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the velocity-dissipation joint-pdf [5, 6]. Solutions of these
equations have been successfully obtained using MonteA particle method which applies the probability density function

(PDF) method to compressible turbulent flows is presented. Solution Carlo algorithms in which the fluid is represented by a large
of the PDF equation is achieved using a Lagrangian/Monte Carlo set of stochastic particles having properties that evolve in
approach. A unique feature of the method is its ability to calculate time. The majority of applications, however, are limited
the mean pressure gradient directly from the particles using a grid-

to incompressible flows, and only recently has work beenfree approach. This is accomplished by applying techniques bor-
done in extending and applying the method to compress-rowed from the field of smoothed particle hydrodynamics. Further-
ible flows having pressure induced density variationsmore, these techniques have been implemented using a recently

discovered algorithm which greatly reduces the computational work [7, 8]. Related to this is the need to develop a general
in 1D. The particle method also incorporates a variance-reduction method for calculating the mean pressure field within the
technique which can significantly reduce statistical error in first and Monte Carlo algorithm. A few approaches exist, but these
second moments of selected mean flow quantities. When combined

are limited in scope: for thin shear flows the mean pressurewith a second-order accurate predictor/corrector scheme, the re-
has been calculated by invoking boundary-layer approxi-sulting particle method provides a feasible way to obtain accurate
mations [9], and for statistically stationary incompressiblePDF solutions to compressible turbulent flow problems. Results

have been obtained for a variety of quasi-1D flows to demonstrate flows the pressure has been obtained from a Poisson equa-
the method’s robustness. These include solutions to both statisti- tion [10]. Recently, a pressure-correction algorithm has
cally stationary and nonstationary problems, and use both periodic been devised and implemented which is applicable to either
and characteristic-based inflow/outflow boundary conditions.

constant density flows or statistically stationary variableConvergence of the method with respect to four different kinds of
density flows [11]. A different approach is to couple thenumerical errors has also been studied. Detailed results are pre-
Monte Carlo code to a finite-volume code which calculatessented which confirm the expected convergence behavior of each

error. Q 1997 Academic Press the mean pressure [8, 12–14]. While this approach can
combine advantages of both methods, the coupling be-
comes complex for compressible reacting flows and this

1. INTRODUCTION drives the need to develop a completely independent and
robust Monte Carlo/PDF method.

Accurate prediction of the properties of complex turbu- The particle method described in this paper addresses
lent reacting flows is an important but challenging problem. these two areas. The method is applicable to compressible
For these types of flows probability density function (PDF) turbulent nonreacting quasi-1D flows in which changes in
methods offer great potential [1]. Compared to conven- pressure lead to corresponding changes in density. Only
tional turbulence models, PDF methods have the primary isentropic flows are presently considered and, hence, flows
advantage of being able to treat the important processes with shocks are excluded. The flows, however, can be either
of convection and reaction exactly [2]; gradient-diffusion statistically stationary or nonstationary, as well as laminar.
models for turbulent transport are unnecessary, plus com- In all cases, the mean pressure field and gradient are calcu-
plete treatment of arbitrarily complex finite-rate reactions lated directly from the particles to give a completely self-
is possible. PDF methods also offer significant advantages contained Monte Carlo/PDF code. Although emphasis has
from a modeling standpoint [3]. been placed on determination of the mean pressure field

Significant progress with PDF methods has been made and only nonreactive flows are examined, it is expected
in the last decade, including derivation of an evolution that extension of the method to include reaction is straight-
equation for the joint-pdf of velocity and composition forward. Extension of the method to 2D is also expected

to be straightforward.[2, 4], and relatively recent development of a model for
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The procedure used to obtain the mean pressure is sim- Section 3. The predictor/corrector scheme used to inte-
grate the stochastic differential equations is described, andple. At each point in the flow the mean fluid density is

proportional to the local particle number density, and the the basics of SPH are presented. This is followed by a
description of the O(N) algorithm, its extension to 2D andpressure is subsequently obtained from a simple isentropic

equation of state. The problem of determining the local 3D, and the variance-reduction technique. The implemen-
tation of boundary conditions is described separately inparticle number density is solved by utilizing techniques

borrowed from smoothed particle hydrodynamics (SPH). Section 4, and numerical results are presented in the final
two sections. Section 5 includes solutions to some sampleSPH is a grid-free particle method that was originally

developed for astrophysical problems [15] yet is also appli- flow problems and a performance test of the variance-
reduction technique, while Section 6 presents a detailedcable to fluid flow problems encountered in industry, of

which the majority are turbulent. This paper describes the convergence study of the numerical errors arising in the
method, and an estimate of CPU time needed to achievefirst application of SPH to turbulent flows. In SPH each

particle is assigned properties which evolve in time ac- an error level of 1%.
cording to specified evolution equations. Appearing in
these equations are coefficients which are interpolated 2. PDF METHOD
from the moving and usually disordered set of particles

The particle method described in this paper is based on a[16]. In this sense SPH fits quite well into a Lagrangian
Lagrangian formulation and is developed for compressibleMonte Carlo/PDF framework.
(variable density) inhomogeneous flows. The applicableSome differences in SPH and Monte Carlo/PDF particle
pdf is therefore the Lagrangian mass density function (mdf)methods also exist. In all previous Monte Carlo/PDF calcu-
of velocity and position. Given a fluid particle with posi-lations the mean fields have been represented as spline
tion x0 at a reference time t0 , its Lagrangian velocity andfunctions on a fixed grid [2], and mean properties at particle
position at time t are defined to be U1(t, x0 ) and x1(t, x0 ),locations are interpolated from the spline functions. In
respectively. The Lagrangian mass density function F (V,SPH the mean quantities for each particle are calculated
x; t) gives the expected mass density at time t correspondingwithout reference to a grid. This particle method is there-
to the joint event U1(t, x0 ) 5 V and x1(t, x0) 5 x [2]. Twofore the first grid-free Monte Carlo/PDF method. While
basic properties of F arethis allows direct particle–particle interactions, it results

in the computational work scaling as O(N 2) (N being the
number of particles) if implemented in a straightforward E F (V, x; t) dV 5 kr(x, t)l (1)
manner, whereas in all present Monte Carlo/PDF methods,
the computational work is of order N. Since large numbers

andof particles are typically required to accurately model tur-
bulent flows, the overall computational cost of using SPH
in a Monte Carlo/PDF framework would quickly become E Q(V, x, t)F(V, x; t) dV 5 krQl 5 krlQ̃, (2)
prohibitive. But a recently developed algorithm for which
the computational work scales as O(N) in 1D overcomes

where krl is the mean fluid density, Q is a random variable,this problem, making accurate and meaningful results fea-
and Q̃ is by definition the density-weighted mean, or Favresible. The algorithm can also be extended to 2D and 3D,
average, of Q. Both integrals are over the velocity sam-and while the work scaling here is no longer O(N), it is
ple space.still less than O(N 2).

In a Monte Carlo simulation of a fluid of constant massThe particle method also employs a variance-reduction
M, F is represented by an ensemble of N stochastic parti-technique to reduce the statistical error produced by the
cles, each of mass Dm 5 M /N, which model fluid particles.Monte Carlo algorithm. The technique, originally applied
The particles, which are continuously distributed in theto 0D homogeneous flows [17], has been extended to ac-
domain, have velocities hU*(n)j and positions hx*(n)j, andcommodate SPH and is successfully applied to the 1D
from them the discrete Lagrangian mdf is defined asinhomogeneous flows considered here. Variance reduction

is performed on first and second moments of calculated
flow quantities, both on the initial condition and at each FN (V, x; t) 5 Dm ON

n51
d(V 2 U*(n))d(x 2 x*(n)). (3)

time-step.
The paper begins by briefly discussing the PDF method:

Asterisks indicate that these particles model fluid particles.the pdf applicable to this problem is introduced, and the
The relationship between FN and F is simply [2]modeled particle evolution equations along with the corre-

sponding modeled pdf evolution equation are presented.
Numerical implementation of the method is discussed in kFN (V, x; t)l 5 F (V, x; t), all N $ 1, (4)
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which establishes the validity of the particle representation. model also assumes high Reynolds number so that dissipa-
tion due to the mean velocities can be neglected. The valueAlthough multitime statistics can be calculated from F, it

contains no two-point information since each particle is C0 5 2.1 recommended for the simplified Langevin model
[20] is used here. Furthermore, the turbulent frequency isconsidered to be a sample from different and independent

realizations of the flow. assumed constant in this study. In more sophisticated mod-
els [5, 6], each particle has its own turbulent frequency

2.1. Evolution Equations which evolves according to an additional stochastic equa-
tion. Some models [4] also attempt to account for ‘‘rapid’’The particle method presented here is applicable to
pressure effects. Compressible turbulence has also beenquasi-1D flows through nozzles in which all properties are
addressed in a recent model which solves a stochastic evo-assumed to vary only in the streamwise (x1) direction. Each
lution equation for the full pressure of each particle [21].particle is assigned a streamwise position x*1 and three
For the purpose of testing the mean pressure algorithm,components of velocity hU*1 , u*2 , u*3 j, where lower-case
however, the simplified Langevin model is judged adequatevelocities denote fluctuations with respect to the Favre
and is therefore chosen over these more sophisticatedaverage. Only fluctuations in the cross-stream velocities
models.need to be considered, since mean cross-stream velocities

Corresponding to the modeled stochastic equations forare zero at the centerline for quasi-1D flow. The modeled
the particles is the modeled transport equation for theevolution equations for these properties apply at the nozzle
Lagrangian mdf F *. Using standard techniques [2] thecenterline. The change in the streamwise particle position
derived equation isover a time interval dt is

dx*1 5 U*1 dt. (5) F *
t

1


x1
[V1F *] 5

C0gk̃
2

2F *
Vj Vj

Using the simplified Langevin model [3, 18] and taking into
1



V1
FH 1

krl
kPl
x1

1 bg(V1 2 Ũ1)J F *G (8)account area effects, the velocity evolution equations are

dU*1 5 2
1

krl
kPl
x1

dt 2 bg(U*1 2 Ũ1) dt
(6)

1 O3
j52



Vj
FH1

2
Ũ1

A
dA
dx1

1 bgJ Vj F *G .

1 (C0gk̃)1/2 dW1 (t)
When compared to the exact evolution equation for F

obtained from the Navier–Stokes equations (for quasi-and
1D flow), it may be seen that modeled terms include the
contributions due to fluctuating pressure gradient and vis-
cous dissipation.du*i 5 2bgu*

i dt 2 S1
2

Ũ1

A
dA
dx1
D u*i dt

(7)
3. NUMERICAL IMPLEMENTATION1 (C0gk̃)1/2 dWi(t), i 5 2, 3.

3.1. Predictor/Corrector SchemeAppearing in the equations is the mean pressure kPl, the
Eulerian mean velocity Ũ1 , the turbulent kinetic energy The stochastic system of particle evolution equations
k̃, the turbulent frequency g (defined as k«l/k̃, where k«l (5)–(7) is integrated forward in time using a second-order
is the mean dissipation), a universal constant C0 , a drift accurate weak predictor/corrector (P/C) scheme. For a
coefficient b, an isotropic vector Wiener process W(t), and general diffusion process of the form
the nozzle cross-sectional area A(x1). All means are evalu-
ated at the particle position x*1 . The drift coefficient b is dx(t) 5 U(t) dt, (9)
defined to be As 1 Df C0, which causes turbulent kinetic

dU(t) 5 a(x[t], U[t], t) dt 1 b(x[t], t) dW(t), (10)energy to be dissipated at the rate k«l in homogeneous
isotropic turbulence.

The simplified Langevin model is a stochastic model for with drift and diffusion coefficients a and b, respectively,
inhomogeneous, incompressible turbulence which, at the the predictor step has the explicit form
level of second moments, is equivalent to Rotta’s model
[19]. The model simulates return to isotropy, although the

x̂k11 5 xk 1 Uk Dt, (11)
pressure gradient and area production terms in Eqs. (6)
and (7) tend to make the turbulence anisotropic. The Ûk11 5 Uk 1 ak Dt 1 bk Dt1/2j k, (12)
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and the corrector step has the averaged form density multiplied by the cross-sectional area. Assuming a
differentiable kernel, gradients of functions are obtained
by direct differentiation of Eq. (18):

xk11 5 xk 1
(Uk 1 Ûk11)

2
Dt, (13)

kQ(x1)lN,h

x1
5 Dm ON

n51

Q(n)

r(n)

K(x1 2 x*1 (n), h)
x1

. (19)Uk11 5 Uk 1
(ak 1 âk11)

2
Dt 1

(bk 1 b̂k11)
2

Dt1/2 j k. (14)

Superscripts k and k 1 1 denote values at time t k and In both Eqs. (18) and (19), smaller values of h give a more
t k11 5 t k 1 Dt, respectively, while ak and âk11 are written local estimate to the mean, but result in fewer particles
for a(xk, Uk, t k) and a(x̂k11, Ûk11, tk11) (similarly for bk

giving significant contributions and hence more statisti-
and b̂k11). The quantity j k

i is a standardized random vari- cal error.
able with zero mean and unit variance. Note that the same The kernel used in this study is symmetric, piecewise-
value of j k

i is used for both the predictor and corrector quartic, and has finite support. The latter implies that only
steps, but that different and independent values of j k

i are a subset of the particles contributes to each kernel estimate.
used for each time step. The time step in Eqs. (11)–(14) The functional form of K(r, h) is
has a maximum value determined by a CFL constraint,
the precise form of which is given in the next section.

It has been verified that this P/C scheme is equivalent K(r, h) 5 Hc(1 1 3ur u/h)(1 2 ur u/h)3 for ur u # h

0 for ur u . h,
(20)

to the Runge–Kutta form of Mil’shtein’s general second-
order weak scheme for stochastic systems [22, 23], and
hence, second-order time accuracy is expected, in theory, where c 5 5/(4h) is a constant obtained from the normal-
for this particle method. ization constraint Eq. (16). From Eq. (20) it is easy to show

that K possesses continuous first and second derivatives.
3.2. SPH Method Implementation of the method is simple. The first step

is to estimate the linear density r(i) for each particle byCoefficients in the particle evolution equations, includ-
replacing Q(n) with r(n) in Eq. (18):ing krl, kPl/x1 , Ũ1 , and k̃, are evaluated directly from the

particles using the kernel estimation techniques of SPH. In
1D the integral form of the kernel estimate for the quantity

r(i) 5 r(x*1 (i)) 5 Dm ON
n51

K(x*1 (i) 2 x*1 (n), h). (21)Q is

kQ(x1)lh 5 Ey

2y
Q(x91)K(x1 2 x 91 , h) dx 91 , (15) Having these, all other quantities can be obtained from

Eqs. (18) and (19). The Favre average Ũ1 , for example, is
obtained fromwhere h, termed the ‘‘smoothing length,’’ is a measure

of the width of the interpolating kernel function K. This
function has the properties

Ũ1
(i) 5

Dm
r(i) ON

n51
U*1 (n) K(x*1 (i) 2 x*1 (n), h). (22)

Ey

2y
K(x1 2 x91 , h) dx91 5 1 (16)

The pressure gradient is obtained in a modified way. For
the isentropic flows considered here, the mean pressureand
and density are related through the equation of state

lim
hR0

K(x1 2 x91 , h) 5 d(x1 2 x91). (17)

SkP l
P0
D5 Skrl

r0
Dc

, (23)
The integral in Eq. (15) can be estimated from the parti-

cles using the discrete form
where c is the ratio of specific heats (c 5 1.4 in this study)
and P0 and r0 are reference values. The pressure gradient

kQ(x1)lN,h 5 Dm ON
n51

Q(n)

r(n) K(x1 2 x*1 (n), h), (18) can then be calculated via the relation

where r(n) is the mean linear density of the nth particle. 2
1

krl
kP l
x1

5 2 c
kP l
r 2 FA

r

x1
2 r

A
x1
G, (24)

In quasi-1D the linear density is just equal to the mean fluid
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which has the advantage of having the linear density inside ties to the right and left of the discontinuity, respectively,
the jump due to the nth particle is thenthe gradient operator [15] as opposed to the pressure.

When SPH is combined with the previously described
predictor/corrector scheme, the time step constraint has S(p)

1 (x1 1 Dx) 2 S(p)
2 (x1 1 Dx)

the form
5 Dm

Q(n)

r(n) [K (p)
1 (x1 1 Dx 2 x*1 (n), h) (28)

Dt # Ct
h

max
i

(uU*1 (i)u 1 a(i))
, (25) 2 K (p)

2 (x1 1 Dx 2 x*1 (n), h)].

These ideas can be implemented to calculate a set of
N 1D kernel estimates with O(N) work. Before proceed-where a(i) is the local mean sound speed for the ith particle,
ing, however, the particles must be sorted by position, e.g.,and Ct is a constant. Numerical tests show that the upper
x*1 (1) # x*1 (2) # ? ? ? # x*1 (N). Assuming the particles arelimit on Ct for stable solutions is about 0.75.
continuously distributed, this sorting can also be done in
O(N) work by ‘‘binning’’ the particles into M cells, where

3.3. O(N) Algorithm M is O(N), and then doing a heapsort in each bin. Since
the average number of particles per bin is N/M, the totalStraightforward calculation of the O(N) coefficients us-
work for the sort scales as M(N/M) log(N/M), which ising the discrete sums in Eqs. (18) and (19) for each of the
O(N).N particles results in the computational work scaling as

Having the sorted set of particles, the first step is to useO(N 2). For kernels with compact support, this work is
Eq. (26) to directly calculate S(p)(x1) for p 5 h0, 1, 2, 3, 4jreadily reduced to O(N N), where N 5 Nh/L is the average
at the first particle location x*1 (1). This involves O(N) work.number of particles contributing to each kernel estimate.
The next step is to alternately use Eqs. (27) and (28) toSince accurate modeling of turbulent flows requires that
obtain the values of S(p) at x1 5 x*1 (2): Eq. (27) is used toN (and hence N) be large, calculation of the coefficients
extrapolate the values of S (p) out to the next discontinuity,using a direct summation algorithm is clearly unacceptable.
and Eq. (28) gives the jump across the discontinuity. EachThis difficulty has been overcome, however, with the devel-
intervening discontinuity is therefore crossed until theopment of an algorithm whose computational work scales
point x*1 (2) is reached. This cyclic process is continued foras O(N) in 1D.
all remaining kernel estimates until the final particle loca-The algorithm takes advantage of the piecewise polyno-
tion x*1 (N) is reached. The total work is O(N) since theremial property of the kernel to expand each kernel estimate
are O(N) discontinuities and stopping points.in a finite Taylor series. To simplify notation, define

The extension of the algorithm to 2D and 3D is analo-
gous to the 1D algorithm. The first step is to arrange the
particles in a tree (for example, a Euclidean minimumS (p)(x1 ) 5 Dm ON

n51

Q(n)

r(n) K (p)(x1 2 x*1 (n), h) (26)
spanning tree) which gives an efficient sequence for gener-
ating the kernel estimates. A direct sum is then used to
calculate the kernel estimate and its derivatives at the rootas the pth derivative of the kernel estimate to the quantity
of the tree. The remaining kernel estimates are obtainedQ at x1 . The Taylor series expansion of Eq. (26) about x1 by alternately extrapolating via a 2D or 3D Taylor seriesusing the piecewise-quartic kernel is
and adding jumps due to discontinuities. For this extension
to work the kernel must also be a tensor-product kernel,
K(x1 , x2) 5 K(x1)K(x2), where K(x) is again a piece-

S(p)(x1 1 Dx) 5 Dm ON
n51

Q(n)

r(n)
O42p

q50

Dx q

q!
K (p1q)(x1 2 x*1 (n), h)

(27)
wise polynomial.

In higher dimensions the computational work no longer
scales purely as O(N). In general, the work in D dimensions5 O42p

q50

Dx q

q!
S(p1q)(x1), p 5 0 ? ? ? 4.

can be shown to scale as

W p N 221/D(h/L)D21

(29)This expansion is valid as long as K(x, h) and its derivatives
are smooth in x [ [x1 2 x*1 (n), x1 1 Dx 2 x*1 (n)) for all n. p N N 121/D,
Jumps in the expansion are caused when x1 1 Dx 2
x*1 (n) is at a point where the kernel has discontinuous deriv- where N 5 N(h/L)D. In 2D this gives W p N N 1/2 com-
atives. The effect of such jumps can be taken into account pared to W p N N for the direct sum implementation.

From the latter form of Eq. (29), it should be clear thatexactly though. Letting subscripts 1 and 2 denote quanti-
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the algorithm offers a computational improvement for all the set of Ne particles, and these contain error, in part
D in the asymptotic limit of N approaching infinity. because the ensemble averages kj lNe

and kji jj lNe
are not

exactly zero and dij , respectively.
3.4. Variance Reduction To obtain the statistical-error-free estimates of the quan-

tities in Eq. (30), four temporary samples are generated forAlthough Monte Carlo algorithms offer a feasible way to
each particle n using specially constructed random vectorssolve evolution equations for pdfs of large dimensionality,
h(n,a) (a 5 1 . . . 4) in place of j(n), and ensemble averagesthey have the drawback of introducing statistical error into
are then formed from these samples. For each particle, thethe calculations. This numerical error, which is usually
four random vectors are geometrically defined to be thedominant over other errors, can arise from many sources,
vertices of a randomly oriented regular tetrahedron lyingincluding initial conditions, Wiener processes, and coeffi-
on the sphere of radius Ï3 centered at the origin. Thecients in the particle evolution equations. Straightforward
following properties then hold:ways of reducing statistical error include using large num-

bers of particles, or averaging results from multiple inde-
pendent simulations. While these methods reduce statisti- kh (n,a)l 5 0, kh(n,a)

i h(n,a)
j l 5 dij , (31)

cal error in all moments, they are inefficient since reducing
the error by a factor of p requires that the computational

andwork increase by a factor of at least p2. A different way
to reduce statistical error is to incorporate a variance-
reduction technique into the Monte Carlo algorithm. Vari- 1

4 O
4

a51
h(n,a) 5 0,

1
4 O

4

a51
h(n,a)

i h(n,a)
j 5 dij . (32)ance-reduction techniques have the potential to greatly

reduce (and in some cases completely remove) the statisti-
cal error in selected moments. Such techniques are there-

For each of the quantities in Eq. (30), these propertiesfore essential in Monte Carlo/PDF calculations.
ensure that ensemble averages formed from these fourThe variance-reduction technique used in this particle
sets of samples are free of primary statistical error. Formethod is one developed by Pope [17] and originally ap-
example, consider determining kU*1 l on the predictor step.plied to 0D homogeneous flows, and it has been extended
By replacing the original random vectors j(n) with the spe-here to accommodate SPH and inhomogeneous 1D flows.
cial random vectors h (n,a), four predictor values, Û*1 (n,a),Variance reduction is performed on all first and second
are generated for each particle from the streamwise veloc-moments of the particle positions and velocities, which in-
ity evolution equation, Eq. (6), via the predictor, Eq. (12).clude
The ensemble average kU*1 l4Ne

, defined as

kx*1 l, kU*i l, kx*1 2 l, kx*1 u*i l, ku*i u*j l. (30)

kU*1 l4Ne
5

1
4Ne

ONe

n51
O4
a51

Û*1 (n,a) , (33)
Clearly it is important to do variance reduction on the
velocities, since these quantities appear as coefficients in
the simplified Langevin equation. It is also important, how-

then has a primary statistical error ofever, to do variance reduction on the positions since they
solely determine the mean pressure gradient.

The method is applied to individual ensembles each con-
kU*1 l4Ne

2 kU*1 l 5
1

4Ne
ONe

n51
O4
a51

h(n,a)
1 b(n) Dt1/2 (34)sisting of Ne particles, where Ne is a specified parameter.

For each ensemble, the variance-reduction process in-
volves two steps: obtaining ensemble estimates to these

which is zero because of the first property in Eq. (32). Itmoments that are free of primary statistical error, and then
can be similarly verified that the statistical error in theadding small corrections to the particle properties so that
ensemble averages for the other quantities is also zero.the moments calculated from the ensemble of particles

Having the statistical-error-free estimates, the correc-equal the statistical-error-free estimates. These two steps
tion to the particle properties can be easily performed.are now briefly described; further details may be found in
Define the vector of particle properties to be q(n) 5the reference.
hx*1 (n), U*1 (n), u*2 (n), u*3 (n)jT; these properties are generatedAt each time step, a set of isotropic random vectors j(n)

using the original set of random vectors j(n) in either theis generated and used to advance the particle properties
predictor or corrector step, and they have ensemble meanon both the predictor and corrector steps (Eqs. (11)–(14)).
b 5 kqlNe

and variance Cij 5 kqiqjlNe
. Both b and C containAt the end of each predictor/corrector step, the quantities

in Eq. (30) are estimated using ensemble averages over statistical error. The correction applied to each particle in
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the ensemble which yields the desired statistical-error-free duct automatically reenters on the opposite side with the
same properties, and (2) kernel estimates are calculatedmean b 5 kql4Ne

and variance Cij 5 kqiqjl4Ne
has the form

using a periodically extended kernel. Section 5.1 presents
a sample flow calculation using periodic boundary condi-q(n) 5 b 1 L(q(n) 2 b), n 5 1 ? ? ? Ne , (35)
tions.

where L is the lower triangular matrix obtained from the 4.2. Inflow/Outflow BCs
matrix equation C 5 LCLT. The correction to the particle

Inflow/outflow boundary conditions allow simulation ofvelocities is of order N 21/2
e Dt1/2, while for the particle posi-

more realistic flows such as the configuration shown in Fig.tions it is of order N 21/2
e Dt3/2. This type of correction is

1. The setup consists of two large reservoirs connectedalso performed on the initial condition, for which the de-
by a convergent–divergent nozzle. One reservoir containssired means and variances are known explicitly.
fluid at stagnation conditions, while the other contains fluidImplementing these ideas into the current particle
held at a lower back pressure PB , traditionally normalizedmethod is straightforward. The first step is to divide the
by the upstream stagnation pressure Po . The pressure dif-domain into local ensembles of Ne particles each. In the
ference between the reservoirs causes fluid to flow through0D case for which the variance-reduction technique was
the nozzle. Turbulence is introduced into the problem byoriginally tested, the entire set of particles was treated
positioning an idealized ‘‘turbulence generator’’ just up-as a single ensemble. For the inhomogeneous 1D flows
stream of the nozzle test section (that portion of the nozzleconsidered here, however, the technique must be applied
being simulated using the particle method). In an actualto many ensembles. The next step is to perform the vari-
experiment the generator might consist of a wire grid orance reduction in each ensemble. This involves calculating
an array of fans.the statistical-error-free estimates from the temporary

It is important to relate flow quantities across the genera-samples obtained using the special random variables, and
tor to each other and to the upstream stagnation condi-then correcting the particle properties obtained using the
tions. Denote quantities just upstream and downstream oforiginal random variables. The final step is to calculate
the generator with subscripts a and b, respectively. Thenew coefficients for the Langevin equation using kernel
inviscid mass and momentum jump conditions across theestimates from the corrected set of particles. The kernel
generator areestimates can be expected to have reduced statistical error

since the ensemble means and variances are statistical-
(36)continuity: ra Ũ1aA 5 rb Ũ1b A,error-free (this is quantitatively studied in Section 5.3).

The whole process is done for the predictor step and re- momentum: Pa 1 raŨ1
2
a 5 Pb 1 rb Ũ1

2
b 1 rbũ 2

1b 1 F/A,
peated for the corrector step using the same groups of par-

(37)ticles.

where A is the cross-sectional area at the generator posi-
4. BOUNDARY CONDITIONS tion. The quantity ũ 2

1b determines the turbulence intensity,
and its value is an input to the problem (as are ũ 2

2b and
Both periodic and characteristic-based inflow/outflow

ũ 2
3b). The drag force F acting on the generator is also

boundary conditions are used in this study, and this section
describes their implementation within the framework of
this particle method. In finite-volume/finite-difference
methods boundary conditions are applied at grid points
on or near boundaries. Particle methods, however, require
that boundary conditions also be applied on particles. The
particle method of this study is grid-free, and hence all
boundary conditions are implemented solely through the
particles.

4.1. Periodic BCs

Periodic boundary conditions have the advantage of be-
ing simple to implement. Their effect on the accuracy and
stability of the numerical method is also minimal; the con-
vergence study in Section 6 uses periodic boundary condi-
tions throughout for this reason. Implementation has two FIG. 1. Physical setup of nozzle using inflow/outflow boundary condi-

tions.parts: (1) a particle which exits either side of the periodic
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assumed known. Assuming steady isentropic flow up- zero everywhere in the domain. The resulting vector of
required mean quantities is therefore V 5 hkrl, Ũ1 , ũ 2

1 ,stream of the generator, this leads to the additional rela-
tions: ũ 2

2 , ũ 2
3 jT. The evolution equations for these quantities, ob-

tained from the equation for F, can be written in matrix
form as

ho 5
c

c 2 1
Po

ro
5

c
c 2 1

Pa

ra
1

U1
2
a

2
,energy: (38)

˜

V
t

1 A
v
x1

5 S, (41)
eq. of state: (39)SPa

Po
D5 Sra

ro
Dc

.

whereThe assumption of steady flow upstream is reasonable since
this will be the case at large time if PB is held fixed. A
final relationship comes by assuming that the entropy does
not increase across the generator, hence the term ‘‘ideal-
ized.’’ The equation of state then has the same form down-
stream of the generator: A 53

U1 krl 0 0 0

kal2 1 u2
1

krl
U1 1 0 0

0 2u2
1 U1 0 0

0 0 0 U1 0

0 0 0 0 U1

4 . (42)

eq. of state: SPb

Po
D5 Srb

ro
Dc

. (40)

˜
˜

˜

˜ ˜

˜

˜

With ũ 2
1b and F as inputs, Eqs. (36)–(40) give five equations

Here, kal is the mean local sound speed [ckP l/krl]1/2. The
in six unknowns. The final input, which will be evident

characteristic speeds, given by the eigenvalues of A, are
shortly, will be an extrapolated value from the interior of
the nozzle.

l1???5 5 hU1 2 Ïkal2 1 3u2
1 , U1 1 Ïkal2 1 3u2

1 , U1 , U1 , U1 j ,˜ ˜ ˜ ˜ ˜ ˜ ˜
Implementation of inflow/outflow boundary conditions

(43)is significantly more complex than periodic boundary con-
ditions, in part because of the compressible nature of the

and the corresponding characteristic variables areflow. These boundary conditions must be designed to allow
traveling pressure waves to escape, which implies some
type of feedback mechanism. One approach which accom-

w1 5 2 krl F 1
krl

kal2 1 u2
1

Ïkal2 1 3u2
1

U
0
G1 U1 2 u2

1F 1
Ïkal2 1 3u2

1

U
0
G,plishes this is characteristic-based boundary conditions,

discussed in detail in Refs. [24, 25]. While this approach
is primarily aimed at grid-based numerical schemes, it has

w2 5 1 krl F 1
krl

kal2 1 u2
1

Ïkal2 1 3u2
1

U
0
G1 U1 1 u2

1F 1
Ïkal2 1 3u2

1

U
0
G,

been successfully implemented in the current particle
method.

In a turbulent flow simulation, the characteristic-based w3 5 2 krl F2
u2

1

krlU0
G1 u2

1 , w4 5 u2
2 , w5 5 u2

3 .
approach begins by transforming the system of governing

˜
˜ ˜

˜ ˜
˜

˜ ˜
˜ ˜

˜
˜ ˜ ˜ (44)

equations for mean quantities into equations for character-
istic variables. In the particle method the governing equa- Here, the system of equations has been linearized about

local values at the end of the previous time step (in bracketstions are ultimately the particle equations of motion (Eqs.
(5)–(7)), but these directly imply an evolution equation and with the subscript 0). The applied boundary values for

the primitive variables are extracted from these character-for the mass density function F (Eq. (8)). This equation
for F together with Eq. (2) subsequently yields governing istic variables, for example Ũ1

BV 5 As(w1 1 w2 ).
Since the flows considered in this study are subsonic, l1equations for any desired mean involving functions of den-

sity and velocities. is less than zero and consequently the characteristic w1 is
outgoing at the inlet and incoming at the outlet. At theThe level of closure determines which mean quantities

are used in the computation of boundary conditions. Con- inlet, w1 is evaluated using values for krl, Ũ1 , and ũ 2
1 ex-

trapolated from the interior, while w225 are evaluated usingsistent with the overall method, the density is represented
only by its mean value. The velocity pdf of incoming and the upstream quantities hrb , Ũ1b , ũ 2

ib j (computed from Eqs.
(36)–(40) using extrapolated density as the additional in-outgoing fluid is assumed to be Gaussian, and hence, it is

completely characterized by its mean and variance. For put). The converse applies at the outlet, with the specified
back pressure used as incoming information. The extrapo-quasi-1D flow, both Ũ2 and Ũ3 are zero. Furthermore, we

impose ũiuj 5 0 for i ? j at the inflow boundary. It can lated values at boundaries are obtained from the particles
using kernel estimates. The extrapolating kernel has thethen be shown that these off-diagonal components remain
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same form as Eq. (20), except that any portion of the The purpose of presenting these results is to show that
the combined PDF/SPH method is robust and can bekernel which extends outside the boundary is set to zero
readily applied to a wide range of problems. Although(along with the appropriate renormalization).
other methods exist for the solution of these problems, aHaving computed the boundary values for krl, Ũ1 , and
performance comparison between them and the currentũ 2

i , the final step is to enforce this at the particle level.
method is not presented. The results shown here are lim-This is accomplished by inserting new particles in buffer
ited to inert flows, and any fair comparison involving PDFzones at both the inlet and outlet. These zones extend
methods ought to also include results for reacting flows.outside the nozzle and have widths proportional to the

kernel smoothing length used in the simulation. New parti-
5.1. Sample Flow Calculation Using Periodic BCscles are uniformly distributed in each buffer zone so as to

yield the required boundary value for mean density, and This example involves unsteady isentropic turbulent flow
their velocities are sampled from a Gaussian pdf having through a periodic nozzle of sinusoidally varying area, with
means and variances given by the boundary values. For a maximum to minimum area ratio of 2 and a period L of
the new particles, both initial and predicted values for 1. For the initial condition, particles are deterministically
mean density and velocity are set to the mean boundary positioned with uniform interparticle spacing Dx 5 L/N
values, and the mean pressure gradient force is set to zero to give constant linear density. The initial velocity pdf
(consistent with having a constant mean density in each is everywhere Gaussian with mean Ũ1 5 1 and variance
zone). ũiuj 5 (0.1ao)2dij , where ao 5 (cPo/ro)1/2 is a reference

The use of such buffer zones has a number of advantages. speed of sound (Po 5 ro 5 1). The turbulent frequency g
is set equal to 1 everywhere. Note that the pressure canFirst, the computation of kernel estimates in the interior
exceed Po in this simulation—Po is a reference pressureof the nozzle requires no modifications to the algorithm.
and not a stagnation pressure.A kernel estimate near the boundary will receive contribu-

Figures 2 and 3 show evolution of the mean flow quanti-tions from both interior and buffer particles. Second, parti-
ties kPl, Ũ1 , and ũiuj . Each field is shown at times t 5 0,cles will flow into and out of the nozzle naturally. Not
t 5 Af , and t 5 As . The mean flow is from left to right, andevery particle in the inlet buffer zone will enter the nozzle
the nozzle throat is located at x1/L 5 As . In this simulationin the course of one time step. It is also possible for interior
16,384 particles were used, with a time step Dt 5 s;A; andparticles to move upstream into the inlet buffer zone, or
a smoothing length h 5 ahA . Variance reduction was alsofor particles in the outlet buffer zone to enter the nozzle,
performed using 64 particles per ensemble. Solid lines arealthough the probability of these events is low. Finally,
the estimated fields obtained by averaging 16 independentthis approach has been found to not affect the overall

stability of the method. Other approaches [26] have been
tried, but these were found to allow unphysical pressure
waves to build up and not properly exit the computa-
tional domain.

The computation of boundary values and insertion of
particles into buffer zones is performed once at the begin-
ning of each time step. At the end of each time step, all
particles remaining in buffer zones are discarded. Results
using inflow/outflow boundary conditions are presented in
Section 5.2.

5. NUMERICAL RESULTS

The numerical properties of the method have been stud-
ied through a variety of quasi-1D test problems. These
problems range from simple steady and unsteady laminar
flows in a constant area duct to nonstationary inhomoge-
neous anisotropic turbulence in a varying area duct. Flows
with shocks are excluded since only isentropic flows are

FIG. 2. Temporal evolution of kPl and Ũ1 for periodic test case. Solidpresently considered. This restraint may be removed, how-
lines are fields obtained by averaging 16 independent simulations, and

ever, by solving an additional evolution equation for the dotted lines (barely visible) show corresponding 95% confidence intervals.
internal energy or enthalpy of each particle and using a The nozzle cross-sectional area varies sinusoidally, with the throat located

at x/L 5 0.5.different equation of state.
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In these calculations using inflow/outflow boundary con-
ditions the back pressure is held fixed, and consequently,
the velocity pdf relaxes to a stationary distribution. The
relaxation time-scale is on the order of the residence time
TR—the average time needed for a fluid particle to flow
completely through the nozzle. Given the stationary mean
density field, TR can be obtained through the integral re-
lation

TR 5
1

ṁss
EL

0
kr(x)l dx, (45)

where ṁss is the steady-state mass flow rate through the
nozzle. The laminar steady-state solution provides a good
initial estimate to TR . Each simulation is integrated out
several residence times to insure that all information from
the initial conditions has convected out of the nozzle and
that the flow has reached a stationary distribution.FIG. 3. Temporal evolution of ũiuj for periodic test case; dotted lines

For stationary distributions the statistical error may beshow 95% confidence intervals for mean fields. Sinusoidal nozzle area
distribution, with throat at x/L 5 0.5. further reduced by using time-averaging. In this procedure,

flow quantities are sampled once per time step and aver-
aged together over a finite time interval. Although the
procedure is straightforward, care must be taken when

simulations, and dashed lines (visible with the Reynolds computing confidence intervals for the time-average since
stresses) give 95% confidence intervals for these fields. In these must take into account autocorrelation of the data.
other words, any field obtained by averaging 16 indepen- For a stationary random variable q with zero mean, the
dent simulations will, with 95% probability, lie within the autocorrelation coefficient rq is defined as
given interval.

Although the turbulence is initially homogeneous and
rq(s) 5

kq(t)q(t 1 s)l
kq2l

. (46)isotropic, Fig. 3 shows that it quickly becomes inhomoge-
neous and anisotropic due to production from area effects
and the streamwise mean pressure gradient.

Computational requirements are quite modest for this
calculation. Approximately 1.2 CPU seconds per time step
are needed in each simulation on an IBM RS/6000 Model
590. The total CPU time needed to obtain the solution at
t 5 As using 16 simulations is therefore about 30 min. A
cluster of machines was actually used in this calculation,
with each simulation run on a separate node. The actual
wall-clock time required to obtain the solution was there-
fore only 2 min.

5.2. Sample Flow Calculations Using Inflow/Outflow BCs

This section presents results using inflow/outflow bound-
ary conditions. Three types of results are presented: (1)
the effect of varying back pressure PB on distributions of
various mean quantities; (2) the predicted steady-state
mass flow rate versus PB , including the phenomenon of
choked flow; and (3) the effect of varying turbulent fre-
quency on stationary distributions of ũiuj . The particle FIG. 4. Stationary distributions of kPl and Ũ1 for varying PB using

inflow/outflow boundary conditions; 95% confidence intervals given bymethod’s results are also compared to predictions from a
dotted lines. Variance reduction with Ne 5 64 was used. Flow is fromsimple finite-difference code and are found to be very satis-
left to right.

factory.
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vation in the presence of the decaying turbulence visible
in Fig. 5. The accumulated amount of dissipation decreases
with PB since Ũ1 consequently increases and the residence
time is reduced.

Figures 4 and 5 also show mean distributions at the
isentropic (shock-free) design condition, PB 5 0.16. At this
condition the flow is sonic at the throat and supersonic in
the divergent section. The outlet Mach number is 1.855
which is within 0.05% of the laminar value. The dissipation
of k̃ in the divergent section is somewhat greater for the
supersonic case as compared to the subsonic distributions.
This is actually due to negative production: Ũ1/x1 re-
mains positive everywhere in the nozzle for the super-
sonic case.

The steady-state mass flux through the nozzle can be
found by computing the average particle flux across the
boundaries. This quantity is plotted versus PB/Po in Fig.

FIG. 5. Stationary distributions of k̃ for varying PB using inflow/ 6. The plot is divided into four regions, each corresponding
outflow boundary conditions; dotted lines show 95% confidence intervals. to a different flow regime for the nozzle: fully subsonic,
Variance reduction used here with Ne 5 64. nonisentropic with shock, overexpanded, and underex-

panded. Since the particle method cannot be applied to
flows containing shocks, the second region (shaded in gray)

The integral of rq over all time, is not allowed. Over- and underexpanded flows pose no
problem for the particle method. In these regimes the flow

Tq 5 Ey

0
rq(s) ds, (47) is choked, and the particle method predicts this phenome-

non accurately.
Figure 6 also shows mass flow rates computed using ayields a time-scale for the quantity q, and samples of q

finite-difference code. This code solves the steady-statetaken O(Tq) intervals apart are approximately indepen-
governing equations for kPl, Ũ1 , ũiuj , and all triple-velocitydent. The equivalent number of independent samples in
correlations using a space-marching approach. The govern-the time-averaging interval is thus known and can be used
ing equations are those derived directly from the massto calculate the correct confidence interval widths.
density function evolution equation, Eq. (8). By them-In each simulation, the particle distribution is initialized

to yield krl and Ũ1 equal to the steady-state laminar solu-
tion for the given back pressure. Only small changes will
then occur to these mean quantities as they relax to their
stationary distributions. The variances ũiuj are initialized
to (0.1ao)2dij , as before. This initial condition is far from
the stationary distribution so that large changes occur in
the variances as they relax.

Figures 4 and 5 show stationary distributions of kPl, Ũ1 ,
and k̃ for different values of PB . The nozzle cross-sectional
area is sinusoidal with an area ratio of 1.5. Each simulation
used 16,384 particles, a time step of s;A; , and a smoothing
length h 5 ahA . Time-averaging was performed from t 5 7.5
until t 5 15, and variance reduction (with Ne 5 64) was
used for the entire simulation. As the nozzle back pressure
decreases from 0.97 to 0.89, the mean velocity gradually
rises and the pressure drops, as expected. Each quantity
hits its extreme value at the throat located at the center.
Careful inspection reveals that the distributions are not
symmetric about the throat: in the divergent section pres-
sure is slightly higher and mean velocity slightly lower.

FIG. 6. Computed steady-state mass flow rates for varying PB .This effect is simply a consequence of momentum conser-
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curves for g 5 0.5, on the contrary, clearly show the influ-
ence of production. In this case, the parameters range
between 64.2 and 61.5. The streamwise stress ũ 2

1 shows
strong growth in the divergent section, while ũ 2

2 and
ũ 2

3 remain essentially flat in the convergent section before
rapidly decaying beyond the throat. This behavior can be
physically interpreted as the stretching of streamwise vorti-
ces. As the flow accelerates in the convergent section and
squeezes through the throat, the vorticity increases and
creates higher cross-stream turbulence intensities. In the
particle evolution equations, this effect is represented by
the area source term:

du*2,3 5 ? ? ? 2 S1
2

U1

A
dA
dx1
D u*2,3 dt 1 ? ? ? . (49)

˜

Figures 7 and 8 also include finite-difference solutionsFIG. 7. Stationary distributions of ũ 2
1 for varying g using inflow/

for comparison with the particle code results. To ensureoutflow boundary conditions; dotted lines show 95% confidence intervals.
Variance reduction turned on, with Ne 5 64. Flow is from left to right. meaningful comparisons, the flatness distributions of the

particle code results were all measured to be within 8% of
the Gaussian value of 3. Once again, the agreement be-
tween the particle and finite-difference results is excellent.selves, however, the mean equations are unclosed at the

level of fourth moments. Closure is achieved by invoking
5.3. Variance Reduction Performancethe Millionschchikov hypothesis [27], which states:

The performance of the variance-reduction technique is
kuiuj ukul l 5 kuiuj lkukull 1 kuiuklkuj ull 1 kuiullkuj ukl. (48) controlled by the ratio Ne /N , hereafter called L. Physically,

1/L can be interpreted as the average number of ensembles
This equation is exact for Gaussian distributions. Results contributing to each kernel estimate. Although there are
from the particle code have shown that the flows consid- no computational restrictions on L, it is expected that the
ered in this study are reasonably close to Gaussian, and
therefore, meaningful comparisons can be made between
the particle and finite-difference codes. As can be seen in
Fig. 6, the mass flow rates are in excellent agreement.

The third and final set of results shows the effect of
varying turbulent frequency on stationary distributions of
ũiuj . Figure 7 gives distributions of the streamwise nor-
mal stress ũ 2

1 , and Fig. 8 shows the cross-stream normal
stresses ũ 2

2 and ũ 2
3 . Since 1/g is the dissipation time-scale,

the choice of g controls the balance between production
and dissipation in the evolution of these stresses. The pro-
duction time-scales are just reciprocals of the correspond-
ing strain-rates S1 5 Ũ1/x1 and S2,3 5 (Ũ1/A)(dA/dx1).
These are functions of the mean flow and do not vary
significantly in this set of results. The parameter Si/g , the
ratio of dissipation and production time-scales, measures
the relative importance of each process. A flow with large
uSi/gu is dominated by production, and one with small
uSi /gu is dominated by dissipation.

The curves for g 5 4.0 show dissipation dominating over
production, with the turbulence decaying rapidly along the

FIG. 8. Stationary distributions of cross-stream normal stresses ũ 2
2full length of the nozzle. The parameters S1 /g and S2,3 /g and ũ 2

3 for varying g using inflow/outflow boundary conditions; 95%
range only between 60.59 and 60.20, respectively. The confidence intervals given by dotted lines.
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FIG. 9. Variance reduction performance vs. L for test case 2. Solid curves are cubic-spline fits to each set of data. The parameter h is fixed
at Ak, while N varies between 4,096 and 131,072 and Ne ranges between 8 and 4,096.

variance-reduction technique is most effective for L # 1, level s. Smaller values of q are better, and the computa-
tional performance can therefore be measured by the ratioapproximately.

Figure 9 shows the performance of the method for a
selected test problem (this is test case 2, fully described in qVR off

qVR on
5

TVR off

TVR on

s 2
VR off

s 2
VR on

. (50)Section 6.1). The vertical axis gives the ratio of root-mean-
square statistical errors, sVR on/sVR off , where sVR on is the
rms error obtained with variance reduction on, and sVR off The CPU time is found to increase by approximately a
is that obtained with it off. The ratio is plotted versus L factor of 1.7, independent of Ne , when using this variance-
for the three quantities kPl, Ũ1 , and k̃. The rms statistical reduction technique. But as Fig. 9 shows, the corresponding
errors for each point were estimated from 128 independent decrease in s is significant. Thus, given a specified statistical
simulations, each of which was integrated out to t 5 1 error tolerance, the decrease in required CPU time with
using a time step of a;A;. The smoothing length h was kept variance reduction on can be estimated from Eq. (50) to
fixed at Ak for all points, while N was varied between 4,096 be a factor of up to 15 for k̃, 60 for kPl, and 230 for Ũ1 .
and 131,072, and Ne was varied between 8 and 4,096. To Clearly then this variance-reduction technique is essential
improve readability, a spline was passed through the data for obtaining accurate solutions using a minimal amount
for each flow quantity. of CPU time.

The data clearly show a decrease in statistical error for
each quantity as L decreases (and the number of ensembles 6. CONVERGENCE OF PARTICLE METHOD
per kernel estimate increases). For L 5 8, the largest value
tested, sVR on /sVR off is still less than 1. For small L, the In the particle method described in this paper, various
statistical error has been decreased by approximately a numerical errors arise due to finite values of the number
factor of 10 for kPl, 20 for Ũ1 , and 5 for k̃. of particles N, the time step Dt, and the smoothing length

Computational performance of the variance reduction h. Success of the method requires that these errors con-
technique is measured through the quality q [17]. The qual- verge to zero as the appropriate parameters approach their
ity is related to the rms statistical error by q 5 Ts 2, where limiting values. Numerical stability is also essential for the

convergence of these errors and, hence, for the success ofT is the CPU time needed to achieve the statistical error
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the method. A detailed numerical study has therefore been Although the mean density, pressure, and velocity remain
constant for all time, the Reynolds stresses decay exponen-performed in which the different types of errors arising in

the particle method are identified and shown to converge tially at the constant rate g, and hence, this test case is
well-suited for measuring the temporal convergence of theat the expected rates.

Convergence of stochastic methods can be interpreted method. This test case is subsequently referred to as test
case 1.in either a strong or weak sense [28]. With PDF-based

particle methods it is appropriate to require weak conver- The second test case is more comprehensive and consists
of inhomogeneous anisotropic turbulent flow in a constantgence. Specifically, the discrete Lagrangian mdf F *N repre-

sented by the particles should converge in distribution to area duct. The initial velocity pdf is again specified to have
mean zero and constant variance ũiuj u0 5 (0.1ao)2dij , whilethe actual modeled mdf F * [3, 17], and consequently any

mean quantity evaluated from the particles should con- the initial mean density distribution is specified to be a
sine wave of period 1 and amplitude Af about krl 5 1. Thisverge in mean-square sense to the actual mean, if it exists.

Using this criterion for convergence, four different types is achieved by deterministic positioning of the particles.
Boundary conditions are again periodic, and the turbulentof errors can be identified by considering estimating a mean

quantity kQ(x, t)lN,h,Dt at a fixed time t using an average frequency is kept equal to 1. As in the sample flow calcula-
tions, the turbulence is initially homogeneous and iso-number of particles per kernel N 5 Nh/L, a normalized

smoothing length h 5 h/L, and a time step Dt. Given the tropic, but quickly becomes inhomogeneous and aniso-
tropic due to production of kinetic energy from theexact value kQl, the error in this estimate is a random

variable and can be decomposed as streamwise mean pressure gradient. Despite the lack of an
analytic solution for this test case (subsequently called test
case 2), convergence of errors can still be studied by makingkQlN,h,Dt 2 kQl 5 [kQlN,h,Dt 2 kkQlN,h,Dtl]
use of error extrapolation techniques.

1 [kkQlN,h,Dtl 2 kQl]

6.2. Statistical Error5 oQ(t, N, h, Dt) 1 DQ(t, N, h, Dt)
(51)

Of the four errors present in the method, statistical error5 oQ 1 TQ 1 HQ 1 BQ ,
is usually dominant. The statistical error oQ has the form
N 21/2jSQ , where j is a standardized random variable withwhere oQ is the statistical error and DQ is the deterministic
zero mean and unit variance and SQ is the standard errorerror. As mentioned earlier, statistical error arises from
defined asthe initial conditions, the Wiener processes, and the coeffi-

cients in the Langevin equation. The deterministic error
SQ(t, N , h, Dt) 5 [N var(kQlN,h,Dt )]1/2. (53)can be further broken down into temporal error TQ , spatial

error HQ , and bias BQ. Temporal error results from using
a finite time step in the time integration scheme, while The rms statistical error s Q is therefore N 21/2SQ . As N
spatial error is due to the finite smoothing length used in approaches infinity SQ becomes independent of N . In oQ
the kernel estimates. Finally, bias is the deterministic error the inverse square root dependence is on N 5 Nh and not
resulting from using a finite number of particles. These N, since N is the average number of particles contributing
four errors are studied and discussed individually. to any kernel estimate.

Figure 10 shows results for test case 2 of the dependence
6.1. Test Cases of SQ on N for the three quantities kPl, Ũ1 , and k̃. Variance

reduction was not used here, although qualitatively theConvergence of the method is studied through two test
results are the same. The data were obtained by estimatingcases. The first is incompressible homogeneous isotropic
the variance of each quantity along the length of the ductturbulence decaying in a constant area duct, for which
from 128 statistically independent simulations, and thenall mean properties are independent of position. Initial
averaging the variance over the duct. A time step of a;A;conditions are similar to those for the previously described
was used in each simulation to obtain the solution at t 5sample flow: particles are deterministically positioned with
1, which allows significant flow evolution to occur. Theuniform spacing, and the velocity pdf is specified to have
parameter N was varied from 256 to 65,536, and over thismean Ũ1 5 0 and variance ũiuj u0 5 (0.1ao)2dij . Periodic
range SQ remains fairly constant for each of the flow quanti-boundary conditions are imposed at the duct inlet and
ties. The actual number of particles N ranged betweenoutlet, and the turbulent frequency g is set equal to 1.
4,096 and 131,072. The observed slight vertical scatter inAn analytic solution to this problem exists and facilitates
s Q occurs due to a weak dependence of SQ on h. With hmeasuring errors. The solution is given by
ranging between As and ahA , the variation in SQ is between
5–20%.krl 5 kPl 5 1, Ũ1 5 0, ũiuj (t) 5 ũiuj u0 e2gt. (52)
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FIG. 10. Standard error vs. N, with variance reduction off. The parameter N ranges between 4,096 and 131,072, while h varies from As to ahA .

By doing a set of M independent simulations and averag- with kQly,h,Dt 5 limNRykQlN,h,Dt . Two sources of bias are
present in this particle method. The first is the spatialing these together, the statistical error can be reduced by
integration error caused by replacing the integral form ofa factor of M 21/2. Thus the total rms statistical error scales
the kernel estimate, Eq. (15), by the discrete sum over theas (M N )21/2SQ . By normalizing SQ with respect to each
particles, Eq. (18). For the laminar case in which the parti-flow quantity, it is possible to estimate what the product
cle distribution has no randomness, this error can beM N must be in order to achieve a normalized rms statisti-
shown to scale as N 24 in 1D; for the turbulent case incal error level of 1%, say. For test case 2 the requirements
which there is particle disorder, it can be expected to scalewith variance reduction off are MN P 300 for kPl,
as N 21 log N [15, 16]. The other source is statistical fluctua-M N P 14,500 for Ũ1 , and M N P 42,000 for k̃. With
tions in the coefficients, and this contribution can be ex-variance reduction on and L small, each requirement is
pected to scale as N 21 [17]. Since turbulent flows are con-scaled down by the corresponding ratio s 2

VR on /s 2
VR off given

sidered here, the combination of these two sources of biaspreviously. This ideally gives M N P 3 for kPl, M N P 35
is expected to yield a N 21 scaling.for Ũ1 , and M N P 1,700 for k̃. Clearly the requirement

Figure 11 is a log–log plot showing the scaling of biasfor kPl is unrealistic since the corresponding minimum
with N for test case 2 at t 5 1 for kPl, Ũ1 , and k̃. This isvalue of L is not small. Overall, in order to achieve an rms
without using variance reduction. The expected inversestatistical error level of 1% for all three quantities, the
scaling is observed over the range N 5 4 ? ? ? 512. Slopeproduct M N must therefore roughly be 1,700.
values given in the figure come from linear least-squares
fits to each set of data. The dotted lines above and below

6.3. Bias each solid curve show 95% confidence intervals. Bias is
more difficult to measure than statistical error. The dataBias is the contribution to the deterministic error caused
in Fig. 11 were obtained by comparing to a highly accurateby using a finite number of particles. Using the error de-
solution with N 5 8,192, or 16 times the largest valuecomposition form of Eq. (51), the bias BQ in the ensemble
shown in the figure. The plotted values are the rms errorsaverage kQlN,h,Dt can be written
averaged over the duct. Statistical error was reduced in
all the data using multiple independent simulations; the

BQ(t, N, h, Dt) 5 kkQlN,h,Dt) 2 kQly,h,Dt , (54) maximum value of the ratio sQ /BQ is 15%. For this test
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tial error scales as h2 for the symmetric kernel used in this
method [16].

The scaling of HQ with h for the particle method is shown
in Fig. 12 for test case 2 without variance reduction. The
spatial error scales as expected for each of the three quanti-
ties considered. Statistical error was reduced using multiple
independent simulations, and 95% confidence intervals are
shown in the figure. At h 5 ahA the rms statistical error in
k̃ is 17% of Hk , and at h 5 dsA it is 33%. In each case bias
was kept small by fixing N at 8,192. The spatial error was
then measured relative to the solution obtained using Rich-
ardson extrapolation in the limit h 5 0. The choice h 5 ahA

keeps the normalized spatial error for all three quantities
at less than 1% for this test case.

With variance reduction turned on, precisely the same
results as in Fig. 12 are obtained. The use of variance
reduction therefore does not affect the spatial error, as ex-
pected.FIG. 11. Bias vs. N, with variance reduction off. The total number

of particles N varies between 16 and 8,192. Slopes are calculated from
6.5. Temporal Errorlinear least-squares fits to each set of data, and dotted lines give 95%

confidence intervals. The fourth and final error present in the particle method
is the temporal error, caused by using a finite time step in
the predictor/corrector scheme. The temporal error TQ in

case, using the value N 5 64 keeps the bias for all three the ensemble average kQlN,h,Dt is given by
quantities below 1%.

The variance reduction technique introduces an addi- TQ(t, Dt) 5 kQly,0,Dt 2 kQl, (57)
tional contribution to the bias. This new contribution re-
sults from using a finite number of particles Ne in each with kQly,0,Dt as previously defined. Direct empirical mea-
ensemble, just as the previous contribution to the bias surement of TQ is difficult since all the other errors must
results from using a finite number of particles N in each be removed. Since the goal is to determine the dependence
kernel estimate. Preliminary numerical tests suggest that
this additional contribution scales as N 2p

e , where p is close
to the expected value of 1, but that the magnitude of this
contribution is small, i.e.,

BQ 5
b1

N
1

b2

Ne
, b2 ! b1 . (55)

These results, however, have not yet been fully quantified.

6.4. Spatial Error

Spatial error is caused by using a finite smoothing length
h in the kernel estimates. A large value of h gives a more
spatially averaged estimate to the desired quantity,
whereas a small value of h gives a more local and, hence,
more accurate, estimate. The spatial error HQ in the ensem-
ble average kQlN,h,Dt is

HQ(t, h, Dt) 5 kQly,h,Dt 2 kQly,0,Dt , (56)

FIG. 12. Spatial error vs. h, with variance reduction off. The parame-
where kQly,0,Dt 5 limNRy,hR0kQlN,h,Dt . The accuracy of the ter N is fixed at 8,192, while N ranges between 16,384 and 262,144. Slopes
kernel estimate given by Eq. (15) depends on the kernel. calculated from linear least-squares fits to data, and dotted lines give

95% confidence intervals.One can easily show using Taylor expansions that the spa-
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In both figures it is reasonably clear that the determinis-
tic error scales approximately as Dt2 for each of the consid-
ered quantities. The results are shown at t 5 Af with Dt
ranging from Ak to hfA . A smoothing length of h 5 As was used
for both sets of results. In test case 1 the errors in kPl and
Ũ1 were not considered since these quantities do not evolve
in time. The slope of the curve for k̃ using linear least-
squares is 1.92, or very close to 2. In test case 2 the esti-
mated scaling with Dt varies slightly depending on the
quantity. For the three quantities kPl, Ũ1 , and k̃, the scal-
ings are Dt1.88, Dt2.25, and Dt2.06, respectively. All of these
are quite close to 2. Together these results indicate that
the value of q in Eq. (58) must be at least 2, and hence,
the temporal error TQ scales at least as Dt2.

For the two test cases considered here, the normalized
temporal error can be kept below 1% by choosing Dt 5 a;A

in test case 1 and Dt 5 s;A in test case 2. The actual time
step used in a given problem, however, will most likely beFIG. 13. Deterministic error vs. Dt for test case 1, with variance
less due to the CFL constraint.reduction on. Results shown use fixed values N 5 65,536, N 5 131,072,

and h 5 As. Dotted lines give 95% confidence intervals.
6.6. Computational Requirements for 1% Error

The convergence results show that for test cases 1 and
of TQ on Dt, this can still be done assuming that the domi- 2 all errors in the quantities kPl, Ũ1 , and k̃ may be reduced
nant effect of Dt on the deterministic error is through the to 1% by choosing h 5 ahA , Dt 5 s;A , N 5 64, and either
temporal error TQ. In the empirical tests performed, both M N 5 42,000 (variance reduction off) or M N 5 1,700
bias and statistical error were kept negligibly small. The (variance reduction on). The exact choice of M (and
error is therefore deterministic and of the general form consequently N) is not fixed. Knowing the requirement

on M N, it is good to keep N as large as possible since this
minimizes the bias for the given statistical error level, al-D̂Q(t, h, Dt) 5 HQ(t, h, Dt) 1 TQ(t, Dt)

(58) though using large values for M has the advantage of giving
5 c1(t, Dt)h2 1 c2(t, h)Dtq, more accurate confidence intervals.

where TQ 5 c2(t, 0)Dtq and q is expected to be 2. Thus,
by studying the dependence of D̂Q on Dt it is possible to
determine the value of q.

Results were obtained for both test cases, and these are
shown in Figs. 13 and 14, respectively. In each test case
the bias was kept negligibly small by fixing N at 65,536. In
the results of test case 1, the bias is estimated to be less
than 10% of the smallest value of D̂Q . In test case 2, the
largest ratio of BQ to D̂Q is estimated at less than 2%.
Although the results in Figs. 13 and 14 were obtained with
variance reduction turned on (Ne 5 512), further reduction
of statistical error was achieved using multiple independent
simulations. In both test cases the rms statistical error is
less than 10% of D̂Q over the entire range of Dt considered.

The deterministic error D̂Q was calculated after having
removed the bias and statistical error. In test case 1 the
calculated solutions were compared to the exact analytic
solution, while in test case 2 the solutions were compared
to the one obtained using Aitken extrapolation in the limit
Dt 5 0. Richardson extrapolation was not used since the FIG. 14. Deterministic error vs. Dt for test case 2, with variance
exact form of the scaling of the error with Dt in Eq. (58) reduction on. Results shown use fixed values N 5 65,536, N 5 131,072,

and h 5 As. Dotted lines show 95% confidence intervals.was assumed unknown.
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Tests using these parameters were performed on an IBM phenomenon of choked flow has also been accurately pre-
dicted by the particle method.RS/6000 Model 590 to determine the CPU time required

The convergence of the method has been successfullyfor such a calculation, which scales as M N 5 M N/h. With
demonstrated through a comprehensive study of two testvariance reduction off, the choice M 5 6 and N 5 7000
cases. Four types of numerical errors are present on thewas used, and with h 5 ahA this gives N 5 112,000. It also
method. Statistical error scales as N 21/2, while the primaryturns out that the CFL constraint limits Dt to about g;A .
contribution to the bias scales as N 21. The others are spatialThe solution at t 5 1 was therefore obtained in 50 time
error, which scales as h2, and temporal error which scalessteps and required 41 min of CPU time. With variance
as Dt2. All four errors have been shown to scale at thereduction on, the choice Ne 5 64, N 5 1700, and M 5 1
expected rates.was used. This guarantees that L is small while also ensur-

The results of this convergence study also show that iting that the additional contribution to the bias, Eq. (55),
is possible to reduce all errors below 1% using a veryis negligible. In this case the solution at t 5 1 was obtained
reasonable amount of CPU time. For the two test casesusing only 165 s of CPU time, clearly showing the computa-
considered, the required CPU time to achieve an errortional savings due to the variance-reduction technique. In
level of approximately 1% is on the order of 3 min on aboth cases though, the solution was obtained in a very
workstation. These results show that this particle methodreasonable amount of CPU time.
provides a feasible way to obtain accurate PDF solutionsIn must be emphasized that these are conservative esti-
to compressible turbulent flow problems.mates since the computational work is inversely propor-

tional to the square of the statistical error. Increasing the
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