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This study is to explore the numerical features of a particle-mesh algorithm de-
veloped for a stand-alone joint velocity-frequency-composition PDF method for
turbulent reactive flows. Numerical experiments are performed on a piloted-jet non-
premixed turbulent flame of methane to characterize and quantify various numerical
errors in terms of numerical parameters: number of particles per cellNpc, number
of cells M2, and time step1t . First, a stationary solution is obtained and is verified
to be independent of the time step1t . Then, the total numerical error is identified
as statistical error, bias, and discretization error. It is revealed that the statistical er-
ror converges asN−1/2

pc , and the bias asN−1
pc . The statistical error can be reduced

by time-averaging or by performing multiple independent simulation (e.g., with a
parallelized program). Finally, the scheme is shown to be second-order accurate—
the spatial discretization error converging asM−2. A modified turbulence frequency
model based on the turbulence production-to-dissipation ratio is shown to improve
the numerical behavior of the turbulence model. These results demonstrate that the
particle-mesh method is convergent. Also, the optimal numerical parameters, mini-
mizing computational cost subject to a specified error tolerance, are estimated. An
error reduction scheme, similar to Richardson extrapolation, is proposed and shown
to be quite effective in reducing the deterministic error.c© 1999 Academic Press

Key Words:PDF/Monte Carlo methods; numerical convergence; turbulent reac-
tive flows.

1. INTRODUCTION

It is of significance in engineering applications to predict complex turbulent reactive flows.
The accuracy of such predictions depends mainly on two ingredients: turbulence models
and numerical solution algorithms. The purpose of turbulence modeling is to describe the
physics of turbulent flows as accurately as possible, with the resulting computation being
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economically feasible. On the other hand, accurate numerical algorithms are required to
solve the modelled equations. Both of these factors affect the accuracy of the numerical
prediction of turbulent reactive flows. In the context ofprobability density function(PDF)
methods, it is noted that less attention has been paid to the accuracy of numerical algo-
rithms.

Traditional turbulence models, including two-equation models [24, 53] and second-
moment closures [23], are based on Reynolds averaging techniques, and yield modelled
equations for statistical moments. In comparison to these models, PDF methods achieve
closure through a modelled transport equation for the one-point, one-time probability den-
sity functions of certain fluid properties in a turbulent flow [8, 36]. The advantage of PDF
methods is that both convection and reaction are represented exactly without modelling
assumption. Also, a tremendous amount of statistical information contained in the PDFs
obviously provides a fuller description of turbulent flows than two-equation models or
second-moment closures. During the past decade, the progress in PDF methods has been
made from several aspects: adopting a more advanced joint velocity-frequency-composition
PDF method which provides a model for the turbulent time scale [50]; introducing mod-
elling techniques developed in second-moment closures [13, 39, 50]; and developing a
computationally efficient scheme to treat detailed reaction chemistry [42]. These models
have been successfully applied in modeling several inert flows [6, 30], reactive flows, and
turbulent flames [1, 16, 29, 32, 46].

Different numerical solution algorithms are required for turbulence models of different
levels. Moment closures result in a set of partial differential equations. These equations are
usually solved numerically by finite difference or finite volume methods [17]. In contrast to
moment-closure model equations, the modelled PDF transport equation has a completely
different structure. From early times in the development of PDF methods, Monte Carlo tech-
niques have been employed in which the PDF is represented by an ensemble of particles
[35]. Stochastic differential equations (SDEs), which are usually in the form of Langevin
equations, are then constructed to model the particle properties, e.g., velocity and compo-
sitions, such that the particles exhibit the same PDF as turbulent flows.

Monte Carlo methods are widely used in computational physics [19] to solve high-
dimensional problems such as PDFs. Their application in PDF methods has processed
through different stages. In the first method developed, the particles were located at grid
nodes in physical space [35]. Pope [36] then suggested that it is preferable to use the
method in which the particles are continuously distributed. Later, a hybrid method was
implemented in the codePDF2DSin which composition PDFs were calculated by Monte
Carlo methods while a finite-volume method was applied to solve for the mean velocity,
dissipation, and mean pressure fields [3, 5, 18, 32]. More recently, a stand-alone particle-
mesh algorithm was developed for the joint velocity-frequency-composition model [40].
A similar method was implemented in the codePDF2DV. This is a code to calculate
statistically stationary two-dimensional (plane or axi-symmetric) turbulent reactive flows
using the joint velocity-frequency-composition PDF method. It has been applied in several
published calculations [1, 10, 46, 50].

The purpose of this work is to study the numerical accuracy of the particle-mesh algorithm
for PDF methods, in particular thePDF2DVcode. InPDF2DV, the joint velocity-frequency-
composition PDF transport equation is solved by a Monte Carlo particle-mesh method. The
flow domain is divided into a total numberM2 of cells (uniform or non-uniform) while the
fluid is represented by a number of stochastic particlesN. The modelled SDEs for particle
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properties are solved by a pseudo-time marching scheme with time step1t . Therefore, the
numerical parameters in aPDF2DVcalculation consist ofM2,1t , andN, or the number of
particles per cellNpc (Npc≡ N/M2). These parameters essentially determine the accuracy
of numerical solutions.

Usually, weak convergence, i.e., the convergence of expectations or moments, instead
of the PDF itself is sought for PDF methods. The numerical convergence of PDF/Monte
Carlo methods is largely determined by the numerical solution to the modelled SDEs and
the estimation of mean fields from stochastic particles. Numerical solutions to stochas-
tic differential equations have been well studied [26, 21]. Also, it has been proved that
ensemble averages computed from Langevin equations converge to the correct values if
the ensemble averages become time independent [25]. However, the Langevin equations
of particle evolution in PDF methods are essentially different from the standard form in
that the mean fields are part of coefficients in the SDEs and need to be approximated by
their corresponding ensemble averages. Such a feedback of the ensemble averages into the
Langevin equations introduces new sources of numerical error [40, 55]. In previous studies,
four different types of numerical errors have been identified by considering estimating a
mean quantity: statistical error, bias, spatial discretization error, and temporal discretization
error [31, 40, 52, 55]. The convergence of numerical solutions requires that these errors
vanish as the number of particles per cellNpc and the total number of cellsM2 tend to
infinity, and as the time step1t tends to zero.

One concern with the bias revealed in a previous study is that a model of turbulence
frequency based on the square of velocity-strain rate causes the bias to increase when
reducing the cell-size [55]. A modified turbulence frequency model is therefore proposed
to remove the cell-size dependence of bias.

Using a piloted-jet nonpremixed turbulent flame of methane [27] as a test case, compre-
hensive calculations are performed to investigate systematically the convergence behavior
of the PDF method. Precisely, the numerical errors inPDF2DVare characterized and quan-
tified in terms of the numerical parameters. The piloted-jet nonpremixed turbulent methane
flame provides a good test case for this study since it has relatively simple boundary con-
ditions, and a comprehensive experimental data set is available [28]. This flow has been
selected as one of the standard flows for model verification by the International Workshop
on Measurement and Computations of Turbulent Nonpremixed Flames [2] and has also
been studied by different researchers using PDF methods [4, 18, 29, 33, 46]. Since the
focus of this study is on the numerical issues, simple turbulence models and combustion
models are used in the calculations to minimize the computational cost, and the comparison
of numerical results with experimental data is not emphasized.

In the next section, the joint velocity-frequency-composition PDF model is briefly in-
troduced and the effect of specific modeling assumptions on numerical errors is discussed
for the frequency model. Section 3 gives a description of the Monte Carlo particle-mesh
method for PDF methods, i.e., thePDF2DVcode, followed by a discussion of numerical
errors. The test case of the piloted-jet nonpremixed methane flame is described in Section 4,
where the comparison of numerical solutions with the experimental data by Masriet al.
[27] is also presented. In Section 5, the detailed convergence behavior is studied by varying
numerical parameters. Computational cost subject to a specified error level is estimated in
Section 6, and an effective error reduction scheme similar to Richardson extrapolation is
described in Section 7. Conclusions are drawn in the final section.
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2. JOINT PDF FORMULATION

In this section, the joint velocity-frequency-composition PDF model is described for
modeling turbulent reactive flows. The model considered here is similar to that used in
several recent studies [1, 10, 46, 52]. The model equations are given here for completeness
and to make precise the variant of the model being used.

For a turbulent reactive flow, we define the mass density function (mdf)F and the
one-point, one-time Eulerian mass-weighted joint PDF (JPDF)f̃ of velocityU(x, t), com-
position vectorφ(x, t), and turbulence frequencyω(x, t) by

〈ρ〉 f̃ (V,ψ, θ; x, t) = F(V,ψ, θ; x, t)
≡ ρ(ψ)〈δ(U− V)δ(φ−ψ)δ(ω − θ)〉, (1)

where〈 〉 denotes a mean quantity,ρ is the density as a function of compositions, andV,ψ,
andθ are the sample spaces forU,φ, andω, respectively. A model equation forF can be
devised with the modelling theories developed for turbulent flows [36]. In such a modelled
equation, convection and reaction terms are in closed form while models are needed for the
pressure-strain-rate correlation, mixing, and dissipation.

The Monte Carlo method is the basic tool to solve the joint PDF equation. Taking a
Lagrangian viewpoint, the flow is represented by a set of particles. Stochastic differential
equations are then derived to model the evolution of particle properties (e.g., particle ve-
locity) so that a stochastically equivalent system is established: particles exhibit the same
JPDF as that given by the PDF transport equation.

Models for particle velocity, turbulence frequency, scalar mixing, and reaction are de-
scribed in the following subsections. It is worth emphasizing that the models used do not
necessarily capture the physics most correctly for the test case considered, but are chosen
mostly for the purpose of minimizing the computational work.

2.1. Velocity Model

In PDF methods, the fluid particle velocityU+(t) is modelled by the stochastic particle
velocityU∗(t). Langevin models have been developed at different levels forU∗(t) [13, 39,
50]. Since, in this study, there are many computations for different numerical parameters,
to minimize the computational cost, the simplified Langevin model (SLM) is chosen

dU∗(t) = −∇〈p〉〈ρ〉 dt −
(

1

2
+ 3

4
C0

)
Ä(U∗(t)− Ũ) dt + (C0kÄ)1/2 dW, (2)

where ˜ denotes a density-weighted mean quantity, for example,Ũ≡ 〈ρU〉
〈ρ〉 , p is pressure,

W(t) is an isotropic Wiener process,Ä is the conditional mean turbulence frequency (defined
below),k is the turbulence kinetic energy (defined byk= ũi ui /2, whereu=U−Ũ), andC0

is a model constant (Table I). SLM is equivalent to the Rotta model at the second-moment-
closure level [39].

Given the particle velocityU∗(t), the particle positionX∗(t) evolves by

dX∗(t) = U∗(t) dt. (3)
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TABLE I

Model Constants

C0 Cω1 Cω2 C3 C4 Cφ CÄ

2.1 0.56 0.9 1.0 0.25 2.0 0.6893

2.2. Stochastic Model for Turbulence Frequency

A length or time scale is also needed in PDF methods. Several different approaches
have been used in previous applications. In the early development [15], the time scale was
assumed to be uniform across free shear flows. As in other turbulence models, however,
to remedy this deficiency, one can use the mean dissipation (e.g., thek− ε model [24])
or the turbulence frequency equation (e.g., thek−ω model [53]) as information on the
time scale. Such efforts have led to the joint velocity-dissipation-composition model [43]
or the joint velocity-frequency-composition PDF model [50]. The advantages of the latter
are discussed by Van Slootenet al. [50]. Here, the stochastic turbulence frequency model
in [50] is modified and used in the subsequent calculations.

The stochastic model for particle frequencyω∗(t) is

dω∗(t) = −C3(ω
∗ − ω̃)Ä dt − SωÄω

∗(t) dt + [2C3C4ω̃Äω
∗(t)]1/2 dW, (4)

whereW is an independent Wiener process. The model details, such as the definition and
interpretation ofω∗ and the conditional turbulence frequencyÄ, are given in [50]. However,
this model is slightly different in that the mean frequency is replaced by the conditional mean
frequency in the second term on the right-hand side to keep the consistency of definition:
the dissipation of energy ˜ε= kÄ. Note that the specification of the coefficients in Eq. (4)
guarantees thatω∗ is non-negative, and the numerical implementation of the model ensures
that this property is preserved.

In Eq. (4),Sω is the source of turbulence frequency. In previous applications, this term is
modeled as [6, 50]

Sω = C2− C1
Si j Si j

ω̃2 , (5)

whereSi j is the mean rate of strain tensor,

Si j = 1

2

(
∂Ũ i

∂xj
+ ∂Ũ j

∂xi

)
, (6)

and the constantsC2 andC1 are assigned the values 0.9 and 0.08, respectively. Although
Eq. (5) offers some advantages by relaxing the linkage between the energy and dissipation
(or frequency) [11], and gives reasonable results, it is found that this form ofSω causes
numerical problems: it is one of the major sources of bias in the particle-mesh method for
PDF models; it also causes the bias to increase with grid refinement. The reason is that,
in the particle-mesh method, mean velocities are essentially estimated by ensemble means
over particles. Thus, the estimated mean velocities carry fluctuations (of orderN−1/2

pc ). As
shown by Xu and Pope [55], the estimation ofSi j Si j generates relative large bias and causes
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the bias to increase when the mesh size is decreased. To circumvent this numerical difficulty,
a modified model forSω is suggested to replace (5), namely

Sω = Cω2− Cω1
P

ε̃
= Cω2− Cω1

P

kÄ
, (7)

whereP is turbulence production

P = −ũi u j
∂Ũ i

∂xj
, (8)

and model constantsCω1 andCω2 are specified in Table I.
Obviously, by specifying the production in the form used in the standardk− ε model

[53], Eq. (7) reduces to Eq. (5). However, with the use of Eq. (7), the quite small correlation
between the estimated Reynolds stress̃ui u j and the estimated mean velocity is found not
to produce significant bias and to be able to remove or weaken the mesh dependence of
bias. This is an example of the establishment of turbulence models being influenced by its
impact on the numerical implementation.

2.3. Mixing Model

The Lagrangian approach is also used to model the scalar properties following a particle
φ+(t). That is,φ+(t) is modelled by a stochastic processφ∗(t). The effects of molecular
diffusion are accounted for by a mixing model. Again, for the sake of saving the amount of
computational time, the simplest model—IEM or LMSE model [7]—is applied

dφ∗(t) = −1

2
CφÄ(φ

∗(t)− φ̃) dt, (9)

where the standard model constantCφ is used (Table I). Mixing models are crucial in the
PDF calculations of turbulent nonpremixed flames with finite-rate kinetics, and it is well
established that the IEM model is problematic in this respect [48]. However, reasonable
results are obtained when it is used in conjunction with equilibrium or flamelet models—as
here.

2.4. Flamelet Model

To reduce computational work, instead of more advanced models such as reduced chem-
istry [47] and ISAT [42], a flamelet model is adopted for the treatment of chemical reaction.
The flamelet model is a good choice for this study because of its minimal computational cost
and reasonable accuracy for the flame conditions encountered in this study. The flamelet
model views a turbulent flame as an ensemble of laminar flamelets. The structure of flamelets
is then represented by a function of prescribed parameters (namely mixture fractionξ and
scalar dissipationχ ) and is available in the form of a flamelet library. The mixture fraction
in the test case of this study (see Section 4) is defined by

ξ = Zi − Zi 2

Zi 1− Zi 2
, (10)

where the subscripts 1 and 2 refer to fuel and oxidant, respectively, andZi is the mass
fraction of elementi . Therefore, in the jetξ is unity while it is zero in the coflow.
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The flamelet library for methane–air combustion is provided by Peters’ group [34]. It is
further simplified in this study. That is, instead of defining a scalar field as a function of
bothξ andχ , we use a library with a constantχ (namely,χ = 2.5 s−1) but variableξ . This
simplification reduces the flamelet model to be a lookup table inξ . Therefore, all other
scalar fields, in particular the densityρ(ξ), are inferred fromξ . Since the only independent
scalar field isξ , Eq. (9) reduces to

dξ ∗(t) = −1

2
CφÄ(ξ

∗(t)− ξ̃ ) dt. (11)

No doubt this economical description of the thermochemistry is an over-simplification,
and indeed it is observed to cause some discrepancies in the calculations presented below.
But there is no reason to suppose that this has an impact on the numerical issues studied
here. More realistic and accurate treatments of the thermochemistry are described by, for
example, Saxena and Pope [46].

2.5. Modelled PDF Equation

With the above models, the density-weighted JPDF of velocity, frequency, and mixture
fraction is

F(V, ψ, θ; x, t) = 〈ρ〉 f̃ (V, ψ, θ; x, t) ≡ ρ(ξ)〈δ(U− V)δ(ξ − ψ)δ(ω − θ)〉, (12)

whereψ is the sample variable ofξ . Then, one-point statistics of the flow can be computed
from f̃ orF . For example, the density-weighted meanQ̃ of a propertyQ is expressed as

Q̃ = 〈ρQ〉
〈ρ〉 =

∫ ∞∫
−∞

∫ ∫ ∞
0

∫ 1

0
Q∗(V, ψ, θ) f̃ (V, ψ, θ)dψ dθ dV,

= 1

〈ρ〉
∫ ∞∫
−∞

∫ ∫ ∞
0

∫ 1

0
Q∗(V, ψ, θ)F(V, ψ, θ)dψ dθ dV. (13)

The transport equation for̃f (V, ψ, θ; x, t) can be derived following the standard proce-
dures [36] from the SDEs (2), (4), and (11)

∂ f̃

∂t
= −Vi

∂ f̃

∂xi
+ 1

〈ρ〉
∂〈p〉
∂xi

∂ f̃

∂Vi
+
(

1

2
+ 3

4
C0

)
Ä
∂

∂Vi
[ f̃ (Vi − Ũ i )]

+ 1

2
C0kÄ

∂2 f̃

∂Vi ∂Vi
+Ä ∂

∂θ
( f̃ θSω)+ C3Ä

∂

∂θ
[ f̃ (θ − ω̃)]

+C3C4Äω̃
∂2

∂θ2
( f̃ θ)+ 1

2
CφÄ

∂

∂ψ
[ f̃ (ψ − ξ̃ )], (14)

where all model constants are tabulated in Table I.
The PDF transport equation (14) and the SDEs (2), (4), and (11) (in addition tof̃ and

the independent variables) involve means obtained fromf̃ , namely,〈ρ〉, Ũ, Ä, k, ξ̃ , andω̃.
Also, the mean pressure〈p〉 is to be determined implicitly by mean mass conservation [36].
The estimation of these mean fields as well as other numerical issues is discussed in the
next section.
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3. NUMERICAL ASPECTS

The Monte Carlo technique has been proved to be a very effective tool to solve the
modelled JPDF evolution equation, Eq. (14). The numerical scheme used here is a particle-
mesh method in which the joint PDF is represented by an ensemble of particles. The particle
properties are evolved by a set of SDEs (e.g., Eq. (2)), and the mean fields (e.g., the mean
velocities) are estimated at each grid node. This method is implemented in the codePDF2DV
and has been applied in several calculations, such as swirling flows [1], compressible flows
[6], near wall turbulent flows [10], and flames [46].

In a particle method, the basic numerical ingredients are an integration scheme to advance
the particle properties in time; a method of representing and of estimating mean fields; and an
algorithm to determine the mean pressure field and to enforce the mean continuity equation
(for flows with complex reactions, an efficient algorithm to treat the effects of reaction, such
asISAT, is also needed). Although a complete description of the particle-mesh method used
here has not been published, these ingredients have been described individually elsewhere.
This section presents a general description of thePDF2DVcode with brief discussions about
different numerical ingredients. It also discusses the nature and origin of the numerical errors
that are the focus of this study.

3.1. Particle-Mesh Method and PDF2DV Code

Using the particle-mesh method, thePDF2DV code is designed to model statistically
stationary two-dimensional (plane or axi-symmetric) turbulent flows, in particular reactive
flows. For any flow considered, the code adopts a rectangular computational domain. The
domain is then decomposed into a number of small uniform or non-uniform rectangular
cells for the purpose of representing and estimating mean fields. Supposing that there exist
Mx cells in thex direction (axial direction for the axi-symmetric case) andMy cells in the
y direction (radial direction for the axi-symmetric case), then the total number of cells is
M2=Mx ×My. Denoting the extent of the domain asLx in thex direction andLy in the
y direction, respectively, the cell size is then approximately represented byhx =Lx/Mx

(x direction) andhy=Ly/My (y direction). Also, a representative cell size is taken to be
h=√LxLy/M . Thus, for a specific flow,M−1 is a good non-dimensional measure of the
cell size.

The JPDF is represented by an ensemble ofN stochastic particles which model fluid
particles. Suppose at timet , the nth particle has positionX(n), velocity U(n), turbulence
frequencyω(n), and mixture fractionξ (n). All these properties depend only on timet and
evolve according to the modelled SDEs (2), (3), (4), and (11), respectively. Therefore, the
discrete Lagrangian mdfFN is defined as

FN(V, ψ, θ, x; t) = 1m
N∑

n=1

δ
(
U(n) − V

)
δ
(
ξ (n) − ψ)δ(ω(n) − θ)δ(X(n) − x

)
, (15)

where1m is the mass of particles. For the particle system to be a valid representation of
the flow, the correspondence

f̃ = 〈FN〉/q (16)
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FIG. 1. Diagram of the solution ofPDF2DV.

is required, whereq is the particle mass-density

q ≡ 1m
N∑

n=1

〈
δ
(
X(n) − x

)〉
. (17)

This matter has been well discussed in Ref. [38].
The solution procedure in aPDF2DV calculation is shown in Fig. 1. The particles are

initialized for given initial conditions by uniformly distributing them in the physical space
and assigning other properties according to appropriate distributions (e.g., joint normal
distribution for velocities, gamma distribution for turbulence frequency). Then, a pseudo-
time marching scheme [14, 40] is used to solve the SDEs in a discrete form until a statistically
stationary state is reached. By this scheme, particle properties advance in a time step1t
(uniform or non-uniform) that is determined by an extended CFL condition

max

[
1tω̃,min

(
Ũ1t

hx
,

Ṽ1t

hy

)]
< 1. (18)

For an engineering problem, it is desired to obtain the statistics of the flow. Also, at
any time t , the mean fields are required to advance the SDEs. Therefore, it is a very
important task to calculate or estimate the mean fields. In contrast to the hybrid PDF/Monte
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Carlo method (e.g.,PDF2DS [5]) in which major statistics except for the scalar fields
are obtained by solving Reynolds-averaged equations, the estimation of mean fields in
PDF2DVis accomplished by a nonparametric method—kernel estimation method [12, 51].
In particular, it adopts a cloud-in-cell method in which the mean fields on each grid node are
approximated by weighted ensemble means of the particles in the four cells surrounding the
node. The mean fields are then represented as linear splines based on the nodal values, so
that the mean properties at particle locations are interpolated from the means at the nodes.
The details of this method can be found in [9].

Correction algorithms are devised for particle position and velocities to enforce the mean
continuity equation and to obtain the mean pressure field. At first, the position correction
is performed to satisfy the consistency condition. The consistency condition states that the
volume associated with a sub-ensemble of particles equals the geometric volume occupied
by the particles. Then, the particle velocities are corrected so that the divergence of the
mean mass flux is zero. As a result of the correction, mean pressure is obtained as well.
These algorithms have been described in detail in [6, 41]. Finally, note that with the use of
the flamelet model, the particle density is deduced from the particle mixture fraction, and
the mean density is estimated from particles. All the estimated mean fields are substituted
in the SDEs for the next step calculation.

To summarize, in contrast to the hybrid PDF/Monte Carlo method,PDF2DVdoes not
need to be incorporated with another CFD code based on moment closure methods, and
thus forms astand-aloneapproach for modeling turbulent reactive flows.

3.2. Numerical Errors

With the use of the particle-mesh method,PDF2DVsolves the SDEs (2), (4), and (11)
in discrete forms. The numerical parameters consist of the characteristic cell sizeh (or
total number of cells in the domainM2), the total number of particlesN (or the number of
particles per cellNpc), and the time step1t . Due to finite values of these parameters, the
discretization gives rise to various numerical errors.

Convergence of numerical solutions to a stochastic differential system can be interpreted
in either a strong or weak sense [26, 21]. Since statistics of the flow are essentially more in-
teresting than modelled particle properties in a PDF/Monte Carlo calculation of engineering
problems, the weak convergence is sought for the particle-mesh algorithm. Precisely, this
requires that the discrete Lagrangian mdfFN represented byN particles should converge in
distribution to the actual modelled mdf [38], and consequently any mean quantity evaluated
by Eq. (13) should converge to the actual mean. Thus, in the sense of weak convergence,
numerical errors in the particle-mesh method are identified as statistical error, bias, and
discretization error. The sum of bias and discretization error yields the total deterministic
error. Because of the presence of statistical error, the total numerical error in the estimate of
a mean field (e.g., mean velocity) is random. Hence, the weak convergence of mean fields
should be interpreted in a mean-square sense.

Consider estimating a mean quantity〈Q〉 at a fixed position and time in aPDF2DV
calculation withNpc particles per cell,M2 total cells in the domain, and time step1t .
Denoting the estimator of〈Q〉 as{Q}Npc,M,1t , the total numerical error can be decomposed
as

εQ ≡ {Q}Npc,M,1t − 〈Q〉 = 6Q + DQ = 6Q + BQ + SQ, (19)
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where6Q is the statistical error andDQ is the deterministic error which is further de-
composed into the biasBQ and the discretization errorSQ.The possible circumstances in
which the numerical errors arise in the solution ofPDF2DVare sketched in Fig. 1. These
numerical errors are discussed individually as follows.

First of all, the statistical error6Q is due to the fact that the number of particles repre-
senting the joint PDF is finite. As mentioned in the forgoing section, the mean fields in the
particle-mesh method are estimated by a cloud-in-cell method. To illustrate the nature of
statistical error, consider a simple ensemble mean

{Q}N = 1

N

N∑
n=1

Q
(
U(n), ξ (n), θ (n)

)
, (20)

whereU(n), ξ (n), andθ(n) are the properties of thenth particle. For independent and iden-
tically distributed particles, a basic result from statistics is that{Q}N is an unbiased es-
timator of 〈Q〉. However, for finiteN, {Q}N is a random variable, and carries statistical
fluctuations—statistical error. The size of the statistical error is measured by the rms statis-
tical error in{Q}N , which tends to zero asN−1/2 (assuming that the variance ofQ exists)
according to the central limit theorem [22]. Similarly, the statistical error6Q in the estimator
{Q}Npc,M,1t can be identified as

6Q = {Q}Npc,M,1t −
〈{Q}Npc,M,1t

〉
. (21)

It is expected that6Q converges at the rate ofN−1/2
pc , because the kernel estimates are based

on the total number ofNpc samples. This behavior of the statistical error has been observed
in other PDF/Monte Carlo simulations [31, 40, 52]. Therefore,6Q may be expressed as

6Q = cN−1/2
pc ϑ, (22)

whereϑ is a standardized random variable (with zero mean and unity variance), andc is an
error coefficient to be estimated.

Second, bias is a deterministic error resulting from the statistical error. Numerical solu-
tions to Eqs. (2) and (4) are essentially different from the following well-studied standard
problem [26]: given coefficientsA(x, t) andB(x, t), an initial conditionZ(0)= z0, and a
stopping timeT > 0, integrate the stochastic differential equation

d Z(t) = A(Z(t), t) dt + B(Z(t), t) dW(t). (23)

The difference lies in the fact that in Eqs. (2) and (4) the coefficients depend also on means
of functions of the process, such asŨ andω̃, which are approximated by ensemble means
that contain statistical errors. Xu and Pope [54] use a simplified model to analyze the impact
of the feedback of statistical errors in SDE like Eq. (2). They found that such a feedback
unfortunately breaks down the independence of the particles, and thus induces bias. In
PDF2DV, the bias in{Q}Npc,M,1t is identified as

BQ =
〈{Q}Npc,M,1t

〉− {Q}∞,M,1t , (24)

where{Q}∞,M,1t ≡ limNpc→∞{Q}Npc,M,1t . It is revealed that the statistical errors affecting
the drift term in Eq. (2) are the major source of bias [55]. Also, both theoretical analysis



CONVERGENCE OF PDF/MONTE CARLO METHODS 203

[40, 54] and numerical experiments have shown that the bias scales as the reciprocal of the
number of particles

BQ = b

Npc
, (25)

whereb is another error coefficient. This implies thatBQ converges faster than6Q.
Finally, the identification of the discretization error is

SQ = {Q}∞,M,1t − 〈Q〉. (26)

It consists of two parts: temporal error and spatial error. The finite time step1t results in
temporal error. The pseudo-time marching scheme inPDF2DV is second-order accurate,
and the temporal error is not a dominant error [14, 40]. Since it has been well studied in [40],
the temporal error will not be discussed further in this study. For this reason, hereafter,SQ

mainly contains spatial error. However, there have been very few studies conducted on this
error. It can only be studied in inhomogeneous turbulent flows, and thus costs significant
computational time. This study takes a great deal to characterize the spatial error.

To summarize, the total numerical error in aPDF2DVcalculation is composed of statisti-
cal error, bias, and discretization error. The definition of these errors are given by Eqs. (21),
(24), and (26), and the sum of these equations shows that they form a decomposition of the
total error, i.e.,

εQ = 6Q + BQ + SQ. (27)

Note that the identification presented here is not unique, but it indeed provides a good
insight about the nature and origin of numerical errors. Section 5 is devoted to studying the
features of these numerical errors.

4. MODEL PROBLEM

The model problem studied is a nonpremixed piloted-jet methane flame described in [28].
An axi-symmetric jet of methane fuel with radiusRj = 3.6 mm is centered in an annular pilot
(Rp= 9.0 mm). The pilot burns a mixture of stoichiometric composition and provides a heat
source to stabilize the main jet at the exit plane. The flame is accompanied by an unconfined
coflowing stream of air. The bulk velocity in the jetUJ is specified to beUJ = 41.0 m/s, the
pilot has a velocityUP = 24.0 m/s, and the coflow velocityUC is 15.0 m/s. These conditions
correspond to theL flame in Masri and Bilger [27]. Measurements have been performed
for temperatures by thermocouple method, velocity by LDA, and compositions by sample
probes. Experimental data are provided by Masriet al. [28].

TheL flame is a good test case for this study. First of all, as experiment indicates, the flame
is blue up to 60Rj and there is little local extinction. Therefore, a simple chemistry treatment
(such as the flamelet model) can be used. Consequently, the usage of the IEM mixing model
is also satisfactory. These two models are the simplest models that one can choose and cost
the least computational work. Moreover, there have been several PDF calculations of this
flame [4, 18, 29, 46]. These computational results also favor the suitability of the models
used here.
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A cylindrical coordinate system is adopted withx representing the axial direction and
y the radial direction. The origin of the coordinate is placed at the center of the fuel jet.
The computational domain is taken to be rectangular and divided into a total ofM2 non-
uniform rectangular cells. The outflow boundary is far down-stream at 80Rj to prevent outlet
boundary conditions from influencing the solutions at the locations where experimental
data are provided (up to 50Rj ). In the y direction, the outer boundary is at 15Rj to cover
a sufficiently large uniform region in the coflow. Lengths are normalized by the jet radius
Rj = 3.6 mm. Hence, the computational domain has the normalized scale:Lx = 80 and
Lx = 15. The characteristic velocity is taken to be the coflow velocityUC = 15 m/s which
is used to normalize all other velocities. Consequently, frequency is normalized byUC/Rj .

Initial and boundary conditions are inferred from the experimental data in the similar
manner to Masri and Pope [29] and Norris and Pope [33]. In a PDF/Monte Carlo calculation,
the initial and boundary conditions are specified for the joint PDF, and specifically defined for
particles. At the inlet, the velocity PDF is prescribed to be joint normal, and the appropriate
Gamma distribution is assigned to turbulence frequency. Both of them have the prescribed
mean derived as follows. The mean velocity and normal Reynolds stressesũu andṽv are
given by experimental data (assuming that̃ww= ṽv). However, the covariancẽuv and mean
frequency ˜ω are not measured. It should be noted that for the modified turbulence frequency
model based on the production-to-dissipation ratio (Eq. (7)), the boundary conditions for
the mean frequency and̃uv are more crucial than they are in the original model based on
the square of velocity-strain rate (Eq. (5)). The latter is solely dependent on mean rate of
strain which is determined by the mean velocity profile alone, while the modified model is
affected by both the boundary conditions ofũv andω̃ (Eq. (7)). Hence, proper specifications
of these conditions are of significance. Here, the covarianceũv is evaluated by

ũv = ρuv(ũ2ṽ2)1/2, (28)

where the correlation coefficientρuv is taken to be 0.4 as suggested by Tennekes and
Lumley [49] except for the coflow whereρuv = 0. Then, using the equilibrium assumption
that production equals dissipation, the mean frequency can be determined by

ω̃ = P

k
= − ũv

k

∂Ũ

∂y
, (29)

where everything on the right-hand side is known. Boundary conditions other than the inlet
conditions include the outflow condition at the outlet boundary and reflecting conditions
for the centerline and upper boundaries. These conditions are imposed straightforwardly at
the particle level. Finally, particles are initialized so as to have the same conditions as the
inlet boundary.

Although the agreement between the experimental data and computational results is not
emphasized in this study, such comparisons for mean velocityŨ , mean mixture fractioñξ ,
mean temperaturẽT , and mean mass fractions̃YCO are shown in Fig. 2. In comparison to
the previous computations [4, 29, 46], these results are reasonable for the purpose of this
study considering the simple models being used. The difference in the mean temperature is
due to the use of the simple flamelet model for thermochemistry.
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FIG. 2. Comparison of mean profiles atx= 40. Solid line, PDF calculation with 40× 40 cells,1t = 0.08,
andNpc= 200; symbols, experimental data of Masriet al.

5. CONVERGENCE RESULTS

The particle-mesh method implemented inPDF2DV involves several numerical tech-
niques, such as nonparametric regression and the numerical solution to stochastic differ-
ential equations. For such a complicated algorithm, a complete theoretical analysis of its
convergence is unlikely to be possible. Alternatively, this task can be fulfilled by numerical
experiments in which by varying numerical parameters, a set of calculations are conducted
to isolate different numerical errors so as to characterize and quantify them in terms of dif-
ferent numerical parameters. In this section, usingPDF2DV, comprehensive calculations
are carried out on the piloted-jet flame. The numerical errors identified in Subsection 3.2,
i.e., statistical error, bias, and discretization error, are investigated individually by system-
atically varying the numerical parameters: the number of particles in each cellNpc, the total
number of cellsM2, and the time step1t .

The stationarity of numerical solutions is first inspected. Then, the results about the
statistical error are reported followed by a discussion on methods to reduce this error. Bias
is investigated, and especially the behavior of the modified turbulence frequency model is
explored. Then, an effort is devoted to exploring the behavior of discretization error. Finally,
a summary is given.

5.1. Stationary Solution

PDF2DV is designed to treat statistically stationary flows, such as the piloted-jet flame.
It is therefore expected that the numerical solution reaches a statistically stationary state
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FIG. 3. Stationary solutions. Time series of mean quantities at locations (20, 2.5) (solid line) and (40, 5)
(dashed line). Cells, 40× 40, Npc= 200.

in a finite number of stepsNs in the sense that mean quantities do not evolve with time
after Ts= Ns1t . Usually, the time to reach stationarityTs is between 2 and 5 times the
flow residence time. Stationarity of the solution is monitored by observing the evolution
of mean fields at selected grid nodes. The time series of the means of velocity, frequency,
turbulence kinetic, and mixture fraction at two observation locations are shown in Fig. 3. As
pointed out in Subsection 3.2, because of using the finite number of particles, the estimated
mean quantities embody fluctuations—statistical error. In spite of this, it can be seen that
the solutions attain a stationary state aroundTs= 60, which corresponds toNs= 1000 for
1t = 0.06.

Although the temporal discretization error due to the time step1t is not studied in detail
here, it is still worth clarifying the concern whether the time step1t has an impact on the
stationary solutions. For this sake, calculations with four different time steps (Table II), but
the same cell size and value ofNpc, are made. The corresponding profiles of time-averaged

TABLE II

Effects of Time Steps on Stationarity

1t Courant number max(ω̃1t)

0.05 0.2344 0.0294
0.06 0.2811 0.0354
0.07 0.3288 0.0412
0.08 0.3751 0.0472
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FIG. 4. Profiles of time-averaged mean velocity and mixture fraction atx= 40. Symbols,u,1t = 0.05;
n,1t = 0.06; ,,1t = 0.07; e,1t = 0.08. Cells, 30× 30, Npc= 200.

mean velocity and mixture fraction (defined in Subsection 5.2) are compared in Fig. 4.
Apparently, the difference among the time steps,1t = 0.05, 0.06, and 0.07, is negligible.

5.2. Statistical Error

Statistical error results from the finite number of particles in each cell. As discussed in
Subsection 3.2, for any variableQ, the statistical error is identified as

6Q = {Q}Npc,M,1t −
〈{Q}Npc,M,1t

〉
. (30)

If Npc is infinite,6Q vanishes while it increases asNpc decreases.6Q is usually measured
by its standard error

6Q = N−1/2
pc σQϑ, (31)

whereϑ is a standardized random variable andσQ is the standard error defined by

σ 2
Q = Npc var

({Q}Npc,M,1t
)
. (32)

Asymptotically, asNpc tends to infinity,σQ becomes independent ofNpc so that6Q con-
verges asN−1/2

pc . Note also thatσQ is the estimator of the error coefficientc in Eq. (22).
The estimation ofσQ requires a number of samples of{Q}Npc,M,1t . The ergodic assump-

tion is used for this purpose: that is, instead of sampling from different independent trials,
samples are taken from a time series of{Q}Npc,M,1t during the stationary state. The rms of
6Q is estimated by a standard technique (for the sameM and1t) [20], and then plotted
againstNpc in Fig. 5. The slopes of the least-square straight line fits to the data are close to
−1/2, thus confirming the expected behavior

6Q = cQN−1/2
pc ϑ, (33)

wherecQ= σQ.
Overall, achieving a statistical error level of 5% forŨ andξ̃ requires about 400 particles in

each cell. However, the statistical error can be reduced through a time-averaging technique.
Suppose an additionalNt steps are computed after the solution reaches its stationary state.
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FIG. 5. Statistical error in mean velocity and mixture fraction.u, point (40, 2.5);n, point (40, 5);,, point
(60, 5). Cells, 30× 30. The lines are the least-squares fits to the data.

Then, a statistically stationary time series of{Q}Npc,M,1t of lengthTt = Nt1t is obtained.
Generally, such a time series contains a time scaleτ , and values on successive time steps
are correlated. A time-averaged mean for{Q}Npc,M,1t is defined by

〈{Q}Npc,M,1t
〉

Tt
≡ 1

Tt

∫ Ts+Tt

Ts

{Q}Npc,M,1t (s) ds. (34)

The variance of〈{Q}Npc,M,1t 〉Tt is much less than that of{Q}Npc,M,1t for largeTt . Therefore,
a reduction factor of the statistical error can be defined

RQ(Tt ) ≡
[

var
(〈{Q}Npc,M,1t

〉
Tt

)
var
({Q}Npc,M,1t

) ]1/2

. (35)

Note that〈{Q}Npc,M,1t 〉Tt=0={Q}Npc,M,1t . A standard result of time series analysis [45]
shows that

R2
Q(Tt ) = 2

Tt

∫ Tt

0

(
1− |s|

Tt

)
ρ(s) ds, (36)

whereρ(s) is the autocorrelation function of the time series. For a largeTt , RQ behaves
asymptotically as

RQ ∼
√

2τ

Tt
, (37)

where the time-scaleτ is defined by

τ ≡
∫ ∞

0
ρ(s) ds. (38)

That is, the time-averaging (over a long time) reduces the statistical error by a factor of√
2τ/Tt . An alternative viewpoint is that the time average〈{Q}Npc,M,1t 〉Tt is statistically

equivalent to the ensemble average of〈Q〉 over I = R−2
Q independent samples. For large

Tt/τ , this number of sample isI = Tt/(2τ). Numerical experiment verifies Eq. (37) as well
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FIG. 6. Reduction factor of statistical error by time-averaging (RQ, Eq. (34)) and estimation of the time scale
τ (Eq. (38)) for stationary solutions at point (40, 1.0). Line, estimation function(R̂Q, Eq. (39)); symbols, estimate;
(a) mean velocity; (b) turbulence energy; (c) mean frequency; (d) mean mixture fraction.

(Fig. 6). The advantage of time-averaging is obvious: for largeTt the statistical error can
be reduced at will so that smoother results can be obtained. This is helpful to distinguish
the deterministic error from the statistical error. Throughout the following discussion on
bias and discretization error, the time-averaging is adopted to minimize the effect of the
statistical error.

Obviously, the time scaleτ essentially determines the efficiency of reducing the statistical
error by the time-averaging technique. To estimateτ in the stationary time series of length
Tt for a mean quantity, we can make use of the results of Eqs. (36), (37), and Fig. 6. The
basic idea is to approximate Eq. (36) by an estimation function

R̂2
Q(T) =

{
1 for T ≤ 2τ,

2τ/T otherwise.
(39)

Then a good estimate ofτ is the value which minimizes the weighted mean square difference
betweenRQ andR̂Q,

χ(τ) ≡
∫ ∞

0
(R̂Q(s)−RQ(s))

2w(s) ds, (40)

where the weightw is takenw(s)= 1/s. We performed 30 independent but identical simu-
lations to obtain 30 independent stationary time series for estimated mean quantities. From
these samples,τ is estimated using the above approach. As an example, the reduction factor
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FIG. 7. Time scalesτ of stationary mean fields.s, mean velocity;n, turbulence energy;,, mean frequency;
e, mean mixture fraction. (Locations, in order of increasing ˜ω−1, (10, 0.5), (20, 1.0), (40, 1.0), (40, 2.5).)

against the time-averaging time scale is plotted in Fig. 6 for the observation point (40, 1.0).
The estimated time scalesτ for different locations are plotted in Fig. 7. It is implied that

τ ' d/ω̃, (41)

where the constantd is about 0.1. That is, the time scale is about a tenth of the local time
scaleω̃−1.

Statistical error can also be decreased by multiple independent simulations (MIS).
PDF2DV is parallelized through particle partitioning and also can be used to make mul-
tiple independent simulations [37]. Suppose that we have a distributed-memory computer
withM processors, and let each of them perform a statistically identical but independent
simulation. At any time during the calculation, the mean fields and sample variance can
be calculated over all particles that are gathered from all processors through the message
passing method. ForM independent samples of{Q}(i )Npc,M,1t (i = 1, . . . ,M), an ensemble
mean is formed

〈{Q}Npc,M,1t
〉
M =

1

M

M∑
i=1

{Q}(i )Npc,M,1t . (42)

It is easy to show that this approach reduces the statistical error by a factor ofM−1/2. Also,
the 95 percent confidence interval for the mean quantities can be estimated as

δCI = 1.69

[
1

M− 1

M∑
i=1

({Q}(i )Npc,M,1t −
〈{Q}Npc,M,1t

〉
M
)2

]1/2

. (43)
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FIG. 8. Mean profiles from multiple independent simulations (MIS) atx= 40. Symbols are experimental
data. Error bars indicate 95% confidence intervals. Cells, 40× 40, Npc= 200, andM= 10.

Figure 8 gives the radial profiles of mean velocity and mixture fraction and their confidence
intervals obtained withM= 10 in comparison to experimental data. The statistical error
reduction by MIS is effective.

5.3. Bias

Bias is the deterministic error caused by using a finite number of particles. Using the
decomposition of numerical error in Subsection 3.2, the biasBQ in the estimator{Q}Npc,M,1t

can be written

BQ(Npc,M,1t) = 〈{Q}Npc,M,1t
〉− {Q}∞,M,1t . (44)

The major source of bias is statistical errors in the coefficients of the SDEs. The features of
bias have been studied by several authors for different PDF methods [40, 52, 55, 54]. Both
analysis and numerical experiments have shown that the bias scales as Eq. (25) which is
rewritten

BQ = bQ(M)

Npc
, (45)

where the error coefficientbQ indicates the size of bias givenNpc. Here,bQ is explicitly
expressed as a function of onlyM since it has been verified thatBQ is independent of1t
for stationary solutions [40, 52, 55].

Calculations are performed for different values ofNpc, but the same values ofM and
1t to examine Eq. (45). Results are demonstrated by Fig. 9 where the time-averaged mean
quantities are used to take the advantage of minimizing the influence of statistical error. A
linear relationship betweenBQ andN−1

pc is very clear. Consequently,bQ can be estimated
through two calculations withNpc= N(1)

pc andN(2)
pc :

bQ(M) =
N(1)

pc N(2)
pc

N(2)
pc − N(1)

pc

({Q}N(1)
pc ,M,1t − {Q}N(2)

pc ,M,1t

)
. (46)

The slopes of straight lines in Fig. 9 correspond tobQ.
With the frequency model based on the square of the mean rate of strain Eq. (5), Xu and

Pope [55] discovered thatbQ exponentially increases ash decreases. This is a concern to
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FIG. 9. Time-averaged mean quantities againstN−1
pc at (40, 1.0); lines are linear least-squares fits to the

symbols. Cells,u, 30× 30; n, 40× 40; e, 50× 50.

numerical convergence and computational cost since it means that a better spatial resolution
is essentially penalized by a bigger bias. It also implies that more particles per cell are
required for finer cells to maintain the accuracy, and this therefore dramatically increases the
computational expense. In this study, the frequency model is modified such that the source
is based on the production-to-dissipation ratio instead. For two representative observation
points, the estimates ofbQ by Eq. (46) are plotted against cell size in Fig. 10. These results
do not show the strong and consistent increase of bias with decreasing cell size observed
in [55]. Instead, the majority of the data show that the bias varies little or decreases with
decreasing cell size. The only exception is|bk| at the point (40, 1) which increases by 60%
over the range ofM considered.

5.4. Discretization Error

For the discretization error, neglecting the temporal error as discussed in Subsection 3.2,
our focus is on the spatial error which is due to the finite size of cells. There has been no
study of this error for the PDF particle-mesh method. The reason is that the spatial error
can only be explored in the computation of inhomogeneous flows, and that the spatial error
must be isolated from the bias and the statistical error. Thus it is a very expensive task to
do so. The attempt is made here to explore the characteristics of spatial error.

The major source of the spatial error inPDF2DV is the estimation of mean fields by the
cloud-in-cell method. In this method, a smaller value ofh (or largerM) with Npc unchanged
yields a more local, and hence more accurate estimate. The discretizationSQ is identified
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FIG. 10. Error coefficientb of bias against cells size,u, point (20, 2.5);e, point (40, 1.0).

as Eq. (26)

SQ = {Q}∞,M,1t − 〈Q〉. (47)

The difficulty in estimatingSQ is to separate it from the biasBQ. SinceBQ decreases as
N−1

pc while SQ is independent ofNpc, theoretically one can distinguish them from each other
by making a calculation with infinityNpc which is unfortunately not practical. However,
alternatively, this task can also be carried out by the Richardson extrapolation. As in Fig. 9,
a set of calculations are first made for differentNpc for given h and1t to get the time-
averaged ensemble mean〈{Q}Npc,M,1t 〉T . Then, an estimate of the mean quantityQe for
Npc approaching infinity can be obtained by a simple Richardson extrapolation in the limit
of N−1

pc = 0. That is,Qe is calculated by

Qe =
∑M

i=1

〈{Q}(i )Npc,M,1t

〉
T − b

∑M
i=1

(
N(i )

pc

)−1

M , (48)

whereN(i )
pc is the number of particles per cell and〈{Q}(i )Npc,M,1t 〉T is the time-averaged mean

in thei th calculation, andM is the number of calculations (M≥ 2). As a result,Qe is solely
a function of cell sizeh (or M−1) and can thus be used to measure the spatial discretization
error.

Figure 11 plotsQe (as well as the time-averaged mean quantities for differentNpc)
againstM−2. The observation that a linear relationship exists betweenM−2 andQe in the
region of finer cells is of significance since it implies that a second-order accuracy of spatial
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FIG. 11. Mean quantities against cell sizes at point (40, 1.0). Symbols,•, Qe (i.e., Npc=∞); u, Npc= 100;
n, Npc= 200; ,, Npc= 400; x, Npc= 600; v, Npc= 800. Solid lines are linear least-squares fits toQe for
M = 30, 40, and 50. Dashed lines indicate a±5% error region of the estimates of mean quantities in the limit of
Npc=∞ andM =∞.

discretization error occurs in the particle-mesh method. Therefore, the discretization error
can be written

SQ = aQ

M2
, (49)

whereaQ is an error coefficient to be estimated.
Figure 11 also tells us how big the bias and spatial errors are. For example, to obtain a

reasonable 5% accurate mean velocity, 40× 40 cells and 100 particles per cell are enough
at pointsx= 40, y= 1.0 andx= 40, y= 2.5 while it requires at least 50× 50 and 400
particles per cell to get a 7% accuracy for turbulence energy. This is due to the effect of
fluctuations in the first moments on the estimation of second moments.

The cell size dependence is also inspected in Fig. 12 in which time-averaged mean profiles
are obtained for different grids. It is shown that the difference among profiles is decreasing
with cell refinement.

Finally, one interesting observation is that for many cases, bias is partially cancelled out
by the discretization error because of the opposite signs ofaQ andbQ (Fig. 13). This is
very encouraging since it can make the task of error reduction much easier, and therefore
significantly reduces the computational cost, as seen later. However, it is to be addressed in
future research whyaQ andbQ have such a behavior.
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FIG. 12. Time-averaged mean profiles atx= 40 for different cells.u, 20× 20; n, 30× 30; ,, 40× 40;
e, 50× 50. Npc= 200.

FIG. 13. Scatter plot of error coefficientsa andb. Symbols,u, velocity;n, mixture fraction;,, turbulence
energy;e, mixture fraction. Lines are linear least-squares fits to the symbols: solid, velocity; dashed, mixture
fraction; dashed-dotted, turbulence energy; dash-dot-dotted, frequency.
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5.5. Summary

The convergence study above leads to a plain and clear picture about the numerical errors
in the particle-mesh method for PDF methods. The points that are worth emphasizing
are

(1) All numerical errors have been quantified and characterized byNpc, M , andI ;
(2) Statistical error converges asN−1/2

pc ;
(3) Time-averaging and MIS can be used to reduce the statistical error;
(4) Bias scales asN−1

pc , and thus converges faster than statistical error (but it is not
removed by time-averaging or MIS);

(5) The modified model of frequency ameliorates dramatically the cell size depen-
dence of bias revealed in previous study [55];

(6) With respect to the spatial discretization error, the method is second-order accurate,
with SQ converging at the rate ofM−2.

Putting Eqs. (33), (45), and (49) together, the total error in an estimator{Q}Npc,M,1t

becomes

εQ = SQ + BQ +6Q = aQ

M2
+ bQ

Npc
+ cQ√

I Npc
ϑ, (50)

whereI equalsTt/2τ (for largeTt ) representing the total number of independent samples
in stationary solutions when time-averaging is used to reduce the statistical error, orM
independent simulations when MIS is performed.

To conclude, in terms of numerical parameters ofM andNpc, the numerical solution of
the particle-mesh algorithm is convergent. Therefore,PDF2DVcan give as accurate results
as desired by choosing appropriateM andNpc. The next two sections attempt to estimate
error coefficientsaQ, bQ, andcQ, error parameters such asI and the computational cost, and
develop an effective error reduction scheme based on the above understandings of numerical
errors.

6. ESTIMATION OF OPTIMAL NUMERICAL PARAMETERS

The quantification of numerical errors in terms of numerical parameters implies that one
can make calculations of turbulent reactive flows usingPDF2DVwith specified accuracy
by choosing a proper set of numerical parameters. The questions arising are

(1) What criterion for numerical accuracy should be chosen?
(2) What is the computational cost to achieve a certain level of accuracy?

Given a specified requirement of numerical accuracy, define the numerical parameters that
minimize the computational cost subject to the specified accuracy as theoptimal parameters.
Then, the results from the forgoing section can be used to estimate the computational cost
required to produce a calculation of specified accuracy, and the optimal parameters as
functions of the specified level of accuracy. The estimation is done for the calculation of
the piloted-jet flame using time-averaging. Therefore, the numerical parameters involved
include the number of particles in each cellNpc, the total number of cellsM2, and the
number of independent samplesI from a time series of mean quantities. The goal is to
provide an insight of how to choose the optimal numerical parameters.
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6.1. Criterion for Numerical Accuracy

This subsection is to address the first question above. Rewrite the total numerical error
in terms ofM , Npc, andI

ε = SQ + BQ +6Q = a

M2
+ b

N
+ c√

I Npc
ϑ. (51)

Hereafter, the error (hence,a, b, andc) is normalized by the peak value of the local radial
profile of mean fields. Also, for abbreviation,aQ, bQ, andcQ have been replaced bya, b,
andc, respectively.

Appreciating that theϑ and henceε are random variables, we therefore defineF(δ) as
the probability that the absolute total error is less thanδ (positive number),

F(δ) ≡ Prob{|ε| ≤ δ}. (52)

Hence,δ is the error tolerance. Ifϑ is presumed to have a standardized Gaussian distribution,
the above equations lead to

F(δ) = 8
(

1− r

s

)
−8

(
−1+ r

s

)
, (53)

where

r = |SQ + BQ|
δ

, s= σQ

δ
, (54)

and

8(x) = 1

2

[
1+ erf

(
x√
2

)]
, (55)

with erf representing the error function.
One criterion of acceptable accuracy, then, can be defined as that the probabilityF(δ)

must be larger than a critical valueFc. For differentFc, the acceptable regions ofr ands
under this condition are shown in Fig. 14 under the contour linesF(δ)= Fc.

Another criterion can be defined through aweighted-errorεν

εν ≡ |SQ + BQ| + νσQ, (56)

whereν is a weight for the statistical error. Obviously,εν is different fromε in that it is a
deterministic error, and thus easier to handle. The criterion is defined by requiring that the
weighted-errorεν is less thanδ, i.e.,

εν = δ(r + νs) ≤ δ, (57)

which leads to

r + νs ≤ 1. (58)

The region under the dashed line in Fig. 14 corresponds to the acceptable region of Eq. (58)
for ν= 1.3.
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FIG. 14. Contour plot ofF(δ) (Eq. (52), solid line) andεν (Eq. (58) withν= 1.3, dashed line) as a function
of s andr (Eq. (54)).

Hereafter, an accuracy ofδ= 5% in term ofεν is sought for the piloted-jet flame calcu-
lation. That is, Eq. (58) is to be satisfied. Figure 14 shows that the accept region ofr ands
satisfying Eq. (58) forν= 1.3 overlaps with the region satisfied by the first criterion with
Fc= 0.9 except for a very small region, even in whichF(0.05) is bigger than 0.8. Therefore,
it is reasonable to use second criterion withν= 1.3 andδ= 0.05 with good agreement to
the first criterion ofFc= 0.9.

We will consider a calculation in which time-averaging is used to reduce the statistical
error. A consecutive stationary time series of lengthTt = Nt1t is obtained after the solution
reaches the stationary state inTs= Ns1t . As discussed above, this stationary time series
containsI = Tt/2τ (for Tt/τÀ 1) independent samples, whereτ is the underlying time
scale of the time series. The total weighted-error becomes

εν = a

M2
+ b

Npc
+ νc

(
2τ

Tt Npc

)1/2

. (59)

This is the basic equation used in the next two sections.

6.2. Estimation of Error Parameters

Before we can use Eqs. (58) and (59), the error coefficientsa, b, c, and other parameters,
such asNs andNt , need to be estimated. Tables IV–VI list the estimated error coefficients
a, b, andc, respectively, for eight different observation points. The maximum values are
also given.
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TABLE III

Time Steps against Cell Sizes

M 1t Ts Ns β = Ns/M

20 0.124 60 500 25
30 0.085 60 700 23
40 0.062 60 1000 25
50 0.050 60 1200 24

TABLE IV

Estimated Error Coefficients a

Points Ũ ξ̃ k ω̃

(10, 0.5) −38.4 −50.2 370.6 52.1
(20, 1.0) −12.9 −32.6 128.5 −193.1
(20, 2.5) 19.1 22.7 120.6 5.7
(40, 1.0) −40.0 −120.5 −43.3 −240.0
(40, 2.5) 41.7 27.9 57.6 −79.2
(40, 5.0) 21.5 10.9 26.2 6.7
(60, 5.0) 12.9 0.8 −221.8 1.0
(60, 10.0) 7.4 0.04 −0.58 5.4
max(|a|) 40.0 120.5 370.6 240.0

TABLE V

Estimated Error Coefficients b

Points Ũ ξ̃ k ω̃

(10, 0.5) 0.76 1.82 −17.19 3.13
(20, 1.0) 0.18 2.06 −27.19 6.85
(20, 2.5) −2.14 −1.88 −16.01 −2.49
(40, 1.0) 2.87 10.97 −20.07 26.20
(40, 2.5) −4.94 −3.15 −23.04 2.86
(40, 5.0) −3.12 −0.87 −3.72 −0.51
(60, 5.0) −5.75 −2.07 −9.85 −2.53
(60, 10.0) −1.50 −0.01 0.23 −0.20
max(|b|) 6.0 11.0 27.2 26.2

TABLE VI

Estimated Error Coefficients c

Points Ũ ξ̃ k ω̃

(10, 0.5) 0.06 0.09 0.39 0.34
(20, 1.0) 0.09 0.23 0.91 0.49
(20, 2.5) 0.07 0.08 0.43 0.21
(40, 1.0) 0.10 0.34 0.83 0.46
(40, 2.5) 0.13 0.29 0.59 0.52
(40, 5.0) 0.05 0.05 0.08 0.09
(60, 5.0) 0.28 0.22 4.22 0.52
(60, 10.0) 0.06 0.0001 0.2l 0.07
max(|c|) 0.3 0.35 4.22 0.5
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The other two parameters to be estimated for the purpose of estimating computational
work areNs, the time steps required from the initial state to the stationary state, andNt , the
time steps for time-averaging. The time step is well represented by

1t ∼ Lx

Ũ M
. (60)

Note thatLx and Ũ are non-dimensional scale and velocity normalized byRj andUC,
respectively. Hence,1t is also a non-dimensional time step. For a given flow, Eq. (60)
implies that

1t = (κM)−1, (61)

whereκ = 0.4 as shown in Fig. 15 and Table III for the piloted-jet flame. Then,

Ns ∝ Tf /1t ∝ M, (62)

whereTf is the flow residence time. Hence, it is reasonable to argue that

Ns = βM. (63)

The estimation from the calculations givesβ ' 25 (Table III).
On the other hand, ifI independent samples from a time series of mean quantities are

desired for a certain level of numerical accuracy, then

Nt = 2I τ

1t
= µM I , (64)

whereµ= 2κτ . Sinceτ is related to the local time scale,µvaries in the domain. At this point,
we are ready for estimating the computational work and optimal numerical parameters.

FIG. 15. Time step against characteristic cell sizeM−1.
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6.3. Computational Work and Optimal Numerical Parameters

The computational work in a PDF calculation withM2 cells,Npc particles per cell, and
a total ofNt = Ns+ Nt time steps can be measured by

W ≡ M2Npc(Ns + Nt ). (65)

If tc denotes the average CPU time for a particle in each time step (approximatelytc=
4.5× 10−5 s on an SGI Indigo 2 workstation), thenWtc is the total CPU time for the full-
scale calculation. Here, we use the piloted-jet flame problem as an example to demonstrate
how to estimate the computational work and optimal numerical parameters. Substituting
Eqs. (63) and (64) into Eq. (65) yields

W = M3Npc(β + µI ). (66)

The interesting question addressed here is that what are the optimal numerical parameters
that minimizeW subject to the condition

εν =
∣∣∣∣ a

M2
+ b

Npc

∣∣∣∣+ ν c√
I Npc

≤ δ. (67)

This is a constrained optimization problem, and there are three parameters to be determined:
M , Npc, andI .

To proceed with the analysis, we assume thata andb are of the same sign. Unfortunately,
this leads to a grossly inaccurate estimate of the work required—too large by as much as
a factor of 100. This is because it is found thata andb tend to have opposite signs (see
Fig. 13). The assumption of the cancellation betweena andb allowsM andNpc to be chosen
so that the deterministic error vanishes. But in practice,a andb are not known a priori, nor
are they the same at all locations and for all quantities. Hence, the estimates based on this
assumption are grossly in error as well.

The Lagrangian multiplier method is used to solve such a constrained optimization prob-
lem. Let

G ≡ W + λ(εν − δ),
= M3Npc(β + µI )+ λ(aM−2+ bN−1

pc + νcI−1/2N−1/2
pc − δ), (68)

whereλ is the Lagrangian multiplier, and for convenience, we have implicitly assumed that
a andb take their absolute values. Then, the optimal values ofM , N, andI are solved from
the following equations:

dG

d M
= 3M2Npc(β + µI )− 2λaM−3 = 0, (69)

dG

d Npc
= M3(β + µI )− λ

(
bN−2

pc +
1

2
νcI−1/2N−3/2

pc

)
= 0, (70)

dG

d I
= µM3Npc− 1

2
λνcI−3/2N−1/2

pc = 0, (71)

dG

dλ
= aM−2+ bN−1

pc + νcI−1/2N−1/2
pc − δ = 0. (72)

These are a set of non-linear equations and can be solved through numerical solution [44].
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TABLE VII

Estimated Computational Work and Optimal Numerical Parameters Subject

to 5% Error at Point (40, 1.0)

Parameters Ũ ξ̃ k ω̃

a 40.00 120.50 43.30 240.00
b 2.87 10.97 20.07 26.20
c 0.10 0.34 0.83 0.46
M 37 65 40 92

Npc 169 692 1406 1621
I 5.44 8.05 12.36 7.32

Ns 933 1633 991 2300
Nt 118 305 284 391
W 2.5× 108 5.7× 109 2.8× 109 3.7× 1010

CPU 3.09 71.58 35.24 461.60
SQ 0.029 0.028 0.028 0.028
BQ 0.017 0.016 0.014 0.016
6Q 0.003 0.005 0.006 0.004

Note.CPU times correspond to the number of hours on SGI workstation (MIPS R8000 Processor
plus R8010 Floating Point Chip). The error coefficients are assigned their absolute values.

We estimate the optimal computational work and numerical parameters using the error
coefficients at point (40, 1.0). According to Tables IV–V, this is the worst case in terms
of error size, particularly in the mean mixture fraction. The results are listed in Table VII
for the case of using the absolute values ofa andb. The estimated computational cost is
obviously too large with respect to the mean frequency. However, if the real values ofa and
b are used instead to do the estimation, the CPU time is dramatically dropped sincea and
b cancel out with each other. This is seen in Table VIII.

TABLE VIII

Estimated Computational Work and Optimal Numerical Parameters Subject

to 5% Error at Point (40, 1.0)

Parameters Ũ ξ̃ k ω̃

a −40.00 −120.50 −43.30 −240.00
b 2.87 10.97 −20.07 26.20
c 0.10 0.34 0.83 0.46
M 30 30 40 30.00

Npc 35 70 1406 93.60
I 3.22 3.75 12.36 2.83

Ns 750 750 991 750
Nt 56 65 284 49
W 2.5× 107 5.1× 107 2.8× 109 6.7× 107

CPU 0.32 0.64 35.24 0.84
SQ −0.044 −0.134 −0.028 −0.267
BQ 0.082 0.157 −0.014 0.280
6Q 0.009 0.021 0.006 0.028

Note.CPU times correspond to the number of hours on SGI workstation (MIPS R8000 Processor
plus R8010 Floating Point Chip). The error coefficients are assigned their actual values.
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FIG. 16. Estimated optimal parameters against error tolerance obtained from Eqs. (69)–(72) using error
coefficients associated with mean velocity at (40, 1.0). The dashed lines are power laws shown for comparison.

We have seen that the analysis with the assumption thata andb are of the same sign
overestimates the work requirement by as much as a factor of 100. Nevertheless, we continue
to explore the dependence of the optimal parameters (given by the analysis) as functions of
the error toleranceδ. Figure 16 gives an impression of how the optimal computational work
increases when the error toleranceδ decreases:M at the rate ofδ−0.5; Npc∼ δ−1.0; I ∼ δ−0.4;
and CPU∼ δ−3.0. The optimized errors are plotted against the error toleranceδ in Fig. 17. It
shows that the spatial error is the major contribution, while the statistical error is relatively
small, in particular whenδ is larger. This explains whyI is relatively small (Table VII).

FIG. 17. Estimated optimal errors against error tolerance obtained from Eqs. (69)–(72) using error coefficients
associated with mean velocity at (40, 1.0). Solid line, the total error;u, spatial error;e, bias;n, statistical error.
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However, it should be noticed that the above analysis is based on the assumption thatI is
much larger than unity.

7. AN ERROR REDUCTION SCHEME

The objective of this section is to develop an error reduction scheme for the deterministic
error—the sum of the bias and the spatial error, such that the computational work is also
reduced. The deterministic error to leading order in the estimate of〈Q〉 is

DQ ≡ SQ + BQ = a

M2
+ b

Npc
. (73)

The second equality is true asM is large enough, sayM ≥ 30 in the piloted-jet flame as
discovered in Section 5. The analysis and scheme presented here are based on the assump-
tion that the coefficient of biasb is independent ofM . This is a reasonable assumption given
the observed behavior of the bias (see Fig. 10), but it is recognized not to be uniformly
accurate.

Suppose that two calculations with different sets of numerical parameters(M1, N1) and
(M2, N2) are performed and make these parameters satisfy

α ≡ M2

M1
=
√

N2

N1
> 1. (74)

The corresponding estimates of〈Q〉 are denoted as

Q1 = QN1,M1, Q2 = QN2,M2, (75)

where the time step effect has been implicitly neglected as suggested in Sections 3 and 5.
The results from the previous sections suggest that

Q1 = 〈Q〉 + DQ1 +6Q1 = 〈Q〉 +
a

M2
1

+ b

N1
+ cϑ1

(I1N1)1/2
, (76)

and

Q2 = 〈Q〉 + DQ2 +6Q2 = 〈Q〉 +
a

M2
2

+ b

N2
+ cϑ2

(I2N2)1/2
, (77)

whereI1 andI2 are the number of independent samples in the time series of mean fields from
the two calculations, respectively. Note thata andbare the same for the two calculations, and
ϑ1 andϑ2 are independent standardized random variables. Also, because of the condition
Eq. (74), it is true that

DQ2 =
DQ1

α2
. (78)

Now, we use Richardson extrapolation to define a new estimate for〈Q〉

Qr ≡ α2Q2− Q1

α2− 1
. (79)
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The error inQr can be decomposed into deterministic error and statistical error

Qr = 〈Q〉 + DQr +6Qr . (80)

It is an easy task to evaluateDQr , i.e.,

DQr =
α2DQ2 − DQ1

α2− 1
= 0. (81)

The deterministic error inQr vanishes. In this sense,Qr is undoubtedly a better estimate
for 〈Q〉 thanQ1 andQ2. However, it should be appreciated that the deterministic errorDQ

is a/M2+ b/Npc to leading order. It is this leading order error that cancels inQr , to leave
smaller secondary errors.

However, it is readily shown that

var(Qr ) = α2 var(Q2)+ var(Q1)

(α2− 1)2
= α2

(α2− 1)2

(
α2+ I2

I1

)
c2

N2I2
. (82)

Hence, the statistical errorQr may be amplified. For example, withI1= I2 andα2= 2,
var(Qr )= 6c2/N2I2= 6 var(Q2): the rms statistical error is larger inQr than in Q2 by
a factor of

√
6. But it is cheaper to increaseI by a factor of six than to decrease the

deterministic error by other means.
This error reduction scheme is tested using different conditions ofM and N. The test

cases are listed in Table IX where for some cases Eq. (74) is not exactly satisfied and
therefore bothα1 based onM andα2 based onN (defined in the table) are tried. In Fig. 18,
the relative total errors inQ1, Q2, andQr are illustrated for these cases (cases A–E). Note
that the relative errors are calculated based on the “theoretical” model results which are the
intersections aty axes in Fig. 11 in this case. In all the cases a total error less than 5% in
Qr is obtained. It shows that the error reduction scheme is very effective, especially when
the errors are relatively large (e.g., for in the turbulence energy): the reduction scheme can
effectively reduce the errors since it theoretically eliminates the deterministic error.

This scheme can also save a significant amount of computational time. As discussed in
the previous section, to yield an error under 5% for turbulence energy, for the worst case the
optimal values forM andNpc are about 40 and 1400, respectively, which requires about 35
hours on the SGI Indigo 2 workstation (Table VIII). But using Richardson extrapolation,
smaller error can be achieved with two casesM = 30, N= 200 andM = 40, N= 350 which
together need about 15 hours.

TABLE IX

List of Cases Used to Examine Error Reduction Scheme

Case Condition 1 Condition 2 α1 α2

A N1= 400,M1= 40 N2= 600,M2= 50 ∼1.25 ∼1.22
B N1= 200,M1= 30 N2= 600,M2= 50 ∼1.67 ∼1.73
C N1= 200,M1= 30 N2= 400,M2= 40 ∼1.33 ∼1.41
D N1= 200,M1= 20 N2= 800,M2= 40 2 2
E N1= 100,M1= 20 N2= 400,M2= 40 2 2
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FIG. 18. Relative errors of mean quantities at point (40, 1.0) for the calculations given in Table IX.n,
condition 1;,, condition 2;•, extrapolating usingα1; boxes, extrapolating usingα2. Dashed lines shows 5%
error. (a) Mean velocity; (b) mean mixture fraction; (c) mean frequency; (d) turbulence energy.

Finally, to make the use of this reduction scheme, we should emphasize that

(1) The numerical parameters should be chosen in such a way that, not only is Eq. (74)
assured, but alsoM must be large enough to ensure second-order accuracy of the spatial
error.

(2) Generally, the total error does not vanish since the statistical error cannot be
eliminated by this scheme, but it does not have a substantial impact on the reduction of the
deterministic error and the computational expense.

(3) The scheme is based on the assumption that the bias is independent of cell size.
However, the results show that even if this assumption is not uniformly accurate, the algo-
rithm is still effective in reducing the deterministic error.

(4) It is noted that the extrapolation technique requires the performance of two or three
separate calculations. This is of course less convenient than performing a single calculation.
But, in practice, this inconvenience is reduced by appropriate post-processing procedures,
and the computational saving provided by the extrapolation scheme is worthwhile.

8. CONCLUSIONS

Accurate predictions of turbulent reactive flows need not only physically rational turbu-
lence models, but also accurate numerical algorithms. This study investigates the numerical
behaviors of PDF/Monte Carlo methods for turbulent reactive flows.
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The joint velocity-frequency-composition PDF model is solved through a Monte Carlo
method—particle-mesh approach. In this algorithm, the flow is modelled as an ensemble of
stochastic particles. Particle properties evolve according to a set of stochastic differential
equations that exhibit the same joint PDF as the modelled joint PDF transport equation.
A pseudo-time marching scheme of second-order accuracy is used to solve the stochastic
differential equations numerically. The flow field is also described by mean fields which are
estimated through kernel estimation (cloud-in-cell method) by dividing the computational
domain into a number of small cells. This particle-mesh algorithm is currently implemented
in thePDF2DVcode which has been adopted in several published applications of 2-D or
axi-symmetric flows.

A modified model based on turbulence production-to-dissipation ratio is suggested for
turbulence frequency in order to improve the numerical performance of the joint velocity-
frequency-composition PDF model. The purpose is to remedy the problem found in a
previous study that one of the numerical errors—bias—increases when the cell size is
reduced.

Numerical experiments are conducted systematically and comprehensively on a test
case—the piloted-jet nonpremixed turbulent flame of methane. To obtain numerical solu-
tions in good agreement with experimental data, it is realized that the boundary conditions
require careful specification for the modified turbulence frequency model. After a reason-
able comparison is achieved, the focus of this study is then on the convergence ofPDF2DV
through characterizing various numerical errors.

The numerical errors are first decomposed into statistical error, bias, and discretization
error. Both the statistical error and the bias arise due to the finite number of particles while
the finite value of cell size and time step leads to the discretization error. The stationarity
of numerical solutions is examined and verified to be independent of time step1t . The
numerical errors are investigated individually through varying numerical parameters: the
number of particles in each cellNpc and the total number of cellsM2. It is revealed that
the statistical error converges asN−1/2

pc , the bias scales asN−1
pc , and that the use of the

modified frequency model based on the production-to-dissipation ratio can dramatically
ameliorate the cell size dependence of bias. Numerical experiments are also performed to
understand the spatial discretization error for the first time. Second-order accuracy with re-
spect to the spatial discretization is demonstrated. To summarize, the particle-mesh method
in PDF2DV is convergent in terms of numerical parameters,Npc, M2, and1t , and there-
fore one can obtain as accurate results as required by choosing the parameters correspon-
dingly.

The quantification of numerical errors in terms ofNpc andM also provides the opportu-
nity of estimating the computational requirement for an accurate calculation. The optimal
numerical parameters minimizing the computational work subject to a specified level of
error tolerance are evaluated. It is found that there exists a cancellation between the bias and
the discretization error. This fact dramatically reduces the computational work, however,
future work needs to be done to understand this phenomenon and to assess its generality.
The results show that to achieve a reasonable 5% relative error (total error), the CPU time
on an SGI Indigo 2 workstation required is less than 1 hour for the mean velocity, but about
35 hours for the turbulence kinetic energy.

The time-averaging technique is an useful approach to reduce statistical error. The re-
duction of statistical error can also be accomplished by multiple independent simulations
with the parallelized program.
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An effective error reduction scheme is proposed based on Richardson extrapolation to
reduce the deterministic error. The scheme is shown to be capable of reducing the leading
error, i.e., the sum of bias and discretization, by using two calculations with properly
prescribed numerical parameters.
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