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To reduce the computational cost of turbulent combustion simulations with a detailed chemical mecha-
nism, it is useful to find a low-dimensional manifold in composition space. Most previous low-dimen-
sional manifolds in turbulent combustion are based on the governing conservation equations or
thermochemistry and their application involves certain assumptions. On the other hand, empirical
low-dimensional manifolds (ELDMs) are constructed based on samples of the compositions observed
in experiments or in direct numerical simulation (DNS). Plane and curved ELDMs can be obtained using
principal component analysis (PCA) and multivariate adaptive spline regression (MARS), respectively. The
framework for ELDMs based on the represented compositions and principal components is considered in
this study, where the represented compositions are selected from the PCA results.

Both PCA and MARS are applied to the DNS databases of a non-premixed CO/H2 temporally evolving jet
flame and of an ethylene lifted jet flame. It is more accurate to represent the species mass fractions by
curved MARS ELDMs than by plane PCA ELDMs. To achieve a overall departure less than a given level,
more dimensions are required for the ethylene case (which involves 22 species) than for the CO/H2 case
(which involves 11 species). For MARS to achieve less than the 5% departure level, seven dimensions are
required for the ethylene case, and just two dimensions are required for the CO/H2 case. However, it is
much more challenging to obtain the ELDMs with high accuracy for the chemical source terms using a
small number of dimensions. In addition, the effects on the departure from ELDMs of the scaling method
in PCA, local extinction, and the Reynolds number are discussed. Two different approximations for the
chemical source term are compared with discussions for further a posteriori simulations.

� 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
1. Introduction linear multivariate function of a small number of selected,
With the development of the detailed description of combus-
tion chemistry for hydrocarbon fuels, detailed or reduced chemical
mechanisms have been used within turbulent combustion compu-
tations [1]. However, the computational cost of such simulations is
usually very high, e.g., a direct numerical simulation (DNS) of a
high-Reynolds-number jet flame with a reduced mechanism of or-
der 20 species may take millions of CPU hours on a supercomputer
[2]. The large number of species in the detailed chemical mecha-
nism imply that the number of dimensions in composition space
is very high. Hence, to reduce the computational cost, it is useful
to find a low-dimensional manifold in the composition space that
can approximate the full system dynamics of the reacting flow to
reduce the number of transport equations to be solved. Let the
composition variables be partitioned into a set of represented
compositions and the remaining unrepresented compositions. The
low-dimensional manifold can be considered as a smooth non-
represented compositions.
A general classification of these low-dimensional manifolds is

given in [3]. Most previous low-dimensional manifolds in turbu-
lent combustion are based on the governing conservation equa-
tions or thermochemistry. The six classes of manifolds identified
in [3] are as follows: (1) Skeletal manifolds are based on skeletal
mechanisms which neglect some species and reactions. (2) Ther-
modynamic manifolds are determined by the thermodynamic prop-
erties of the system, which are known functions of species mass
fractions, e.g., the constrained equilibrium manifold (CEM) used
in the rate-controlled constrained equilibrium (RCCE) method
[4,5]. (3) Reaction manifolds are based on the autonomous set of or-
dinary differential equations describing the change of composition
due to reaction in isobaric, adiabatic autoignition, e.g., intrinsic
low-dimensional manifold (ILDM) [6] and quasi steady-state
(QSS) manifolds [7], and those implied by computational singular
perturbation (CSP) [8]. (4) Diffusion manifolds are parameterized
by mixture fractions or linearly independent species in the inert
mixing [9]. (5) Reaction–diffusion manifolds are obtained as the
solution of ordinary or partial differential equations which contain
both diffusion and chemical source terms, e.g., the steady flamelet
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model [10], the flamelet/progress variable model (FPV) [11], flam-
elet-generated manifolds (FGM) [12], and the REDIM method [13].
(6) Conditional manifolds are defined as the expectation of unrepre-
sented species conditional on represented compositions, e.g., con-
ditional moments closures (CMC) [14,15] and in multiple mapping
conditioning (MMC) [16].

The manifolds described above are all based on theoretical anal-
yses and their application involves certain assumptions. In con-
trast, empirical low-dimensional manifolds (ELDMs) are
constructed from samples of the compositions observed in experi-
ments or in DNS. The simplest ELDM is the plane manifold ob-
tained from the principal component analysis (PCA) [17,18]. On
the other hand, representing and determining ‘‘best-fit’’ curved
manifolds (with non-zero curvature) is much more challenging
than PCA. The multivariate adaptive spline regression (MARS)
[19,20] has been shown as a promising approach to fitting high-
dimensional non-linear functions. In the present context, MARS
can be used to approximate non-linear functions such as the
unrepresented species on a curved manifold and the chemical
source term. It is noted that the curved ELDM obtained from MARS
is an estimate of the conditional manifold [14–16]. Sutherland
et al. [21–25] have examined PCA ELDMs and MARS ELDMs based
on data from experiments, DNS, and from one-dimensional turbu-
lence (ODT) simulations. The PCA of species mass fractions can be
also used as a systematic approach to define progress variables in
the tabulation of low-dimensional manifolds in composition space
[26].

Besides using PCA and MARS, several other dimension reduction
methods have been previously used to find ELDMs. From detailed
chemical calculations, the ELDMs (the term ‘‘repro-models’’ are
used instead in [27,28]) were extracted and stored in the form of
high-order multivariate polynomials, and the simulations of the
combustion of wet CO with two- or three-dimensional ELDMs have
been shown to be in the order of 104 faster than the calculation
with the full chemistry model [27]. The algorithm for the ELDM
based generation of ILDMs has been developed to produce the
low-dimensional manifold using the spline fitting, which is applied
to the simulation of the combustion of hydrogen in air [28]. A cor-
relation analysis of two-dimensional DNS data of a turbulent non-
premixed H2/air flame with detailed chemistry has been used to
find the ELDMs [29]. The proper orthogonal decomposition (POD)
analysis has been applied to obtain the low-dimensional represen-
tations of the DNS data for H2/air flames [30,31] and to simplify
atmospheric chemistry [32] using a small number of POD modes.
Here, the POD is suggested to be applied locally by dividing the
composition space into sub-domains and then different represen-
tations can be used in different sub-domains [32]. In addition, an
isomap based technique [33] has been applied to the DNS data of
autoignition and front propagation in mixtures of dimethyl-ether
(DME)/air to identify curved manifolds [34].

Several low-dimensional manifolds have been applied to the
numerical simulation of turbulent combustion, for example, the re-
duced DNS with ELDMs [27,35], the large-eddy simulation (LES)
with FPV [11,36], and the LES/probability density function (PDF)
modeling with RCCE [37]. However, the assumption of the low-
dimensional manifolds in composition space and the accuracy of
the approximation they provide still need to be examined.

For a posteriori tests, the number of transport equations of com-
positions can be reduced via the application of PCA. The ELDMs
identified by the PCA-based model are insensitive to filtering,
which suggests that it can be suitable for use in LES [24]. Based
on the ELDMs with an appropriate approximation of the chemical
source term, it is useful to select a small number of represented
compositions so that their transport equations can be solved with-
out the transformation of PCA.
In this study, we perform a priori examinations based on the
DNS data of a CO/H2 non-premixed jet flame (which involves 11
species) [38] and of an ethylene lifted jet flame (which involves
22 species) [39] at moderate Reynolds numbers. The main objec-
tive to understand is that, for a given dataset of N samples of spe-
cies mass fractions, thermodynamic properties, and chemical
source terms, how closely do the PCA and MARS manifolds of
dimension nr approximate the data. The concept of ELDMs is re-
viewed in Section 2. The two DNS datasets used in the present
study are described in Section 3. The methodologies of the con-
struction of ELDMs and corresponding results are given in Sections
4 and 5, respectively. Some conclusions are drawn in Section 6.

Compared to the prior work investigating ELDMs using PCA and
MARS [21,24], this study makes original contributions as follows:
(1) A framework of the ELDM based on represented compositions
which are selected from the PCA results is developed. The transport
equations of represented compositions can be applied readily in a
posteriori simulations without the PCA transformation. (2) The
high-fidelity DNS datasets used in this study contain all of the com-
position variables and chemical source terms, and they are more
accurate and complete than the one-dimensional turbulence data
and the experimental results without species reaction rates used
in [24]. The reduced ethylene–air mechanism [40] in the DNS data-
set [39] involves 22 species, which is greater than the 11 species in
the skeletal CO/H2 mechanism used in [21,24] and this study. The
results based on the two different mechanisms can show the effect
of the chemical mechanisms with different numbers of species on
the accuracy of ELDMs. (3) A more sensitive measure to examine
the root-mean-squares (r.m.s.) departure of the ELDM is adopted.
The departure is a function of the dimension of the ELDM. The
number of the dimension of the ELDM investigated in this work
is up to 10 compared to two and three dimensions considered in
[21,24], which can clarify the decaying behavior of the departure
more clearly.

2. ELDMs in composition space

2.1. Represented and unrepresented compositions

In general, an n/-dimensional composition space is spanned by
a set of composition vectors / ¼ f/1; . . . ;/n/

g, which contain ns

species mass fractions and n/ � ns thermodynamic properties.
We partition the compositions into a set of nr represented compo-
sitions and the remaining nu � n/ � nr unrepresented composi-
tions. By suitably ordering the represented and unrepresented
compositions, the composition vector can be written as

/ ¼
/r

/u

� �
; ð1Þ

where /r and /u are nr- and nu-vectors in the represented and
unrepresented subspaces, respectively.

An nr-dimensional manifold in the n/-dimensional composition
space (with 1 6 nr < n/) can be described as a function UM(h) with
nr variable h ¼ fh1; . . . ; hnrg which are the suitable linear combina-
tions of / as

h ¼ h0 þ R/; ð2Þ

where h0 is a constant nr-vector and R is an nr � n/ matrix. In par-
ticular, we consider h = /r. This implies that compositions occurring
in turbulent combustion lie close to a low-dimensional manifold
UM(/r), i.e., with /r being used as the parameters, the manifold
can be expressed as a function

/ � UMð/rÞ ¼
/r

Umð/rÞ

� �
; ð3Þ



1 The total enthalpy may be used instead of temperature in / to naturally satisfy a
conservation equation in the form of Eq. (15).
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where Um(/r) is a mapping from the represented subspace to the
unrepresented subspace. The manifold such as UM(/r) is defined
as an ELDM if it is constructed from observations of the composition
in experiments or in DNS. We remark that it is not true that any
nr-dimensional single-valued and realizable manifold can be
expressed as UM(/r) for any choice of /r [3].

2.2. Approximations for the chemical source term

Similar to Eq. (1), the chemical source term S (i.e., the rate of
change of Y due to chemical reactions) can be partitioned as

S ¼ Sr

Su

� �
; ð4Þ

and S can be approximated by a manifold parameterized by repre-
sented compositions /r as

S � bSMð/rÞ ¼
bS r;mð/rÞbSu;mð/rÞ

" #
; ð5Þ

or the linear combinations h of /, where bS r;mð/rÞ and bSu;mð/rÞ are
mappings from the subspace for represented compositions to the
subspace for chemical source terms for represented and for unrep-
resented compositions, respectively. Thus, the chemical source term
Sr for represented compositions is approximated by a non-linear
function in terms of /r as

Sr � bS r;mð/rÞ: ð6Þ

Alternatively, since S ¼ bSð/Þ is a non-linear function bS of com-
positions, which is determined by a specific chemical mechanism
and thermochemistry properties, we can approximate the chemi-
cal source term Sr for represented compositions as

Sr � bS rðUMð/rÞÞ ¼ bS r /r

Umð/rÞ

� �� �
; ð7Þ

where Sr is determined by the non-linear function bS r of all the com-
positions lying on the manifold UM(/r).

2.3. Measures of the departure for ELDMs

In this study, we consider the low-Mach-number flow of a reac-
tive ideal gas mixture. The composition vector / = {Y,T} contains ns

species mass fractions Y = {Ya,a = 1, . . . , ns} and temperature T. For
a given dataset, an ELDM UM(/r) for

/ ¼
/r

/u

� �
¼

/r

Umð/rÞ þ /0u

� �
; ð8Þ

can be constructed from an ensemble of N observations of / by min-
imizing some measure of the departures of the observations from
the manifold, where

/0 � /�UMð/rÞ ¼
0

/0u

� �
ð9Þ

is the departure from the nr-dimensional manifold with an nu-vec-
tor /

0u, and the unrepresented composition is decomposed as

/u ¼ Umð/rÞ þ /
0u: ð10Þ

Similarly, we can define the departure from a manifold in S-space
parameterized by represented compositions /r as

s0 � S � bSMð/rÞ: ð11Þ

To examine how closely does the ELDM of dimension nr

approximate the data, we use the normalized r.m.s. departure
of the data from the manifold. Specifically, for a composition i
we define
�i ¼
ffiffiffiffiffiffiffiffiffiffi
hv 02i i

q
=ri; ð12Þ

where h � i denotes the ensemble average over N observations, vi is
the i-component of a vector for the departure, and

ri �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h v 0i � hv 0ii
� �2i

q
is the standard deviation of v 0i. The choice of v 0i

in �i can be /0i from Eq. (9) and s0i from Eq. (11) to measure the depar-
ture of the species mass fractions and of the chemical source terms,
respectively. In addition, the maximum departure is defined as

�i;max ¼max jv 0ij
� �

=ri ð13Þ

to measure the maximum departure from an ELDM in N
observations.

Sutherland and co-workers [21,24] use another measure, the R2

values to measure the accuracy of an ELDM, where

R2
i ¼ 1� �2

i : ð14Þ

It is noted that �i is more sensitive than R2
i to measure the level of

departure, e.g., �i = 5% is equivalent to R2
i ¼ 0:9975, and the decay-

ing behavior of �i with the dimension nr can be examined in the log-
arithm scale.

2.4. Transport equations

The transport equations for /1 can be written as

q
D/

Dt
¼ �r � ðjÞ þ S; ð15Þ

where D
Dt
� q @

@t þ u � r is the material derivative, u is the

mass-averaged velocity, j is the diffusive flux of q/. The transport
equations for represented compositions are simply

q
D/r

Dt
¼ �r � ðjrÞ þ Sr ; ð16Þ

where jr is the diffusive flux of q/r. To apply the ELDMs to a poste-
riori numerical simulations and obtain all the mass fractions, we
need to approximate unrepresented compositions /u �Um(/r)
from Eq. (10) and chemical source terms for represented composi-
tions Sr by Eq. (6) or Eq. (7).

3. DNS databases

3.1. CO/H2 temporally evolving jet flame

The DNS of a non-premixed CO/H2 temporally evolving planar
jet flame was preformed by Hawkes et al. [38]. The fuel is com-
posed of 50% CO, 10% H2 and 40% N2 by volume, which represents
syngas. The co-flow is composed of 25% O2 and 75% N2. The tem-
perature of the co-flow is 500 K, and the pressure is set to atmo-
spheric. The mixture-averaged transport properties for 11 species
(H2, O2, O, OH, H2O, H, HO2, CO, CO2, HCO and N2) and the skeletal
CO/H2 mechanism with 21 reaction steps [38] based on a detailed
C1-kinetics [41] were used.

The flow is statistically one-dimensional, with statistics varying
only in the cross-stream direction and time. At t = 0, the flow con-
sists of a slab of thickness H of fuel. The characteristic time scale is
defined as tj = H/U, where U is the bulk jet velocity. The evolution of
the turbulent jet flame is triggered by small velocity fluctuations
near the central jet. The flow Reynolds number is defined by
Re = UH/mf where mf is the kinematic viscosity of the pure fuel
stream. We use two DNS datasets at Re = 9079 and Re = 2510.
The DNS dataset at the high Re is henceforth referred to as



Table 1
Scaling methods for PCA.

Method Scaling parameter si

No scaling 1
STD ri

VAST ri/h/ii
Range max (/i) �min (/i)
Level h/ii
Max max (/i)
Pareto

ffiffiffiffiffi
ri
p
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‘‘DNS-syngas’’ in this study. The Damköhler number is Da = vq-

tj = 0.011 for both cases, which is low enough to result in local
extinction, where vq is the steady extinction scalar dissipation rate
of a laminar flame.

3.2. Ethylene lifted jet flame

The DNS of a turbulent lifted ethylene planar jet flame (referred
to as ‘‘DNS-ethylene’’) was performed by Yoo et al. [39]. The fuel is
composed of 18% C2H4 and 82% N2 by volume, and the co-flow
is air. The temperature of the co-flow is 1550 K, and the pressure
is set to atmospheric. The central C2H4/N2 jet is self-ignited by
the highly heated coflow, and then the lifted jet flame base stabil-
ization reaches a statistically stationary state. Based on the de-
tailed mechanism for ethylene oxidation with 75 species and 529
elementary reactions [42], a skeletal mechanism with 32 species
and 206 reactions was obtained. The quasi steady-state approxi-
mations (QSSA) were applied to 10 fast depleting radicals to fur-
ther reduce the number of transported variables. Then a reduced
ethylene–air mechanism was derived [40] and used in the DNS,
which comprises 22 species (H2, H, O, O2, OH, H2O, HO2, H2O2,
CH4, CO, CO2, CH2O, C2H2, C2H4, C2H6, HCCO, CH2CO, CH3CHO, a-
C3H5, C3H6 and N2) and 18 global reaction steps. It is noted that
both mechanisms used in DNS-syngas and DNS-ethylene are
non-stiff for the respective DNS [1,40].

4. Construction of ELDMs

4.1. PCA

A plane-ELDM can be obtained by applying PCA to a DNS or
experimental dataset. The PCA is a general methodology to reduce
a complex dataset to a lower dimension, which can retain as much
as possible of the variation to reveal the simplified underlying
structure of the data [17,18]. Let A be an n/ � N matrix for the cen-
tered original data with appropriate scaling

/� � D�1
s ð/� h/iÞ; ð17Þ

where N is the total number of observations, Ds ¼ diagðs1; . . . ; sn/
Þ is

a diagonal matrix with the scaling parameter si, and h/i is the mean
composition vector, where each component h/ii is the ensemble
average over N observations of /i. The N observations can be sam-
pled from the DNS database at a given time or several given times
by selecting every ndth data point starting with the first data point,
where the integer nd denotes the offset. In PCA, the number of
observations N should be sufficiently large so that the PCA result
is not sensitive to the change in N.

The scaling methods considered in [24] and the present study
are listed in Table 1. The PCA results can be significantly influenced
by the scaling method [17], which is discussed in Section 5.3. In-
stead of using Eq. (17), non-linear scalings could be used especially
for minor species; but only linear scalings are used in the present
work. Unless otherwise specified, the PCA results in this study
are based on the data without scaling (i.e., si = 1).
A PCA re-representation B of the data /⁄ can be written as

B ¼ PA: ð18Þ

The unit row vectors fp1; . . . ;pn/
g of the orthonormal n/ � n/ ma-

trix P are principal components (PCs) of A and they are normal to
each other. The matrix P for PCs is obtained by performing an eigen-
vector decomposition CA = PTKP for the covariance matrix

CA �
1

N � 1
AAT

; ð19Þ

where K ¼ diagðk1; . . . ; kn/
Þ is a diagonal matrix with the eigen-

values ki of CA and k1 P � � �P kn/
. Besides the eigenvalue decompo-

sition for CA, we can also perform the singular value decomposition
(SVD) of A to obtain P in the implementation [17,18].

The original composition vector can be projected onto the PC
basis vectors as

g ¼ P/� ¼ PD�1
s ð/� h/iÞ; ð20Þ

where g ¼ fg1; . . . ;gn/
g, which is a suitable choice of h in Eq. (2).

The eigenvalue ki represents the variance of gi along the PC direc-
tion pi, so most of the variation in the data can be retained in the
first several PCs.

The matrix P can be partitioned as

P ¼ Pr

Pu

� �
ð21Þ

where Pr contains the first nr PCs fp1; . . . ;pnr
g, and correspondingly

the matrix B is partitioned as

B ¼ Br

Bu

� �
; ð22Þ

where Pr and Pu are nr � n/ and nu � n/ matrices, respectively, and
Br and Bu are nr � N and nu � N matrices, respectively.

Using nr PCs, the approximation of the original data A can be ex-
pressed as

A0 ¼ PrT Br : ð23Þ

This approximation corresponds to a plane PCA manifold

/ � UMðgrÞ ¼ h/i þ DsP
rTgr ð24Þ

in terms of the coordinates along the PCs gr ¼ fg1; . . . ;gnr
g that are

linear combinations of /⁄ by gr = Pr /⁄. Similar to Eq. (9), the depar-
ture from the manifold parameterized by PCs is

/0g ¼ /�UMðgrÞ: ð25Þ

The transport equations Eq. (15) for / in reacting flows can be
projected onto the PC basis to obtain the transport equations for
g [21]

q
Dg
Dt
¼ �r � jg þ Sg ð26Þ

where jg(g) = Pj and the chemical source term based on the PCs

SgðgÞ ¼ PS: ð27Þ

The initial and boundary conditions on the PCs are also required to
be transformed from the original ones using P [21]. Similar to Eq.
(24), the ELDMs for S and Sg can be parameterized by gr as bSMðgrÞ
and bSM

g ðgrÞ, respectively. To reduce the number of transport equa-
tions in a posteriori simulations with PCA, only the equations for
gr in the form of Eq. (26) with the ELDM bSM

g ðgrÞ are solved.

4.2. Selection of represented compositions

For the straightforward implementation of a posteriori
simulations with ELDMs, it is useful to select the represented



Fig. 1. Normalized r.m.s. departure �i of different species mass fractions from PCA and MARS for DNS-syngas (circles: PCA; squares: MARS). The dashed line shows the 5%
level and the dotted line shows the 20% level.

Fig. 2. Normalized r.m.s. departure �i of different species mass fractions from PCA and MARS for DNS-ethylene (circles: PCA; squares: MARS). The dashed line shows the 5%
level and the dotted line shows the 20% level.
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compositions /r, so we can solve Eq. (16) without the PCA transfor-
mation. In this subsection, we show how the PCA can be used to
determine a good set of nr represented compositions. For any
choice of represented compositions, provided that each component
is not constant on the manifold, there is an invertible mapping /r -
= h/ri + Qgr, where Q is an nr � nr matrix. Hence we can also ex-
press the PCA manifold Eq. (24) as

UMð/rÞ ¼ h/ri þ ðDsP
rT Q�1Þð/r � h/riÞ: ð28Þ
Thus, a ‘‘good’’ choice of represented compositions is such that the
principal angles between the /r-subspace and the gr-subspace are
minimized (or at least not large).

Given an n/-composition vector /, we define an n/ � n/ permu-
tation matrix W. The row index of a unity element in W corre-
sponds to the index i of /i. The orthogonal matrix W is
partitioned as [Wr Wu], where Wr is an n/ � nr matrix and Wu is
an n/ � nu matrix. The row indices of the unity elements in Wr

and Wu represent the indices of represented compositions and
unrepresented compositions in /, respectively.



Fig. 3. The ELDMs UM
i ðg1;g2Þ (top-left in each subfigure) and UM

i ðg1;g2Þ conditioned on g1 from MARS with corresponding sample points Yi(g1,g2), the r.m.s. departures �i,
and the maximum departures �i,max for DNS-syngas. The color on the surface is coded by Yi. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Unscaled mean r.m.s. departure �� and scaled mean r.m.s. departure �̂ over all
the species mass fractions from PCA and MARS for DNS-syngas. The dashed line
shows the 5% level and the dotted line shows the 20% level.
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For a given nr and the orthogonal matrix PT = [PrT PuT] from PCA,
the choice of Wr can be determined by minimizing the distance
[43]

distðS1; S2Þ ¼ kW rT PuTk2 ¼ kP
rT WuTk2 ð29Þ

between subspaces S1 = ran (Wr) and S2 = ran (PrT), where ran (�) de-
notes the range of a matrix and k � k2 denotes the L2 norm.

The ordering of represented compositions can be obtained from
a series of row indices for the unity elements in Wr by minimizing
Eq. (29) with nr from 1 to n/ � 1. Using the PCA results from two
DNS datasets, we obtain the ordering of represented compositions
for DNS-syngas:

T; CO; CO2; O2; H2O; N2; H2; O; OH; HO2; H; HCO;

and the ordering of represented compositions for DNS-ethylene:

T; O2; CO; C2H4; CO2; C2H2; N2; O; H2O; OH; C2H6;

CH3; CH2O; CH4; HO2; HCCO; C3H6; H2; H; CH3CHO;
CH2CO; a-C3H5; H2O2:
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Fig. 5. Unscaled mean r.m.s. departure �� and scaled mean r.m.s. departure �̂ over all
the species mass fractions from PCA and MARS for DNS-ethylene. The dashed line
shows the 5% level and the dotted line shows the 20% level.
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Here, the analyzed data are sampled from the DNS database at t/
tj = 10, 20, 30, and 40 for DNS-syngas and from the database at
the stationary state for DNS-ethylene. In the following discussions,
the first five species in the ordering of represented compositions
excluding temperature will be referred to as ‘‘major species’’ (and
shown above in boldface) and the remaining will be referred to as
‘‘minor species’’ for each flame.

4.3. MARS

Since the PCA provides a first approximation to the ELDM, it is
natural to find a curved manifold that can minimize the departures
normal to the PCA plane manifold. As an extension of linear mod-
els, MARS [19,20] is a non-parametric regression technique and can
automatically model non-linearities and interactions in a dataset.
Hence, it is promising to represent and determine the curved man-
ifolds, which can be used to approximate non-linear functions such
as the chemical source term on a plane manifold and to approxi-
mate a curved manifold by representing UM(/r) or UM(gr). We
note that the MARS manifold is more suitable to be constructed
in gr-space than in /r-space. Since PCA identifies that a majority
of variation exists along the directions of a few of PCs, the sample
points in the gr-coordinates tend close to a manifold which is sin-
gle-valued when projected onto gr-space, and hence can be param-
eterized by gr.

The MARS model is a weighted sum of basis functions. The
model building process involves two phases. In the forward phase,
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Fig. 6. Scatter plots for the samples in a reduced composition space fYCO;YCO2 g
it starts with a model consisting of the mean of the observations
and adaptively adds pairs of piecewise-linear or piecewise-cubic
basis functions, which gives the maximum of reduction in residual
error. At the end of the forward phase, the resulting model usually
overfits the data. Then, in the backward phase, the model is simpli-
fied by deleting the least effective basis functions according to gen-
eralized cross-validation.

In the present work, MARS is applied using the Matlab toolbox
ARESLab [44]. The ELDMs such as UM(gr), bSMðgrÞ, and bSM

g ðgrÞ are
fitted as nr-dimensional non-linear functions by piecewise-cubic
splines. The implementation of MARS involves several nontrivial
parameters: the maximal number of basis functions Nb included
in the model in the forward model building phase, and the maxi-
mum degree of interactions Nit. The departure �i from MARS man-
ifolds converges with increasing the number of samples N and Nb.
The scalings for the growth of the computational cost with nr, N,
and Nb are between linear and quadratic. Considering the accuracy
of the MARS model and the computational cost, typically we
choose N � 20,000, Nb = 15, and Nit = 2 in this study. The reduction
of the normalized r.m.s departure �i Eq. (12) with increasing N, Nb,
and Nit from those shown above is less than 1%. The computational
cost of constructing a typical MARS ELDM UM

OHðgÞ of 10 dimensions
for DNS-syngas on a machine with a 1.6 GHz CPU is about 25 min.
5. Results

5.1. PCA and MARS results for species mass fractions

Using PCA and MARS, plane and curved ELDMs are obtained
respectively. The normalized r.m.s. departures �i defined in Eq.
(12) for different species mass fractions as functions of the dimen-
sion nr of the ELDM UM(gr) in the high-Re CO/H2 temporally evolv-
ing flame and the ethylene lifted flame are shown in Figs. 1 and 2,
respectively. As may be seen from the figures, for both DNS dat-
abases, �i decays rapidly with nr for most of major species such
as YCO and YCO2 (upper rows). Typically less than five dimensions
are needed to reduce these major-species departures from the
PCA ELDM to below 5%, while for minor species such as YOH and
YO (lower rows), about 8–10 dimensions are needed to achieve
the 5% departure level shown in the dashed line. In general, the
maximum departure �i,max defined in Eq. (13) is an order larger
than �i of the same dimension, and the decay of �i,max agrees qual-
itatively with �i (not shown).

Compared to the PCA results, better accuracy is expected to be
achieved by curved MARS ELDMs, because MARS can minimize the
departures normal to the plane PCA manifold if the ELDM is
curved. The illustrations of the curved MARS ELDMs UM

COðg1;g2Þ
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with the directions of the PCs (solid line: first PC; dashed line: second PC).
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and UM
OHðg1;g2Þ with sample points, the r.m.s. departures �i Eq.

(12), and the maximum departures �i,max Eq. (13) for DNS-syngas
are shown in Fig. 3. Besides showing UM

i ðg1;g2Þ as a two-dimen-
sional surface in a three-dimensional space (top-left in each subfig-
ure), UM

i ðg1;g2Þ conditioned on different g1 are also shown as the
red curves to demonstrate the departure of the sample points from
the manifold. We can see that the manifold UM

COðg1;g2Þ is close to a
plane manifold with a very small r.m.s. departure. For comparison,
the manifold UM

OHðg1;g2Þ is much more curved and the sample
points have large departures from the manifold.

In Figs. 1 and 2, for a given dimension nr, the departures are
smaller for MARS than for PCA. The significant improvements of
MARS over PCA appear in the first several dimensions for minor
species such as YOH and YO and the minority of major species such
as YH2O. This shows that the non-linear fitting in MARS can approx-
imate the curved manifolds in low dimensions to obtain higher
accuracy than PCA. In general, less than five dimensions are needed
to reduce these minor-species departures from MARS ELDMs to be-
low the 20% departure level shown in the dotted line, compared to
nine dimensions for PCA. In contrast, for the ELDMs close to plane
manifolds, e.g., UM

COðg1;g2Þ in Fig. 3a and the ELDMs in high dimen-
sions, the difference of �i from PCA and MARS is relatively small.
5.2. Mean r.m.s. departures from PCA and MARS

To compare overall r.m.s. departures from PCA and MARS, we
define the mean r.m.s. departure �� which is the average of the nor-
malized r.m.s. departures �i over ns species. To prevent small
departures in minor species from making a disproportional contri-
bution in �� and overpredicting the required dimensions of ELDMs
to below a prescribed departure level, we also define a scaled nor-
malized r.m.s. departure for composition i

�̂i ¼

ffiffiffiffiffiffiffiffiffiffi
h/02i i

q
maxðri;/tolÞ

; ð30Þ

where the error tolerance /tol = 10�3 is chosen to eliminate �i with
very small r.m.s. departure

ffiffiffiffiffiffiffiffiffiffi
h/02i i

q
from minor species. Then the

scaled average r.m.s. departure �̂ is obtained by the average �̂i over
ns species. It is noted that �̂i ¼ �i with /tol = 0, and �̂ converges to ��
with decreasing /tol.

The unscaled and scaled mean r.m.s. departures for both DNS
flames are shown in Figs. 4 and 5. In order to reduce the scaled
mean r.m.s. departure �̂ to below 5%, for DNS-syngas, five dimen-
sions for PCA are required compared to two dimensions for MARS.
For DNS-ethylene, nine dimensions and seven dimensions are re-
quired for PCA and MARS, respectively. To achieve the 5% depar-
ture level, the number of dimensions for MARS is two to three
less than that for PCA. In addition, for comparison, the unscaled
average r.m.s. departure �� is much larger for a given dimension.
Since the chemical mechanism contains 11 species for DNS-syngas
and 22 species for DNS-ethylene, the relatively small r.m.s. depar-
tures of minor species have more weight in the calculation of ��.
In general, higher dimensions are required for the chemical



Fig. 9. Normalized r.m.s. departure �i of different species mass fractions for DNS-syngas at different times (triangles: t = 0; circles: t/tj = 10; squares: t/tj = 20; diamonds: t/
tj = 40). The dashed line shows the 5% level and the dotted line shows the 20% level.
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and the dotted line shows the 20% level.
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mechanisms that involve more species to obtain an accurate ELDM.
In terms of �̂, the ELDM in DNS-ethylene needs five additional
dimensions over DNS-syngas to achieve the 5% level.
5.3. Effects of scalings in PCA

The PCA results are sensitive to the method used to scale the
original dataset [17]. For example, Fig. 6 gives scatter plots of sam-
ples from DNS-syngas in the two-dimensional composition spaces
fYCO;YCO2g and fYCO=rCO;YCO2=rCO2g with STD scaling. The direc-
tions of the first and second PCs are shown in the solid line and
the dashed line, respectively. For the PCA result without scaling
in Fig. 6a, the variation in YCO is greater than that in YCO2 . Since
the first PC describes the direction of maximum variation, it is
more aligned with the direction of YCO than YCO2 . With STD scaling
as shown in Fig. 6b, the two variables have the same degree of var-
iation, such that each PC assigns similar weight to YCO and YCO2 .
For DNS data without scaling in the full composition space
{Y,T}, given 0 6 Ya 6 1 and T ranging between 300 K and 2500 K,
the first PC is entirely dominated by T, the second PC is dominated
by the species mass fraction with the largest variance (e.g., YCO for
DNS-syngas), the third PC is dominated by the species mass frac-
tion with the second largest variance (if it is not perfectly corre-
lated with species with the largest variance), and so on. This is
also revealed in the ordering of represented compositions in Sec-
tion 4.2. For DNS-syngas, the normalized r.m.s. departures �i for
different species mass fractions from PCA without scaling and with
STD scaling are shown in Fig. 7. For a given nr, the departure for
major species (upper row) is much less than that for minor species
(lower row). Considering the importance of temperature and mass
fraction of major species in reactions in turbulent combustion, the
choice of PCs from the data without scaling or only with the nor-
malization of the measurements with different units to mass frac-
tion (e.g., temperature) may be appropriate. On the other hand,
since each PC has similar weight for all of the composition vari-
ables with STD scaling, the decaying behaviors of the departures
for different species mass fractions appear to be similar in Fig. 7.

The effect of various methods listed in Table 1 to scale the ori-
ginal data for PCA are examined in [24], but the results are in terms
of the R2 error and nr is limited to two and three dimensions. To
clearly demonstrate the effect of scalings in PCA, the mean r.m.s.
departures �� from PCA with different scalings for DNS-syngas are
shown in Fig. 8. Since the PCA ELDM UM(gr) minimizesPn/

i¼1h/
02
i i=s2

i using the first nr PCs (see Property A5 in [17]), the
overall departure of the PCA result with the scaling parameter si

actually depends on the definition of the overall departure itself.
For example, the PCA result with STD scaling gives the minimum
overall departure 1

n/

Pn/

i¼1h/
02
i i=r2

i in all the scalings. It is noted that
each variable in the centered original data is scaled by a measure of
its variation, and the values of the scaling parameter si in STD,
Range, Level, Max scalings are of the same order and can be much
more than that in VAST and Pareto scalings. Therefore, with the
current definition of ��, for a given nr, the results without scaling
and with VAST scaling show relative large values of ��, whereas



Fig. 11. Normalized r.m.s. departure �i of different chemical source terms from MARS for DNS-syngas (circles: no scaling; squares: STD scaling). The dashed line shows the 5%
level, the dotted line shows the 20% level, and the dash-dotted line shows the 50% level.

Fig. 12. Normalized r.m.s. departure �i of different chemical source terms from MARS for DNS-ethylene (circles: no scaling; squares: STD scaling). The dashed line shows the
5% level, the dotted line shows the 20% level, and the dash-dotted line shows the 50% level.
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the results with STD, Range, Level, and Max scalings are similar and
show smaller values of ��.

5.4. Effects of local extinction and Reynolds numbers

The effect of turbulent mixing and reaction on the accuracy of
ELDMs is investigated by applying PCA to DNS-syngas at different
times at t/tj = 10, 20, 30, and 40. For DNS-syngas, mixing is initially
sufficiently rapid relative to reaction at the low value of Da in this
flame, so that strong turbulence–chemistry interactions can result
in local extinction. The DNS results show that the maximum local
extinction occurs near t/tj = 20 and the flame is fully re-ignited near
t/tj = 40 [38]. The normalized r.m.s. departures �i for different spe-
cies mass fractions are shown in Fig. 9. The number of dimensions
for the prescribed 5% departure level for DNS-syngas at different
times is very close for major species. Some noticeable differences,



Fig. 13. The ELDMs bSM
i ðg1;g2Þ (top-left in each subfigure) and bSM

i ðg1;g2Þ conditioned on g1 from MARS with corresponding sample points Si(g1,g2), the r.m.s. departures �i,
and the maximum departures �i,max for DNS-syngas. The color on the surface is coded by Si. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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however, are observed for the large departures of minor-species
mass fractions, e.g., YO and YOH, at t/tj = 20. This implies that, on a
very curved ELDM, the minor species vary non-linearly with repre-
sented compositions when the maximum local extinction occurs,
such that their mass fractions predicted by the models based on
very-low-dimensional manifolds may give relatively large
departures.

The mean r.m.s. departure �� from PCA for DNS of the CO/H2 jet
flame at t/tj = 20 and t/tj = 40 for both low and high Reynolds num-
bers is shown in Fig. 10. The observed similar departures show that
the Reynolds number has a minor effect on the PCA results in terms
of the overall error. This suggests that the ELDMs obtained from a
DNS flame database at a particular Re may be applicable over a cer-
tain range of Re with sufficient accuracy.

5.5. PCA and MARS results for chemical source terms

Using MARS, the normalized r.m.s. departure �i from the ELDMbSMðgrÞ for chemical source terms S as a function of the dimension
nr in DNS-syngas and DNS-ethylene are shown in Figs. 11 and 12,
where the chemical source terms are obtained from the DNS data.
The results are based on gr obtained from PCA without scaling and
with STD scaling. Different from the species mass fractions, the PCA
does not necessarily identify the optimal basis for representing the
source term [24], and the departure for bSMðgrÞ has no explicit rela-
tion to the PCA scaling method. The departure from the ELDM
parameterized by gr with STD scaling appears to be smaller than
that without scaling. Compared to the approximations of species
mass fractions shown in Figs. 1 and 2, the departures for chemical
source terms are much larger, which qualitatively agrees with the
finding in [24]. For DNS-syngas, five dimensions are required for
major species to achieve the 20% departure level, and four dimen-
sions are needed to achieve the 50% departure level for DNS-
ethylene.

The large departure for the source term can be interpreted by
the geometry of bSMðgrÞ in composition space. The MARS ELDMsbSM

COðg1;g2Þ and bSM
OHðg1;g2Þ without scaling are shown in Fig. 13.

Compared to the ELDMs of species mass fractions in Fig. 3, the
manifold bSM

CO exhibits very curved geometry, and the scattered
sample points with very large departures away from the ELDM
for SOH exist as indicated by the large maximum departure
�SOH ;max. Figure 13 shows that the chemical source terms,



Fig. 14. Normalized r.m.s. departure �i of different chemical source terms based on PCs from MARS (circles: DNS-syngas; squares: DNS-ethylene). The PCs are obtained from
the data with the STD scaling. The dashed line shows the 5% level, the dotted line shows the 20% level, and the dash-dotted line shows the 50% level.

Fig. 15. Mean r.m.s. departure �� over all the chemical source terms from MARS for
DNS-syngas and DNS-ethylene. The dotted line shows the 20% level and the dash-
dotted line shows the 50% level.
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particularly for radicals, can span several orders of magnitude and
are highly sensitive to small changes in the PCs, which is contrary
to the assumption of the low-dimensional manifold and poses a
challenge for fitting the source terms for radicals using a series of
smooth spline basis functions in MARS. These difficulties appear
to cause the slow convergence of the r.m.s. departures for the
source terms shown in Figs. 11 and 12.

The source term based on the PCs Sg(g) defined in Eq. (27) is a
linear combination of species source terms. It is required to close
the transport equation Eq. (26) for g [24]. For DNS-syngas and
DNS-ethylene, the normalized r.m.s. departure �i of the ELDMs
for Sg1

ðgrÞ to Sg6
ðgrÞ is shown in Fig. 14. It is evident that �i for

DNS-syngas is much less than DNS-ethylene, which shows that
the accuracy of the ELDM for source terms strongly depends on
the chemical mechanism and the number of species involved in
the mechanism. The mean r.m.s. departures �� of S(gr) and Sg(gr)
over ns species are shown in Fig. 15. We find that �� from the ELDM
bSM
g ðgrÞ is less than that from bSMðgrÞ. To reduce �� to below the 50%

departure level shown in the dash-dotted line, for DNS-syngas, one
dimension is required for Sg(gr) compared to three dimensions for
S(gr). For DNS-ethylene, five and nine dimensions are required to
reduce the departures to lower than 50% for Sg(gr) and S(gr),
respectively.
5.6. Discussions on a posteriori tests using ELDMs

Although the ELDMs based on the PCs show great advantages to
reduce the dimensionality of the original composition space, it is
still worthwhile to investigate the ELDMs based on the primitive
represented composition variables /r. The transport equation
Eq. (26) for /r with Sr(/r) can be solved without the PCA
transformation.

Two different approaches are introduced in Section 2.2 to
approximate Sr(/r) using nr represented compositions, where the
ordering of represented compositions can be determined by the
method described in Section 4.2. For Eq. (6), the non-linear func-
tion bS r;mð/rÞ in terms of represented compositions can be fitted
by MARS directly. For the other approximation Eq. (7), first we
need to reconstruct the unrepresented compositions from the
ELDM UM(/r) that can be obtained a priori from the DNS data.
The realizability of species mass fractions in UM(/r) can be satis-
fied by clipping the unrepresented species mass fractions to lie be-
tween zero and unity and normalizing the mass fractions so that
their sum is equal to unity. Then, the chemical source termbSðUMð/rÞÞ is evaluated by CHEMKIN [45] with a specific mecha-
nism and necessary thermochemistry data.

For DNS-syngas, both approximations of the source terms for
major species are compared in Fig. 16, and their corresponding
normalized r.m.s. departures �i are very similar. For a posteriori
tests, the advantage of the second approximation is that, only the
a priori knowledge of UM(/r) is needed without knowing bSMð/rÞ
since it is usually not available in the experimental data. Thus, only
the ELDM for Um(/r) (without bS r;mð/rÞ) needs to be tabulated for
subsequent approximations of Sr in Eq. (16) by Eq. (7) in a posteriori
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simulations. The implementation of this method with reduced DNS
or LES is feasible, and it is similar to the LES/PDF modeling with
RCCE [37] and to the LES with flamelet-like models [10,36].
6. Conclusions

With the assumption that compositions occurring in turbulent
combustion lie close to a low-dimensional manifold, an ELDM is
constructed from an ensemble of observations in DNS or experi-
ments by minimizing the r.m.s. departures of the observations
from the manifold. The plane and curved ELDMs can be obtained
using the dimension–reduction methods PCA and MARS, respec-
tively. Both PCA and MARS are applied to the DNS databases of a
non-premixed CO/H2 temporally evolving jet flame and of an eth-
ylene lifted jet flame. In terms of the scaled average r.m.s. depar-
ture �̂ for the data from DNS-syngas and DNS-ethylene,
approximately five and nine dimensions are needed, respectively,
to reduce these departures from the PCA ELDM to below the 5%
departure level. Although representing and determining curved
manifolds is more challenging than PCA, better accuracy can be
achieved by curved MARS ELDMs with lower dimensions. In order
to reduce �̂ to below the 5% departure level using MARS, on average
two and five dimensions are required for DNS-syngas and DNS-
ethylene, respectively. These findings are qualitatively similar to
those in [24], but the current results are based on the normalized
r.m.s. departure �i, which is more sensitive and suitable than the
R2 error used in [21,24] to examine the departures of the ELDM
with more than three dimensions.

The PCA results can be significantly affected by the scaling
method. The ELDMs with different PCA scalings are compared
and fully discussed. We find that the results without scaling are
suitable to predict mass fractions of major species using a small
number of dimensions, e.g., less than five for both flames, and they
are similar to the results with the preferred VAST scaling used in
[21,24]. The results with STD scaling give the relatively small mean
r.m.s. departure ��, but similar dimensions are needed to achieve a
prescribed departure level for both major and minor species. We
clarify that the mean departure based on PCA models depends on
the relation between its own definition and the PCA scaling param-
eter. In the present study, only linear scalings are discussed; never-
theless non-linear scaling methods could be considered in future
work.

The effects of local extinction and Reynolds numbers are inves-
tigated for DNS-syngas. The normalized r.m.s. departure �i for the
mass fraction of minor species is found to be maximum when
strong local extinction occurs. The mean r.m.s. departures �� from
ELDMs are insensitive to the Reynolds number.

Compared to the ELDMs of species mass fractions, it is much
more challenging to obtain the ELDMs bSMðgrÞ for the source terms
with high accuracy. In terms of the normalized r.m.s. departure �i,
about five dimensions are required for major species to achieve the
20% departure level for DNS-syngas, and more than 10 dimensions
are needed for DNS-ethylene. The mean r.m.s. departure �� from the
ELDM based on the PCs bSM

g ðgrÞ is less than that from bSMðgrÞ. To re-
duce �� from bSM

g ðgrÞ to below 20%, one dimension is required for
DNS-syngas and five dimensions are required for DNS-ethylene.

For a posteriori tests, two different approaches to construct the
ELDMs for chemical source terms are discussed and their accura-
cies to approximate the source term Sr(/r) for represented compo-
sitions are comparable. Only the ELDM for Um(/r) needs to be
tabulated for further use in a posteriori simulations without the
transformation of PCA on the transport equations, where the order-
ing of represented compositions can be determined from the PCA
result by minimizing the distance between subspaces of gr and
/r. Compared to solving the transport equations Eq. (26) for the
PC basis g considered in [21,24], it is more feasible to add the tab-
ulation of the ELDM for Um(/r) to most of the current implemen-
tations of combustion LES or LES/PDF based on composition
variables.

The current investigations on ELDMs are based on a priori tests.
The applicability and accuracy of the ELDMs should be examined in
a posteriori tests. The available DNS databases [38,39] can be used to
construct the ELDM Um(/r) which can be incorporated in
LES/PDF [46] for these flames, and the implementation of LES/
PDF/ELDM would be similar to the current implementation of
LES/PDF/RCCE [37]. Although we have shown that the ELDM is not
very sensitive to the local flow condition and Reynolds numbers,
the chemical mechanism has an impact on the accuracy of ELDMs
and it might be challenging to obtain an accurate ELDM within sev-
eral dimensions for a complex mechanism with many species.
Therefore, with limited high-fidelity combustion DNS for simple
fuels [2], the application of ELDM to more practical a posteriori sim-
ulations in engineering problems remains an open question.
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