t "  is 

dS~b 
T = S ( ~ " ' )  + J6O + F. (29) 

These equations are solved by an iterative 
method. Let Oto be the estimate of th ' ' ' )  after 
the i-th iteration: the next iteration is 

~b(,n) = ~(i+I)~ ~(i)+ ~f~(i)~_ ~b(o)+ A~(i) 

(25) 

With W evaluated at ~b (i), linearize Eq. 23 
around 4, (i), write the equations in terms of 

The exact solution of this equation is: 

6~b(6t) = A6d~(0) + BS(~b ~m)) + BF, (30) 

where the matrices A and B are defined by 

A = e TM, (31) 

B = [~' e J~ st- ,) dT. (32) 
" 0  
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Since chemical reactions take place in a 
wide range on timescale, some processes 
quickly, it is preferable to represent the second 
term in the above equation by an exact solu- 
:ion: 

61~ R = --10 ~t S tit, (33) 

integrating from the starting point d,~"L Thus 
Eq. 30 is modified to: 

34,(3t)  = A6~b(0) + 6d) n + BF. (34) 

Due to the wide range of eigenvalues of the 
Jacobian matrix, difficulties may arise in the 
calculation of matrices A and B. The numerical 
technique used in this paper is the method 
proposed in [25]. Here is a brief description of 
the basic idea of the method. According to 
[25], if 

fold Point_s." For the divergent subspacc ~ ,  
the corresponding eigenvalues are R e ( h ) > _  
l / r  't. i = 1,2 . . . . .  n a, where na is the dimen- 
sion of the divergent subspace, r a = et6t is a 
time scale of the divergent subspace, a is a 
small positive value, we chose it to be 0.1, the 
corresponding matrix is V a. For the the slow 
subspacc ,'/'. the corresponding eigenvalues, 
- I / r *  < Re (A/ )<  l / r  a, i = ! ,2  . . . . .  n,i .... 
here n,l,,,, is the dimension of  the slow sub- 
space, the corresponding matrix is V ~. For the 
fast subspacc :7, the corresponding eigenval- 
ues, Re(A,) _< - l / r * ,  i = 1,2 . . . . .  n.t, here nf  
is the dimcnsion of  the fast subspace, the cor- 
rcsponding matrix is V f. Let 

V = [VaV'Vf] .  (37) 

The inverse of the matrix V is W,W = V i 
which can bc written as 

w = . (38) 

tw' l  

where 1 is an identity matrix of  the same order 
of  the matrix J, then, lor 6t >_ Ik 

where A and B are the matrices defined by 
Eqs. 31 and 32. So if the matrix e c~' is calcu- 
lated, then A and B are known. The Padd 
approximation method [22] is used to calculate 
e c6t. 

The procedure mentioned above can be used 
to calculate the matrices A and B when all the 
eigenvalues of  the Jacob(an matrix J are not 
large compared with the inverse of  the time 
step, 1 / 6 t .  If there exist positive eigcnvalues 
that are large compared to l / 6 t ,  then the 
system is not stable over the time step. This 
may correspond to the region near ignition 
where reaction rates increase rapidly. In this 
situation, a special treatment is needed to solve 
the linearized system Eq. 29. The composition 
space is divided into three subspaces: the di- 
vergent slow subspace 3 ,  the regular slow 
subspace ,S a and the fast subspace ~ They are 
determined by Sehur decomposition in the 
same manner mentioned in the section "Man(- 

For ;,lily vector X, 

Wx = . (39) 

[¢,'J 
where .~a .~, and ~,f, are the components of  x 
in the bases of  the divergent, slow, and fast 
subspaces. Thus premultiplying the iinearized 
coupling equation Eq. 29 by W, we get 

[:::l 
+ , (40) 

t~Jj 
where 

[D o] = w Jr, [o E 

D is a n a x n a matrix, E is a (nq,,,,. + nf)  × 
(n~t,,,v + nf)  matrix. 
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The equation for the components in the 
divergent subspace is 

d8 ~,l 
- -  = ga(4~ ..... ) + D,~& d + F " .  ( 4 1 )  

dt 

The Eulcr explicit scheme is used to get 

ag '~(a , )  

= a~ , ' (0 )  + a , [~ , ' (~ , , , ' , )  + nag, , '  + ~,'1 
(42) 

For the slow and fast components, the solu- 
tion is 

= , -  + f , , e  F, . . . .  , a ,  

Replacing the S(~b I''')) terms in Eqs. 42 and 43 
by the exact solution 

3g, r = W&b r ,  (44) 

then the increment of the composition vector 
in the bases of V is 

e~:~'ag,g0) ] 

+ .[,~' e ~:~' ~ ) d r F  ".~ . (45) 

J,? e ~:''~' "' dT~'J 

So the increment of the composition vector is 

8qb(St) = v / 6g,-,/ (46) 

La '] 
In summary, Eq. 46 provides a stable and 

accurate solution to the coupled mixing and 
rcactic.n equation linearized about !he mani- 
fold point &("). 

6. RESULTS AND DISCUSSIONS 

The chemical kinetic mechanism used in the 
calculations is shown in Table 1 which was 
used by S. M. Correa at General Electric Re- 
search Center. This is a mechanism for 
methane /a i r  combustion, with sixteen species 
and forty-one reactior, s. In our PMSR calcula- 
tions, the incoming particles to the PMSR are 
stoichiometric methane /a i r  at 3(}0 K. The 
pressure of the PMSR is one atmosphere. The 
particles in the PMSR are initialized to the 
equilibrium condition. The mixing time scale is 
Tmi x = 10 3 s, the pairing time scale is "/ 'pair : 

10 3 s, and the residence time scale is rr¢ ~ = 
10 2 s. The time scale used to determine the 
dimension of manifolds is r* = lt)- 4 s. There 
are 100 particles in the reactor, the time step is 
At = 6 x  1(1-4 s. 

From direct integrations of  Eqs. I and 2, the, 
changes of  the average mass fractions of  all the 
particles in the PMSR with time are shown in 
Figs. 1 and 2. Figure 1 shows changes of  the 
average mass fractions of  major stable species. 
Figure 2 shows changes of  the average mass 
fractions of  major radicals. It can be seen that 
after about ().6 residence times, the average 
mass fractions reach a statistically steady state. 
There is some fuel, CH 4, and oxidizer, O 2 in 
the reactor, while initially none of  these reac- 
tants exists since the reactor is initialized to 
the equilibrium conditon. So the statistically 
steady-state condition of  the reactor is signifi- 
cantly different from the equilibrium condi- 
tion. 

Figure 3 shows (kb m. - cbt, ol) which is the 
2-norm of vector 4~t,<, - d, , . ,  

)- 
[ ( / ' , , ( -  4 ' . . I  = ( ' b . ( . , -  4',,,,.,)-" • 

~ i = 1  

averaged over the particles in the PMSR as a 
function of  time. Here the subscript, D means 
direct integrations, C means the original full 
coupling equations (Eqs. 1 and 2), and 0 means 
zero-order splitting system. The average value, 
(I4't~c - tbt>0l) is thus defined by 

1 M 

=El *~i~ - ,/,g~,l, (14 , , , c  - 4,o,,I) = ~ i :  " " (  
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T A B L E  I 

The Chemical Kinetic Mechanism ~ 

N o. React ion A n n E n 

I tl  + O ,  = Ot1 + O 1.5t)E + 17 - 0 . 9 2 7  16874. 
2 O + i l ,  = O I t  + ti  3.87E -~ 04 2.70 6262. 

3 0 t t  + H ,  = t t , 0  + t t  2.16E + 08 1.51 3430. 
4 O t i  + O t t  = O + I I , O  2.1lIE + 08 1.40 - 3 9 7 .  
5 tl  + tl  + M = H ,  +- l id  6.40E + 17 - 1 . 0  0. 
6 II + O i l  + M = H , O  + M 8.40E + 21 -2.04;) 0. 
7 t l  4- O ,  + M = t t O .  + M 7 . 0 0 E  + 17 - 0 . 8 0  O. 
8 t t O ,  + II = O t l  + O I I  1.50E + 14 0.0 1004. 
9 I I O ,  + tl  = t t ,  + O ,  2.50E + 13 0.0 693. 

10 I I O ,  + O = O, 4- O11 2.llOE + 13 0.0 0. 
II I I O ,  + O t t  = t i , O  + O ,  6.02E + 13 0.0 0. 

t2 11202 + M - 0 i i  -r 01 t  + M i.l)tiE + i7 0.11 45411. 
13 CO + O t t  = C O ,  + II 1.51E + 07 1.3 - 7 5 8 .  
14 CO + O + M = CO, + M 3.01E + 14 0.0 3011. 
15 t l C O +  tt = H ,  + CO 7.23E + 13 0.0 O. 
16 l t C O  + O = OI1 + CO 3.00E + 13 0.0 0. 

17 H C O  + O H  = t i , O  + CO 1.00E + 14 0.0 0. 

18 t l C O +  O ,  = t l O ,  + CO 4.20E + 12 0.0 0. 
19 H CO  + M = H + CO + M 1.86E + 17 - 1.0 16993. 
211 C t i , O  + H = H CO + H., 1.26E + 08 1.62 2175. 
22 C H 2 0  + O = H C O  + ' O H  3.50E + 13 0.0 3513. 
23 C H 2 0  + O H  = H C O  + H , O  7.23E + 05 2.46 - 9 7 0 .  

24 C H 2 0  + 0 2 = H C O  + [ I O ,  I.(X)E + 14 0.0 39914. 
25 C H , O  + CH 3 = H C O  + CI-I a 8.91E - 13 7.40 - 9 5 6 .  
26 C H , O  + M = H C O  + H + M 5.00E + 16 0.0 76482. 
27 CH 3 + O = C H 2 0  + H 8.43E + 13 0.0 0. 
28 CH 3 + O H  = C H , O  + 1-1, 8.(XiE + 12 0.0 0. 
29 CH 3 + 02  = C H 3 0  + O 4.30E + 13 0.0 30808. 
30 CH 3 + 02  = C H 2 0  + O H  5.20E + 13 0.0 34895. 

31 CH 3 + H O  2 = C H 3 0  + O H  2.28E + 13 0.0 0. 
32 CH 3 + H C O  = CH4 + CO 3.20E + II  0.50 0. 
33 CH 4 + H = CH 3 + H 2 7.80E + t)6 2.11 7744. 
34 CH 4 + O = CH 3 + O H  1.90E + 09 1.44 8676, 
35 CH 4 + 02  = C H  3 + i-IO 2 5.60E + 12 0.0 55999. 
36 CH a + O H  = C H  3 + H 2 0  1.50E + 06 2.13 2438. 

37 CH 4 + H O  2 = CH 3 + n 2 0  2 4.60E + 12 0.0 17997. 

38 C H 3 0  + H = C H 2 0  + H ,  2.00E + 13 0.0 0. 

39 C H 3 0  + O11 = CH. ,O + H , O  5.00E + 12 0.0 0. 
40 C H 3 0  + O 2 = C H 2 0  + HO., 4.28E - 13 7.60 - 3 5 2 8 .  
41 C H 3 0  + M = C H 2 0  + H + M I.---~,E + 14 0.0 25096. 

aRate  constants are in the form k ,  = AnT n exp[ -EJ (RT)] ,  here R is the universal gas constant. Units are moles, 

cubic centimeters,  seconds, Kelvins and ca lor ies /mole .  
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Fig. 1. Average mass fractions of 1420, CO 2, O~, CH~. and CO as functions of time. 

where M is the number of particles in the 
reactor. This is a measure of the error between 
the solution from the direct integration of the 
original full coupled equations and the solu- 
tion from the direct integration of the zero- 
order splitting system. As shown in the plot, we 

can see that when the ratio of the subtime step 
~t to the mixing time scale rmi x decreases, the 
error uniformly decreases. Figure 4 is a plot of 
the time average value (from time step 1 to the 
given time step) of the average error ( 1 4 J o e  - 

$o(~l). After some time, this value becomes a 

O . O 0 4 1 1 ' l l l i l ' l i ' l , l i l i , l i l l ,  

U)  0 . 003  
e -  

.2 
¢J 

0 .002  
M 

-----~---- o 

° ° ° 1 ~ , ~ c ~  ~ 

o o o o ~ - : : ~ ~ ~ o ~  30 4o-~ 50 
Time step 

Fig. 2. Average mass fractions of H, OH, and O as functions of time. 
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Fig. 3. The average error. (l(h;,, - d,;). l) ,  as a function of time. 

constant one. Errors of other methods also 
behave in the same manner as those of the 
zero-order splitting system. So we can use the 
time average value of  the errors at time step 51) 
as a measure of errors of different methods. 
These are plotted in Figs. 5-7.  

In these figures, the first subscript of  g) 
indicates D is the direct numerical integration 
of  the equations, M is the solution based on 
manifold points (i.e., Eq. 46). The remaining 
subscripts indicate the splitting scheme. C is 
the full coupled mixing and reaction (no split- 
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Fig. 4. T h e  t ime  a v e r a g e  o f  t he  e r r o r .  (l&/)(. - d ,o . I ) ,  as  a f u n c t i o n  o f  t ime .  



1 0  .2 

, , , i i i i i I i i i i i 

< 1 % 0  " % s q  I;.  / / ~ ] ~  
" ~ - - <  I Ooc'¢os, l >  s l o p e  3 / 2  J ~ ' J  

- < > - -  < '~oo'~,.'> , - ~ J /  

+ < I eoc ~oPca I > ~. " "  . . "  s l o p e  I 

10 "= 

10 -4. 

28 B. YANG AND S. B. POPE 
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F i g .  5 .  V a r i a t i o n s  o f  s p l i t t i n g  e r r o r s  w i t h  t h e  c h a n g e  o f  t h e  r a t i o ,  (~ / /7"mi  x.  

ting), Strg is the system obtained from Strang's 
sequential splitting method (mix-react-mix), S1 
is the system obtained from first-order splitting 
method, SO is the system obtained from zero- 
order splitting method (mix-then-react), PC1 is 

the system obtained from the first predictor- 
corrector method, PC2 is the system obtained 
from the second predictor-corrector method. 

There are basically three different types of 
errors: the splitting errors shown in Fig. 5, 

10 -a. 

10"3 

10 .4 . 

I i i i i I I 1 1 i i I i I 

<l¢ostr I - Ous~l> 
; "  < I ~osl " OMsl I > 

< I eos* " ~).so t > 
s l o p e  I 

8t I ~ u  
Fig. 6, Variat ions o f  chemistry errors wi th the change o f  the ratio, Bt/Tmi x. 
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Fig. 7. V:tri~tion,, ~l o~cr-;dl error'. ~ith the ch:tngc of the ratio. ~t/r,.,~. 

indicated by ([qS/~ u - ,ht~,,,]), here ,~t refers to 
different splitting schcmc; the chcmistr 3, errors 
in Fig. 6, showing how wcll thc coupling be- 
tween chemistry and mixing based on manifl~ld 
points is doing, they arc indicated by (l(h~,,, - 
4)Mml); the overall errors in Fig. 7, showing thc 
errors between the solutions from the coupling 
method based on manifold points and those 
from direct integration of the original full cou- 
pled equations, they are den(~ted by ([(b~,(.- 
,t,~,,.l>. 

It may be seen from Fig. 5 that all of the 
splitting schemes convergc. That is, the errors 
incurred tend to zero as the time step (St tends 
to zero. The slope of the curve corresponding 
to Strang's algorithm is about !.5, the others 
are about unity, which means that Strang's 
method is of order one-and-a-half  accurate, 
the other methods, arc first-order accurate. 
Theoretically, Strang's algorithm and the prc- 
dictor-corrector methods arc of second-order 
accuracy. The drop in the ordcr of  accuracy 
can be attributed to the fact that the time step 
used in the calculations, ~t, is large compared 
with the smallest combustion time scales ~,.,~,, 
which are represented by negative reciprocals 

of the real parts of eigcnvalues of the Jacobian 
matrix J. A typical value of T, ma, is about 
5 x Ill s (s). The formal order of  accuracy is 
to bc cxpcctcd only when ( 6 t / r ~ m ~ , )  is small 
compared to unity, which is not the case here. 
It is c,fident from Fig. 5 that the splitting error 
is smallest for the simple zero-order splitting 
(SO), i.e.. mix-then-react. For the smallest t ime 
step shown, these errors are about 0.01% of  
the major species concentrations. 

For selected splitting schemes, Fig. 6 shows 
thc error incurred in using the manifold 
method (M) compared to direct integration 
(D). In this case there is no reason to suppose 
that crror tends to zero with 6t. For, even in 
the limit 61---, 0, the compositions lie some 
distance from the manifold, and hence the 
linearization about manifold points involves 
some error. (This error does converge to zero 
as r* tends to zero.) 

From Fig. 6 we can see that for the zero- 
order and first-order splitting methods, errors 
decrease gradually as the ratio of  the sub-time 
step to that of  the mixing time scale decreases. 
For Strang's algorithm, in the region of  large 
8 t / r .~ .~ ,  the error decreases with the decreas- 
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ing of fit/~,,,~ X, as ~t/~', ,~x dccrcascs further, 
the error increases, then decreases. 

The over-all errors arc shown in Fig. 7. 
These are the errors that we arc ultimately 
interested in as they represent errors of  the 
method compared with direct integrations of 
the original coupled equations. Errors of the 
zero-order and first-order splitting methods de- 
crease a s  t ~ l / ' r m i  x decreases, the slope of the 
curves is about unity. The behavior of the 
ovcr-aU error of Strang's algorithm is the same 
as that (~f the chemistry error of Strang's algo- 
rithm. The chemist," 3 ' error is the controlling 
factor for Strang's algorithm. 

To give some idea about the change of  di- 
mension of the manifold, we.plot the manifold 
dimension n,, versus subtime step fi~r one 
particle in the PMSR. It is shown in Fig. 8. 
Plotted together in this figure is the mass frac- 
tion of methane for the same particle. The 
case selected is the first-order splitting method 
with five sub-time steps. One can see from this 
figure that most of the time, the dimension of  
the manifold is 6. The dimension of the con- 
served subspace is five (four due to element 
conservation and one due to enthalpy conser- 
vation). Thus n,,, = 6 corresponds to ~ one-di- 
mensional manifold in the reactive subspace. 

Sometimes, the dimension jumps to 14, then 
decreases to 6 within one time step. The jump 
of  the dimension to high dimension corre- 
sponds to the increase in the mass fraction of  
methane as seen in the figure. In this situation, 
what happens in the PMSR is that this particle 
is ejected from the reactor and replaced by an 
incoming particle which is a mixture of  
methane and air at stoichoimetric condition 
and room temperature. At these conditions, 
reactions progress very slowly so the dimension 
of the manifold is high. As reaction and mixing 
go on, the composition of the particle moves 

~towards high temperature. So correspondingly, 
reactions happen faster and the dimension of  
manifold decreases. 

7. CONCLUSIONS 

In this paper, different errors of  different solu- 
tion schemes for the original coupled equa- 
tions of  a pair of  particles in a pairwise mixing 
stirred reactor have been investigated. The fol- 
lowing conclusions can be drawn: 

(1) The pairwise mixing stirred reactor (PMSR) 
has been formulated as a test case for 
simplified chemistry schemes. This is a sig- 
nificantly richer and more strenuous test 

. . . . . . . .  , . . . . . . . .  , ~ , , , , , , , . . J . . t , ,  . . . .  s . . . . . . . . .  i~).O S 
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Fig. 8. Changes of the dimension of manifold and methane mass fraction with subtime step. 
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than the PaSR. (In the statistically-sta- 
tionary state, the compositions in a PaSR 
lie on a one-dimensional manifold.) 

(2) A variant of  the intrinsic low dimensional 
manifold ( ILDM) method has been formu- 
lated and used in which the manifold is 
defined by a time scale ~'*. Rather than 
having a specified, fixed dimension, the 
manifold has different dimensions in dif- 
ferent regions of  the composition space. 
This results in the manifold method provid- 
ing an accurate description even in regions 
where the chemistry is slow. 

(3) The "closest manifold point" problem that 
arises in the implementation of  manifold 
methods has been formulated as a mini- 
mization problem, and a reliable iteration 
algorithm for its solution has been pre- 
sented and used. 

(4) An exact solution (Eq. 30) is given to the 
coupled reaction-mixing equation, with 
frozen mixing vector and linearization 
about the closest manifold point (Eq. 29). 
A numerically stable solution methodology 
for this equation has been developed. 

(5) Different schemes for splitting reaction and 
mixing have been investigated. The time 
step sizes ~t of  interest are large com- 
pared to the smallest time scale of  the 
chemistry Tsmal I. As a consequence, schemes 
that are formally second-order accurate ex- 
hibit lower-order accuracy. All schemes ex- 
hibit first-order accuracy except for Strang's 
algorithm (mix-react-mix) which is of  order 
3 /2 .  

(6) Over the range of  time step size investi- 
gated, the simplest zero-order splitting- 
mix-then-react has the smallest splitting er- 
rors, which is as low as 0.01%. This is an 
important conclusion because it justifies 
the current  practice in table-look-up 
methodologies. 

(7) The combinations of  zero-order splitting 
and the manifold method produce accurate 
solutions. 
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