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a b s t r a c t

We study a class of methods for the numerical solution of the system of stochastic differ-
ential equations (SDEs) that arises in the modeling of turbulent combustion, specifically in
the Monte Carlo particle method for the solution of the model equations for the composi-
tion probability density function (PDF) and the filtered density function (FDF). This system
consists of an SDE for particle position and a random differential equation for particle com-
position. The numerical methods considered advance the solution in time with (weak) sec-
ond-order accuracy with respect to the time step size. The four primary contributions of
the paper are: (i) establishing that the coefficients in the particle equations can be frozen
at the mid-time (while preserving second-order accuracy), (ii) examining the performance
of three existing schemes for integrating the SDEs, (iii) developing and evaluating different
splitting schemes (which treat particle motion, reaction and mixing on different sub-steps),
and (iv) developing the method of manufactured solutions (MMS) to assess the conver-
gence of Monte Carlo particle methods. Tests using MMS confirm the second-order accu-
racy of the schemes. In general, the use of frozen coefficients reduces the numerical
errors. Otherwise no significant differences are observed in the performance of the differ-
ent SDE schemes and splitting schemes.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Due to the global concern on energy and environmental issues, developing efficient and accurate numerical combustion
tools is highly valuable for increasing our understanding of turbulent reactive systems and hence improving the design of
combustion devices with high efficiency and low emissions. During the past several decades, different turbulent combustion
models have been devised to represent finite-rate chemistry effects and turbulence-chemistry interactions, e.g., probability
density function (PDF) methods [1–3] , flamelet models [4,5], and the conditional moment closure (CMC) [6,7]. PDF methods
have proved to be very successful in modeling turbulent combustion (e.g., [8–13]). PDF methods were originally developed in
the context of Reynolds Averaged Navier–Stokes Simulations (RANS). Pope [2] introduced the concept of filtered density
function (FDF) in the context of large-eddy simulation (LES) [3]. The FDF methods were further developed subsequently
by Gao and O’Brien [14], Colucci et al. [15], Jaberi et al. [16] etc. Examples of recent FDF applications can be found in
[17–22]. The common practice in FDF methods is to combine the LES solutions for the velocity fields with the composition
FDF method. In this work, we only discuss the composition FDF method, while some of the ideas such as designing the sec-
ond-order splitting schemes are applicable to the joint PDF/FDF of the velocity, composition and additional variables (e.g.,
the dissipation rate). The FDF in the LES is analogous to the PDF in the RANS. In terms of applications, there is no essential
. All rights reserved.
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difference between the PDF and the FDF, and almost all the methodologies developed for PDF methods are applicable to FDF
methods. Hence, in this discussion, for convenience, we use the PDF to represent both the PDF and the FDF methods when
there is no confusion.

Lagrangian Monte Carlo particle methods [1,23] have been widely used to solve the PDF transport equations. In these
methods, the continuous PDF is discretized by a finite number of nominal particles, and each particle is governed by a system
of stochastic differential equations (SDE) [24] (including an Ito SDE for particle position and a scalar random equation)
describing the underlying physical and chemical processes. The numerical solution of SDEs is a much harder problem than
that of ordinary differential equations (ODEs). All the well developed high-order ODE schemes degrade to low order of accu-
racy when applied in Ito SDEs; and, even worse, they can lead to inconsistent schemes because (most) ODE schemes violate
the non-anticipatory property of Ito SDEs. Cao and Pope [25] developed a second-order integration scheme for the Ito SDE of
particle position arising from the composition PDF transport equations, which considers only position and velocity, not sca-
lars. In this work, we consider the SDE system describing particle transport, molecular mixing and chemical reaction, and
develop different weak second-order splitting schemes for the coupled system. To the authors’ knowledge, no second-order
splitting schemes have previously been developed for the Monte Carlo solution of the coupled SDE system, and have been
applied in the RANS/PDF or LES/FDF practice.

Contrary to the supposition of Cao and Pope [25], the weak second-order mid-point Ito SDE scheme turns out to be only
first-order accurate when simply coupled with the scalar equations. This is caused by the fact that the predicted mid-point
and the final point of the scheme are treated independently and hence the mid-point is not a first-order prediction with the
correct conditional probability distribution given the initial and final particle positions. This and other considerations dis-
cussed below motivate us to consider other kinds of Ito SDE schemes available in the literature, e.g., predictor–corrector
schemes [24,26,27], and Runge–Kutta schemes [24,28–31].

The numerical solution of SDEs is a broad research area. The SDEs can be interpreted in two ways, Ito SDEs and Straton-
ovich SDEs, and different integration schemes are developed for them, e.g., the Ito SDE schemes [24,26,28–35] and the Stra-
tonovich SDE schemes [27,35–37]. (The Ito SDEs and the Stratonovich SDEs can be readily transformed to each other, so the
schemes developed for one type of SDEs are applicable to the other.) In PDF methods, the SDEs are usually interpreted in the
Ito view, and this work follows this convention.

Two different types of solutions to SDEs can be sought, the path-wise approximation (strong sense) and the approxima-
tion to the probability distribution (weak sense) [24]. In the application of PDF methods, we are more interested in the sta-
tistics of the flow fields, so it makes more sense to consider accurate weak solutions for the Monte Carlo particles. Many
schemes are developed for this purpose, e.g. [24,26,28–32,34,35,37]. Explicit SDE schemes are usually used for simplicity
and efficiency, while implicit schemes can achieve better stability. In this stage of the PDF methods, we only consider the
explicit SDE schemes. Implicit SDE schemes may be worthwhile to consider in the future to take advantage of larger time
step size. However, with explicit methods we have not experienced any stability problems given that the time step is deter-
mined by other factors, e.g., the CFL condition imposed on the solution of the velocity fields by the finite-volume method. The
examples of explicit and implicit SDE schemes can be found in [24]. Second-order accuracy is a good compromise between
accuracy and efficiency for PDF methods. First-order accuracy is too crude to eliminate numerical uncertainties arising from
the modeling of turbulent combustion. The statistical error of the Monte Carlo method scales as N�1=2, where N is the number
of particles. Due to the slow convergence of the Monte Carlo particle method, most likely the statistical error dominates
other numerical errors including the time-stepping error. (In practice, only a small number of particles per cell – on the order
of 100 – are used in a RANS/PDF or LES/FDF calculation to make the computation affordable.) Hence using high-order accu-
rate SDE schemes (third-order or higher) in the PDF methods only increases the complexity of the schemes without helping
reduce the overall numerical errors.

Many SDE schemes involve derivatives of the coefficients (e.g. [24,25,32]), which increases the difficulty of using them.
This makes the derivative-free SDE schemes more attractive, and in fact many derivative-free SDE schemes have been devel-
oped (see [24,26–31,34–37]). In this work, we consider three weak second-order SDE schemes, the mid-point scheme of Cao
and Pope [25], the predictor–corrector scheme of Kloeden and Platen (pp. 504–506 of [24], also in [26]), and the Runge–Kutta
scheme of Tocino and Vigo-Aguiar [30]. The latter two are derivative free. The derivative here refers to the derivative of the
drift term, which already includes the derivative of the diffusivity in this work (see Section 2). Hence the Cao and Pope
scheme requires the second-order derivative of the diffusivity, and the Kloeden and Platen scheme and the Tocino and
Vigo-Aguiar scheme require the first-order derivative of the diffusivity.

In the RANS/PDF simulations, many problems are statistically stationary, and the corresponding Ito SDEs are autonomous,
i.e., the drift and diffusion coefficient of the SDEs do not depend on time. Some SDEs schemes are developed only for auton-
omous SDEs (e.g. [24,26,28,32,34,36]). The LES/FDF simulations are always non-stationary, so the autonomous SDE schemes
are generally not applicable,1 and the non-autonomous SDE schemes [29–32,35,37] are desired. However, it can be verified that
solving the non-autonomous SDE system is equivalent up to second-order to solving the SDE system with all the coefficients
evaluated at the mid-point of the time step. That is, as far as the weak second-order SDE schemes are concerned, solving the
non-autonomous SDE system is equivalent to solving the SDE system with the coefficients frozen at the mid-point using the
1 Adding time as a new variable can make the autonomous SDE schemes applicable. However, this procedure is not favorable because it leads to more
evaluations of coefficients in some SDE schemes and hence increases the computational cost.
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weak second-order autonomous SDE schemes. Thus, all the weak second-order Ito SDE schemes, no matter whether developed
for the autonomous or for the non-autonomous SDEs, are applicable to all the RANS/PDF and LES/FDF applications. Freezing the
coefficients in the SDEs at the mid-point is also a big advantage for the staggered arrangement of different fields in the time
advancement of the RANS or LES discretization, e.g., in the LES application [38], the velocity fields are staggered in time with
the scalars. If the particles are also staggered with the velocity fields (and the turbulent diffusivity) as sketched in Fig. 1, the
above freezing the coefficients facilitates the use of the staggered velocity and diffusivity for particle position advancement
without interpolation of these quantities in time. (The non-autonomous SDE schemes usually require the evaluation of the drift
and diffusion coefficients at different times other than the mid-time [29–32,35,37].) Hence, the complexity of the interface be-
tween the RANS or LES solver and the particle solver can be greatly reduced.

To demonstrate the formal order of accuracy and convergence of different numerical schemes, the exact solution of the
studied problem, or an accurate estimate of it, is required to provide reference for evaluating the numerical error. For some
rare cases, the exact solution to the problem may be obtained with simplification of the problem. This simplification reduces
the complexity of the problem, and hence may not be able to represent realistic problems. Given an arbitrary initial condition
and other parameters, an accurate numerical solution to a realistic problem is generally available from numerical methods.
This accurate numerical solution can be used for error estimation, and has been used in previous studies (e.g., [25]). The
method of manufactured solutions (MMS) [39,40] provides a general method for designing test cases with known exact solu-
tions. The test cases can be designed to have the same level of complexity as the real problem. Meanwhile, for the purpose of
verification, the manufactured solution need not be related to a physically realistic problem. The idea of MMS is to specify
the mathematical solutions a priori so that they satisfy a set of augmented governing equations with extra source terms. The
augmented governing equations rather than the original ones are solved numerically, and the numerical error is readily eval-
uated given the (manufactured) exact solutions. The MMS has been used in the verification of different flow solvers [41–44].
In this work, we develop the method of manufactured solutions for the Monte Carlo particle method. The augmented PDF
transport equation and the corresponding SDE system are derived. This method is suitable for the verification of the weak
convergence of Monte Carlo particle methods.

The developed MMS makes the verification of the Monte Carlo particle method possible. However in practice, this pro-
cedure is computationally demanding. A large number of particles are required in the Monte Carlo simulation to make
the statistical error negligible compared to the other numerical errors, e.g., the temporal or spatial discretization error. In
order to demonstrate the convergence of the weak second-order SDE schemes with respect to time, the computational cost
is found to scale as Dt�5 (see Section 4.3), where Dt is the time step size. Halving the time step increases the computational
cost up to 25 times. In this work, in order to make this verification procedure computationally tractable, we perform the sim-
ulations in parallel via MPI. In addition, we have to make some simplifications to the test case, which is one-dimensional,
constant density, and single scalar. The representativity of the test case and its extension to the full three-dimensional, var-
iable-density and multi-scalar case are discussed at the end of the paper.

The main contributions of the present work are

(i) The introduction of an SDE system with frozen coefficients (Section 3.2).
(ii) The comparison of different Ito SDE schemes (Sections 3.3 and 6).

(iii) The development and assessment of different second-order splitting schemes (Sections 5 and 6).
(iv) The development of MMS for the Monte Carlo particle method (Section 4).

The rest of the paper is organized as follows. In Section 2, the composition PDF method and its Monte Carlo solution meth-
od are briefly described. In Section 3, the frozen-coefficient SDE system is presented, and several Ito SDE schemes from the
literature are discussed. In Section 4, the MMS for the Monte Carlo particle method is developed, and the numerical error and
( )t t+ ΔX

( ) ( )2 2, , ,t tt tΔ Δ+ Γ +u x x
particles 

( )tX

Fig. 1. Sketch of the particle advancement with staggered velocity and diffusivity in time, showing the particle locations X at times t and t þ Dt, and the
velocity field u and the turbulent diffusivity field C at the half time, t þ Dt

2 .



H. Wang et al. / Journal of Computational Physics 229 (2010) 1852–1878 1855
computational cost are briefly discussed. The sub-stepping of the particle scalar equation and the different splitting schemes
for the coupled SDE system are discussed in Section 5. The convergence test results of the different splitting schemes and
their comparison are shown in Section 6. Further discussion is presented in Section 7, and the conclusions are drawn in
Section 8.

2. PDF methods

In this work, only the PDF f ðw; x; tÞ of a single scalar /ðx; tÞ is considered, where w is the sample space variable corre-
sponding to /, and x and t denote space and time. The modeled transport equation of f ðw; x; tÞ takes the following form [1]
@f ðw; x; tÞ
@t

þ @
�uiðx; tÞf ðw; x; tÞ

@xi
¼ @

@xi
Cðx; tÞ @f ðw; x; tÞ

@xi

� �
þ @

@w
Xðx; tÞðw� �/ðx; tÞÞf ðw; x; tÞ
� �

� @

@w
SðwÞf ðw; x; tÞð Þ; ð2:1Þ
where u ¼ ðu1;u2;u3Þ is the velocity field (satisfyingr � u ¼ 0), Cðx; tÞ is the effective scalar diffusivity (the sum of the molec-
ular diffusivity and the turbulent diffusivity), Xðx; tÞ is the scalar mixing frequency, and Sð/Þ is the scalar source term (due to
reaction). The overline operation ‘‘-” is the first moment, e.g., �/ is the first moment of /. In (2.1), two models are used for the
closure, the gradient-diffusion model [3] for the scalar flux (the first term on the right-hand side), and the interaction by
exchange with the mean (IEM) mixing model [45] for the conditional dissipation term (the second term on the right-hand
side). The IEM model is chosen for simplicity: other mixing models (e.g., modified Curl model [46], EMST model [47]) can be
used for the discussion and do not affect the conclusions drawn in this work.

Given f ðw; x; tÞ, the qth raw moment of the scalar / can be readily obtained as
/qðx; tÞ ¼
Z þ1

�1
wqf ðw; x; tÞdw: ð2:2Þ
From (2.1) and (2.2), we can derive the transport equations for the first moment �/ðx; tÞ and second moment /2ðx; tÞ
@�/ðx; tÞ
@t

þ @
�uiðx; tÞ�/ðx; tÞ

@xi
¼ @

@xi
Cðx; tÞ @

�/ðx; tÞ
@xi

� �
þ Sðx; tÞ; ð2:3Þ

@/2ðx; tÞ
@t

þ @
�uiðx; tÞ/2ðx; tÞ

@xi
¼ @

@xi
Cðx; tÞ @/

2ðx; tÞ
@xi

 !
� 2Xðx; tÞð/2ðx; tÞ � �/2ðx; tÞÞ þ 2S/ðx; tÞ; ð2:4Þ
where Sðx; tÞ denotes the mean of Sð/ðx; tÞÞ. With the definition of /02ðx; tÞ ¼ /2ðx; tÞ � /2ðx; tÞ, the transport equation for
/02ðx; tÞ is
@/02ðx; tÞ
@t

þ @
�uiðx; tÞ/02ðx; tÞ

@xi

¼ @

@xi
Cðx; tÞ @/

02ðx; tÞ
@xi

 !
þ 2Cðx; tÞ @

�/ðx; tÞ
@xi

@�/ðx; tÞ
@xi

� 2Xðx; tÞ/02ðx; tÞ þ 2ðS/ðx; tÞ � Sðx; tÞ�/ðx; tÞÞ: ð2:5Þ
These moment equations are useful for the verification of weak convergence. For convenience, we refer to �/ðx; tÞ and /02ðx; tÞ
as the scalar mean and scalar variance. (In the LES, it is appropriate to call them filtered scalar and sub-filter scalar variance.)
Since the first two moments are of most interest in practical applications, we consider only these two moments in the devel-
opment of MMS for the particle methods in Section 4, and in most discussions of the convergence tests in Section 6. For com-
pleteness, for one type of splitting schemes we show the results of weak second-order convergence for the third and fourth
moments in Section 6.3.

The PDF Eq. (2.1) can be efficiently solved by the Lagrangian Monte Carlo particle method [1]. A number of nominal par-
ticles are introduced to represent the PDF, and each particle carries the properties of the physical position XðtÞ and scalar
value /ðtÞ. These properties evolve according to the following set of SDEs [1]
dXðtÞ ¼ ð�uðXðtÞ; tÞ þ rCðXðtÞ; tÞÞdt þ ð2CðXðtÞ; tÞÞ
1
2dWðtÞ; ð2:6Þ

d/ðtÞ
dt
¼ �XðXðtÞ; tÞð/ðtÞ � �/ðXðtÞ; tÞÞ þ Sð/ðtÞÞ; ð2:7Þ
where WðtÞ is a standard isotropic Wiener process.
The aim of this work is to design weak second-order numerical schemes for the coupled SDE system (2.6) and (2.7), and to

develop the verification procedure to demonstrate the accuracy and convergence of the schemes.

3. Numerical solutions of SDEs

3.1. Ito SDEs and weak convergence

The Ito SDE (2.6) arising from the Monte Carlo particle method has the following general form
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dXðtÞ ¼ DðXðtÞ; tÞdt þ bðXðtÞ; tÞdWðtÞ; ð3:1Þ
for t 2 ½0; T�, where DðXðtÞ; tÞ and bðXðtÞ; tÞ are the vector drift and scalar diffusion coefficients, respectively. We assume that
the SDE coefficients DðXðtÞ; tÞ and bðXðtÞ; tÞ are smooth and measurable functions satisfying a global Lipschitz and a linear
growth condition, and all the initial moments of Xð0Þ exist, so that (3.1) admits the existence and uniqueness of a solution
XðTÞ (see, e.g., [24]).

Many Ito SDE schemes (e.g. [24,26,28,32,34,36]) have been developed for the autonomous SDEs having the form
dXðtÞ ¼ DðXðtÞÞdt þ bðXðtÞÞdWðtÞ; ð3:2Þ
where the SDE coefficients do not depend directly on time. To take advantage of the autonomous SDE schemes, we will con-
sider an SDE system with frozen coefficients in Section 3.2 which can use the autonomous SDE schemes for our problem
(3.1).

We write the particle scalar Eq. (2.7) in the general form
d/ðtÞ
dt
¼ AðXðtÞ;/ðtÞ; tÞ: ð3:3Þ
This is a random differential equation due to the randomness of the forcing term AðXðtÞ;/ðtÞ; tÞ (see [24]). Regular ODE
schemes can be applied to solve (3.3). Let YðTÞ and uðTÞ be numerical approximations of the Ito process X(T) and scalar
/ðTÞ, respectively, where T is the specified stopping time. The weak pth order convergence of the numerical solutions
YðTÞ and uðTÞ to the SDE system (2.6) and (2.7) can be measured by the asymptotic behavior of the numerical error e
e ¼ jEðgðYðTÞ;uðTÞ; TÞÞ � EðgðXðTÞ;/ðTÞ; TÞÞj 6 CDtp; ð3:4Þ
where g is a function (chosen to be �/ and /2 in this study), Eð�Þ denotes mathematical expectation, and C is a constant inde-
pendent of Dt. That is, the largest value of p for which (3.4) holds indicates the order of the scheme.

3.2. SDE system with frozen coefficients

Consider a single step numerical integration ½t0; t0 þ Dt� of (3.1) and (3.3), where t0 is the initial time and Dt is the time
step size. It is verified in Appendix A that integrating (3.1) and (3.3) with weak second-order accuracy is equivalent to inte-
grating the following system over the time interval
dX0ðtÞ ¼ D X0ðtÞ; t1
2

� �
dt þ b X0ðtÞ; t1

2

� �
dWðtÞ; ð3:5Þ

d/0ðtÞ
dt

¼ A X0ðtÞ;/0ðtÞ; t1
2

� �
; ð3:6Þ
where ta ¼ t0 þ aDt ð0 6 a 6 1Þ. Over one time step, (3.5) is an autonomous Ito SDE (similar to (3.2)), so any autonomous Ito
SDE scheme can be used.

The advantages of this frozen-coefficient SDE system have been discussed in Section 1.

3.3. Weak second-order Ito SDE schemes

In this work, three weak second-order Ito SDE schemes for (3.1) or (3.2) are considered: the mid-point scheme of Cao and
Pope [25]; the predictor–corrector scheme of Kloeden and Platen (pp. 504–506 of [24], also in [26]); and, the Runge–Kutta
scheme of Tocino and Vigo-Aguiar [30].

In the following discussion, we use T to denote the transport step (step of the solution to the Ito SDE), and T to denote the
results of the step. We consider the general step from time t0 to t0 þ Dt with initial condition Xðt0Þ ¼ X0.

3.3.1. Scheme of Cao and Pope (CP)
The CP scheme [25] consists of two sub-steps Tcp ¼ T

cp
1 T

cp
2 , where T

cp
1 is the prediction of the mid-point and T

cp
2 is the

final solution.
First CP sub-step T

cp
1 :
Y t1
2

� �
¼ X0 þ T cp

1 ðX0; t0;Dt; fÞ ð3:7Þ
with T cp
1 ðX; s;Dt; fÞ ¼ Dt

2 � D X; sð Þ þ 1
2 Dt
� �1

2bðX; sÞf, where f is a standardized Gaussian random vector (each component of f is
an independent Gaussian random number with zero mean and unit variance).

Second CP sub-step T
cp
2 :
Yðt1Þ ¼ Y t1
2

� �
þ T cp

2 X0;Y t1
2

� �
; t1

2
;Dt; n; g

� �
ð3:8Þ
with T cp
2 ðX;Y; s;Dt; n; gÞ ¼ T cp

2;1; T
cp

2;2 ; T
cp
2;3

� �
, and
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T cp
2;iðX;Y; s;Dt; n; gÞ ¼ DtDiðY; sÞ þ

1
2

Dt
� �1

2

bðY; sÞðni þ giÞ þ DtbðY; sÞ @bðY; sÞ
@Xj

ðgigj � dijÞ

� 1
2

Dt
� �3

2

bðY; sÞ @bðY; sÞ
@Xi

@bðY; sÞ
@Xj

þ @bðY; sÞ
@Xk

@bðY; sÞ
@Xk

dij

� ��
�bðY; sÞ @DiðY; sÞ

@Xj
þ @DjðY; sÞ

@Xi

� �	
ðnj þ gjÞ þ Xi � Yi; ð3:9Þ
where n and g are two independent standardized Gaussian random vectors, and dij is the Kronecker delta.
The overall CP step can be re-expressed as
Yðt1Þ ¼ X0 þ T cp X0; t0; t1
2
;Dt; f; n; g

� �
; ð3:10Þ
where
T cpðX; s1; s2;Dt; f; n; gÞ ¼ T cp
2 X;Y1

2
; s2;Dt; n; g

� �
� Xþ Y1

2
ð3:11Þ
with Y1
2
¼ Xþ T cp

1 ðX; s1;Dt; fÞ.
The application of CP to the frozen-coefficient system is given by (3.10) and (3.11), but with s1 and s2 set to t1

2
in

(3.11).

3.3.2. Scheme of Kloeden and Platen (KP)
The KP scheme Tkp [24,26] is a scheme of predictor–corrector type for autonomous Ito SDEs. The one-dimensional KP

scheme is the following (the multi-dimensional KP scheme can be found in the same reference)
Yðt1Þ ¼ X0 þ T kpðX0;Dt; nÞ ð3:12Þ
with T kpðX;Dt; nÞ ¼ 1
2 ðDðYaÞ þ DðXÞÞDt þ Yb, and
Y� ¼ X0 þ DðX0ÞDt � bðX0ÞDt
1
2;

Yc ¼ X0 þ DðX0ÞDt þ bðX0ÞDt
1
2n;

Yb ¼
1
4
½bðYþÞ þ bðY�Þ þ 2bðX0Þ�Dt

1
2nþ 1

4
½bðYþÞ � bðY�Þ�Dt

1
2ðn2 � 1Þ;

Ya ¼ X0 þ
1
2
ðDðYcÞ þ DðX0ÞÞDt þ Yb;
and n is either a standardized Gaussian random number or a three-point distributed random number with probability
Prob n ¼ �
ffiffiffi
3
p� �

¼ 1
6
; Probðn ¼ 0Þ ¼ 2

3
: ð3:13Þ
This autonomous Ito SDE scheme is applicable only to the frozen-coefficient SDE (3.5).

3.3.3. Scheme of Tocino and Vigo-Aguiar (TV)
Tocino and Vigo-Aguiar [30] proposed a family of weak second-order Runge–Kutta Ito SDE schemes. The one-dimensional

version of TV scheme Ttv for non-autonomous SDEs is shown in the following (the multi-dimensional version can be found in
the same reference)
Yðt1Þ ¼ X0 þ T tvðX0;Dt; t0;l0; �l0; nÞ; ð3:14Þ
where n is a standardized Gaussian random number and
T tvðX;Dt;s;l0; �l0;nÞ¼ ða1k0þa2k1ÞDtþðc1nþc2þc3n
2ÞDt1=2s0þðk1nþk2þk3n

2ÞDt1=2s1þðl1nþl2þl3n
2ÞDt1=2s2;

ð3:15Þ
where
k0 ¼ DðX; sÞ;
s0 ¼ bðX; sÞ;
k1 ¼ DðX þ k0k0Dt þ ðm1nþ m2n

3ÞDt1=2s0; sþ l0DtÞ;
s1 ¼ bðX þ �k0k0Dt þ ðb1nþ b2 þ b3n

2ÞDt1=2s0; sþ �l0DtÞ;
s2 ¼ bðX þ �k0k0Dt þ ðd1nþ d2 þ d3n

2ÞDt1=2s0; sþ �l0DtÞ:
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The example of the two-parameter (a2 and l3) families of the TV scheme are
a1 ¼ 1� a2; l0 ¼ k0 ¼
1

2a2
; m2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 � 1
p

2
ffiffiffi
6
p

a2
; m1 ¼

1
2a2
� 3m2
with a2 P 1=2, and either
b3 ¼ d3 ¼ 0; �l0 ¼ �k0 ¼ 1; c1 ¼
1
2
; c2 ¼ c3 ¼ 0; l1 ¼ k1 ¼

1
4
;

l2 ¼ �k2 ¼
1� 48l2

3

32l3
; k3 ¼ �l3; b2 ¼ �d2 ¼

8l3

1� 48l2
3

; b1 ¼ d1 ¼ 1þ 32l2
3

1� 48l2
3

;

ð3:16Þ
with l3 – 0 and l3 – 1
4
ffiffi
3
p , or
b1 ¼ b2 ¼ d1 ¼ d2 ¼ 0; c2 ¼ c3 ¼ 0; c1 ¼ 1� 24l2
3

5
; l1 ¼ k1 ¼

12l2
3

5
;

�l0 ¼ �k0 ¼
5

48l2
3

; d3 ¼ �b3 ¼
1

12l3
; k2 ¼ �l2 ¼ 3l3; k3 ¼ �l3;

ð3:17Þ
with l3 – 0. In the results presented in Section 6, the values of a2 ¼ 1:0 and l3 ¼ 0:5 and (3.17) are used. The effect of choos-
ing the different constants and different families of the parameters is discussed in Section 7.

When s ¼ t1
2

and l0 ¼ �l0 ¼ 0 in (3.15), this scheme is applicable to the frozen-coefficient Ito SDE (3.5).
The CP scheme (3.10) involves the spatial derivatives of coefficients, while KP scheme (3.12) and TV scheme (3.14) are

derivative-free.
In this section, the numerical solution to the Ito SDEs (3.1) and (3.5) is discussed. Below (in Section 5), we discuss the

numerical solution to the scalar Eq. (2.7) and the splitting schemes of the coupled system (2.6) and (2.7). Before discussing
the solution of the scalar equation, in the next section we first develop the method of manufactured solutions (MMS) for the
particle method, and derive the augmented particle scalar equation for the purpose of verification.
4. Method of manufactured solutions (MMS) for Monte Carlo particle methods

A numerical test case with known exact solutions (or with highly accurate numerical solutions via other methods) is often
required for validating models and algorithms and for verifying the computer programming. MMS [39,40] provides a general
procedure for generating an analytical solution for this purpose. MMS was primarily used in the verification of the numerical
solution of partial differential equations (PDEs) with finite-difference, finite-volume, and finite-element based numerical
methods in the past [41–44]. In that practice, the analytical solutions to the equations to be solved were manufactured.
In the current Monte Carlo particle method, however, we need the analytical solutions to the quantities which are not di-
rectly solved, i.e., the SDE system (2.6) and (2.7) is solved numerically, while the moments of the scalar /q are used for exam-
ining the weak convergence. In the following, we first obtain the augmented PDEs admitting the manufactured solutions of
scalar moments, then derive the augmented SDE system consistent with the augmented PDEs. In principle, any order of sca-
lar moment should be tested for convergence. However, this is technically impractical. In this work, we consider mostly the
first and second moments of the scalar, which are the primary interest of PDF applications. For one case, we present the con-
vergence results for the third and fourth moments (Section 6.3). The analysis of the schemes discussed in this paper indicates
that they are all convergent (with first or second-order accuracy) for the PDF and hence for all moments. This convergence
has been verified for the first four moments, and there is no reason to doubt that higher moments converge similarly.

4.1. Augmented SDE system for MMS

In this work, we consider the manufactured solutions only for the scalar mean and variance. In the transport equations for
the scalar mean �/ (2.3) and variance /02 (2.5), the terms containing the reaction source term Sð/Þ are generally unclosed be-
cause of the non-linearity of the reaction term. Closing these equations requires that S/ðx; tÞ and Sðx; tÞ be known in terms of
�/ and /2, which in turn requires Sð/Þ to be linear in /. Hence, for verification purposes, we specify the following linear
relation
Sð/Þ ¼ Rað/ðx; tÞ � RbÞ; ð4:1Þ
in which Ra and Rb are specified constants. Substituting the above equation into (2.3) and (2.5), we see that those equations
become closed.

We need analytical solutions for �/ and /02 to (2.3) and (2.5) for the error estimate in the convergence study. In general, these
analytical solutions cannot be obtained. The idea of the MMS is to specify analytical functions of �/m and /02m in advance, where
the subscript ‘‘m” denotes manufactured solution. These functions certainly do not satisfy (2.3) and (2.5) in general. They sat-
isfy the following augmented equations with extra source terms (Sm and Sv ) compared to the original ones
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@�/mðx; tÞ
@t

þ @
�uiðx; tÞ�/mðx; tÞ

@xi
¼ @

@xi
Cðx; tÞ @

�/mðx; tÞ
@xi

� �
þ Rað�/mðx; tÞ � RbÞ þ Smðx; tÞ; ð4:2Þ

@/02mðx; tÞ
@t

þ @
�uiðx; tÞ/02mðx; tÞ

@xi

¼ @

@xi
Cðx; tÞ @/

02
mðx; tÞ
@xi

 !
þ 2Cðx; tÞ @

�/mðx; tÞ
@xi

@�/mðx; tÞ
@xi

� 2Xðx; tÞ/02mðx; tÞ þ 2Ra/
02

mðx; tÞ þ Svðx; tÞ: ð4:3Þ
The forcing terms Sm and Sv are determined from the above equations, given the specifications for all the other functions in
the equations. We now turn our attention to a problem satisfying the above Eqs. (4.2) and (4.3).

Due to the extra source terms, the above Eqs. (4.2) and (4.3) are no longer consistent with the PDF Eq. (2.1) and the par-
ticle Eqs. (2.6) and (2.7). A consistent PDF equation can be obtained in the following
@f ðw; x; tÞ
@t

þ @
�uiðx; tÞf ðw; x; tÞ

@xi

¼ @

@xi
Cðx; tÞ @f ðw; x; tÞ

@xi

� �
þ @

@w
ðXðx; tÞðw� �/mðx; tÞÞf ðw; x; tÞÞ � @

@w
ðRaðw� RbÞf ðw; x; tÞÞ

� Smðx; tÞ
@f ðw; x; tÞ

@w
þ @

@w
ðXvðx; tÞðw� �/mðx; tÞÞf ðw; x; tÞÞ ð4:4Þ
where Xv ðx; tÞ ¼ �Sv ðx; tÞ=ð2/02mðx; tÞÞ is a scalar-frequency-like quantity due to the source term Sv . (Notice that Xv ðx; tÞ can
be negative.) The implementation of the IEM model is adapted to account for the effect of Xv to obtain the correct variation
rate of scalar variance. Other mixing models (e.g. modified Curl or EMST) are not appropriate for this term when Xv ðx; tÞ be-
comes negative. The corresponding (augmented) particle scalar equation is then
d/ðtÞ
dt
¼ �XðXðtÞ; tÞð/ðtÞ � �/mðXðtÞ; tÞÞ þ Rað/ðtÞ � RbÞ þ SmðXðtÞ; tÞ �XvðXðtÞ; tÞð/ðtÞ � �/mðXðtÞ; tÞÞ: ð4:5Þ
The four terms on the right-hand side represent the molecular mixing process M, reaction process R, scalar mean forcing
process S, and scalar variance forcing process V, respectively. This equation can be simplified, e.g., by combining M and
V, but we generally do not combine them due to the physical difference of each process and due to the flexibility of imple-
menting different sub-models for each process (e.g., using other mixing models for M).

The particle position Eq. (2.6) deals with the convection and diffusion of the PDF which are not changed in (4.4), so (2.6)
remains the same after using the MMS. The particle equations to be considered now become (2.6) and (4.5).

A particular MMS test case requires the specification of �/mðx; tÞ;/2
mðx; tÞ; �uðx; tÞ;Cðx; tÞ; Smðx; tÞ; Sv ðx; tÞ, and Xðx; tÞ. In

Appendix C, these specifications are given for the tests used in this study.

4.2. Error analysis for weak convergence

The manufactured solutions to the first two moments of the scalar are discussed in the previous sub-section. Here, we
discuss how to use these solutions to measure the numerical error.

We consider a one-dimensional problem, and the computational domain ½0; L0� is partitioned into I cells

xi � Dxi
2 ; xi þ Dxi

2

h i
; i ¼ 1; . . . ; I, where xi is the center of the ith grid cell and Dxi is the cell size. The grid used for the error anal-

ysis is often the same as the grid used in the finite-volume method of the flow fields which is generally non-uniform. The

volume average h/qii of the qth scalar moment in the ith cell is
h/qii ¼
1

Dxi

Z xiþ
Dxi

2

xi�
Dxi
2

/q
mðx; TÞdx; ð4:6Þ
where h�i denotes volume average and /q
mðx; tÞ is the manufactured solution. The volume average h/qi is used as the exact

solution in (3.4) to evaluate the numerical error of the particle method.
The Monte Carlo particle method involves the tracking of many particles governed by (2.6) and (4.5). To obtain accurate

estimates of scalar moments, a very large number of particles is required (e.g., up to the order of 1010) for the currently con-
sidered test case (with a small time step). The exact required number of particles is not known in advance. We perform the
convergence tests with an adaptive number of particles, i.e., we perform the simulation with a fixed number of particles
(e.g., 104) and repeat the trials independently many times as needed (e.g., repeat 106 times to achieve 1010 particles for the
above case).

The numerical approximation to h/qii can be estimated from the ensemble average of the particles in the cell
h/qi�i;k ¼
1

Ni;k

XNi;k

n¼1

/q
n;i;kðTÞ; ð4:7Þ
where /n;i;k is the scalar value of the nth particle in the ith cell for the kth trial, Ni;k is the number of particles in the cell for the
kth trial, and h�i� denotes an ensemble average.
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The numerical error in predicting the qth scalar moment for the ith cell on the kth trial is then measured as
eq;i;k ¼ h/qi�i;k � h/
qii: ð4:8Þ
For the finite number of particles in the simulation, the numerical error eq;i;k is a random variable with an approximately
Gaussian distribution, and can be decomposed as
eq;i;k ¼ lq;i þ rq;inq;i;k; ð4:9Þ
(with no implied summation), where lq;i � Eðeq;i;kÞ;r2
q;i � varðeq;i;kÞ, and nq;i;k is a standardized Gaussian random variable

ðhnq;i;ki ¼ 0; varðnq;i;kÞ ¼ 1Þ, which is independent on each trial ðhnq;i;knq;i;li ¼ 0; k – lÞ, but not necessarily from cell to cell
ðhnq;i;knq;l;ki– 0Þ. The deterministic error lq;i consists of two possible sources: the time-stepping error (which scales as Dt2

for second-order schemes), and the bias error (which scales as N�1
trial [23], Ntrial being the number of particles per trial). In this

study, the number of particles is on the order of 104, and the results reported in Section 6 support the supposition that the
bias error is small compared to the time-stepping error (for the smallest time step Dt=T ¼ 1

40). The statistical error rq;i scales
as N�1=2 in which N is the total number of particles used in a convergence test.

We define a global error E
/q ,
EðE
/q Þ �

1
I

XI

i¼1

l2
q;i

" #1=2

; ð4:10Þ
which, in the case of an infinite number of trials, is the two-norm (over the cells) of the expectation of eq;i;k. In Appendix B we
describe the construction of an un-biased estimate of E

/q based on a finite number of trials.
We use the global measure of error E

/q to investigate the numerical accuracy and convergence. The global error uses all
the particles from the simulation, so it presumably involves less statistical error than the local error which uses a small por-
tion of particles from the simulations, although the cell-to-cell estimates of the local error are not independent. Due to the
random nature of the global error, multiple sets of trials are performed to estimate the mean and variance of E

/q , and hence
to estimate the confidence interval of the error.

4.3. Computational cost of a Monte Carlo convergence study

In this sub-section, we give an estimate of the computational requirement for verifying the convergence of the Monte
Carlo method. In this work, we are primarily interested in the time-stepping error. The computational cost of the Monte Car-
lo simulation is proportional to the number of particles multiplied by the time steps taken. From the previous discussion, we
know that the mean and standard deviation of the error scale as lq;i � ClDtp and rq;i � CrN�1=2, so (4.9) becomes
eq;i;kð/qÞ � ClDtp þ Cr
1

N1=2 nq;i;k; ð4:11Þ
where Cl and Cr are constants.
To show the numerical convergence of eq;i;k with respect to the time step Dt, we require that the time-stepping error dom-

inates the statistical error in (4.11), i.e., ClDtp 	 CrN�1=2. The ratio between the statistical error and the time-stepping error is
Cr ¼ CrN�1=2=ClDtp 
 1; ð4:12Þ
where Cr is a constant, then
N ¼ C2
rC�2

l C�2
r Dt�2p: ð4:13Þ
The total number of time steps taken is Nt ¼ T=Dt, so then the computational cost F for verifying Monte Carlo convergence
scales as
F ¼ N � Nt ¼ C2
rTC�2

l C�2
r Dt�2p�1 / Dt�2p�1: ð4:14Þ
For weak second-order numerical schemes ðp ¼ 2Þ, the computational cost F scales as Dt�5. Hence to make the computa-
tion affordable, simplification is made on the test case as discussed in Section 1, i.e., one-dimensional, constant density, and
single scalar.

In this section, the MMS for the Monte Carlo particle method is developed. The error analysis and the computational cost
are discussed. The manufactured analytical solutions to the one-dimensional problem for convergence test is designed and
shown in Appendix C.

5. Weak second-order splitting schemes

In this section, we develop the weak second-order splitting schemes for the coupled SDE system (3.1) and (3.3) (and the
frozen-coefficient system (3.5) and (3.6)). To construct second-order splitting schemes for the coupled system, a necessary
condition is to have the SDE and the scalar equation each integrated with at least second-order accuracy. The (weak) second-
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order schemes to the SDE have been discussed in Section 3.3. In the following, different second-order splitting schemes for
the scalar equation are first discussed, and then the splitting schemes for the coupled SDE system.

5.1. Sub-stepping of scalar evolution

The augmented particle scalar Eq. (4.5) can be solved by ODE schemes. As discussed in Section 4.1, this equation describes
four processes (mixing M, reaction R, scalar mean forcing S, and scalar variance forcing V), and sub-stepping is often used to
solve this kind of equation, i.e., splitting (4.5) into the following four equations to solve separately with each describing one
process,
M :
d/ðtÞ

dt
¼ �XðXðtÞ; tÞð/ðtÞ � �/ðXðtÞ; tÞÞ; ð5:1Þ

R :
d/ðtÞ

dt
¼ þRað/ðtÞ � RbÞ; ð5:2Þ

S :
d/ðtÞ

dt
¼ þSmðXðtÞ; tÞ; ð5:3Þ

V :
d/ðtÞ

dt
¼ �XvðXðtÞ; tÞð/ðtÞ � �/ðXðtÞ; tÞÞ: ð5:4Þ
Consider one step of integration over the time interval ½t0; t0 þ Dt� from the initial condition /0 ¼ /ðt0Þ. The numerical
solution uðtÞ to the above four equations can be obtained as following.

Mixing sub-step M: In (5.1), if X and �/ are frozen at some particle position XðrÞ and time s (r; s 2 ½t0; t0 þ Dt�), then the
analytical solution to the mixing sub-step is
uðt1Þ ¼Mð/0;XðrÞ; s;DtÞ ¼ �/ðXðrÞ; sÞ þ ð/0 � �/ðXðrÞ; sÞÞ expð�XðXðrÞ; sÞDtÞ: ð5:5Þ
For the splitting schemes of the SDE system (3.1) and (3.3), we require the time r to be equal to s to evaluate the coefficients
X and �/, and the time (r and s) can be specified for different schemes, e.g., r ¼ s ¼ t0 for explicit schemes, t0 < r ¼ s 6 t1 for
implicit schemes, where ta ¼ t0 þ aDt ð0 6 a 6 1Þ. Second-order accuracy can be achieved by choosing r ¼ s ¼ t1

2
. When used

in solving the frozen-coefficient scalar Eq. (3.6), the time in (5.5) is s ¼ t1
2
, while the time r can be different from s. The particle

position XðrÞ at time r for the evaluation of the scalar coefficients is the result of the previous transport sub-step, and is avail-
able only at three times r ¼ t0; t1

2
and t1 in a second-order splitting scheme (with the exceptions of TcpCRC0Tcp and

TcpCRC0Tcp-F in Section 5.2 in which X is available also at r ¼ t1
4

and t3
4
). The meaning of r and s is the same for the other

sub-steps.
The scalar mean �/ðX; sÞ can be approximated by the cell mean of particles at time s. During the mixing sub-step (and the

scalar variance forcing sub-step), the scalar mean is preserved, and so the scalar mean is the same at different times within
the sub-step, e.g., �/ðX; sÞ ¼ �/ðX; t0Þ. Hence the scalar mean at t0 approximated by the initial particle scalar can be used in
(5.5) to construct different splitting schemes including second-order accurate schemes. For the nth particle in the ith cell,
the scalar mean is approximated as
�/ðnÞðXn; sÞ ¼ �/ðnÞðXn; t0Þ �
1

Ni � 1

XNi

j¼1;j – n

/jðt0Þ
�����

Xj2 xi�
Dxi

2 ;xiþ
Dxi

2

� 
; ð5:6Þ
where the particle itself is removed from the cell mean in order to remove the correlation between the particle and the cell
mean. This is a first-order approximation in space to �/ðnÞðXn; t0Þ. A second-order approximation can be constructed by inter-
polating the cell mean to the particle position. We consider only the time-stepping error in this work, so the simplest approx-
imation method is used to obtain �/ðnÞðXn; t0Þ. The grid size is specified to be sufficiently small that the spatial discretization
error is small compared to the time-stepping error. All the results in Section 6 show the consistent asymptotical behavior of
the numerical errors against the time step for the time steps considered, confirming that the spatial discretization error in
the test is significantly smaller than the time-stepping error.

Reaction sub-step R: The linear reaction sub-step (5.2) is integrated analytically
uðt1Þ ¼ Rð/0;DtÞ ¼ Rb þ ð/0 � RbÞ expðRaDtÞ: ð5:7Þ
Scalar mean forcing sub-step S: The scalar mean forcing sub-step (5.3) is integrated as
uðt1Þ ¼ Sð/0;XðrÞ; s;DtÞ ¼ /0 þ SmðXðrÞ; sÞDt: ð5:8Þ
Scalar variance forcing sub-step V: In (5.4), if Xv and �/ are frozen at some particle position XðrÞ and time s, then the
analytical solution to the scalar variance forcing sub-step is
uðt1Þ ¼ Vð/0;XðrÞ; s;DtÞ ¼ �/ðXðrÞ; sÞ þ ð/0 � �/ðXðrÞ; sÞÞ expðXvðXðrÞ; sÞDtÞ: ð5:9Þ
For designing different second-order splitting schemes for the scalar equation only, we consider the limit of no particle
movement XðrÞ ¼ Xð0Þ (e.g., D ¼ 0 and b ¼ 0 in the SDE), and then the scalar equation is an ODE. If the four scalar sub-steps
(5.5), (5.7)–(5.9) are advanced in order (e.g., MRSV) with each one taking one full time step once, the result is first-order
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accurate (provided that each sub-step is integrated with at least first-order accuracy). Symmetric splitting schemes can be
constructed which potentially have second-order accuracy, for example, the scheme denoted SVMRMVS. By this notation,
we mean that the processes S;V;M;R;M;V;S are performed (in that order) with the initial condition for each process being
the result of its predecessor. If a process is performed just once (like R in this example), then it is performed for a time inter-
val Dt. On the other hand, if the process is performed twice (like S;V, and M in this example) then it is for a time interval of
Dt=2 each time.

If each sub-step of SVMRMVS is integrated with second-order accuracy (e.g., by evaluating coefficients at the mid-time
of the sub-step), this splitting is called Strang splitting [48] which has overall second-order accuracy. We denote the Strang
splitting scheme as SVMRMVS-I, and write down the scheme in Table 1. The Strang splitting needs to evaluate coefficients
at t1

4
and t3

4
, and X t1

4

� �
and X t3

4

� �
. These particle locations are not computed in the transport sub-step of the most of the split-

ting schemes discussed in this work. For most schemes, only Xðt0Þ, and approximations to X t1
2

� �
and Xðt1Þ are available for

the construction of the second-order splitting schemes. It is not necessary, however, to have each sub-step of SVMRMVS

integrated with second-order accuracy to construct a second-order splitting scheme. We consider two splitting schemes
SVMRMVS-II and SVMRMVS-III (as shown in Table 1) which involve only first-order integration of some sub-steps,
e.g., the first half time step of S;V and M. The second-order accuracy of the two splitting schemes SVMRMVS-II and
SVMRMVS-III can be easily shown for ODEs (by freezing particle position and by showing that the results from
SVMRMVS-II and SVMRMVS-III are consistent with those from SVMRMVS-I up to order Dt2, using Taylor series expan-
sions). The three schemes in Table 1 can be generalized to a class of second-order splitting schemes by evaluating the scalar
coefficients at t ¼ t1

2�h h 2 0; 1
2

� 
� �
, i.e., evaluating coefficients at t ¼ t1

2�h for the first half steps of S;V and M and at t ¼ t1
2þh for

their second half steps. In this work, we only use the splitting SVMRMVS-II and SVMRMVS-III for the construction of the
second-order splitting schemes for the coupled SDE system.

The splitting schemes discussed above are applicable to the original scalar Eq. (3.3). They are also applicable to the frozen-
coefficient scalar Eq. (3.6) by specifying s ¼ t1

2
in function S;V;M (retaining the time r in XðrÞ in the schemes).

We can construct different symmetric splitting schemes with potential second-order accuracy, e.g.,
SVRMRVS;MRSVSRM. We will not discuss the difference of these different splittings for the scalar equation. In practice,
performing one step of reaction R (like SVMRMVS) in the middle is preferable. Usually, the reaction computation in com-
bustion is dominant, so reducing the number of sub-steps of reactions in the computation reduces the overall computational
cost linearly. In order to reduce the reaction computational cost significantly, the in situ adaptive tabulation (ISAT) method
[49] is often used. Taking a longer time step in ISAT reduces the table size and hence speeds up ISAT. Therefore, performing
one step of reaction in the splitting is advantageous.

In the following discussion, we will consider only the splitting SVMRMVS. For simplicity, we denote SVM as C and
MVS as C0, and so the splitting simply becomes CRC0.

5.2. Splitting schemes for the coupled SDE system

The numerical schemes for the Ito SDE (3.1) and (3.5) and for the augmented particle scalar Eq. (4.5) have been discussed
in Sections 3.3 and 5.1, respectively. Second-order accuracy is achieved for solving the individual equation. In this part, we
combine these numerical schemes and develop the weak second-order splitting schemes for the coupled SDE system.

5.2.1. Splitting schemes based on the CP scheme
The splitting schemes in this part (5.2.1) are only appropriate for the mid-point SDE schemes (e.g., the CP scheme (3.7)

and (3.8)). The splitting scheme first suggested by Cao and Pope [25] is denoted by T
cp
1 CRC0T

cp
2 in Table 2, where the func-

tions T cp
1 and T cp

2 are defined in (3.7) and (3.8), and the splitting scheme SVMRMVS-II in Table 1 is used for the scalar equa-
tion. Note that this scheme is not symmetrical, in that the final process T cp

2 is different from the first process T cp
1 .

From the previous discussions, if the equations for XðtÞ and /ðtÞ are integrated separately, Yðt1Þ and uðt1Þ from
T

cp
1 CRC0T

cp
2 are (weak) second-order approximations to Xðt1Þ and /ðt1Þ, respectively. When coupled, in order to achieve
Table 1
Second-order splitting schemes for the particle scalar Eq. (4.5).

SVMRMVS-I SVMRMVS-II SVMRMVS-III

u1 ¼ S /0;X t1
4

� �
; t1

4
; Dt

2

� �
u1 ¼ S /0;X t1

2

� �
; t1

2
; Dt

2

� �
u1 ¼ S /0;Xðt0Þ; t0;

Dt
2

� �
u2 ¼ V u1;X t1

4

� �
; t1

4
; Dt

2

� �
u2 ¼ V u1;X t1

2

� �
; t1

2
; Dt

2

� �
u2 ¼ V u1;Xðt0Þ; t0;

Dt
2

� �
u3 ¼M u2;X t1

4

� �
; t1

4
; Dt

2

� �
u3 ¼M u2;X t1

2

� �
; t1

2
; Dt

2

� �
u3 ¼M u2;Xðt0Þ; t0 ;

Dt
2

� �
u4 ¼ Rðu3;DtÞ u4 ¼ Rðu3;DtÞ u4 ¼ Rðu3;DtÞ
u5 ¼M u4;X t3

4

� �
; t3

4
; Dt

2

� �
u5 ¼M u4;X t1

2

� �
; t1

2
; Dt

2

� �
u5 ¼M u4;Xðt1Þ; t1;

Dt
2

� �
u6 ¼ V u5;X t3

4

� �
; t3

4
; Dt

2

� �
u6 ¼ V u5;X t1

2

� �
; t1

2
; Dt

2

� �
u6 ¼ V u5;Xðt1Þ; t1;

Dt
2

� �
uðt1Þ ¼ S u6;X t3

4

� �
; t3

4
; Dt

2

� �
uðt1Þ ¼ S u6;X t1

2

� �
; t1

2
; Dt

2

� �
uðt1Þ ¼ S u6;Xðt1Þ; t1;

Dt
2

� �



Table 2
Splitting schemes for the coupled SDE system (3.1) (or (3.5)) and (4.5) based on the CP scheme (3.7) and (3.8).

T
cp
1 CRC0Tcp

2 T
cp
1
bTcp

1 CRC0Tcp
2 T

cp
1
bTcp

1 CRC0Tcp
2 -F

Y t1
2

� �
¼ X0 þ T

cp
1 X0; t0;Dt; nþg

2 þ #ffiffi
2
p

� �
Y t1

2

� �
¼ X0 þ T

cp
1 X0 ; t1

2
;Dt; nþg

2 þ #ffiffi
2
p

� �
Y t1

2

� �
¼ X0 þ T

cp
1 ðX0; t0;Dt; fÞ bY t1

2

� �
¼ X0 þ T

cp
1 X0; t0;Dt; fð Þ bY t1

2

� �
¼ X0 þ T

cp
1 X0; t1

2
;Dt; f

� �
u1 ¼ S /0 ;Y t1

2

� �
; t1

2
; Dt

2

� �
; u2 ¼ V u1;Y t1

2

� �
; t1

2
; Dt

2

� �
; u3 ¼M u2;Y t1

2

� �
; t1

2
; Dt

2

� �
; u4 ¼ Rðu3;DtÞ

u5 ¼M u4;Y t1
2

� �
; t1

2
; Dt

2

� �
; u6 ¼ V u5;Y t1

2

� �
; t1

2
; Dt

2

� �
; uðt1Þ ¼ S u6;Y t1

2

� �
; t1

2
; Dt

2

� �
Yðt1Þ ¼ Y t1

2

� �
þ T cp

2 X0;Y t1
2

� �
; t1

2
;Dt; n; g

� �
Yðt1Þ ¼ bY t1

2

� �
þ T cp

2 X0; bY t1
2

� �
; t1

2
;Dt; n; g

� �
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overall weak second-order accuracy, Y t1
2

� �
must be a weak first-order approximation to the mid-point X t1

2

� �
given the initial

and final positions X0 and Yðt1Þ. However, the sub-steps of the CP scheme (3.7) and (3.8) use independent Gaussian random
vectors, which makes the mid-point approximation Y t1

2

� �
impossible to represent the correct distribution given the initial

and final positions. Hence the splitting scheme T
cp
1 CRC0T

cp
2 degrades to overall first-order accuracy despite of the second-

order accuracy achieved by each equation.
Introducing another mid-point Y t1

2

� �
(the original one is bY t1

2

� �
) which is correlated to the increment of the second-step of

the CP scheme achieves overall second-order accuracy. The new splitting scheme is shown as T
cp
1
bTcp

1 CRC0T
cp
2 in Table 2 in

which the bY t1
2

� �
step is denoted by bTcp

1 , and # is another independent Gaussian random vector. The step T
cp
1 is exactly the

same as bTcp
1 except using a different random vector for the Wiener process. The second-step (3.8) of the CP scheme can be

simply viewed as a Wiener process WðtÞ. If we consider Wðt1Þ ¼ nþ g at t1 ¼ 2 starting from Wðt0Þ ¼ 0, then W t1
2

� �
has the

same distribution as nþg

2 þ #ffiffi
2
p . Therefore, Y t1

2

� �
represents the distribution of X t1

2

� �
correctly, and this splitting scheme

T
cp
1
bTcp

1 CRC0T
cp
2 is expected to be overall second-order accurate. The results below confirm this expectation.

We can apply the second-order splitting T
cp

1
bTcp

1 CRC0T
cp
2 to the frozen-coefficient SDE system (3.5) and (3.6), and obtain

the scheme T
cp

1
bTcp

1 CRC0T
cp
2 -F in Table 2 where ‘‘F” denotes the frozen-coefficient system.

The schemes in Table 2 (in standard form) are not symmetric, whereas those below are.

5.2.2. Splitting schemes of type TCRC0T

Second-order splitting schemes can be constructed based on any Ito SDE schemes (e.g., the KP scheme and the TV scheme
in Section 3.3). We can construct the scheme of the type TCRC0T. The splitting with the CP scheme is written as TcpCRC0Tcp

in Table 3 where T cp is defined in (3.10). In contrast to the CP schemes described in previous sub-sections, this scheme per-
forms a complete CP step (of duration Dt=2) on each of the first and last sub-steps. Similarly, we can construct the splitting
schemes with the TV scheme TtvCRC0Ttv in Table 3 with T tv defined in (3.14).

Applying the splitting scheme to the frozen-coefficient SDE system with CP and TV schemes, we have the TcpCRC0Tcp-F
scheme and the TtvCRC0Ttv-F scheme as shown in Table 4. The KP scheme is only applicable to the frozen-coefficient system,
so the splitting scheme combining the KP scheme is TkpCRC0Tkp-F in Table 4 with T kp defined in (3.12).

We discussed five splitting schemes of the type of TCRC0T, which are all confirmed to be second-order accurate by the
results below.

5.2.3. Splitting schemes of type CTRTC0

We can design other second-order splitting schemes using different combinations of the transport sub-step and scalar
sub-step. One example is CTRTC0, which takes one step of reaction with half steps of transport right before and after the
reaction sub-step. As expected, this splitting scheme is second-order accurate. This splitting combined with the CP and TV
schemes are denoted by CTcpRTcpC0 and CTtvRTtvC0, respectively, in Table 5 where the splitting scheme SVMRMVS-III in
Table 3
Splitting schemes of the type TCRC0T for the coupled SDE system (3.1) and (4.5).

TcpCRC0Tcp TtvCRC0Ttv

Y t1
2

� �
¼ X0 þ T cp X0; t0; t1

4
; Dt

2 ; f; n; g
� �

Y t1
2

� �
¼ X0 þ T tv X0;

Dt
2 ; t0;l0; �l0; n

� �
u1 ¼ S /0 ;Y t1

2

� �
; t1

2
; Dt

2

� �
; u2 ¼ V u1;Y t1

2

� �
; t1

2
; Dt

2

� �
; u3 ¼M u2;Yðt1

2
Þ; t1

2
; Dt

2

� �
; u4 ¼ Rðu3;DtÞ

u5 ¼M u4;Y t1
2

� �
; t1

2
; Dt

2

� �
; u6 ¼ V u5;Y t1

2

� �
; t1

2
; Dt

2

� �
; uðt1Þ ¼ S u6;Y t1

2

� �
; t1

2
; Dt

2

� �
Yðt1Þ ¼ Y t1

2

� �
þ T cp Y t1

2

� �
; t1

2
; t3

4
; Dt

2 ; f
0; n0; g0

� �
Yðt1Þ ¼ Y t1

2

� �
þ T tv Y t1

2

� �
; Dt

2 ; t1
2
;l0; �l0; n

0
� �



Table 4
Splitting schemes of the type TCRC0T for the coupled SDE system (3.5) and (4.5).

TcpCRC0Tcp-F TtvCRC0Ttv-F TkpCRC0Tkp-F

Y t1
2

� �
¼ X0 þ T cp X0 ; t1

2
; t1

2
; Dt

2 ; f; n; g
� �

Y t1
2

� �
¼ X0 þ T tv X0;

Dt
2 ; t1

2
;0; 0; n

� �
Y t1

2

� �
¼ X0 þ T kp X0;

Dt
2 ; n

� �
u1 ¼ S /0;Y t1

2

� �
; t1

2
; Dt

2

� �
; u2 ¼ V u1;Y t1

2

� �
; t1

2
; Dt

2

� �
; u3 ¼M u2;Yðt1

2
Þ; t1

2
; Dt

2

� �
; u4 ¼ Rðu3;DtÞ

u5 ¼M u4;Y t1
2

� �
; t1

2
; Dt

2

� �
; u6 ¼ V u5;Y t1

2

� �
; t1

2
; Dt

2

� �
; uðt1Þ ¼ S u6;Y t1

2

� �
; t1

2
; Dt

2

� �
Yðt1Þ ¼ Y t1

2

� �
þ T cp Y t1

2

� �
; t1

2
; t1

2
; Dt

2 ; f
0; n0; g0

� �
Yðt1Þ ¼ Y t1

2

� �
þ T tv Y t1

2

� �
; Dt

2 ; t1
2
;0; 0; n0

� �
Yðt1Þ ¼ Y t1

2

� �
þ T kp Y t1

2

� �
; Dt

2 ; n
0

� �

Table 5
Splitting schemes of the type CTRTC0 for the coupled SDE system (3.1) and (4.5).

CTcpRTcpC0 CTtvRTtvC0

u1 ¼ S /0;X0; t0;
Dt
2

� �
; u2 ¼ V u1;X0; t0;

Dt
2

� �
; u3 ¼M u2;X0; t0;

Dt
2

� �
Y t1

2

� �
¼ X0 þ T cp X0 ; t0 ; t1

4
; Dt

2 ; f; n; g
� �

Y t1
2

� �
¼ X0 þ T tv X0;

Dt
2 ; t0;l0; �l0; n

� �
u4 ¼ Rðu3;DtÞ

Yðt1Þ ¼ Y t1
2

� �
þ T cp Y t1

2

� �
; t1

2
; t3

4
; Dt

2 ; f
0; n0; g0

� �
Yðt1Þ ¼ Y t1

2

� �
þ T tv Y t1

2

� �
; Dt

2 ; t1
2
;l0; �l0; n

0
� �

u5 ¼M u4;Yðt1Þ; t1;
Dt
2

� �
; u6 ¼ V u5;Yðt1Þ; t1;

Dt
2

� �
; uðt1Þ ¼ S u6;Yðt1Þ; t1;

Dt
2

� �

Table 6
Splitting schemes of the type CTRTC0 for the coupled SDE system (3.5) and (4.5).

CTcpRTcpC0 � F CTtvRT tvC0-F CTkpRTkpC0-F

u1 ¼ S /0;X0 ; t1
2
; Dt

2

� �
; u2 ¼ V u1;X0; t1

2
; Dt

2

� �
; u3 ¼M u2;X0; t1

2
; Dt

2

� �
Y t1

2

� �
¼ X0 þ T cp X0 ; t1

2
; t1

2
; Dt

2 ; f; n; g
� �

Y t1
2

� �
¼ X0 þ T tv X0;

Dt
2 ; t1

2
;0; 0; n

� �
Y t1

2

� �
¼ X0 þ T kp X0;

Dt
2 ; n

� �
u4 ¼ Rðu3;DtÞ

Yðt1Þ ¼ Y t1
2

� �
þ T cp Y t1

2

� �
; t1

2
; t1

2
; Dt

2 ; f
0; n0; g0

� �
Yðt1Þ ¼ Y t1

2

� �
þ T tv Y t1

2

� �
; Dt

2 ; t1
2
;0; 0; n0

� �
Yðt1Þ ¼ Y t1

2

� �
þ T kp Y t1

2

� �
; Dt

2 ; n
0

� �
u5 ¼M u4;Yðt1Þ; t1

2
; Dt

2

� �
; u6 ¼ V u5;Yðt1Þ; t1

2
; Dt

2

� �
; uðt1Þ ¼ S u6;Yðt1Þ; t1

2
; Dt

2

� �
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Table 1 for the scalar equation is used. The splitting CTRTC0 combined with the CP, TV and KP schemes for the frozen-coef-
ficient system (3.5) and (3.6) are denoted by CTcpRTcpC0-F;CTtvRTtvC0-F and CTkpRTkpC0-F in Table 6.

Five second-order splitting schemes of the type of CTRTC0 are discussed in this part 5.2.3. Second-order accuracy of these
schemes are confirmed by the results below.
5.2.4. Splitting schemes of type CRTC0

In this work, the restriction of constant density has been made for the discussion, which makes the transport sub-step
independent of the reaction sub-step, so that the transport sub-step T and the reaction sub-step R can be commuted if they
are adjacent to each other in a splitting scheme. The previous splitting CTRTC0 is the same as CRTTC0 (i.e., with T and R

commuted). The two T sub-steps can be combined to yield CRTC0. (It should be noticed that CTRTC0 is identical to
CRTTC0, but that T is not identical to TT: they both do a second-order step of size Dt, but with different truncation error.)
This scheme CRTC0 requires only one step of reaction and one step of transport, and it is second-order accurate for constant-
density problems. This splitting combined with the CP scheme and TV schemes are denoted by CRTcpC0 and CRTtvC0 in
Table 7
Splitting schemes of the type CRTC0 for the coupled SDE system (3.1) and (4.5).

CRTcpC0 CRTtvC0

u1 ¼ S /0;X0; t0;
Dt
2

� �
; u2 ¼ V u1;X0; t0;

Dt
2

� �
; u3 ¼M u2;X0; t0;

Dt
2

� �
u4 ¼ Rðu3;DtÞ

Yðt1Þ ¼ X0 þ T cp X0; t0; t1
2
;Dt; f; n; g

� �
Yðt1Þ ¼ X0 þ T tvðX0;Dt; t0;l0; �l0; nÞ

u5 ¼M u4;Yðt1Þ; t1;
Dt
2

� �
; u6 ¼ V u5;Yðt1Þ; t1;

Dt
2

� �
; uðt1Þ ¼ S u6;Yðt1Þ; t1;

Dt
2

� �



Table 8
Splitting schemes of the type CRTC0 for the coupled SDE system (3.5) and (4.5).

CRTcpC0 � F CRTtvC0 � F CRTkpC0-F

u1 ¼ S /0;X0; t1
2
; Dt

2

� �
; u2 ¼ V u1;X0; t1

2
; Dt

2

� �
; u3 ¼M u2;X0; t1

2
; Dt

2

� �
; u4 ¼ Rðu3;DtÞ

Yðt1Þ ¼ X0 þ T cp X0; t1
2
; t1

2
;Dt; f; n; g

� �
Yðt1Þ ¼ X0 þ T tv X0;Dt; t1

2
; 0; 0; n

� �
Yðt1Þ ¼ X0 þ T kpðX0;Dt; nÞ

u5 ¼M u4;Yðt1Þ; t1
2
; Dt

2

� �
; u6 ¼ V u5;Yðt1Þ; t1

2
; Dt

2

� �
; uðt1Þ ¼ S u6;Yðt1Þ; t1

2
; Dt

2

� �
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Table 7. When used on the frozen-coefficient system (3.5) and (3.6), the splitting yields CRTcpC0-F;CRTtvC0-F and CRT kpC0-F
as shown in Table 8 when combined with the CP, TV and KP schemes.

Five second-order splitting schemes of the type CRTC0 are discussed in this part 5.2.4, and their second-order accuracy is
confirmed in Section 6.

In summary, in this section, we developed the sub-stepping scheme of the scalar evolution (4.5) and different splitting
schemes for the stochastic particle equations. There are certainly many other second-order splitting schemes not discussed
above. We limit our discussion on the above proposed splitting schemes. In the next section, we report convergence tests
which confirm the order of accuracy of the proposed splitting schemes. The testing and discussion can be applied to other
splitting schemes not discussed in this paper (such as TSVRMRVST or SVTMRMTVS).

6. Convergence tests

The convergence tests are performed for a one-dimensional periodic turbulent reactive flow system with constant density
ðr � �u ¼ 0Þ. The manufactured solutions to the scalar mean and variance are shown in Appendix C together with the velocity,
diffusivity, scalar frequency and forcing terms. For the convergence test of third and fourth moments, we estimate the exact
solution of the moments required for evaluating the numerical error from a high-resolution finite-difference solution of the
transport equations of these moments (Section 6.3).

The domain ½0; L0� is partitioned into Ng ¼ 50 uniform grid cells. The grid is used to calculate the ensemble average of par-
ticles for the error estimate (4.8) and to compute the scalar mean (5.6) used in the mixing sub-step (5.5) and in the scalar
variance forcing sub-step (5.9). The test case is integrated on t 2 ½0; T�, and Nt ¼ ½1;2;4;6;8;10;12;16;20;24;32;40� equal
time steps (of size Dt ¼ T=Nt) are taken to the same stopping time T, in order to show the asymptotic convergence with re-
spect to the time step, Dt. In total N ¼ 50;000 particles are used for each simulation trial. Independent trails are performed to
compute the global error E

/q in (B.9). A total of 30 sets of trails are performed to estimate the mean and variance of E
/q , and

hence to construct the 95% confidence interval of the estimated global error. The 95% confidence interval of the global error is
EðE

/q Þ � 1:96� stdðE
/q Þ; EðE/q Þ þ 1:96� stdðE

/q Þ
h i

, where ‘‘std” is the standard deviation. The confidence interval needs to be
small for us to draw confident conclusions. The size of the confidence interval depends on the number of independent trials
performed. We require that
1:96� stdðE
/q Þ

EðE
/q Þ

6 e; ð6:1Þ
for the moments of the scalar to control the size of the confidence interval, where the threshold e is increased from 0.1 to
0.95 gradually with decreasing Dt. This requirement is used as a stopping criterion for the simulations. More and more trials
are performed and added into the ensemble of trials to estimate the global error until the criterion (6.1) is fulfilled. In the
tests, depending on different splitting schemes, up to 1:4� 106 trials may be required to fulfill the criterion (6.1), resulting
effectively in 7� 1010 particles in total. This kind of simulation can be perfectly performed via parallel computers with little
message communication. The simulations are done using 32-processes per case on an HPC cluster of 36 Dell servers featuring
dual, dual-core Intel Xeon ‘‘Woodcrest” processors, tied together using a QLogic 4X SDR InfiniBand interconnect. The total
cost of the convergence test for one splitting scheme is up to 600 CPU-hours for the most expensive case.

The particle positions are initialized to be uniformly distributed in the domain ½0; L0�. For the divergence-free flow con-
sidered, this uniform spatial distribution remains uniform for all later times (in expectation and absent numerical errors)
[1], which guarantees approximately the same number of particles to evaluate the volume average of the scalar moments
in (4.7). The periodic boundary condition is applied to the particle position so that all the particles remain in the computa-
tional domain at all time. The particle scalar is specified to be Gaussian randomly distributed initially, and is initialized
according to the scalar mean �/m and variance /02m, i.e., / ¼ �/m þ ð/02mÞ

1
2 n, where n is a standardized Gaussian random num-

ber and �/m and /02m are evaluated at the particle initial position according to (C.1) and (C.2).

6.1. Order of weak convergence of different splitting schemes

For various CP schemes, Fig. 2 shows the global errors E
/q (B.9) of the first moment �/ and second moment /2 against the

time step Dt. On these log–log plots, lines of slope one and two indicate first and second-order convergence, respectively. The
global errors of all simulations show asymptotic convergence given the 95% confidence interval when Dt decreases to zero.
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In Fig. 2, the results of the T
cp
1 CRC0T

cp
2 scheme (in Table 2) (circles in the figure) show first-order asymptotic behavior in

comparison with the reference dash-lines of slope one and two. So this scheme is only first-order accurate for the reason
explained in Section 5.2.1. Notice that these results (circles) are obtained using the MMS solutions and forcing terms. These
forcing terms do not appear in a realistic problem. To show the effect of these forcing terms, we perform the computations of
the same problem (e.g., the same configuration, the same initial and boundary conditions) without the forcing terms. The
‘‘exact” solution required for the error measurement (4.8) is obtained from a high-resolution finite-difference simulation.
The results (shown as squares in Fig. 2) show first-order convergence, which confirms the first-order accuracy of the
T

cp
1 CRC0T

cp
2 scheme. The numerical errors with MMS terms are about two orders of magnitude larger than without in

Fig. 2. This significant difference is caused by the different solutions of the first and second moments at the stopping time
with and without MMS terms. As shown in Fig. 3, given the same initial condition and other functions, the profiles of the first
and second moments of the scalar with MMS terms are over one order of magnitude larger than those without.

Although the accurate numerical solutions can be obtained for the current verification test case without MMS terms, the
MMS is preferable to the accurate numerical solutions in general for the Monte Carlo method. The MMS introduces more
processes (forcing terms), which incur more numerical error in the numerical solutions, and hence makes the verification
easier in terms of computational cost. Without the MMS terms, the existing test cases indicate that the computational cost
may be two orders of magnitude greater than those with MMS terms. In designing the MMS solutions, we need to make sure
that none of the terms in the transport equations of scalar mean and variance dominate over the other terms. The magni-
tudes of the terms for the current test case are examined in Appendix C.

The modified mid-point scheme T
cp
1
bTcp

1 CRC0T
cp
2 in Table 2 improves the convergence rate to second-order as shown by

the diamonds in Fig. 2. When the frozen-coefficient SDE system (3.5) and (3.6) is used, the scheme T
cp
1
bTcp

1 CRC0T
cp
2 -F retains

the same order of accuracy (shown by the down triangles in the figure). Meanwhile, for the test case, it suggests that the
absolute error from T

cp
1
bTcp

1 CRC0T
cp
2 -F is lower than that from T

cp
1
bTcp

1 CRC0T
cp
2 . For schemes T

cp
1
bTcp

1 CRC0T
cp
2 and

T
cp
1
bTcp

1 CRC0T
cp
2 -F, the required time steps are in the ratio of 1:1.6 for 1% accuracy of the first scalar moment, and in the ratio

of 1:1.3 for 1% accuracy of the second scalar moment.
Fig. 4 shows the convergence test results of the five splitting schemes of the type TCRC0T described in Section 5.2.2. The

convergence results verify the second-order accuracy of the splitting schemes (TcpCRC0Tcp in Table 3 (circles in Fig. 4),
TtvCRC0Ttv in Table 3 (diamonds in Fig. 4), TcpCRC0Tcp-F in Table 4 (down triangles in Fig. 4), TtvCRC0Ttv-F in Table 4
(left triangles in Fig. 4), TkpCRC0Tkp-F in Table 4 (up triangles in Fig. 4)), and the weak second-order accuracy of the two
Fig. 2. The convergence of the global error of �/ and /2 against the time step Dt with T
cp
1 CRC0T

cp
2 in Table 2 (circle), with T

cp
1
bTcp

1 CRC0T
cp
2 in Table 2

(diamond), with T
cp
1
bTcp

1 CRC0T
cp
2 -F in Table 2 (down triangle), and with T

cp
1 CRC0T

cp
2 in Table 2 without MMS forcing terms (square). (The error bars indicate

95% confidence intervals.)



Fig. 3. The initial profiles of the first and second scalar moments and their profiles at the stopping time with and without MMS terms.

Fig. 4. The convergence of the global error of �/ and /2 against the time step Dt with TcpCRC0Tcp in Table 3 (circle), with TtvCRC0Ttv in Table 3 (diamond),
with TcpCRC0Tcp-F in Table 4 (down triangle), with TtvCRC0Ttv-F in Table 4 (left triangle), with TkpCRC0Tkp-F in Table 4 (up triangle), and with TcpCRC0Tcp

in Table 3 without MMS forcing terms (square). (The error bars indicate 95% confidence intervals.)
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derivative-free Ito SDE schemes, the KP scheme (3.12) and the TV scheme (3.14). One test of TcpCRC0Tcp (in Table 3) without
the MMS forcing terms is done and is shown as squares in Fig. 4. The test implies that the extra forcing terms introduced for
the MMS do not interfere in the order of accuracy of the different splitting schemes. The numerical errors without MMS



Fig. 5. The convergence of the global error of �/ and /2 against the time step Dt with CTcpRTcpC0 in Table 5 (circle), with CTtvRTtvC0 in Table 5 (square), with
CTcpRTcpC0-F in Table 6 (diamond), with CTtvRTtvC0-F in Table 6 (down triangle), and with CTkpRTkpC0-F in Table 6 (left triangle). (The error bars indicate
95% confidence intervals.)
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terms are significantly lower than those with MMS terms for the same reason given in relation to Fig. 2. The same splitting
schemes on the SDE system (3.1) and (3.3) and on its frozen-coefficient counterpart (3.5) and (3.6) perform slightly differ-
ently, and the absolute error incurred by the splitting on the frozen-coefficient SDE system is a little lower than that incurred
by the same splitting on the original SDE system, e.g., TcpCRC0Tcp (circle) vs. TcpCRC0Tcp-F (down triangle) in Fig. 4. For
schemes TcpCRC0Tcp and TcpCRC0Tcp-F (and the same for schemes TtvCRC0Ttv and TtvCRC0Ttv-F), the required time steps
are in the ratio of 1:1.4 for 1% accuracy of the first scalar moment, and in the ratio of 1:1.1 for 1% accuracy of the second
scalar moment approximately.

The test results of the splitting schemes of the type CTRTC0 in Section 5.2.3 are shown in Fig. 5, CTcpRTcpC0 in Table 5
(circles in Fig. 5), CTtvRTtvC0 in Table 5 (squares in Fig. 5), CTcpRTcpC0-F in Table 6 (diamonds in Fig. 5), CTtvRTtvC0-F in Ta-
ble 6 (down triangles in Fig. 5), and CTkpRTkpC0-F in Table 6 (left triangles in Fig. 5). The second-order convergence of the
splitting schemes is clearly indicated by the results. The difference in the performance of the different splitting schemes is
not distinguishable from Fig. 5. The more detailed comparison of the different splitting schemes is discussed in the next sub-
section.

Fig. 6 shows the test results of the splitting schemes of type CRTC0 in Section 5.2.4 suitable for the current constant den-
sity test case, CRTcpC0 in Table 7 (circles in Fig. 6), CRTtvC0 in Table 7 (squares in Fig. 6), CRTcpC0 � F in Table 8 (diamonds in
Fig. 6), CRTtvC0-F in Table 8 (down triangles in Fig. 6), and CRTkpC0-F in Table 8 (left triangles in Fig. 6). The second-order
accuracy of the splitting scheme is clearly shown. The frozen-coefficient SDE system is helpful to reduce the error when the
same splitting scheme is used, e.g., CRTcpC0 (circle) vs. CRTcpC0-F (diamond), and CRTtvC0 (square) vs. CRTtvC0-F (down tri-
angle) in Fig. 6. For schemes CRTcpC0 and CRTcpC0-F (and the same for schemes CRTtvC0 and CRTtvC0-F), the required time
steps are in the ratio of 1:2.0 for 1% accuracy of the first scalar moment, and in the ratio of 1:1.8 for 1% accuracy of the second
scalar moment approximately.

In this sub-section, we demonstrate the convergence of the different splitting schemes described in Section 5 in terms of
the first and second moments. We show the convergence results of higher moments (third and fourth) for one type of split-
ting CTRTC0 (Section 5.2.3) in Section 6.3. Before that, we compare the performance of different splitting schemes in the
following sub-section.

6.2. Comparison of different splitting schemes

In the previous sub-section, the order of accuracy of the different splitting schemes is verified. Here, we compare the per-
formance and efficiency of the different second-order splitting schemes.



Fig. 6. The convergence of the global error of �/ and /2 against the time step Dt with CRTcpC0 in Table 7 (circle), with CRTtvC0 in Table 7 (square), with
CRTcpC0-F in Table 8 (diamond), with CRTtvC0-F in Table 8 (down triangle), and with CRTkpC0-F in Table 8 (left triangle). (The error bars indicate 95%
confidence intervals.)
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The global errors of the different splitting schemes at Dt ¼ 0:05 are compared in Table 9. Several observations can be
made based on the comparison. First, the different Ito SDE schemes (CP, TV, KP) perform essentially the same when com-
bined with the same splitting scheme according to the different columns of Table 9. The mean global errors obtained for each
Ito SDE scheme are well inside of the others’ 95% confidence interval. Second, comparing the same splitting schemes applied
to the original SDE system (3.1) and (3.3) and to the frozen-coefficient SDE system (3.5) and (3.6), we can see that, for the
most part, solving the frozen-coefficient SDE system helps to reduce the numerical error, e.g., T

cp
1
bTcp

1 CRC0T
cp
2 -F incurs an er-

ror about half of that of T
cp
1
bTcp

1 CRC0T
cp
2 , and the error of CRTC0-F is about one-third of that of CRTC0. The schemes CTRTC0

and CTRTC0-F are exceptions to this observation because the mean error of the scalar variance of CTcpRTcpC0-F is slightly
greater than that of CTcpRTcpC0, and so are the mean errors of the scalar mean and variance for the TV scheme. But given the
95% confidence interval, there is no evidence that solving the frozen-coefficient SDE system incurs more error based on the
existing test cases. This suggests that solving the frozen-coefficient SDE system is helpful to reduce the numerical error (or at
least not to incur more numerical error than solving the original SDE system). Third, the different splitting schemes applied
to the original SDE system (3.5) and (3.6) perform differently, e.g., the mean errors of CRTC0 are about three times of those of
CTRTC0. However, when the splitting schemes are applied to the frozen-coefficient SDE system (3.5) and (3.6), the numer-
ical errors of the different splitting schemes are indistinguishable from each other, i.e., the mean errors of one scheme are
Table 9
Comparison of the different splitting schemes combined with different Ito SDE schemes (time step Dt ¼ 0:05) (the � intervals indicate 95% confidence
intervals).

The CP scheme The TV scheme The KP scheme

E �/ � 103 E
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/2 � 103 E �/ � 103 E
/2 � 103

T
cp
1
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1 CRC0Tcp
2

4:62� 1:30 7:87� 3:97 – – – –

T
cp
1
bTcp

1 CRC0Tcp
2 -F 1:59� 0:80 4:77� 1:49 – – – –

TCRC0T 3:48� 1:12 6:83� 3:36 3:60� 1:80 7:42� 3:18 – –
TCRC0T-F 1:88� 0:97 4:80� 2:03 1:73� 0:89 5:31� 1:35 1:54� 0:77 5:11� 2:24
CTRTC0 1:76� 0:47 3:48� 1:78 1:86� 0:86 4:10� 2:09 – –
CTRTC0-F 1:62� 0:66 3:75� 1:92 1:87� 0:87 4:18� 2:13 1:66� 0:72 3:88� 1:95
CRTC0 7:82� 2:38 14:08� 6:72 8:71� 2:58 15:31� 7:52 – –
CRTC0-F 1:63� 0:63 3:94� 2:02 2:42� 1:22 5:50� 2:47 1:84� 0:86 4:15� 2:05
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inside of others’ 95% confidence intervals. This suggests that the difference in performance of the different splitting schemes
on the original SDE system can be reduced by using them instead on the frozen-coefficient SDE system.

The computational cost of the different splitting schemes are compared in Table 10 in terms of micro-seconds (ls) per
particle per time step. First, the computational cost of the different splitting schemes is slightly different, e.g., for the CP
scheme, the least expensive scheme CRTC0 is about 20% quicker than the most expensive scheme TCRC0T, and for the same
splitting TCRC0T-F, the least expensive scheme TV is about 10% quicker than the most expensive scheme KP. Second, the
overall computational cost of about 3ls per particle per time step of the test case is cheap. (The computational cost of
the three-dimensional case is certainly higher but will not increase in order of magnitude. And also the above cost includes
the evaluation of the manufactured solutions in Appendix C which is estimated to be over 60% of the overall cost and is not
needed in the real PDF simulations.) It is estimated that the computational cost of a PDF code featuring detailed chemistry
using ISAT is about 10 to 100 ls per particle per time step. So the cost of the particle transport and mixing (with simple mix-
ing models) is only a very small portion of the total cost, and choosing different Ito SDE schemes and the different splitting
schemes does not change the total computational cost of the PDF applications significantly.

6.3. Convergence of high moments

The weak convergence of the SDE schemes and splitting schemes has been verified for the first and second moments in
Section 6.1. For completeness, we also perform the convergence tests for the second-order splitting schemes discussed in this
paper in terms of the third and fourth moments. The tests confirm the second-order convergence of all the second-order
splitting schemes discussed in Section 5. For brevity, here we present the convergence results for only one type of splitting
CTRTC0 in Section 5.2.3. The analytical solutions of the third and fourth moments are not known for the estimate of numer-
ical error in the test. We perform a high resolution finite-difference simulation of the transport equations of the third and
fourth moments to obtain an accurate estimate of their exact solutions. The transport equations for the third and fourth sca-
lar moments derived from the PDF transport Eq. (4.4) are
Table 1
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The equations are in closed form and can be solved numerically. Given the initial Gaussian distribution which is used in the
particle initialization and the manufactured solutions for the first and second moments, we obtain the initial conditions for
the numerical solutions of Eqs. (6.2) and (6.3) as follows:
/3ðx; 0Þ ¼ 3�/mðx;0Þ/2
mðx; 0Þ � 2/3

mðx;0Þ; ð6:4Þ

/4ðx; 0Þ ¼ 3/22
mðx;0Þ � 2/4

mðx;0Þ; ð6:5Þ
where �/m and /2
m are from Eqs. (C.1) and (C.3).

We obtain an accurate numerical solution of Eqs. (6.2) and (6.3) using a finite-difference method. The equations are dis-
cretized by central-differences in space and Crank–Nicolson scheme in time, yielding second-order accuracy in space and
time. A total of 7500 grid cells are used in the simulation, and the time step is controlled to have the CFL number less than
one, resulting in about 6000 time steps in total. The obtained numerical solutions from Eqs. (6.2) and (6.3) are used for
0
tational cost of the different splitting schemes in terms of ls per particle per time step.

The CP scheme The TV scheme The KP scheme
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Fig. 7. The convergence of the global error of /3 and /4 against the time step Dt with CTcpRTcpC0 in Table 5 (circle), with CTtvRTtvC0 in Table 5 (square),
with CTcpRTcpC0-F in Table 6 (diamond), with CTtvRTtvC0-F in Table 6 (down triangle), and with CTkpRTkpC0-F in Table 8 (left triangle). (The error bars
indicate 95% confidence intervals.)
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estimating global errors (4.10) of the third and fourth moments sampled from the particles. The results of the convergence
test for schemes CTRTC0 (Section 5.2.3) are shown in Fig. 7. The test cases in the figure are the same as those in Fig. 5. From
the figure, clearly we can see that the splitting schemes are second-order convergent for the third and fourth moments. The
convergence tests are performed for all the second-order splitting schemes discussed in Section 5, and the test results con-
firm the second-order convergence. (These test results are not shown.)
7. Discussion

In the convergence tests performed in Section 6, the simplifications of one dimension, single scalar and constant density
have been made. The developed splitting schemes in Section 5.2.1,5.2.2,5.2.3 can be applied to all general three-dimensional,
multi-scalar and variable-density problems. (The three-dimensional versions of the TV scheme and KP scheme in Section 3.3
must be used which can be found in the respective references. Any other weak second-order Ito SDE schemes can be used for
the splitting. And the scalar equations are not limited to contain only the processes discussed.) The splitting scheme of the
type CRTC0 in Section 5.2.4 is designed for the non-coupled case between the reaction and the transport, e.g., constant den-
sity. It features only one step of reaction and one step of transport in the splitting. This splitting can also be used in the var-
iable-density case without the feedback of density from the particle system to the flow solver, i.e., the reaction and the
transport are independent, and the flow solver has its own estimate of density. This no-feedback configuration is a good
study case for the development of PDF algorithms and code. It is also possible to apply the splitting CRTC0 to the coupled
variable-density problems. For example, if a second-order time extrapolation of the density is already obtained to perform
the second sub-step of transport in CTRTC0, then this splitting might be possibly reduced to CRTC0 still with second-order
accuracy. The formal order of accuracy of CRTC0 in variable-density problems certainly needs further investigation in the
future.

In the development of the MMS for the particle method, the linear reaction (4.1) is specified which is required for the
closure of the moment Eqs. (2.3) and (2.4) for weak convergence. This specification is introduced for verification purposes
only. Any complex (non-linear) reaction mechanism can be incorporated in the PDF methods without approximation. And
the weak second-order accuracy of the splitting holds for the non-linear system. Due to sub-stepping, the reaction sub-step
(5.2) is separated from the system and is independent from the particle position XðtÞ. As far as the reaction sub-step is inte-
grated stably with at least second-order accuracy, the splitting schemes (with second-order accuracy for the linear system)
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developed in this paper are still second-order accurate. The developed MMS for Monte Carlo particle methods can be applied
to general problems with multi-dimension, multi-scalar and variable-density. In the design of the manufactured solutions,
although the original PDF transport Eq. (2.1) is not satisfied by the manufactured solutions in general, the continuity equa-
tion is often chosen to be satisfied by the manufactured solutions due to the significance of mass conservation in our prob-
lem [44]. (Manufactured solutions without mass conservation are certainly possible for verification purposes, in which case a
mass changing process is introduced.)

The convergence of the different splitting schemes discussed in this work is verified based on a one-dimensional test case.
This test case is representative as far as non-trivial variations in the manufactured solutions are specified and proper initial
and boundary conditions are imposed. In Appendix C, the manufactured solutions to the test case are specified which have
non-trivial variations. Notice that the velocity component �u (C.4) is uniform to satisfy the continuity equation. However, in
the Ito SDE (2.6), the velocity always appears in the form of the drift velocity D ¼ �uþrC. As far as the diffusivity C (C.5) has
a non-trivial gradient, the drift velocity D has non-trivial variation in space. The test case is periodic in space, so the periodic
boundary condition is imposed on particles’ positions. The test can be straightforwardly extended to three-dimensional gen-
eral test cases with other types of boundary conditions. The only concern with the extension is the computational cost which
might be prohibitive when the test case is more complicated. Simple functions (e.g., a single sine or cosine mode with long
wave length and time period) are suggested to design the manufactured solutions in order to take a relatively longer time
step and larger grid size but still having the desired asymptotic convergent behavior.

In this work, only the time convergence of the Monte Carlo particle method is considered. In the Monte Carlo particle
method it is not necessary to have a grid. However, in practice, the SDE coefficients are usually obtained from grid-based
methods and are stored on a grid. The interpolation of these grid level SDE coefficients to the particles involves spatial error.
The estimate of the particle scalar mean (5.6) for the IEM model often requires a grid to have sufficient particles inside a grid
level, which involves a spatial smearing error. Hence the grid convergence of the Monte Carlo particle method also needs to
be addressed. Some discussion has been made in a previous work [50]. The developed MMS for the particle method is appli-
cable to the verification of the grid convergence of the particle method. Notice that, if a second-order spatial accurate method
is used, in order to verify the grid convergence the computational cost scales as Dx�5, where Dx is the grid size and Dt is fixed
for different Dx in the estimate. Hence a simple test case is suggested to make the computational cost affordable.

The TV Ito SDE scheme (3.14) involves the specification of two free parameters a2 and l3 and the choice between two
families of parameters, (3.16) or (3.17). In all the results presented in Section 6, constants a2 ¼ 1:0 and l3 ¼ 0:5 and param-
eters (3.17) are used. In addition, a set of tests is performed with a2 2 ½0:5;10� and l3 2 ½�100;10� for (3.17) and with
a2 ¼ 1:0 and l3 ¼ 0:5 for (3.16). No significant difference is found among all these tests in terms of accuracy and efficiency
of the scheme. All choices of the constants result in the same number of coefficient evaluations for the one-dimensional ver-
sion of the scheme, i.e., no simplification of the scheme. In the KP scheme (3.12), the random variable n can be specified as a
three-point distributed random number (3.13) rather than a standardized Gaussian random number. The weak second-order
accuracy of the scheme with this three-point distributed random number is confirmed by the test. No significant difference
in the accuracy and efficiency is found when compared to the standardized Gaussian random number.

Among the splitting schemes discussed in this work, the splitting schemes for the frozen-coefficient SDE system are usu-
ally a little more accurate than those for the original SDE system. Other than that, no significant difference in accuracy and
efficiency is found among the different splitting schemes. In RANS/PDF or LES/FDF applications, there might be additional
considerations for choosing one scheme over others. The splitting schemes for the frozen-coefficient SDE system require only
Fig. 8. Staggered and collocated arrangement of flow fields and particles in time. (The circles are the time levels of particles, and the solid squares are the
time levels to store flow fields (velocity and diffusivity etc.). The solid lines with arrows indicate the time advancement step for particles and flow fields. The
solid diamonds indicate the flow fields at the mid-time interpolated from the neighbors.)
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one time level of flow fields (at the mid-time in the particle step) for particle advancement, while those for the original SDE
system require at least two time levels of flow fields, e.g., T

cp
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bTcp

1 CRC0T
cp
2 in Table 2 requires two levels of flow fields (at t0

and t1
2
) and TcpCRC0Tcp in Table 3 requires four levels of flow fields (at t0; t1

4
; t1

2
, and t3

4
). To implement the splitting schemes

for the original SDE system, at least two time levels of flow fields are needed in the particle solver to interpolate or extrap-
olate the required flow fields. The use of the frozen-coefficient splitting schemes simplifies the coupling between the flow
solver and the particle solver, and reduces the storage requirement of the particle code because only one time level of flow
fields is needed in the particle solver. Another coupling issue between the flow solver and the particle solver is the time
arrangement of the flow fields in the flow solver and the particles in the particle solver. There are usually two kinds of time
arrangements of the flow fields and particles: staggered and collocated, as shown in Fig. 8. The splitting schemes for the fro-
zen-coefficient SDE are applicable to both of them. In the staggered arrangement, the flow fields are stored at the mid-time of
the particle step, so the flow fields are used naturally for the particle time advancement. In the collocated arrangement, the
flow fields and particles are stored at the same time level, so the required mid-time flow fields for the particle time advance-
ment need to be interpolated or extrapolated from the adjacent flow fields. There are some other issues in the coupling be-
tween the flow solver and particle solver, e.g., in a fully coupled variable-density LES/FDF code, iteration of the flow time step
and particle time step may be needed. This is beyond the discussion of this work and will be addressed in the future work.

8. Conclusions

In this work, different weak second-order splitting schemes for solving the SDE system from the composition PDF meth-
ods are developed. Three Ito SDE schemes from the literature are chosen for investigation, the CP scheme (3.10), the KP
scheme (3.12) and the TV scheme (3.14). A frozen-coefficient SDE system (3.5) and (3.6) is proposed as an alternative system
to solve. The MMS for the Monte Carlo particle method is developed, in which the augmented scalar moment equations and
the augmented particle scalar equation are derived. Different types of splitting schemes (on the original SDE system or on the
frozen-coefficient SDE system) are discussed. The formal order of accuracy of the different splitting schemes is demonstrated
by the particle MMS with a one-dimensional test case. The first-order accuracy of the CP scheme simply coupled with the
scalar equation is shown, and it is shown that second-order accuracy is achieved by introducing a modified mid-point.
The second-order accuracy of the other proposed splitting schemes is verified. The different second-order splitting schemes
are compared in terms of accuracy and efficiency. The comparison suggests that solving the original SDE system with differ-
ent splitting schemes yields somewhat different numerical errors, and that solving the frozen-coefficient SDE system helps
to reduce the numerical error, and to reduce the difference of the numerical errors yielded by the different splitting schemes.
No other significant difference is found in the comparison in terms of accuracy and efficiency of the different splitting
schemes. This is a useful conclusion in that there is a considerable range of accurate and efficient schemes that can be imple-
mented; and in practice there may be additional considerations and constraints which favor one scheme over others. The
applicability and extensibility of the developed methodologies to the general three-dimensional, multi-scalar and vari-
able-density problems are briefly discussed.
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Appendix A. Proof of the SDE system with frozen coefficients

We prove that the solutions of the SDEs with frozen coefficients (3.5) and (3.6) are consistent with those of the original
SDEs (3.1) and (3.3) to order Dt2 for one time step in the weak sense (i.e., the difference between the solutions is of order Dt3).
For weak second-order numerical schemes, the numerical solutions are consistent with the exact solutions to Dt2 for one
time step in the weak sense. Hence this proof guarantees the equivalence of solving (3.1) and (3.3), and (3.5) and (3.6) with
second-order accuracy.

A.1. Proof of the frozen-coefficient Ito SDE2

We first prove that the solution of (3.5) is consistent with that of (3.1) to order Dt2 for one time step in the weak sense.
According to the sufficient conditions for weak second-order accuracy obtained in [25], we only need to verify the consis-
tency of the first four moments of DX from (3.1) and (3.5).

Following [25], we consider one integration step ½0;Dt� (i.e., t0 ¼ 0), from the deterministic initial condition
Xð0Þ ¼ X0ð0Þ ¼ 0, then DX ¼ XðDtÞ and DX0 ¼ X0ðDtÞ, where X and X0 denote the numerical solutions to (3.1) and (3.5), respec-
tively. The moments of X can be obtained from its PDF f ðx; tÞ and the Fokker–Planck equation. The first four moments of DX
for (3.1) are [25]
2 Using the corresponding Fokker–Planck equation seems a natural starting point for the proof, but we are not successful in that direction.
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dpqD�j b�;j þ
1
4

b�b�;jjdpq

� �
þ OðDt3Þ; ðA:6Þ

E DX 0pDX 0qDX0r
� �

¼ Dt2 b� D�pdqr þ D�qdpr þ D�rdpq

� �
þ 1

2
b� b�;pdqr þ b�;qdpr þ b�;rdpq

� �� �
þ OðDt3Þ; ðA:7Þ

E DX 0pDX 0qDX0rDX0s
� �

¼ Dt2ðb�Þ2ðdpqdrs þ dprdqs þ dpsdqsÞ þ OðDt3Þ; ðA:8Þ
where the superscript ‘‘*” denotes the evaluation at the initial position ðX0ð0Þ ¼ 0Þ and mid-time t ¼ t1
2

� �
.

Expanding the coefficient (D�i ; b
� and their spatial derivatives) at t ¼ 0, we obtain
G� ¼ G0 þ _G0 Dt
2
þ OðDt2Þ; ðA:9Þ
where G is any one of the coefficients and their derivatives in (A.5)–(A.8).
Substituting the Taylor series expansions (A.9) into (A.5)–(A.8) and collecting all the leading order terms, we have
E DX 0p
� �

¼ DtD0
p þ Dt2 1

2
D0

j D0
p;j þ

1
4

b0D0
p;jj þ

1
2

_D0
p

� �
þ OðDt3Þ; ðA:10Þ

E DX 0pDX 0q
� �

¼ Dtb0dpq þ Dt2 D0
pD0

q þ
1
2

b0 D0
p;q þ D0

q;p

� �
þ 1

2
dpqD0

j b0
;j þ

1
4

b0b0
;jjdpq þ

1
2

_b0dpq

� �
þ OðDt3Þ; ðA:11Þ

E DX 0pDX 0qDX0r
� �

¼ Dt2 b0 D0
pdqr þ D0

qdpr þ D0
r dpq

� �
þ 1

2
b0 b0

;pdqr þ b0
;qdpr þ b0

;rdpq

� �� �
þ OðDt3Þ; ðA:12Þ

EðDX0pDX0qDX 0rDX 0sÞ ¼ Dt2ðb0Þ2ðdpqdrs þ dprdqs þ dpsdqsÞ þ OðDt3Þ: ðA:13Þ
Evidently, with the same initial condition Xð0Þ ¼ X0ð0Þ, (A.10)–(A.13) are consistent with (A.1)–(A.4) to order Dt2. Thus the
SDEs (3.1) and (3.5) are equivalent when solved with weak second-order SDE schemes.

A.2. Proof of the frozen-coefficient scalar equation

We now prove the equivalence of solving scalar Eqs. (3.3) and (3.6) to second-order accuracy. For simplicity, we consider
one step integration ½0;Dt� with the same Ito process XðtÞ in (3.3) and (3.6) and with the initial condition /ð0Þ ¼ /0ð0Þ ¼ /0.

Eq. (3.3) is
d/ðtÞ
dt
¼ AðXðtÞ;/ðtÞ; tÞ ¼ A XðtÞ;/0 þ D/ðtÞ; t1

2
þ t � t1

2

� �� �
¼ Aþ A/D/ðtÞ þ _A t � t1

2

� �
þ OðDt2Þ; ðA:14Þ
for t ¼ OðDtÞ;A/ and _A denote derivatives of A with respect to the second and third arguments, and in the last line A;A/ and _A
are evaluated at XðtÞ;/0; t1

2

� �
.

Similarly, (3.6) is
d/0ðtÞ
dt

¼ Aþ A/D/0ðtÞ þ OðDt2Þ; ðA:15Þ
where A and A/, being evaluated at XðtÞ;/0; t1
2

� �
, are identical in the above two equations. Thus, the difference /� /0 evolve

by
dð/ðtÞ � /0ðtÞÞ
dt

¼ A/ð/ðtÞ � /0ðtÞÞ þ _A t � t1
2

� �
þ OðDt2Þ: ðA:16Þ
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Since /0ðtÞ is certainly at least a first-order approximation to /ðtÞ, it follows that the difference /ðtÞ � /0ðtÞ is of order Dt2 (or
higher), and the first term on the right-hand side of (A.16) when integrated over ½0;Dt� is of order Dt3 (or higher). It is readily
shown that the second term on the right-hand side of (A.16) when integrated over ½0;Dt� is also of order Dt3. Thus the dif-
ference /ðtÞ � /0ðtÞ is of order Dt3, confirming the second-order accuracy of (3.6) with frozen coefficients.

Appendix B. Measurement of the global error for weak convergence

The error eq;i;k (4.8) estimates the local deterministic error lq;i from the kth trial. If the number of particles used in the trial
is small, this estimate involves large statistical error. Here, we derive an un-biased estimate of the global error E

/q (4.10)
based on eq;i;k from all the grids and all the trials performed to reduce the effect of the statistical error.

From (4.9), we can obtain
e2
q;i;k ¼ l2

q;i þ r2
q;in

2
q;i;k þ 2lq;irq;inq;i;k: ðB:1Þ
We take the average of (4.9) and (B.1) over K independent trials
heq;ii� ¼ lq;i þ rq;i
1
K

XK

k¼1

nq;i;k; ðB:2Þ

he2
q;ii
� ¼ l2

q;i þ r2
q;i

1
K

XK

k¼1

n2
q;i;k þ 2lq;irq;i

1
K

XK

k¼1

nq;i;k: ðB:3Þ
From (B.2), we obtain
heq;ii�2 ¼ l2
q;i þ r2

q;i
1

K2

XK

k¼1

n2
q;i;k þ 2lq;i � rq;i

1
K

XK

k¼1

nq;i;k þ r2
q;i

1
K2

XK

k¼1

XK

l¼1;l – k

nq;i;knq;i;l: ðB:4Þ
The expectation of (B.3) and (B.4) are
E e2
q;i

D E�� �
¼ l2

q;i þ r2
q;i; ðB:5Þ

Eðheq;ii�2Þ ¼ l2
q;i þ

r2
q;i

K
: ðB:6Þ
Solving (B.5) and (B.6) for lq;i, we obtain
l2
q;i ¼

1
1� 1=K

Eðheq;ið/qÞi�2Þ � 1
K

E e2
q;ið/

qÞ
D E�� �� �

: ðB:7Þ
Based on (B.7), we can construct an un-biased estimate of l2
q;i from the numerical simulation
l2
q;i �

1
1� 1=K

heq;ii�2 � 1
K

e2
q;i

D E�� �
: ðB:8Þ
The value of l2
q;i is a local measure of the time-stepping error (lq;i / Dtp for pth order convergence). A global measure of

the time-stepping error is defined in (4.10). Apparently, EðE
/q Þ / Dtp for pth order convergence too.

Substituting (B.8) into (4.10), we obtain the un-biased estimate of the global error
E
/q ¼

1
I

XI

i¼1

1
1� 1=K

heq;ii�2 � 1
K

e2
q;i

D E�� �" #1=2

: ðB:9Þ
Note that, in practice, a valid value of E
/q may not be obtained because the summation under the square-root in (B.9) may

be negative. If this happens, more particles or trials are required.

Appendix C. Manufactured solutions to one-dimensional test case

For the one-dimensional, periodic, constant-density problem x 2 ½0; L0� and t 2 ½0; T�, the manufactured analytical solu-
tions to (4.2) and (4.3) are specified as:
�/mðx; tÞ ¼
1

20
e3-t cos 2pjx� 12

5
p

� �
; ðC:1Þ

/02mðx; tÞ ¼
1
8

4� e�3-t
� �

sin 2pjx� 12
5

p
� �

þ 4
� 	

: ðC:2Þ
The second moment of the scalar /2
mðx; tÞ is then
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/2
mðx; tÞ ¼ /2

mðx; tÞ þ /02mðx; tÞ: ðC:3Þ
The velocity, diffusivity and source terms in (4.2) and (4.3) are specified as follows:
�uðx; tÞ ¼ 1
10

u0e4-t; ðC:4Þ

Cðx; tÞ ¼ C0 2þ 2
5

sin 2pjx� 28
25

p
� �

Cx � Cx þ 1
� 	

1
20

e4-t þ e�4-t

� �� �
; ðC:5Þ

Smðx; tÞ ¼
3

20
-e3-t cos 2pjx� 12

5
p

� �
þ 1

10
u0e4-t � 4

5
jpCxC0 cos 2pjx� 28

25
p

� �
1

20
e4-t þ e�4-t

� �� 	
� � 1

10
jpe3-t sin 2pjx� 12

5
p

� �� 	
þ e3-t cos 2pjx� 12

5
p

� �
� Ra

20
þ 2

5
C0j2p2 1þ 1

5
sin 2pjx� 28

25
p

� �
Cx � Cx þ 1

� �
1

20
e4-t þ e�4-t

� �� 	� �
; ðC:6Þ
. Contour plots of the MMS functions �uðx; tÞ; �/mðx; tÞ;/02mðx; tÞ;Cðx; tÞ and each term of the augmented transport equations for the scalar mean (4.2)
iance (4.3) with respect to ðx=L0; t=TÞ.
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Svðx; tÞ ¼
3
8
-e�3-t sin 2pjx� 12

5
p

� �
þ 4

� 	
þ 1

40
u0jpe4-t � 1

5
j2p2CxC0 cos 2pjx� 28

25
p

� �
1

20
e4-t þ e�4-t

� �� 	
� 4� e�3-t
� �

cos 2pjx� 12
5

p
� �

þ C0 1þ 1
5

sin 2pjx� 28
25

p
� �

Cx � Cx þ 1
� 	

1
20

e4-t þ e�4-t

� �� �
� j2p2 4� e�3-t

� �
sin 2pjx� 12

5
p

� �
� �1

5
e3-t sin 2pjx� 12

5
p

� �
jp

� 	2
( )

þ 1
5

cos 2p-t � 1
5
p-

� �
þ 5

6

� 	
sin 2pjx� 28

25
p

� �
þ 51

10

� 	
þ 1

4
Ra 4� e�3-t
� �

sin 2pjx� 12
5

p
� �

þ 4
� 	

; ðC:7Þ

Xðx; tÞ ¼ � 1
10

cos 2p-t � 1
5
p-

� �
þ 6

5

� 	
sin 2pjx� 28

25
p

� �
þ 51

10

� 	
=/02mðx; tÞ: ðC:8Þ
From the above specifications, we obtain the SDE coefficients Dðx; tÞ ¼ �uðx; tÞ þ dCðx; tÞ=dx and bðx; tÞ ¼ ð2Cðx; tÞÞ1=2. The
constants are specified as follows:
- ¼ 5
p
; j ¼ 1

2p
; u0 ¼ C0 ¼ Cx ¼ 1; Ra ¼ �1; Rb ¼ 0; L0 ¼ 2p; T ¼ p

5
:

The above functions and constants are specified to minimize the difference of each term of the augmented transport
equations for the scalar mean (4.2) and variance (4.3), so that each term has approximately equal contribution to the solu-
tions of the scalar mean and variance. The contour plots of the MMS functions and each term of (4.2) and (4.3) are shown in
Fig. C.1.
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