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This study is to explore the numerical features of a particle-mesh algorithm de-
veloped for a stand-alone joint velocity-frequency-composition PDF method for
turbulent reactive flows. Numerical experiments are performed on a piloted-jet non-
premixed turbulent flame of methane to characterize and quantify various numerical
errors in terms of numerical parameters: number of particles peNgglinumber
of cells M2, and time step\t. First, a stationary solution is obtained and is verified
to be independent of the time ste&yi. Then, the total numerical error is identified
as statistical error, bias, and discretization error. It is revealed that the statistical er-
ror converges aNp‘cl/ 2, and the bias as\Ip‘cl. The statistical error can be reduced
by time-averaging or by performing multiple independent simulation (e.g., with a
parallelized program). Finally, the scheme is shown to be second-order accurate—
the spatial discretization error converginghs?. A modified turbulence frequency
model based on the turbulence production-to-dissipation ratio is shown to improve
the numerical behavior of the turbulence model. These results demonstrate that the
particle-mesh method is convergent. Also, the optimal numerical parameters, mini-
mizing computational cost subject to a specified error tolerance, are estimated. An
error reduction scheme, similar to Richardson extrapolation, is proposed and shown
to be quite effective in reducing the deterministic erroty 1999 Academic Press

Key Words:PDF/Monte Carlo methods; numerical convergence; turbulent reac-
tive flows.

1. INTRODUCTION

Itis of significance in engineering applications to predict complex turbulent reactive flo
The accuracy of such predictions depends mainly on two ingredients: turbulence mc
and numerical solution algorithms. The purpose of turbulence modeling is to describe
physics of turbulent flows as accurately as possible, with the resulting computation b
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economically feasible. On the other hand, accurate numerical algorithms are require
solve the modelled equations. Both of these factors affect the accuracy of the nume
prediction of turbulent reactive flows. In the contextpodbability density functiofPDF)
methods, it is noted that less attention has been paid to the accuracy of humerical
rithms.

Traditional turbulence models, including two-equation models [24, 53] and seco
moment closures [23], are based on Reynolds averaging techniques, and yield moc
equations for statistical moments. In comparison to these models, PDF methods ac
closure through a modelled transport equation for the one-point, one-time probability ¢
sity functions of certain fluid properties in a turbulent flow [8, 36]. The advantage of P!
methods is that both convection and reaction are represented exactly without mode
assumption. Also, a tremendous amount of statistical information contained in the P
obviously provides a fuller description of turbulent flows than two-equation models
second-moment closures. During the past decade, the progress in PDF methods ha
made from several aspects: adopting a more advanced joint velocity-frequency-compos
PDF method which provides a model for the turbulent time scale [50]; introducing m
elling techniques developed in second-moment closures [13, 39, 50]; and developi
computationally efficient scheme to treat detailed reaction chemistry [42]. These mo
have been successfully applied in modeling several inert flows [6, 30], reactive flows,
turbulent flames [1, 16, 29, 32, 46].

Different numerical solution algorithms are required for turbulence models of differ:
levels. Moment closures result in a set of partial differential equations. These equation
usually solved numerically by finite difference or finite volume methods [17]. In contrast
moment-closure model equations, the modelled PDF transport equation has a comp
different structure. From early times in the development of PDF methods, Monte Carlo t¢
nigues have been employed in which the PDF is represented by an ensemble of pat
[35]. Stochastic differential equations (SDEs), which are usually in the form of Lange
equations, are then constructed to model the particle properties, e.g., velocity and co
sitions, such that the particles exhibit the same PDF as turbulent flows.

Monte Carlo methods are widely used in computational physics [19] to solve hi
dimensional problems such as PDFs. Their application in PDF methods has proce
through different stages. In the first method developed, the particles were located at
nodes in physical space [35]. Pope [36] then suggested that it is preferable to ust
method in which the particles are continuously distributed. Later, a hybrid method \
implemented in the codeDF2DSin which composition PDFs were calculated by Mont
Carlo methods while a finite-volume method was applied to solve for the mean velo
dissipation, and mean pressure fields [3, 5, 18, 32]. More recently, a stand-alone par
mesh algorithm was developed for the joint velocity-frequency-composition model [4
A similar method was implemented in the coB®F2DV. This is a code to calculate
statistically stationary two-dimensional (plane or axi-symmetric) turbulent reactive fl
using the joint velocity-frequency-composition PDF method. It has been applied in sev
published calculations [1, 10, 46, 50].

The purpose of this work is to study the numerical accuracy of the particle-mesh algori
for PDF methods, in particular tiRDF2DVcode. INPDF2DV, the joint velocity-frequency-
composition PDF transport equation is solved by a Monte Carlo particle-mesh method.
flow domain is divided into a total numb&t? of cells (uniform or non-uniform) while the
fluid is represented by a number of stochastic partible$he modelled SDEs for particle
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properties are solved by a pseudo-time marching scheme with timastdjmerefore, the
numerical parameters inRDF2DV calculation consist of1?, At, andN, or the number of
particles per celNyc (Noc = N/M?2). These parameters essentially determine the accure
of numerical solutions.

Usually, weak convergence, i.e., the convergence of expectations or moments, in:
of the PDF itself is sought for PDF methods. The numerical convergence of PDF/Mc
Carlo methods is largely determined by the numerical solution to the modelled SDEs
the estimation of mean fields from stochastic particles. Numerical solutions to stocl
tic differential equations have been well studied [26, 21]. Also, it has been proved
ensemble averages computed from Langevin equations converge to the correct val
the ensemble averages become time independent [25]. However, the Langevin equ:
of particle evolution in PDF methods are essentially different from the standard forn
that the mean fields are part of coefficients in the SDEs and need to be approximate
their corresponding ensemble averages. Such a feedback of the ensemble averages i
Langevin equations introduces new sources of numerical error [40, 55]. In previous stu
four different types of numerical errors have been identified by considering estimatir
mean quantity: statistical error, bias, spatial discretization error, and temporal discretizz
error [31, 40, 52, 55]. The convergence of numerical solutions requires that these e
vanish as the number of particles per ddljf. and the total number of cells!? tend to
infinity, and as the time stepit tends to zero.

One concern with the bias revealed in a previous study is that a model of turbule
frequency based on the square of velocity-strain rate causes the bias to increase
reducing the cell-size [55]. A modified turbulence frequency model is therefore propo
to remove the cell-size dependence of bias.

Using a piloted-jet nonpremixed turbulent flame of methane [27] as a test case, cor
hensive calculations are performed to investigate systematically the convergence ber
of the PDF method. Precisely, the numerical erroB¥2DVare characterized and quan-
tified in terms of the numerical parameters. The piloted-jet nonpremixed turbulent mett
flame provides a good test case for this study since it has relatively simple boundary
ditions, and a comprehensive experimental data set is available [28]. This flow has |
selected as one of the standard flows for model verification by the International Works
on Measurement and Computations of Turbulent Nonpremixed Flames [2] and has
been studied by different researchers using PDF methods [4, 18, 29, 33, 46]. Sinct
focus of this study is on the numerical issues, simple turbulence models and combu
models are used in the calculations to minimize the computational cost, and the compa
of numerical results with experimental data is not emphasized.

In the next section, the joint velocity-frequency-composition PDF model is briefly i
troduced and the effect of specific modeling assumptions on numerical errors is discu
for the frequency model. Section 3 gives a description of the Monte Carlo particle-m
method for PDF methods, i.e., tiRDF2DV code, followed by a discussion of humerical
errors. The test case of the piloted-jet nonpremixed methane flame is described in Sect
where the comparison of numerical solutions with the experimental data by btai
[27]is also presented. In Section 5, the detailed convergence behavior is studied by va
numerical parameters. Computational cost subject to a specified error level is estimat
Section 6, and an effective error reduction scheme similar to Richardson extrapolatic
described in Section 7. Conclusions are drawn in the final section.
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2. JOINT PDF FORMULATION

In this section, the joint velocity-frequency-composition PDF model is described
modeling turbulent reactive flows. The model considered here is similar to that use
several recent studies [1, 10, 46, 52]. The model equations are given here for complet
and to make precise the variant of the model being used.

For a turbulent reactive flow, we define the mass density function (#dénd the
one-point, one-time Eulerian mass-weighted joint PDF (JPD&)velocity U(x, t), com-
position vectorp(x, t), and turbulence frequeney(x, t) by

(p)F(V, 9, 0:x,1) = F(V, 4,60, %, 1)
= p(¥)(8(U - V)8(p — 1)8(w — 0)), 1)

where( ) denotes a mean quantigyjs the density as a function of compositions, &dp,
ando are the sample spaces 10r ¢, andw, respectively. A model equation fdf can be
devised with the modelling theories developed for turbulent flows [36]. In such a mode
equation, convection and reaction terms are in closed form while models are needed ft
pressure-strain-rate correlation, mixing, and dissipation.

The Monte Carlo method is the basic tool to solve the joint PDF equation. Takin
Lagrangian viewpoint, the flow is represented by a set of particles. Stochastic differe
equations are then derived to model the evolution of particle properties (e.g., particle
locity) so that a stochastically equivalent system is established: particles exhibit the <
JPDF as that given by the PDF transport equation.

Models for particle velocity, turbulence frequency, scalar mixing, and reaction are
scribed in the following subsections. It is worth emphasizing that the models used dc
necessarily capture the physics most correctly for the test case considered, but are ¢
mostly for the purpose of minimizing the computational work.

2.1. Velocity Model

In PDF methods, the fluid particle velocity" (t) is modelled by the stochastic particle
velocity U*(t). Langevin models have been developed at different levelsfarn [13, 39,
50]. Since, in this study, there are many computations for different numerical parame
to minimize the computational cost, the simplified Langevin model (SLM) is chosen

dU*(t) = _% dt — (% + Zc()) QU*(t) — U) dt + (Cok)¥? dw, 2)

where ~ denotes a density-weighted mean quantity, for exarﬁmeffp?, p is pressure,
W (t) isanisotropic Wiener proces3,s the conditional mean turbulence frequency (define
below),k is the turbulence kinetic energy (definedky U;U; /2, whereu = U — U), andCy

is a model constant (Table I). SLM is equivalent to the Rotta model at the second-morr
closure level [39].

Given the particle velocity*(t), the particle positiorX*(t) evolves by

dX*(t) = U*(t) dt. (3
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TABLE |
Model Constants

G Cau Co C Co C Cq

21 056 09 10 025 20 0.6893

2.2. Stochastic Model for Turbulence Frequency

A length or time scale is also needed in PDF methods. Several different approa
have been used in previous applications. In the early development [15], the time scale
assumed to be uniform across free shear flows. As in other turbulence models, how
to remedy this deficiency, one can use the mean dissipation (e.&,tkemodel [24])
or the turbulence frequency equation (e.g., khew model [53]) as information on the
time scale. Such efforts have led to the joint velocity-dissipation-composition model [
or the joint velocity-frequency-composition PDF model [50]. The advantages of the la
are discussed by Van Slootenal. [50]. Here, the stochastic turbulence frequency mod
in [50] is modified and used in the subsequent calculations.

The stochastic model for particle frequengi(t) is

do*(t) = —C3(0* — &) dt — S,Qu*(t) dt 4 [2C3C4aQw* (1)]Y? dW, (4)

whereW is an independent Wiener process. The model details, such as the definition
interpretation ofo* and the conditional turbulence frequerieyare given in [50]. However,
this model is slightly differentin that the mean frequency is replaced by the conditional m
frequency in the second term on the right-hand side to keep the consistency of defini
the dissipation of energy= k<. Note that the specification of the coefficients in Eq. (4
guarantees that* is non-negative, and the numerical implementation of the model ensu
that this property is preserved.

In Eq. (4),S, is the source of turbulence frequency. In previous applications, this tern
modeled as [6, 50]

S; S
S, =C—Ci =L, (5)
w
where§; is the mean rate of strain tensor,
1/00;  aU;
ot 6
s z(axj 2 ) ®)

and the constaniS, andC; are assigned the values 0.9 and 0.08, respectively. Althou
Eq. (5) offers some advantages by relaxing the linkage between the energy and dissif
(or frequency) [11], and gives reasonable results, it is found that this for§) chuses
numerical problems: it is one of the major sources of bias in the particle-mesh methoc
PDF models; it also causes the bias to increase with grid refinement. The reason is
in the particle-mesh method, mean velocities are essentially estimated by ensemble n
over particles. Thus, the estimated mean velocities carry fluctuations (ofl\sl,ggié’f). As
shown by Xu and Pope [55], the estimatior§fS; generates relative large bias and cause
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the bias to increase when the mesh size is decreased. To circumvent this numerical diffi
a modified model fol§, is suggested to replace (5), namely

P P
:Ca) _CwT=Cw _Ca) s 7
S 2 17 2 g (7)
whereP is turbulence production
__3U;
P=-0iuj—, 8
Ui ®)

and model constant3,; andC,, are specified in Table I.

Obviously, by specifying the production in the form used in the stankard model
[53], Eq. (7) reduces to Eq. (5). However, with the use of Eq. (7), the quite small correla
between the estimated Reynolds stnesg and the estimated mean velocity is found no
to produce significant bias and to be able to remove or weaken the mesh depender
bias. This is an example of the establishment of turbulence models being influenced t
impact on the numerical implementation.

2.3. Mixing Model

The Lagrangian approach is also used to model the scalar properties following a pa
o™ (t). Thatis,p™ (t) is modelled by a stochastic proces¥(t). The effects of molecular
diffusion are accounted for by a mixing model. Again, for the sake of saving the amour
computational time, the simplest model—IEM or LMSE model [7]—is applied

1 -
do™(t) = —§C¢Q(¢*(t) —¢)dt, ©)

where the standard model constantis used (Table I). Mixing models are crucial in the
PDF calculations of turbulent nonpremixed flames with finite-rate kinetics, and it is w
established that the IEM model is problematic in this respect [48]. However, reason.
results are obtained when itis used in conjunction with equilibrium or flamelet models-
here.

2.4. Flamelet Model

To reduce computational work, instead of more advanced models such as reduced c
istry [47] and ISAT [42], a flamelet model is adopted for the treatment of chemical reacti
The flamelet model is a good choice for this study because of its minimal computational
and reasonable accuracy for the flame conditions encountered in this study. The fla
model views aturbulent flame as an ensemble of laminar flamelets. The structure of flam
is then represented by a function of prescribed parameters (namely mixture féaetioin
scalar dissipatiory) and is available in the form of a flamelet library. The mixture fractio
in the test case of this study (see Section 4) is defined by

Zi — Zi

=—-— ", 10
5 Ziy— Ziz (10)
where the subscripts 1 and 2 refer to fuel and oxidant, respectivelyZargithe mass

fraction of element. Therefore, in the je4 is unity while it is zero in the coflow.
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The flamelet library for methane—air combustion is provided by Peters’ group [34]. |
further simplified in this study. That is, instead of defining a scalar field as a function
both& andy, we use a library with a constagt(namely,y = 2.5 s™1) but variablet. This
simplification reduces the flamelet model to be a lookup tablg. iherefore, all other
scalar fields, in particular the densjty¢), are inferred frong. Since the only independent
scalar field ist, Eq. (9) reduces to

1 -
d&™(t) = —§C¢Q(E*(t) —§)dt. (11)

No doubt this economical description of the thermochemistry is an over-simplificati
and indeed it is observed to cause some discrepancies in the calculations presented |
But there is no reason to suppose that this has an impact on the numerical issues st
here. More realistic and accurate treatments of the thermochemistry are described b
example, Saxena and Pope [46].

2.5. Modelled PDF Equation

With the above models, the density-weighted JPDF of velocity, frequency, and mixt
fraction is

FNV, 9,00 = (0) f(V, 9,0, 1) = pE)(8U — V)8 — ¥)d(@ —0)), (12)

wherey is the sample variable gf. Then, one-point statistics of the flow can be compute
from f or . For example, the density-weighted me@rf a propertyQ is expressed as

0= % :/7//000/01Q*(v,w,9)f~(v,w,e)dwdedv,

_ (;)/7//000/01 Q' (V. v OFN. y.0)dy dodv.  (13)

The transport equation fdr(V, v, 6; X, t) can be derived following the standard proce
dures [36] from the SDEs (2), (4), and (11)

af af 1 a(p)af 1 3
R V A — 4 =
o0 + + 2+4Co

3 - "
9% T (o) a% 3V Q—[t(Vi —Uj)]

Vi

+}c0ksz Gl +QE(FGSU)+C393[F(9—J))]
2 ViV, 36 a0
+C3C4Qa~)—82 (1‘19)+}c:¢§278 [y — )] (14)
302 27 oy ’

where all model constants are tabulated in Table I.

The PDF transport equation (14) and the SDEs (2), (4), and (11) (in additibratuw
the independent variables) involve means obtained ffomamely,(p), U, @, k, £, andd.
Also, the mean pressut@) is to be determined implicitly by mean mass conservation [36
The estimation of these mean fields as well as other numerical issues is discussed
next section.
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3. NUMERICAL ASPECTS

The Monte Carlo technique has been proved to be a very effective tool to solve
modelled JPDF evolution equation, Eq. (14). The numerical scheme used here is a pat
mesh method in which the joint PDF is represented by an ensemble of particles. The pa
properties are evolved by a set of SDEs (e.g., Eg. (2)), and the mean fields (e.g., the
velocities) are estimated at each grid node. This method is implemented in tHelBABV
and has been applied in several calculations, such as swirling flows [1], compressible f
[6], near wall turbulent flows [10], and flames [46].

In a particle method, the basic numerical ingredients are an integration scheme to ady
the particle properties in time; a method of representing and of estimating mean fields; al
algorithm to determine the mean pressure field and to enforce the mean continuity equ
(for flows with complex reactions, an efficient algorithm to treat the effects of reaction, s
aslISAT, is also needed). Although a complete description of the particle-mesh method t
here has not been published, these ingredients have been described individually elsey
This section presents a general description oPB&2DVcode with brief discussions about
differentnumerical ingredients. It also discusses the nature and origin of the numerical e
that are the focus of this study.

3.1. Particle-Mesh Method and PDF2DV Code

Using the particle-mesh method, tR®F2DV code is designed to model statistically
stationary two-dimensional (plane or axi-symmetric) turbulent flows, in particular react
flows. For any flow considered, the code adopts a rectangular computational domain
domain is then decomposed into a number of small uniform or non-uniform rectang
cells for the purpose of representing and estimating mean fields. Supposing that there
My cells in thex direction (axial direction for the axi-symmetric case) avigcells in the
y direction (radial direction for the axi-symmetric case), then the total number of cell
M2 = My x My. Denoting the extent of the domain Ag in the x direction and’y in the
y direction, respectively, the cell size is then approximately representéy By’ /My
(x direction) andhy = Ly /My (y direction). Also, a representative cell size is taken to k
h=./LxLy/M. Thus, for a specific flowM ~ is a good non-dimensional measure of th
cell size.

The JPDF is represented by an ensembl@& dftochastic particles which model fluid
particles. Suppose at tirte the nth particle has positioxX ™, velocity U™, turbulence
frequencyo™, and mixture fractiorg ™. All these properties depend only on timand
evolve according to the modelled SDEs (2), (3), (4), and (11), respectively. Therefore
discrete Lagrangian mdFy is defined as

N
FnV, 0,61 = am) " s(U = V)s(™ — y)s(o™ —0)§(X™ —x), (15)
n=1

whereAm is the mass of particles. For the particle system to be a valid representatio
the flow, the correspondence

f=(Fn)/q (16)
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FIG. 1. Diagram of the solution dPDF2DV.

is required, wherg is the particle mass-density

N

g=am> (§(X™ —x)). (17)

n=1

This matter has been well discussed in Ref. [38].

The solution procedure in RDF2DV calculation is shown in Fig. 1. The particles are
initialized for given initial conditions by uniformly distributing them in the physical spac
and assigning other properties according to appropriate distributions (e.g., joint nol
distribution for velocities, gamma distribution for turbulence frequency). Then, a pseu
time marching scheme [14, 40] is used to solve the SDEs in a discrete form until a statisti
stationary state is reached. By this scheme, particle properties advance in a timé ste
(uniform or non-uniform) that is determined by an extended CFL condition

JAt VA
max| Até, min v t, vat <1 (18)
hy = hy

For an engineering problem, it is desired to obtain the statistics of the flow. Also
any timet, the mean fields are required to advance the SDEs. Therefore, it is a \
important task to calculate or estimate the mean fields. In contrast to the hybrid PDF/M
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Carlo method (e.g.PDF2DS[5]) in which major statistics except for the scalar field:
are obtained by solving Reynolds-averaged equations, the estimation of mean fiel
PDF2DVis accomplished by a nonparametric method—Kkernel estimation method [12,
In particular, it adopts a cloud-in-cell method in which the mean fields on each grid node
approximated by weighted ensemble means of the particles in the four cells surroundin
node. The mean fields are then represented as linear splines based on the nodal val
that the mean properties at particle locations are interpolated from the means at the n
The details of this method can be found in [9].

Correction algorithms are devised for particle position and velocities to enforce the m
continuity equation and to obtain the mean pressure field. At first, the position correc
is performed to satisfy the consistency condition. The consistency condition states the
volume associated with a sub-ensemble of particles equals the geometric volume occ
by the particles. Then, the particle velocities are corrected so that the divergence o
mean mass flux is zero. As a result of the correction, mean pressure is obtained as
These algorithms have been described in detail in [6, 41]. Finally, note that with the us
the flamelet model, the particle density is deduced from the particle mixture fraction,
the mean density is estimated from particles. All the estimated mean fields are substi
in the SDEs for the next step calculation.

To summarize, in contrast to the hybrid PDF/Monte Carlo metR@k2DV does not
need to be incorporated with another CFD code based on moment closure methods
thus forms astandaloneapproach for modeling turbulent reactive flows.

3.2. Numerical Errors

With the use of the particle-mesh meth&®DF2DV solves the SDEs (2), (4), and (11)
in discrete forms. The numerical parameters consist of the characteristic cefi Gze
total number of cells in the domaM?), the total number of particle (or the number of
particles per celN,c), and the time steprt. Due to finite values of these parameters, th
discretization gives rise to various numerical errors.

Convergence of numerical solutions to a stochastic differential system can be interp
in either a strong or weak sense [26, 21]. Since statistics of the flow are essentially mor
teresting than modelled particle properties in a PDF/Monte Carlo calculation of enginee
problems, the weak convergence is sought for the particle-mesh algorithm. Precisely
requires that the discrete Lagrangian midf represented biX particles should converge in
distribution to the actual modelled mdf [38], and consequently any mean quantity evalu
by Eg. (13) should converge to the actual mean. Thus, in the sense of weak converg
numerical errors in the particle-mesh method are identified as statistical error, bias,
discretization error. The sum of bias and discretization error yields the total determini
error. Because of the presence of statistical error, the total numerical error in the estime
a mean field (e.g., mean velocity) is random. Hence, the weak convergence of mean:
should be interpreted in a mean-square sense.

Consider estimating a mean quantit®) at a fixed position and time in BDF2DV
calculation with N, particles per cellM? total cells in the domain, and time steyt.
Denoting the estimator dQ) as{Q}n,..m.at, the total numerical error can be decompose
as

eQ = {Qtnemat — (Q) = Zq + Dg = Zq + Bg + S, (19)
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where Xq is the statistical error an®q is the deterministic error which is further de-
composed into the biaBg and the discretization err@g.The possible circumstances in
which the numerical errors arise in the solutiorRBF2DV are sketched in Fig. 1. These
numerical errors are discussed individually as follows.

First of all, the statistical erroEq is due to the fact that the number of particles repre
senting the joint PDF is finite. As mentioned in the forgoing section, the mean fields in
particle-mesh method are estimated by a cloud-in-cell method. To illustrate the natur
statistical error, consider a simple ensemble mean

z

1
—— um_ g gm 20
(Qln N;Q( £ 00), (20)
whereU®™ ™ andd™ are the properties of thath particle. For independent and iden-
tically distributed particles, a basic result from statistics is {f@¥y is an unbiased es-
timator of (Q). However, for finiteN, {Q}y is a random variable, and carries statistice
fluctuations—statistical error. The size of the statistical error is measured by the rms st
tical error in{Q}y, which tends to zero ad ~'/2 (assuming that the variance @ exists)
according to the central limit theorem [22]. Similarly, the statistical exrgin the estimator

{Q}Npe.m.at €an be identified as

2o = {Qnpem.at — ({Qlnpe M. at)- (21)

Itis expected thaEq converges at the rate bfrjcl/ 2 because the kernel estimates are bast
on the total number di,c samples. This behavior of the statistical error has been obsen
in other PDF/Monte Carlo simulations [31, 40, 52]. Theref&g, may be expressed as

Nq = cN, %, (22)

wherew is a standardized random variable (with zero mean and unity variance) jaad
error coefficient to be estimated.

Second, bias is a deterministic error resulting from the statistical error. Numerical s
tions to Egs. (2) and (4) are essentially different from the following well-studied stand
problem [26]: given coefficient&\(x, t) and B(x, t), an initial conditionZ(0) = zy, and a
stopping timeZ > 0, integrate the stochastic differential equation

dZ(t) = AZ(t), t)dt + B(Z(t), t) dW(t). (23)

The difference lies in the fact that in Egs. (2) and (4) the coefficients depend also on m
of functions of the process, suchdsandcs, which are approximated by ensemble mear
that contain statistical errors. Xu and Pope [54] use a simplified model to analyze the im
of the feedback of statistical errors in SDE like Eq. (2). They found that such a feedb
unfortunately breaks down the independence of the particles, and thus induces bic
PDF2DV, the bias in{Q}n,.m.at is identified as

Bo = ({Qnpem.at) — {Qloo.M. At (24)

where{Q}oo,m.at = liMy . o { Q}nye.m.at- It is revealed that the statistical errors affecting
the drift term in Eq. (2) are the major source of bias [55]. Also, both theoretical analy
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[40, 54] and numerical experiments have shown that the bias scales as the reciprocal
number of particles

b
Bo=—. (25)
Q Npc
whereb is another error coefficient. This implies thag converges faster thafig.
Finally, the identification of the discretization error is
S = {Qloo,m,at — (Q). (26)

It consists of two parts: temporal error and spatial error. The finite time/stepsults in
temporal error. The pseudo-time marching schemeDi2DV is second-order accurate,
and the temporal error is not a dominant error [14, 40]. Since it has been well studied in |
the temporal error will not be discussed further in this study. For this reason, her&gfte!
mainly contains spatial error. However, there have been very few studies conducted or
error. It can only be studied in inhomogeneous turbulent flows, and thus costs signifi
computational time. This study takes a great deal to characterize the spatial error.

To summarize, the total numerical error iRBF2DV calculation is composed of statisti-
cal error, bias, and discretization error. The definition of these errors are given by Egs. |
(24), and (26), and the sum of these equations shows that they form a decomposition «
total error, i.e.,

&Q = EQ =+ BQ =+ SQ (27)

Note that the identification presented here is not unique, but it indeed provides a ¢
insight about the nature and origin of numerical errors. Section 5 is devoted to studying
features of these numerical errors.

4. MODEL PROBLEM

The model problem studied is a nonpremixed piloted-jet methane flame described in
An axi-symmetric jet of methane fuel with radiB$ = 3.6 mm is centered in an annular pilot
(Rp=9.0 mm). The pilot burns a mixture of stoichiometric composition and provides a h
source to stabilize the main jet at the exit plane. The flame is accompanied by an uncon
coflowing stream of air. The bulk velocity in the jgy is specified to b&) ; =41.0 m/s, the
pilot has a velocitydp = 24.0 m/s, and the coflow velocityc is 15.0 m/s. These conditions
correspond to thé flame in Masri and Bilger [27]. Measurements have been perform
for temperatures by thermocouple method, velocity by LDA, and compositions by san
probes. Experimental data are provided by Masal. [28].

Thel flame is a good test case for this study. First of all, as experimentindicates, the fl
is blue up to 6&; and there is little local extinction. Therefore, a simple chemistry treatme
(such as the flamelet model) can be used. Consequently, the usage of the IEM mixing n
is also satisfactory. These two models are the simplest models that one can choose ar
the least computational work. Moreover, there have been several PDF calculations o
flame [4, 18, 29, 46]. These computational results also favor the suitability of the mo
used here.
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A cylindrical coordinate system is adopted withrepresenting the axial direction and
y the radial direction. The origin of the coordinate is placed at the center of the fuel
The computational domain is taken to be rectangular and divided into a tokéf oion-
uniform rectangular cells. The outflow boundary is far down-streammj 8Dprevent outlet
boundary conditions from influencing the solutions at the locations where experime
data are provided (up to $9). In they direction, the outer boundary is at Rpto cover
a sufficiently large uniform region in the coflow. Lengths are normalized by the jet rad
R; =3.6 mm. Hence, the computational domain has the normalized s€ate:80 and
Ly =15. The characteristic velocity is taken to be the coflow velddigy= 15 m/s which
is used to normalize all other velocities. Consequently, frequency is normalizeg/By.

Initial and boundary conditions are inferred from the experimental data in the sim
manner to Masriand Pope [29] and Norris and Pope [33]. In a PDF/Monte Carlo calculat
the initial and boundary conditions are specified for the joint PDF, and specifically definec
particles. At the inlet, the velocity PDF is prescribed to be joint normal, and the appropr
Gamma distribution is assigned to turbulence frequency. Both of them have the presc
mean derived as follows. The mean velocity and normal Reynolds stigssexlvv are
given by experimental data (assuming tivat = vv). However, the covariane& and mean
frequencyw are not measured. It should be noted that for the modified turbulence freque
model based on the production-to-dissipation ratio (Eq. (7)), the boundary conditions
the mean frequency and are more crucial than they are in the original model based
the square of velocity-strain rate (Eq. (5)). The latter is solely dependent on mean ra
strain which is determined by the mean velocity profile alone, while the modified mode
affected by both the boundary conditions@fande (Eq. (7)). Hence, proper specifications
of these conditions are of significance. Here, the covariainds evaluated by

v = puy(U202)Y2, (28)

where the correlation coefficient,, is taken to be 0.4 as suggested by Tennekes a
Lumley [49] except for the coflow wherg,, = 0. Then, using the equilibrium assumption
that production equals dissipation, the mean frequency can be determined by

P tv oU
~=—=——— 2
@ = K oy’ (29)

where everything on the right-hand side is known. Boundary conditions other than the |
conditions include the outflow condition at the outlet boundary and reflecting conditic
for the centerline and upper boundaries. These conditions are imposed straightforwart
the particle level. Finally, particles are initialized so as to have the same conditions a
inlet boundary.

Although the agreement between the experimental data and computational results |
emphasized in this study, such comparisons for mean veldgitgean mixture fractio§,
mean temperaturfé, and mean mass fractioso are shown in Fig. 2. In comparison to
the previous computations [4, 29, 46], these results are reasonable for the purpose ¢
study considering the simple models being used. The difference in the mean temperat
due to the use of the simple flamelet model for thermochemistry.
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5. CONVERGENCE RESULTS

The particle-mesh method implementedABF2DV involves several numerical tech-
nigues, such as nonparametric regression and the numerical solution to stochastic ¢
ential equations. For such a complicated algorithm, a complete theoretical analysis
convergence is unlikely to be possible. Alternatively, this task can be fulfilled by numer
experiments in which by varying numerical parameters, a set of calculations are condt
to isolate different numerical errors so as to characterize and quantify them in terms of
ferent numerical parameters. In this section, ush-2DV, comprehensive calculations
are carried out on the piloted-jet flame. The numerical errors identified in Subsection
i.e., statistical error, bias, and discretization error, are investigated individually by syst
atically varying the numerical parameters: the number of particles in eadNgethe total
number of celldM?, and the time stept.

The stationarity of numerical solutions is first inspected. Then, the results about
statistical error are reported followed by a discussion on methods to reduce this error.
is investigated, and especially the behavior of the modified turbulence frequency moc
explored. Then, an effort is devoted to exploring the behavior of discretization error. Fin
a summary is given.

5.1. Stationary Solution

PDF2DVis designed to treat statistically stationary flows, such as the piloted-jet fla
It is therefore expected that the numerical solution reaches a statistically stationary
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(dashed line). Cells, 48 40, Npc = 200.

in a finite number of stepdls in the sense that mean quantities do not evolve with tirr
after Ts = NsAt. Usually, the time to reach stationarify is between 2 and 5 times the
flow residence time. Stationarity of the solution is monitored by observing the evolut
of mean fields at selected grid nodes. The time series of the means of velocity, freque
turbulence kinetic, and mixture fraction at two observation locations are shown in Fig. 3
pointed out in Subsection 3.2, because of using the finite number of particles, the estin
mean quantities embody fluctuations—statistical error. In spite of this, it can be seen
the solutions attain a stationary state arotine: 60, which corresponds tg = 1000 for
At =0.06.

Although the temporal discretization error due to the time atefs not studied in detail
here, it is still worth clarifying the concern whether the time stdphas an impact on the
stationary solutions. For this sake, calculations with four different time steps (Table 1),
the same cell size and value i§f, are made. The corresponding profiles of time-averags

TABLE I
Effects of Time Steps on Stationarity

At Courant number mawAt)
0.05 0.2344 0.0294
0.06 0.2811 0.0354
0.07 0.3288 0.0412
0.08 0.3751 0.0472
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mean velocity and mixture fraction (defined in Subsection 5.2) are compared in Fig
Apparently, the difference among the time stefps=0.05, 0.06, and 0.07, is negligible.

5.2. Statistical Error

Statistical error results from the finite number of particles in each cell. As discusse
Subsection 3.2, for any variab(@, the statistical error is identified as

2o = {Q}npeM.at — {QnpeM.at)- (30)

If Npc is infinite, X o vanishes while it increases bl decreasestq is usually measured
by its standard error

2q = Ny2oq?, (31)

where? is a standardized random variable anglis the standard error defined by

o'é = Npcvar({Q}Npc,M,AI)' (32)

Asymptotically, asNy tends to infinity,cq becomes independent b, so that=q con-
verges as\, /2. Note also thab is the estimator of the error coefficientn Eq. (22).

The estimation ofq requires a number of samples{@} ,. w.at- The ergodic assump-
tion is used for this purpose: that is, instead of sampling from different independent tr
samples are taken from a time serieg@Qf .. m.at during the stationary state. The rms of
Xq is estimated by a standard technique (for the sinand At) [20], and then plotted
againstNyc in Fig. 5. The slopes of the least-square straight line fits to the data are clos
—1/2, thus confirming the expected behavior

Bq = CoNp/?0, (33)

wherecg = o.

Overall, achieving a statistical error level of 5% Ebandz requires about 400 particlesin
each cell. However, the statistical error can be reduced through a time-averaging techr
Suppose an additiondl; steps are computed after the solution reaches its stationary st
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Then, a statistically stationary time series{@f}n,.m.at Of lengthT; = Ny At is obtained.
Generally, such a time series contains a time seabnd values on successive time step
are correlated. A time-averaged mean{f@jn,..m.at is defined by

1 Ts+ T
(st =7 [ (Qernan(®ds (34)

The variance of{ Q}n,..m.at) T, IS much less than that ¢Q}n,..m. at for largeT;. Therefore,
a reduction factor of the statistical error can be defined

(35)

var({{Q}npm.at)1) ] e

Ro(Ty) =
Q(To) l var({Q}nye.m.at)

Note that({Q}ny..m.at)T=0 = {Q}N,..m.at- A standard result of time series analysis [45
shows that

2 2 [T |s|
RGM =+ [ (1— ?t>p(8)d& (36)

wherep(s) is the autocorrelation function of the time series. For a laig&k o behaves
asymptotically as

2t
Rao~ | =. 37
Q T (37)
where the time-scale is defined by
= / p(s)ds. (38)
0

That is, the time-averaging (over a long time) reduces the statistical error by a factc
V/2t/T;. An alternative viewpoint is that the time averag®}n,.m.at)T, is statistically

equivalent to the ensemble average(@f over | = R52 independent samples. For large
Ti/7, this number of sample is= T;/(27). Numerical experiment verifies Eq. (37) as well
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(Fig. 6). The advantage of time-averaging is obvious: for lakgehe statistical error can

be reduced at will so that smoother results can be obtained. This is helpful to disting
the deterministic error from the statistical error. Throughout the following discussion
bias and discretization error, the time-averaging is adopted to minimize the effect of
statistical error.

Obviously, the time scateessentially determines the efficiency of reducing the statistic
error by the time-averaging technique. To estimate the stationary time series of length
T; for a mean quantity, we can make use of the results of Egs. (36), (37), and Fig. 6.
basic idea is to approximate Eq. (36) by an estimation function

- 1 forT < 21,
Ro(T) = . (39)
2t/T otherwise

Then a good estimate ofis the value which minimizes the weighted mean square differen
betweerRq andRq,

() = /O (Ro(8) — Ro(®)2w(s) ds (40)

where the weightv is takenw(s) = 1/s. We performed 30 independent but identical simu
lations to obtain 30 independent stationary time series for estimated mean quantities. |
these samples,is estimated using the above approach. As an example, the reduction fz
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against the time-averaging time scale is plotted in Fig. 6 for the observation point (40, :
The estimated time scaledor different locations are plotted in Fig. 7. It is implied that

T >~d/d, (41)

where the constamt is about 0.1. That is, the time scale is about a tenth of the local tir
scalew™ .

Statistical error can also be decreased by multiple independent simulations (M
PDF2DV is parallelized through particle partitioning and also can be used to make n
tiple independent simulations [37]. Suppose that we have a distributed-memory comy
with M processors, and let each of them perform a statistically identical but indepen
simulation. At any time during the calculation, the mean fields and sample variance
be calculated over all particles that are gathered from all processors through the me:
passing method. Fo¥ independent samples (ID}(B',:)C.M,M (i=1,..., M), anensemble
mean is formed

1A
<{Q}Npc,M,At>M = M Z{Q}(N?JC,M,AP (42)
i=1

It is easy to show that this approach reduces the statistical error by a fagtér Bf. Also,
the 95 percent confidence interval for the mean quantities can be estimated as

8¢ = 1.69

1/2
1 M

(N mat = ({Qhperat) )| - (43)
M 1; Npc, M, At N MAt>M
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Figure 8 gives the radial profiles of mean velocity and mixture fraction and their confide
intervals obtained witbM =10 in comparison to experimental data. The statistical err
reduction by MIS is effective.

5.3. Bias

Bias is the deterministic error caused by using a finite number of particles. Using
decomposition of numerical error in Subsection 3.2, the Biai the estimatof Q} n,. m, at
can be written

Bo(Npe, M, At) = ({Q}npem.at) — {Qloo.M, at- (44)

The major source of bias is statistical errors in the coefficients of the SDEs. The featur
bias have been studied by several authors for different PDF methods [40, 52, 55, 54].
analysis and numerical experiments have shown that the bias scales as Eq. (25) wh
rewritten

bo(M)
Bo = 2
Q Npc

(45)
where the error coefficiertlg indicates the size of bias givax,.. Here,bq is explicitly
expressed as a function of orlly since it has been verified th& is independent oht
for stationary solutions [40, 52, 55].

Calculations are performed for different valuesNy;, but the same values dfl and
At to examine Eq. (45). Results are demonstrated by Fig. 9 where the time-averaged
quantities are used to take the advantage of minimizing the influence of statistical err
linear relationship betweeBg and Np‘cl is very clear. Consequentlyg can be estimated
through two calculations withlye = N2 andNS2:

AN
bo(M) = 2] @ ({Q}N(Q,M,At - {Q}N‘?,M,At)- (46)
NSe' — Nge p p

The slopes of straight lines in Fig. 9 correspondbdo
With the frequency model based on the square of the mean rate of strain Eq. (5), Xu
Pope [55] discovered théily exponentially increases &isdecreases. This is a concern tc
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numerical convergence and computational cost since it means that a better spatial reso
is essentially penalized by a bigger bias. It also implies that more particles per cell
required for finer cells to maintain the accuracy, and this therefore dramatically increase
computational expense. In this study, the frequency model is modified such that the sc
is based on the production-to-dissipation ratio instead. For two representative observ
points, the estimates bk, by Eq. (46) are plotted against cell size in Fig. 10. These resu
do not show the strong and consistent increase of bias with decreasing cell size obs
in [55]. Instead, the majority of the data show that the bias varies little or decreases
decreasing cell size. The only exceptionlg at the point (40, 1) which increases by 60%
over the range oM considered.

5.4. Discretization Error

For the discretization error, neglecting the temporal error as discussed in Subsectiol
our focus is on the spatial error which is due to the finite size of cells. There has bee
study of this error for the PDF particle-mesh method. The reason is that the spatial ¢
can only be explored in the computation of inhomogeneous flows, and that the spatial
must be isolated from the bias and the statistical error. Thus it is a very expensive ta:
do so. The attempt is made here to explore the characteristics of spatial error.

The major source of the spatial errorfDF2DVis the estimation of mean fields by the
cloud-in-cell method. In this method, a smaller valué ¢or largerM) with N, unchanged
yields a more local, and hence more accurate estimate. The discreti@gtisndentified
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as Eqg. (26)

So = {Qloo,m.at — (Q). (47)

The difficulty in estimatingSq is to separate it from the bieBq. SinceBg decreases as
Np—c1 while S is independent o, theoretically one can distinguish them from each othe
by making a calculation with infinityN,c which is unfortunately not practical. However,
alternatively, this task can also be carried out by the Richardson extrapolation. As in Fi
a set of calculations are first made for differé\y; for givenh and At to get the time-
averaged ensemble me&®Q}n,. m.at)7. Then, an estimate of the mean quant@y for
Npc approaching infinity can be obtained by a simple Richardson extrapolation in the i
of Np—cl =0. That is,Qc is calculated by

_ Z£1<{Q}§\in;c,M,At>T - bZiﬂﬁl(Néic))_l

Qe M :

(48)
whereN‘g‘g is the number of particles per cell at{d;)}(,\i,fm!M,At)T is the time-averaged mean
in theith calculation, and\ is the number of calculationgf > 2). As aresultQe is solely
a function of cell sizén (or M~1) and can thus be used to measure the spatial discretizat
error.

Figure 11 plotsQ. (as well as the time-averaged mean quantities for diffelgja)
againstM —2. The observation that a linear relationship exists betwder and Q. in the
region of finer cells is of significance since it implies that a second-order accuracy of sp
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discretization error occurs in the particle-mesh method. Therefore, the discretization ¢
can be written

So= 49)

whereag is an error coefficient to be estimated.

Figure 11 also tells us how big the bias and spatial errors are. For example, to obt:
reasonable 5% accurate mean velocityx#D cells and 100 particles per cell are enoug
at pointsx =40, y=1.0 andx =40, y=2.5 while it requires at least 5050 and 400
particles per cell to get a 7% accuracy for turbulence energy. This is due to the effe
fluctuations in the first moments on the estimation of second moments.

The cell size dependenceis also inspected in Fig. 12 in which time-averaged mean pr
are obtained for different grids. It is shown that the difference among profiles is decrea
with cell refinement.

Finally, one interesting observation is that for many cases, bias is partially cancellec
by the discretization error because of the opposite sigre,aindbg (Fig. 13). This is
very encouraging since it can make the task of error reduction much easier, and ther
significantly reduces the computational cost, as seen later. However, it is to be addres:
future research whgig andbg have such a behavior.
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5.5. Summary

The convergence study above leads to a plain and clear picture about the numerical ¢
in the particle-mesh method for PDF methods. The points that are worth emphasi
are

(1) All numerical errors have been quantified and characterized,hyM, andl ;

(2) Statistical error converges a5 1/;

(3) Time-averaging and MIS can be used to reduce the statistical error;

(4) Bias scales aBII;Cl, and thus converges faster than statistical error (but it is n
removed by time-averaging or MIS);

(5) The modified model of frequency ameliorates dramatically the cell size dep
dence of bias revealed in previous study [55];

(6) Withrespectto the spatial discretization error, the method is second-order accu

with Sg converging at the rate d¥l 2.

Putting Egs. (33), (45), and (49) together, the total error in an estind@N,. m. at
becomes

a b c
2Ry Ry, (50)

EQZSQ+BQ+EQ=M2 N N
pc pc

wherel equalsT; /2t (for largeT;) representing the total number of independent sampl
in stationary solutions when time-averaging is used to reduce the statistical erfet, o
independent simulations when MIS is performed.

To conclude, in terms of numerical parameterdvbind Ny, the numerical solution of
the particle-mesh algorithm is convergent. TherefBi®F-2DV can give as accurate results
as desired by choosing appropridieand N,c. The next two sections attempt to estimats
error coefficientsig, bg, andcg, error parameters such hand the computational cost, and
develop an effective error reduction scheme based on the above understandings of nurr
errors.

6. ESTIMATION OF OPTIMAL NUMERICAL PARAMETERS

The quantification of numerical errors in terms of numerical parameters implies that
can make calculations of turbulent reactive flows usdf~2DV with specified accuracy
by choosing a proper set of numerical parameters. The questions arising are

(1) What criterion for numerical accuracy should be chosen?
(2) What is the computational cost to achieve a certain level of accuracy?

Given a specified requirement of numerical accuracy, define the numerical parameter
minimize the computational cost subject to the specified accuracyagtihel parameters
Then, the results from the forgoing section can be used to estimate the computationa
required to produce a calculation of specified accuracy, and the optimal paramete
functions of the specified level of accuracy. The estimation is done for the calculatior
the piloted-jet flame using time-averaging. Therefore, the numerical parameters invo
include the number of particles in each chll., the total number of cell$/?, and the
number of independent sampledrom a time series of mean quantities. The goal is t
provide an insight of how to choose the optimal numerical parameters.
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6.1. Criterion for Numerical Accuracy

This subsection is to address the first question above. Rewrite the total numerical
in terms ofM, Ny, and|

a b c
VE + N + \/Wpcﬁ. (51)
Hereatfter, the error (henca, b, andc) is normalized by the peak value of the local radia
profile of mean fields. Also, for abbreviatioay, bg, andcg have been replaced lay b,
andc, respectively.
Appreciating that theé® and hence are random variables, we therefore defin@) as
the probability that the absolute total error is less thgpositive number),

SZSQ+BQ+EQ:

F () = Prol|e| < §}. (52)

Hencej is the error tolerance. if is presumed to have a standardized Gaussian distributi
the above equations lead to

F@) = q><1i) - q><—1i), (53)
S S
where
p— 1St Bol (oo (54)
S S
and
D(X) = E[Herf(iﬂ (55)
=3 %)

with erf representing the error function.

One criterion of acceptable accuracy, then, can be defined as that the prolraidjity
must be larger than a critical valdg. For differentF., the acceptable regions ofands
under this condition are shown in Fig. 14 under the contour Ilh@3 = F..

Another criterion can be defined througlwvaighted-errore,

EVE|SQ+BQ|+UUQ, (56)

wherev is a weight for the statistical error. Obviousty, is different frome in that it is a
deterministic error, and thus easier to handle. The criterion is defined by requiring tha
weighted-erroe, is less thars, i.e.,

e, =6(r +vs) <6, (57)
which leads to
r+vs<1 (58)

The region under the dashed line in Fig. 14 corresponds to the acceptable region of Eq
forv=1.3.
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FIG. 14. Contour plot ofF (§) (Eg. (52), solid line) and, (Eq. (58) withv = 1.3, dashed line) as a function
of sandr (Eq. (54)).

Hereafter, an accuracy 6f=5% in term ofe,, is sought for the piloted-jet flame calcu-
lation. That is, Eq. (58) is to be satisfied. Figure 14 shows that the accept regi@mad$
satisfying Eq. (58) fov = 1.3 overlaps with the region satisfied by the first criterion witl
F. =0.9 except for a very small region, even in whi€li0.05) is bigger than 0.8. Therefore,
it is reasonable to use second criterion wita: 1.3 andé = 0.05 with good agreement to
the first criterion ofF. =0.9.

We will consider a calculation in which time-averaging is used to reduce the statist
error. A consecutive stationary time series of lenfjite: N; At is obtained after the solution
reaches the stationary stateTin= NsAt. As discussed above, this stationary time serie
containsl =T, /2t (for T;/r > 1) independent samples, wherds the underlying time
scale of the time series. The total weighted-error becomes

a b 2t \Y?
=202 e . 59
AR VRV (Tth) (59)

This is the basic equation used in the next two sections.

6.2. Estimation of Error Parameters

Before we can use Eqs. (58) and (59), the error coefficertisc, and other parameters,
such asNg andN;, need to be estimated. Tables IV-VI list the estimated error coefficiel
a, b, andc, respectively, for eight different observation points. The maximum values
also given.
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TABLE Il

Time Steps against Cell Sizes
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M At Ts Ns B = Ns/M
20 0.124 60 500 25
30 0.085 60 700 23
40 0.062 60 1000 25
50 0.050 60 1200 24
TABLE IV
Estimated Error Coefficients a
Points J £ k &
(10, 0.5) —-384 —-50.2 370.6 52.1
(20, 1.0 -12.9 —32.6 128.5 -193.1
(20, 2.5) 19.1 22.7 120.6 5.7
(40, 1.0) —40.0 —-1205 433 —240.0
(40, 2.5) 41.7 27.9 57.6 —79.2
(40, 5.0) 215 10.9 26.2 6.7
(60, 5.0) 12.9 0.8 —221.8 1.0
(60, 10.0) 7.4 0.04 —0.58 5.4
max(al) 40.0 120.5 370.6 240.0
TABLE V
Estimated Error Coefficients b
Points U] £ k &
(10, 0.5) 0.76 1.82 —17.19 3.13
(20, 1.0) 0.18 2.06 -27.19 6.85
(20, 2.5) -2.14 —1.88 —16.01 —2.49
(40, 1.0) 2.87 10.97 —-20.07 26.20
(40, 2.5) —4.94 -3.15 —23.04 2.86
(40, 5.0) -3.12 —0.87 —-3.72 -0.51
(60, 5.0) —-5.75 —2.07 —9.85 —2.53
(60, 10.0) —-1.50 -0.01 0.23 -0.20
max(b|) 6.0 11.0 27.2 26.2
TABLE VI
Estimated Error Coefficients ¢
Points J £ k &
(10, 0.5) 0.06 0.09 0.39 0.34
(20, 1.0) 0.09 0.23 0.91 0.49
(20, 2.5) 0.07 0.08 0.43 0.21
(40, 1.0) 0.10 0.34 0.83 0.46
(40, 2.5) 0.13 0.29 0.59 0.52
(40, 5.0) 0.05 0.05 0.08 0.09
(60, 5.0) 0.28 0.22 4.22 0.52
(60, 10.0) 0.06 0.0001 0.2 0.07
max(c|) 0.3 0.35 4.22 0.5
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The other two parameters to be estimated for the purpose of estimating computat
work areNs, the time steps required from the initial state to the stationary staté\aride
time steps for time-averaging. The time step is well represented by

At ~ ?x ) (60)
UM

Note that£, andU are non-dimensional scale and velocity normalizedRyyand Uc,
respectively. HenceAt is also a non-dimensional time step. For a given flow, Eq. (6
implies that
At = (kM) (61)
wherex = 0.4 as shown in Fig. 15 and Table 11l for the piloted-jet flame. Then,
Ns x Ti /At x M, (62)
whereT; is the flow residence time. Hence, it is reasonable to argue that

Ns = M. (63)

The estimation from the calculations gives- 25 (Table III).
On the other hand, if independent samples from a time series of mean quantities
desired for a certain level of numerical accuracy, then

Ny = =—— = uMlI, (64)

whereu = 2« 7. Sincer is related to the local time scajeyaries in the domain. At this point,
we are ready for estimating the computational work and optimal numerical parameter:

0.15
3
slope 2.5
0.10 =
0.05
0.00 :
0.000 0.020 S5 ] 0.040 0.060

FIG. 15. Time step against characteristic cell sMe?.
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6.3. Computational Work and Optimal Numerical Parameters

The computational work in a PDF calculation with? cells, Npc particles per cell, and
a total of N; = Ng + N; time steps can be measured by

W = M2Npe(Ns + Np). (65)

If t; denotes the average CPU time for a particle in each time step (approxirhately
4.5 x 107° s on an SGI Indigo 2 workstation), th&it, is the total CPU time for the full-
scale calculation. Here, we use the piloted-jet flame problem as an example to demon
how to estimate the computational work and optimal numerical parameters. Substitt
Egs. (63) and (64) into Eq. (65) yields

W = M3Npe(B + ul). (66)

The interesting question addressed here is that what are the optimal numerical paran
that minimizeW subject to the condition
a b

MZ " Npe

C
/TNpe

This is a constrained optimization problem, and there are three parameters to be detern
M, Npc, andl.

To proceed with the analysis, we assume ghandb are of the same sign. Unfortunately,
this leads to a grossly inaccurate estimate of the work required—too large by as muc
a factor of 100. This is because it is found tlha&andb tend to have opposite signs (see
Fig. 13). The assumption of the cancellation betweeandb allowsM andN, to be chosen
so that the deterministic error vanishes. But in practicandb are not known a priori, nor
are they the same at all locations and for all quantities. Hence, the estimates based ©
assumption are grossly in error as well.

The Lagrangian multiplier method is used to solve such a constrained optimization p
lem. Let

&) = +v <é. (67)

G=W+2ae, —9),
= M3Npe(B + pl) + 2 (aM 2 + bN H 4 vel T72N Y2 — 5), (68)
wherex is the Lagrangian multiplier, and for convenience, we have implicitly assumed t

a andb take their absolute values. Then, the optimal valueéd pN, and| are solved from
the following equations:

dG

M = 3M?Npe(B + ul) — 22aM3 =0, (69)
dG 1
Noe =M3B+ul) - ,\(prf + Eucl 1/2Npc3/2> =0, (70)
dG 1

91 = uM3Npe — E,\vc|—3/2N,;C1/2 =0, (72)
dG -2 -1 —1/2\—-1/2

d—)L:aM +bN, .+ vel AN — 5 = 0. (72)

These are a set of non-linear equations and can be solved through numerical solution
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TABLE VII
Estimated Computational Work and Optimal Numerical Parameters Subject
to 5% Error at Point (40, 1.0)

Parameters U] £ k &
a 40.00 120.50 43.30 240.00
b 2.87 10.97 20.07 26.20
c 0.10 0.34 0.83 0.46
M 37 65 40 92
Npc 169 692 1406 1621
| 5.44 8.05 12.36 7.32
Ns 933 1633 991 2300
N, 118 305 284 391
W 25x10° 57x10° 2.8x 10 3.7 x 10
CPU 3.09 71.58 35.24 461.60
S 0.029 0.028 0.028 0.028
Bo 0.017 0.016 0.014 0.016
X9 0.003 0.005 0.006 0.004

Note.CPU times correspond to the number of hours on SGI workstation (MIPS R8000 Processor
plus R8010 Floating Point Chip). The error coefficients are assigned their absolute values.

We estimate the optimal computational work and numerical parameters using the ¢
coefficients at point (40, 1.0). According to Tables IV-V, this is the worst case in ter
of error size, particularly in the mean mixture fraction. The results are listed in Table
for the case of using the absolute valuesa@ndb. The estimated computational cost is
obviously too large with respect to the mean frequency. However, if the real valaesdf
b are used instead to do the estimation, the CPU time is dramatically droppedsinde
b cancel out with each other. This is seen in Table VIII.

TABLE VI
Estimated Computational Work and Optimal Numerical Parameters Subject
to 5% Error at Point (40, 1.0)

Parameters U 3 k @
a —40.00 —120.50 —43.30 —240.00
b 2.87 10.97 —20.07 26.20
c 0.10 0.34 0.83 0.46
M 30 30 40 30.00
Npc 35 70 1406 93.60
| 3.22 3.75 12.36 2.83
Ns 750 750 991 750
N; 56 65 284 49
w 25x 10 51x 10 2.8x10° 6.7 x 10
CPU 0.32 0.64 35.24 0.84
S —0.044 —0.134 —0.028 —0.267
Bo 0.082 0.157 -0.014 0.280
2q 0.009 0.021 0.006 0.028

Note.CPU times correspond to the number of hours on SGl workstation (MIPS R8000 Processor
plus R8010 Floating Point Chip). The error coefficients are assigned their actual values.
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FIG. 16. Estimated optimal parameters against error tolerance obtained from Egs. (69)—(72) using
coefficients associated with mean velocity at (40, 1.0). The dashed lines are power laws shown for compari

We have seen that the analysis with the assumptionetlzaid b are of the same sign
overestimates the work requirement by as much as a factor of 100. Nevertheless, we cor
to explore the dependence of the optimal parameters (given by the analysis) as functic
the error tolerancé. Figure 16 gives an impression of how the optimal computational wo
increases when the error toleradatecreasesv at the rate 08 =%%; Npc~ 8729, 1 ~ §794;
and CPU~ 6§39, The optimized errors are plotted against the error toler&irc€ig. 17. It
shows that the spatial error is the major contribution, while the statistical error is relati
small, in particular when is larger. This explains why is relatively small (Table VII).
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FIG.17. Estimated optimal errors against error tolerance obtained from Egs. (69)—(72) using error coeffici
associated with mean velocity at (40, 1.0). Solid line, the total effipspatial errorO, bias; A, statistical error.
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However, it should be noticed that the above analysis is based on the assumptioisthe
much larger than unity.

7. AN ERROR REDUCTION SCHEME

The objective of this section is to develop an error reduction scheme for the determin
error—the sum of the bias and the spatial error, such that the computational work is
reduced. The deterministic error to leading order in the estimat®pfs

DQESQ+BQ=%+N%C- (73)

The second equality is true &4 is large enough, sall > 30 in the piloted-jet flame as
discovered in Section 5. The analysis and scheme presented here are based on the a
tion that the coefficient of bidsis independent of1. This is a reasonable assumption givel
the observed behavior of the bias (see Fig. 10), but it is recognized not to be unifor
accurate.

Suppose that two calculations with different sets of numerical paraméfigrs\;) and
(M2, Np) are performed and make these parameters satisfy

M N
a=-—2= /251 (74)
1 N1

The corresponding estimates(@) are denoted as

Q1 = QnyMys Q2 = Qn,,M,» (75)

where the time step effect has been implicitly neglected as suggested in Sections 3 8
The results from the previous sections suggest that

_ _ a b ch
Qu=(Q) + Doy + To, = Q)+ g + . + w2 (76)
and
_ . a b cy
Qz—(Q)+DQ2+EQ2—<Q)+M722+W2+W» (77)

wherel; andl, are the number of independent samples in the time series of mean fields f
the two calculations, respectively. Note thandb are the same for the two calculations, ant
% and®, are independent standardized random variables. Also, because of the conc
Eq. (74), itis true that

D
Do, = a‘gl. (78)

Now, we use Richardson extrapolation to define a new estimat&jor

a?Qy — Q1

B (79)

QrE
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The error inQ, can be decomposed into deterministic error and statistical error

Qr =(Q) + Dq + Zo. (80)
Itis an easy task to evalualy, , i.e.,

2
_aDQz_Dle

Do, =
Qr w1

0. (81)
The deterministic error ilQ, vanishes. In this sens€; is undoubtedly a better estimate
for (Q) thanQ; and Q.. However, it should be appreciated that the deterministic &gpr
isa/M?2 + b/ Np to leading order It is this leading order error that cancels@p, to leave
smaller secondary errors.

However, it is readily shown that

var(Qy) =

2 2 2
a”var(Qz) +var(Qi) o (a2+ I2> C (82)

(@2 —1)2 T (@ - 172 1) Nalp’
Hence, the statistical errd@, may be amplified. For example, with = |, anda? =2,
var(Q,) =6¢?/N,l, =6 van Q,): the rms statistical error is larger i@, than in Q, by

a factor of+/6. But it is cheaper to increadeby a factor of six than to decrease the
deterministic error by other means.

This error reduction scheme is tested using different conditiord @ind N. The test
cases are listed in Table IX where for some cases Eq. (74) is not exactly satisfied
therefore botfw; based orM andw; based orN (defined in the table) are tried. In Fig. 18,
the relative total errors iQ1, Q2, andQ; are illustrated for these cases (cases A-E). No
that the relative errors are calculated based on the “theoretical” model results which ar
intersections ay axes in Fig. 11 in this case. In all the cases a total error less than 5%
Q: is obtained. It shows that the error reduction scheme is very effective, especially w
the errors are relatively large (e.g., for in the turbulence energy): the reduction schem
effectively reduce the errors since it theoretically eliminates the deterministic error.

This scheme can also save a significant amount of computational time. As discuss
the previous section, to yield an error under 5% for turbulence energy, for the worst cas
optimal values foM andN, are about 40 and 1400, respectively, which requires about
hours on the SGI Indigo 2 workstation (Table VIII). But using Richardson extrapolatit
smaller error can be achieved with two cabes- 30, N =200 andV =40, N = 350 which
together need about 15 hours.

TABLE IX
List of Cases Used to Examine Error Reduction Scheme
Case Condition 1 Condition 2 oy 2
A N, =400, M; =40 N, =600, M, =50 ~1.25 ~1.22
B N; =200, M; =30 N, = 600, M, =50 ~1.67 ~1.73
C N, =200, M, =30 N, =400, M, =40 ~1.33 ~1.41
D N, =200, M; =20 N, =800, M, =40 2 2
E N; =100, M; =20 N, =400, M, =40 2 2
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FIG. 18. Relative errors of mean quantities at point (40, 1.0) for the calculations given in Tablé,IX.
condition 1;V, condition 2;e, extrapolating using;; boxes, extrapolating using,. Dashed lines shows 5%
error. (a) Mean velocity; (b) mean mixture fraction; (c) mean frequency; (d) turbulence energy.

Finally, to make the use of this reduction scheme, we should emphasize that

(1) The numerical parameters should be chosen in such away that, not only is Eq.
assured, but alsM must be large enough to ensure second-order accuracy of the spi
error.

(2) Generally, the total error does not vanish since the statistical error canno
eliminated by this scheme, but it does not have a substantial impact on the reduction c
deterministic error and the computational expense.

(3) The scheme is based on the assumption that the bias is independent of cell
However, the results show that even if this assumption is not uniformly accurate, the a
rithm is still effective in reducing the deterministic error.

(4) Itis noted that the extrapolation technique requires the performance of two or tt
separate calculations. This is of course less convenient than performing a single calcul:
But, in practice, this inconvenience is reduced by appropriate post-processing proced
and the computational saving provided by the extrapolation scheme is worthwhile.

8. CONCLUSIONS

Accurate predictions of turbulent reactive flows need not only physically rational turl
lence models, but also accurate numerical algorithms. This study investigates the num
behaviors of PDF/Monte Carlo methods for turbulent reactive flows.
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The joint velocity-frequency-composition PDF model is solved through a Monte Ca
method—particle-mesh approach. In this algorithm, the flow is modelled as an ensemt:
stochastic particles. Particle properties evolve according to a set of stochastic differe
equations that exhibit the same joint PDF as the modelled joint PDF transport equa
A pseudo-time marching scheme of second-order accuracy is used to solve the stocl
differential equations numerically. The flow field is also described by mean fields which
estimated through kernel estimation (cloud-in-cell method) by dividing the computatio
domain into a number of small cells. This particle-mesh algorithm is currently implemen
in the PDF2DV code which has been adopted in several published applications of 2-L
axi-symmetric flows.

A modified model based on turbulence production-to-dissipation ratio is suggestec
turbulence frequency in order to improve the numerical performance of the joint veloc
frequency-composition PDF model. The purpose is to remedy the problem found
previous study that one of the numerical errors—bias—increases when the cell si:
reduced.

Numerical experiments are conducted systematically and comprehensively on a
case—the piloted-jet nonpremixed turbulent flame of methane. To obtain numerical s
tions in good agreement with experimental data, it is realized that the boundary condit
require careful specification for the modified turbulence frequency model. After a rea:
able comparison is achieved, the focus of this study is then on the convergétieE 2DV
through characterizing various numerical errors.

The numerical errors are first decomposed into statistical error, bias, and discretiz:
error. Both the statistical error and the bias arise due to the finite number of particles w
the finite value of cell size and time step leads to the discretization error. The station:
of numerical solutions is examined and verified to be independent of timeAdtephe
numerical errors are investigated individually through varying numerical parameters:
number of particles in each celly. and the total number of cell§I2. It is revealed that
the statistical error converges &i./?, the bias scales &', and that the use of the
modified frequency model based on the production-to-dissipation ratio can dramatic
ameliorate the cell size dependence of bias. Numerical experiments are also perform
understand the spatial discretization error for the first time. Second-order accuracy wit
spect to the spatial discretization is demonstrated. To summarize, the particle-mesh m
in PDF2DVis convergent in terms of numerical paramet@is, M2, andAt, and there-
fore one can obtain as accurate results as required by choosing the parameters corre
dingly.

The quantification of numerical errors in termshf; andM also provides the opportu-
nity of estimating the computational requirement for an accurate calculation. The opiti
numerical parameters minimizing the computational work subject to a specified leve
error tolerance are evaluated. Itis found that there exists a cancellation between the bie
the discretization error. This fact dramatically reduces the computational work, howe
future work needs to be done to understand this phenomenon and to assess its gen
The results show that to achieve a reasonable 5% relative error (total error), the CPU
on an SGI Indigo 2 workstation required is less than 1 hour for the mean velocity, but al
35 hours for the turbulence kinetic energy.

The time-averaging technique is an useful approach to reduce statistical error. Th
duction of statistical error can also be accomplished by multiple independent simulat
with the parallelized program.
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An effective error reduction scheme is proposed based on Richardson extrapolatic
duce the deterministic error. The scheme is shown to be capable of reducing the le:
ror, i.e., the sum of bias and discretization, by using two calculations with prope
escribed numerical parameters.
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