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Abstract

The conventional second-order central finitéelience schemes for discretizing the convection terms orundorm
structured grids are revisited in the context of large-esithulations (LES) of turbulent flows. Two schemes are dis-
cussed: one is based on the standard finifégince form on uniform grids (SCHEME-I) and the other is dasethe
Taylor series expansion (SCHEME-II). The two schemes amgpewed extensively in terms of thel@irent numerical
properties: accuracy, dissipation, dispersion, momertanservation, and energy-conservation. SCHEME-I isrinhe
ently conservative for momentum and is used in the desigifierént energy-conservative schemes, while, in general,
SCHEME-II is not conservative for momentum and is not foundes to be able to produce any energy-conservative
scheme. SCHEME-I is usually considered to be superior o2¢+EME-II for LES due to the conservation property.
However, it is found that the numerical solution by SCHEMigdy contain more energy than the exact solution and
the numerical solution may oscillate strongly in spite of #mergy-conservation of the scheme. On non-uniform
grids, SCHEME-I introduces a second-order numericildion term that can be anti-dissipative, resulting in local
oscillations that can interact with the boundary condiitmcause the energy of the solution to increase. In contrast
SCHEME-II does not have such a numericdtukion term, and it produces much less numerical oscillatthan
SCHEME-I for the test cases with grids expanding throughodbe flow direction. The performance of the two
schemes is examined in the numerical simulations of a lineavection problem, a non-linear convection problem
governed by the inviscid Burgers’ equation, a laminar feteq constant-density turbulent jet, and a turbulent non-
premixed jet flame. The superiority of SCHEME-II over SCHEMIS clearly demonstrated in these test cases of
different levels of complexity. SCHEME-II, which did not gairieattion in past LES, is suggested for practical LES
compared to the widely used SCHEME-I to capture the righglle¥’turbulent kinetic energy.
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1. Introduction

Large eddy simulations (LES) have recently attracted gnéaxtest in the numerical simulations of turbulent flows,
both for fundamental studies and for industrial appliaaioThis is largely due to the rapidly increasing power of
high-performance computers which makes the ever chalgridtS computationsfiordable to more studies.

Significant advancement has been made in the developmeninoénical algorithms for LES. The principle of
LES requires that the turbulent eddies down to the resaliale (usually specified by the filter widtf) need to be
tracked with sfficient numerical accuracy, which poses a great challendetoumerical schemes. In the past, high-
order finite-dfference schemes with good conservation property for LES bega developed. Morinishi et al. [1]
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developed a family of fully conservative high-order findd#ference schemes for staggered uniform grids in Cartesian
coordinates for incompressible flows. Vasilyev [2] geniesa [1] to non-uniform grids, and Nicoud [3] generalized
[1] to variable-density problems. Morinishi et al. [4] fhdr developed high-order conservative schemes for stadger
non-uniform grids in cylindrical coordinates for incompséble flows, and Desjardins et al. [5] extended the work
to variable-density problems in cylindrical coordinatd&garajan et al. [6] proposed a high-order scheme for LES
of compressible turbulent flows on Cartesian uniform gridsdal on the compact scheme of Lele [7]. Shishkina and
Wagner [8] developed a fourth-order finite-volume schenménfcompressible flows on cylindrical staggered grids.

The use of the second-order finitefdrence schemes in LES is controversial. Ghosal [9] shovadhbe numeri-
cal truncation errors from the low-order schemes may extreetlES model terms. The dynamic analysis of Park and
Mahesh [10], however, showed that the contribution of th& nkbdel terms is much more significant than those of the
finite-differencing and aliasing errors for LES with the energy-carisgrsecond-order centralfirencing schemes,
which possibly justifies the use of the second-order schemeES. When predicting the low-order statistics (the
first and second moments) that are of most interest in engingeapplications, the second-order schemes are found
satisfactory [11, 12], although they are not adequate fedisting higher-order statistics. The energy-consergati
second-order schemes are also discussed in [1, 2, 4] whemigher-order schemes are concerned. The energy-
conserving second-order schemes for incompressible flomsdorm grids were discussed in many articles, e.g.,
[13, 14, 15]. Ham et al. [16] developed a fully conservatigeand-order finite-dierence scheme for incompress-
ible flows on non-uniform grids. Fukagata and Kasagi [17]eleped an energy-conservative second-order scheme
for cylindrical coordinates. The second-order centrakdhtlifference schemes are used widely in LES studies of
turbulent flows [18, 19, 14, 20, 21, 22, 23] and turbulent costion [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].

In spite of the wide use of second-order centrdlesience schemes, their important numerical properties an no
uniform grids are not fully comprehended in the context ofSLEn this work, we revisit the second-order central-
difference discretization. We limit our discussion to the sa®for the momentum-convection terms on staggered
non-uniform structured grids. Two schemes that are usedlyid the literature are discussed, and their numerical
properties are analyzed, especially the numerical digsipand the numerical energy production or dissipation tha
are missing from the literature.

The first scheme (SCHEME-I) is the direct extension of thdredlifference scheme on uniform grids. On non-
uniform grids, this finite-dierence scheme is identical to the finite-volume scheme wikictherently conservative
for momentum. It is probably this conservation propertyt thakes this scheme very popular. It is used dominantly
in the second-order accurate LES calculations on non-tmifgids (e.g., [18, 19, 14, 20, 21, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34]). The design of some energy-conservingraes on non-uniform grids is based on SCHEME-I
[1, 16]. However, it is shown later in this work that this sofeon non-uniform grids has a second-order numerical
diffusion term which is dissipative or anti-dissipative depeg@n the local grid stretching and the flow direction. For
expanding grid stretching in the flow direction, this schesranti-dissipative, resulting in oscillations that catenact
with the boundary conditions to add energy to the numermat®n. Such a situation is often encountered in jet flow
simulations in which the grid size is stretched in the axiafldirection to account for the increasing turbulence
length scales. Such numericaftdsion of SCHEME-I adds numerical kinetic energy into thétlence system for
LES and makes the numerical simulation unreliable. To dfyattte effect of such numerical @fusion, in this work
we use jet flows (a laminar jet, a constant-density turbyksnand a turbulent jet flame) as test cases to reveal the
poor performance of SCHEME-I in such flows and to demonstragecapability of the second scheme. The second
scheme (SCHEME-II) is based on the Taylor series expansiochwgains almost no attention in recent LES studies
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on non-uniform grids. It is shown that SCHEME-II is free oéthumerical dfusion and of the energy production or
dissipation. In the various test cases dfatlient levels of complexity in this work, SCHEME-II performmaich better
than the widely used SCHEME-I in LES of turbulent flows on noriform grids.

The above observations may look contradictory to the cammhs in the literature because SCHEME-I is well
known for its inherent momentum-conservation and is usetthéndesign of dierent energy-conserving schemes
[1, 16], while SCHEME-II, in general, is neither momentuwnRservative nor energy-conservative. The discrete
conservations and the modified PDEs for SCHEME are recahicil@&ppendix A.

SCHEME-I and SCHEME-II are identical on uniform grids. Inns® previous LES studies, the discretization
strategy is to transform the equations from the physicalespathe computational space and to discretize the eqsation
in the computational space on uniform grids [2, 4, 5, 17]. IBatrategy does not reduce the strong oscillations in
the numerical results by SCHEME-I on the expanding gridstHew analysis is presented in Appendix B.

The above two schemes on non-uniform grids have been knawndce than forty years and have been discussed
in many previous works. Crowder and Dalton [35] applied SGHEEII in a model Poiseuille pipe flow to study the
effectiveness of using non-uniform grids. In de Rivas [36], tta@cation errors of SCHEME-I and SCHEME-II on
non-uniform grids were studied, and it was shown that SCHHMEd formally first-order truncation errors while
it could achieve second-order accuracy on continuoustfcdied non-uniform grids, and SCHEME-II had formally
second-order errors on any grid. flman [37] also found that SCHEME-I had second-order accui@cgarefully
chosen non-uniform grids by examining the truncation erafrSCHEME-I in the physical space and in the trans-
formed computational space. Veldman and Rinzema [38] coedjthe performance of SCHEME-I and SCHEME-II
in a one-dimensional boundary problem in which convectiomihates. Based on their numerical experiments, they
concluded that SCHEME-I reproduced the exact solution efpftoblem much better than SCHEME-II. Their con-
clusion is opposite to ours simply because their test camessCHEME-I in producing smooth numerical solutions
due to the numerical ffusion introduced by the scheme (see Section 2.3 for detaitgir work was followed by de
Oliveira and Patricio [39] to study the numerical oscilteits caused by the fiierent schemes on non-uniform grids.
The same test case was used, and hence they did not providepéet® understanding of the scheme’s behavior on
non-uniform grids. None of the above studies paid attertbtdhe numerical dissipation properties of the two schemes
or discussed the schemes in the context of LES which is valhieto numerical dissipation. In the existing literature,
the understanding of the two schemes is incomplete and son@usions are misleading.

This work is motivated by the situations mentioned above r&Vesit the two widely known second-order central-
difference schemes on non-uniform grids and provide compreecemparison of the schemes. In particular we
compare the two schemes in LES studies of a turbulent jet ggtdlame.

This paper is organized as follows. In Section 2, the two swseare discussed for a linear convection problem in
terms of the dierent numerical properties: accuracy, dissipation, d&pe, momentum-conservation, and energy-
conservation. In Section 3, the two schemes are comparatdn-éinear convection problem governed by the inviscid
Burgers’ equation. In Section 4, we discuss the LES methed irsthis study. A laminar test case is presented to
compare the performance of the two schemes. In Section RBef a constant-density turbulent jet is performed to
compare the two schemes in this more complicated case. tin8&cthe LES of a turbulent jet flame (DLR Flame A)
is performed to further compare the two schemes. Brief dsion is presented in Section 7. Finally, the conclusions
are drawn in Section 8.
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2. Linear convection

2.1. Discretization

We consider a one-dimensional linear convection test case

ou(x,t) ou(x.t)
T ax O

0<x<2r,0<t<T), (1)
with a smooth initial conditiomi(x, 0) = sin(x), and with the periodic boundary condition (BC) (Problem-I
u(x, t) = u(x+ 2, 1), )

or with the Dirichlet BC (Problem-I1)
u(0,t) = sin(—t). 3)

For hyperbolic problems (1), only one boundary conditioaliswed for Problem-II (2). As discussed later, a numeri-
cal treatment at the downstream boundary 2r is needed since centralffirence schemes are used in the following
numerical solutions. The two problems with th&eient BCs have the same exact solution(@ft) = sin(x—t), i.e.,

a sine wave traveling to the right.

© —4—> O T, O T O
Xi1 Uy X i Xit1 i1 Xii2
| | | |
1 1 T I
Ax; 4 Ax; AX;,y Ax;,,
Xio Xiq X; Xin Xii2

Figure 1: Non-uniform structured grid system.

We use a finite-dference method to solve equation (1) numerically. The gr&tesy used in the numerical
solution is shown in figure 1. The domain fx] is divided intol non-uniform grid cells with the cell boundaries at
x; and the cell centers & = (X1 + X)/2 (i = 1,---,1). The grid spacing iax; = X — X;_1. The discrete variable
U = u(x,t) is located at the cell boundary, which is to mimic the griaigstering of the velocity components used
widely in computational fluid dynamics (CFD).

A straightforward discretization of the spatial derivatthe convection term) in equation (1) is SCHEME-I:

(4)

(@) _ Uipip— Uiy, Uipn — Ui
X} YaA(AXisa +AX)  AXigr + A%’

where the spatial derivative is discretized at the cell llauyx;, and the cell center value is interpolated linearly from
the cell boundary values:
Uisyz = Y2(Uiz1 + Ui). ()

This discretization is the direct extension of the cendliffierence scheme on uniform grids. In this work, we focus on
the discretization of the convection term, and keep the tierévative in the original form in the discretization. With
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SCHEME-I in equation (4), the semi-discrete form of equatib) is

du Ui —Ug

at T A+ AX ©)
The second scheme (SCHEME-II) approximates the spatialadie in equation (1) as
ou
— | =auy biui + ciui- 7
(6x)i AU+, + DU + CiUj—1, (7)

with codficientsa;, b;, andc; to be determined.
By performing a Taylor series expansion, we have

0 1 (62 1/(6°
oy =+ () 05130+ 3 () 0o 5 (58 (=) -+ ®

Substituting (8) withj = /2 into (7) and matching the terms up to the second-order damyawe can derive
SCHEME-II uniquely as follows

&)

2 2 Uisyz + 2 \u+ 2 2 )y,
AXiv1  AXier + AX; e AX  AXiya ! AXig1+ AX AX =2

= 1 ! Uis1 + ! ! U + 1 L u; 9
T o\ Ax A Ax) P \A Axaa) | \Axai+Ax Ax)TE
where the linear interpolation (5) is used. With SCHEMEnrIthe above, the semi-discretization of equation (1) is
dy 1 1 1 1 1 1
au _ _ - _ . - —|u_ =0. 10
at (AXi+1 AXisr + AX; ) tira (Axi AXi+1) e (Axi+1 +A%  AX ) H- (10)

It can be seen that theftBrence between SCHEME-I and SCHEME-II vanishes when unifiids A% = AXi;1)
are used.

The modified PDEs corresponding to the semi-discrete empg{i6) and (10) provide valuable insight into the
schemes’ properties. Substituting the Taylor series esiparnn (8) with j = 1 to the discrete equations (6) and (10),
we can derive their modified PDEs.

The modified PDE for equation (6) (SCHEME-I) is

ou au_

1 u 1A% +AX B
E"'ax__z(Ale_Axl)_ =3

X2 6 AXiyq + AX 0X3 - O(AXS)’ (11)

and the modified PDE for equation (10) (SCHEME-II) is

ou ou 1 d%u
— 4 — = — A% A — + O(AX 12
5 ax -~ g ebXigs +0(ax), (12)
where for simplicity the subscriptis omitted from all the derivatives, amtk (without a subscript) is a nominal grid
size to indicate the order of magnitude.

In the following, we compare thefligrent numerical properties of SCHEME-I and SCHEME-II. la tltumerical

tests, the second-order Crank-Nicholson scheme is usgaptoxmate the temporal derivative in the semi-discrete
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equations (6) and (10). For problem-I11 (3), we speciallatthe downstream boundary as a Dirichlet BC and impose
u(2r,t) = sin(-t) (13)

from the exact solution. Thefect of the diferent downstream boundary treatments is evaluated in Afiped, and
no qualitative &ect on the numerical solutions is found.

Three diferent grids are used in the numerical tests: the expongnitb{EG), the polynomial grid (PG), and the
matching grid (MG) that matches on the ends.

Exponential Grid (EG): The exponential grid is defined by

X =21 [exp(al—l) - 1]/ [exp(a) - 1] @i

Il
o

-, 10), (14)

wherea is a parameter to specify the grid stretching rate laisdhe number of the grid cells. We define the grid size
ratioy; = AXi11/AX. Substituting equation (14) tg, we have

AXiy1 Xi+1 — X (a')
= — = eX —_ 15
Yi AX| X| _ Xi_l p I ’ ( )

which is constant for the exponential grids. The ratio oflérgest and smallest grid size is

_AX| _X|—X|,1_ 1
Rl Lo

. (16)

When the number of grid cellstends to infinity, the rati@ of the largest and smallest grid cells for the exponential
grid tends to expy).
Polynomial Grid (PG): The polynomial grid is defined by

X.-=27T(:—)p (i=0,---1), (17)

wherep is a parameter to specify the grid stretching. We consideeaial case = 2, and the ratig; is

i+1)\2 i\2
xa-x _ 2r(P) - 2e(f) g, L (18)
e

which is not a constant. The maximum stretching occuis=at at whichy; = 3, and the minimum stretching occurs
ati = | —1 atwhichy,_; = 1+ 1/(l —3/2). When the number of grids cellgends to infinity, the maximum stretching
of the grid does not changey(= 3), and the minimum stretching reducesyto = 1. The ratio of the largest and

smallest grid size i = 21 — 1 which becomes infinite wheintends to infinity. For the polynomial grid (17) with

p = 2, the diference of the grid size is constant, i&x,1 — Ax = 4r/12.

Matching Grid (MG): The matching grid is defined by the exponential grids fag ( /2) and reflecting the grid
sizesta > 1/2 sothatAx_j = Ax,1 (i =0,---,1/2). The grid spacing then varies smoothly from one end to thero
and the periodic BC can be properly imposed.

In this work, the EG and PG grids are only used when Problewith the Dirichlet BC in (3)) is solved. it is not
straightforward to solve Problem-I (with periodic BCs in)@n EG and PG grids without extra boundary treatment.
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The MG grids can be used for solving both Problem-I and ProHlestraightforwardly.

2.2. Numerical accuracy

From the modified PDE (11), we can see that in general SCHENMHEdrmally first-order accurate due to the
leading truncation error term on the order@fAx .1 — Ax|). However, as shown in many previous works (e.g., in
[36, 37] and in the textbook [40]), SCHEME-I has second-orteuracy on a stretched grid satisfy|Agi.1 — AX| =
O(Ax?). SCHEME-II is formally second-order accurate for any gratording to the modified PDE (12). For further
discussion on the numerical accuracy of the schemes on nidorm grids, the reader is referred to [36, 37, 40].

@ SCHEME-I (EG:0=0.01) 0
o || € SCHEME-I (EG:a=5.00) R
10° 11 A SCHEME-II (EG: 0=0.01) s Xl
B SCHEME-II (EG: 0=5.00) IO
- — -Reference lines (slope=2) | . :, - " m
. v 4 @
w ow @
e
* L ‘ -
P : ) | -
10t . } - -
- ) ’
10°° 107 107
Az

Figure 2: Numerical errog against the nominal grid sizex with SCHEME-I and SCHEME-II on the exponential grids witlettifferent grid
stretching rates for Problem-II (with the Dirichlet BC).

Here we present numerical tests to examine fteceof the grid stretching on the numerical accuracy. ProHle
(3) on the EG grids is solved numerically with SCHEME-I and-EBE-II, and the numerical results are compared
in figure 2. Two diferent grid stretching rates are used: a low stretching tate 0.01, expf) = 1.01) and a high
stretching rateq = 5.0, exp@) = 14841). The numerical solutions are marched to the stopping il 27 (one
period) with the initial conditioru(x, 0) = sin(x), and the numerical errors are measured at the stoppingasme

I
e= J T3 - ux. Y (19)
i=1

with u;(T) andu(x;, T) being the numerical solution and exact solution at timeespectively. The nominal grid size
Axis specified aax = 2z/1 in figure 2.

From figure 2, for the low grid stretching rate € 0.01) with which the grid is almost uniform, we can see that
the results of SCHEME-I and SCHEME-II are indistinguisteabécause SCHEME-I and SCHEME-II are identical
on uniform grids. For the high grid stretching rate £ 5.0), the numerical erros of SCHEME-II is about half of

8
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that of SCHEME-I. For all the test results, the numericabesrshows second-order decay+{ O(Ax?)) as the grids
are refined compared to the reference lines with slope twaindi2, indicating the second-order accuracy of both
schemes on the grids considered.

2.3. Numerical dissipation

From the modified PDE (11) for SCHEME-I, we can see that thieeste introduces a second-order numerical
diffusion (dissipation) term (the first term on the right-hamtef equation (11) with a numericalftlisivity voym =
=Y2(Ax+1 — AX)) which is dissipative or anti-dissipative depending oa litcal grid stretching. For grids expanding
in the flow direction Axi,1 > AX), the numerical diusivity vinum is negative and hence this term is anit-dissipative.
Any numerical oscillations appearing in the numerical sohs are amplified by the negative numericdfusion,
and hence the numerical solutions are potentially unstade grids shrinking in the flow directiom\ 1 < AX),
the numerical dtusivity voym is positive and the term is dissipative. This dissipativeireof the numerical schemes
is often useful in CFD to help stabilize the numerical s@ng, while excessive numericalfdision may damp the
numerical solutions too much and hence jeopardize the ricat@ccuracy. In contrast, SCHEME-II does not have
the second-order numericalfiilision term according to the modified PDE (12).

The above numerical dissipation property of SCHEME-| watsfulty appreciated in any previous work although
the modified PDE for SCHEME-I was often mentioned when disitugsthe numerical accuracy (e.g., [36, 37, 38, 39,
40]). In the work by Veldman and Rinzema [38] and by de Oliaeind Patricio [39], SCHEME-I and SCHEME-
Il were compared in a convectionfflision boundary layer problem with a grid shrinking in the fldirection. In
this case, the numericalfilisivity vn,m introduced by SCHEME-I is positive, and hence SCHEME-I iseirently
dissipative to suppress the numerical oscillations. Veldrand Rinzema [38] concluded that SCHEME-I is better
than SCHEME-II, which is only partially correct. De Olivaiand Patricio [39] also obtained smoother numerical
solutions using SCHEME-I than those using SCHEME-II, andhier observed the excessive numericdlugiion
when the numerical dusivity vaym is comparable to the flusivity in the model equation. None of the previous
works compared the two schemes on grids expanding in the fl@etibn.

Here we perform a test to compare the schemes on grids exygaindhe flow direction to examine the numerical
oscillations produced by the schemes. Problem-Il (3) igsesbhumerically on the EG grid in equation (14) with
a high grid stretching rate = 3.6 (exp@) ~ 36.6) and with the number of grid cells = 50. The numerical
simulations are marched to the stopping tife= 10r, i.e., returning to the initial condition after five periods
The numerical solutions & = 10r are compared in figure 3 with SCHEME-I and SCHEME-II on the Bl g
expanding in the flow direction. Excessive numerical oatidhs are observed in the numerical solution (circles in
figure 3) by SCHEME-I due to the amplification of the numerioatillations by SCHEME-I on the given grids.
In contrast, the numerical solution by SCHEME-II (diamondigure 3) reproduces the exact smooth solution
(solid line in figure 3) very well. The numerical oscillat®nvith the wave length of two grid cells in figure 3
are caused by the numerical dispersion discussed in Sez#obelow. For grids expanding in the flow direction,
SCHEME-I consistently amplifies the magnitude of these mizakoscillations, while SCHEME-II does not alter the
magnitude of the oscillations. (SCHEME-II has high-ordissigbation terms (fourth-order derivatives and higher) in
the truncation errors in equation (12) which produces adphsise or anti-dissipativeféect. This is in contrast to the
dissipative-free nature of the centratfdrence schemes on uniform grids. The dissipatiteceof SCHEME-II is of
high-order and is not discussed in this work for the secaomigoschemes.)

The above numerical dissipation property of SCHEME-I makeet appropriate for LES. However, SCHEME-I
is widely used in LES (e.g., [18, 19, 14, 20, 21, 24, 25, 26,28{,29, 30, 31, 32, 33, 34]). The negative numerical

9
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Figure 3: Numerical solutiom at the stopping tim@ = 10r against the positiorx/(2r) with SCHEME-I and SCHEME-II on the EG grid in
equation (14) for Problem-II (with the Dirichlet BC).

diffusion for grids expanding in the flow direction amplifies thanerical oscillations and makes the LES solutions
tend to unstable. The magnitude of the numericfildion (no matter positive or negative) is on the ordeArt
which is comparable to the LES model terms and hence makelsBBeresults unreliable. SCHEME-II is more
appropriate for LES compared to SCHEME-I since it does ne¢llae second-order numericalitision terms in the
truncation errors.

Another way to address the non-uniformity is to convert thebfem in physical space to a problem in the com-
putational space so that the uniform grids can be used. Asisied in Appendix B, such practice is similar to
considering the problem in physical space by using SCHEMBEel hence is not recommended for LES.

2.4. Numerical dispersion

An intrinsic difficulty of using central-dference schemes for the first-order derivative is the numletispersion
which causes the numerical oscillations, e.g., the osiciila with the wave length of two grid sizes in figure 3 for
both SCHEME-I and SCHEME-II. The numerical oscillationsguced by SCHEME-I are significantly amplified by
the numerical dissipation discussed in the above Sect®nThe numerical oscillations produced by SCHEME-II
are small for the test case in figure 3 and are only evidentamagion with the course grids (neae 2r). Itis not
straightforward to compare the numerical oscillationssealby SCHEME-I and SCHEME-II in figure 3 due to the
interference by the numerical dissipation. Instead wectlyecompare the magnitude of the dispersion term in the
modified PDEs (11) and (12). For SCHEME-I, the magnitude efrtbmerical dispersion term (the second term on
the right-hand side of equation (11)) is
o°u

ox3

1

6

1A%, A
6 AXiy1 + Ax 03

Hy =

| AXiaAX + (Axis = A%)?]. (20)
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and for SCHEME-II the magnitude of the numerical disperserm is

63

5 | | AX18% + (A%1 = AX)?| = H (21)

1 o%u
Hy = |-=AXi;1A
2 ’ 6 Xi+1 X'6x3

=6

Therefore the numerical dispersion erkyin SCHEME-II is smaller in magnitude thaty in SCHEME-I. The more
stretched the grids are, the greater thgedénce is of the dispersion errdig andH,.

2.5. Momentum-conservation

The conservation principle of equation (1) imposes an aidit constraint on the finite-fierence schemes, i.e.,
the schemes are able to mimic the conservation principleherdiscrete level [1]. Several conservative discrete
operators were introduced to discretize the Navier-Stegestions [1, 16]. SCHEME-I (4) is the conservative disret
operator on non-uniform grids [16].

Integrating the conservation equation (1) onZg), we obtain

dgtfzr u(x, t)dx = u(0,t) — u(2x,t). (22)
0

So the net change of the integrgl’T u(x, t)dx (total momentum) is caused only by thdéfdrence of the momentum-
fluxes on the boundaries(0, t) — u(2r, t). For Problem-I (2), we have(0,t) = u(2r,t), hence

d%fh u(x, t)dx= 0. (23)
0

For Problem-II (3) with the downstream boundary treatmés),(we also have the result in equation (23). Thus
the momentum-conservation requirgér u(x, t)dx = const at all times over the domain. We simply approximate the
integral [*" u(x, tydx by

(Ui1 + U)AX;. (24)

NI =

-

i=1

on the grid system in figure 1. Performing the summation (84 5ICHEME-I in equation (6), we obtain

dc d|1l o 1 1
i quxl + Z (AX + AXir1)U; + 2u.Ax.
1 d 1 du
= [zAxl—dLlo + z(uo + U1) - [E(Ull + Ul) AXl dtl } (25)

The above equation shows that the net chande by SCHEME-I is caused only by theftérence of the boundary
values, i.e, SCHEME-I mimics the conservation law in equa{22) on the discrete level. Hence, SCHEME-I is
conservative for the momentum. For Problem-I, we can ohtaadC/dt = 0 andC = const by imposing the
periodic BCuy,; = uj andAx;,j = Ax;; for Problem-II, we obtain thadC/dt = (up + u1)/2 — (uj—1 + u;)/2 # 0 due to
the non-periodicity of the numerical solutions.

For SCHEME-II in equation (10), we can write down the sumoraas

dc = 1 du
5 - “° 2.3 (e = W)/ + (U — U] + 5% (26)
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wherey; = Ax;1/AX. In general the righthand side of equation (26) depends®mtimerical solutions on all grid
points except some special cases, exg=const which is the EG grid in equation (14). Thus, for arbjtrgrids,
SCHEME-II does not conserve the momentum on the discreg éxactly.

0.1 ' ' ' ' 0.2f ' ' ; .
‘== SCHEME-I (MG: a=3.6) I e | REIEE SCHEME-| (EG: a=3.6) _
0.08f """ SCHEME-1I (MG-a=3.6)|  ro0Iem=1 | 1. SCHEME-II (EG-a=3.6)| roblem-lI
= - 20.25 average(Ax) 0.151 _ggHEME_I Epg p:g
0.06f . = = =SCHEME-II (PG: p=
0.1 — — +0.5 average(Ax)
0.04} -
“ 0.05f
0.02}
© :
O i o ) ma mCn— Sowmrw .}1 ‘‘‘‘‘‘‘‘‘ 0
-0.02}% oo
-0.041
-0.1
-0.06f
-0.08 -0.15
0 1 2 3 4 5 0 1 2 3 4 5
t/2m t/2m

Figure 4: The measurement of the momentum-conserv&tiagainst time/(2r) with SCHEME-I and SCHEME-II on the MG grid for Problem-|
(left plot) and on the EG grid and the PG grid for Problem-igfft plot). The thin dash-dotted lines are reference liteséng the diference from
C=0.

In the following, we perform the numerical tests to examhemomentum-conservation of the two schemes. The
number of the grid cells is = 50 and the numerical solutions are marched te 10r from the initial condition. The
time series oC with the ditferent schemes for Problem-1 and Problem-II are comparedumnefi4.

For Problem-1 (left plot of figure 4), the MG grid is used with = 3.6 in equation (14). The momentum-
conservation require€=0 at all times for Problem-I. The values Gf by SCHEME-I (dash-dotted line) are zero
throughout the time, confirming the momentum-conservaifdhe scheme. The values 6fby SCHEME-II (dotted
line) are not zero exactly, indicating the violation of th@mentum-conservation by the scheme. The violation,
however, does not grow with time, and varies around zer@geally in time.

For Problem-II (right plot of figure 4), two fierent grids are compared for SCHEME-I and SCHEME-II for the
momentum-conservation: the EG grid in equation (14¥(3.6, y; = const) and the PG grid in equation (1 p)£ 2,

1 < 9 < 3). For this problem, the values 6fare not zero for both schemes according to equations (25§24)d
From the right plot of figure 4, we can make the following olvaéions:

1. The values o€ from all four test cases vary periodically in time. The magdé ofC by SCHEME-I is about
twice of that by SCHEME-II for both the EG and PG grids;

2. Although the predicted values f@ by SCHEME-I and SCHEME-II look similar, they are qualitatly dif-
ferent. The non-zero values 6fby SCHEME-I (solid and dash-dotted lines) are caused onlihbynon-zero
net change of the momentum-fluxes on the boundaries as sinoquation (25). This does not contradict the
fact that SCHEME-I conserves momentum in spite of the nan-zelues ofC predicted by the scheme. The
non-zero values of on the EG grid by SCHEME-II (dotted line) are also caused doyl\{the non-zero net
change of the momentum-fluxes on the boundaries as shownatieq (26) due to the fact that SCHEME-II
conserves momentum on the EG grid. The non-zero valu€soof the PG grid by SCHEME-II (dashed line),
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however, are caused by the violation of the momentum-ceatien by the scheme as well as by the net change
of the momentum-fluxes on the boundaries;

3. For Problem-Il, the violation of the momentum-consenraseems comparable in magnitude to the boundary
effect, and the non-momentum-conservative SCHEME-II doeshoi disadvantages over the momentum-
conservative SCHEME-I in predicting the values of total neortumcC.

The intrinsic momentum-conservation property of SCHEMiS-perhaps the main reason for its wide use in
CFD. Here based on the analysis and the numerical tests,entbat for Problem-II, SCHEME-II (hon-momentum-
conservative) has comparable performance to SCHEME-I édipting the values o€ for the linear convection
problem.

2.6. Energy-conservation

From figure 3, we can see that the numerical solution by SCHEbHEIllates strongly, while that by SCHEME-II
is smoother and closer to the exact solution. An immediaéstion to follow is whether SCHEME-I conserves energy
in addition to the momentum-conservation. The energy-eagion is often recommended for designing numerical
schemes for LES.

The conservation law in equation (1) implies conservatioihe energyw?(x, t)/2, i.e.,

AUZ(X, 1) . IP(x,t)
ot ox

0 O<x<2r, 0Kt T). (27)
So similar to equations (25), the energy conservation iespli
d o 2 2 2
gi | W hdx=ui(0.1) - u(2r. 1), (28)
0

i.e., the net change of the total energy is due to thEedince of the energy-fluxes on the boundaries. For both
Problem-1 and Problem-Il, we hawg0, t) = u(2r, t) = sin(-t), so the energy-conservation yields

d 21 21
d_tf u?(x,t)dx=0 and f u?(x, t)dx = const (29)
0 0

We approximate twice the total ener@z/" u?(x, tydx on the discrete level as

35)

(U2, + UD)AX;. (30)

NI =

|
i=1
on the grid system in figure 1.
For SCHEME-I in equation (6), the implied discretizatiortiog energy equation is

dtﬁz n trL]+1/2 _m—l/z _

- = 31
dt  (Axii1+Ax)/2 (31)
where the tilde X" is a special interpolation operator introduced by Moiist al. [1]
— 1 1
iz, = §¢iﬂlﬁi + §¢ilﬁi11 (32)
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Combining equations (30) and (31), we obtain

-1

dE dj1l 1 1
T Gt Eu(Z)Axl + ; E(Axi + AXiy1)U? + Eu,ZAx|
1 di . 1 dw?
= [EAX]_E + ULh/z] — [UU|1/2 — éAXl d—tl} 5 (33)

which mimics the energy-conservation in equation (28), BEHEME-I conserves energy. For Problem-1, we have
dE/dt=0 (or E=const) after applying the periodic BC; for Problem-Il, wes@dE/dt # 0 due to the non-periodicity
of the numerical solutions.

For SCHEME-II in equation (10), the implied discretizatiofithe energy equation is

d2 [ 2 2\ 2 2\, ( 2 2 )~
— 4+ - Ubhyy, + | — — u + — — |Uli_y, = 0, 34
dt (Aml AXa+1+AXa) e (AXi A><a+1)' Axer+ Ax A ) (34

which is in the similar form to the discretization in equatid0). Combining equations (30) and (34), we have

d
d—E= %AX]_ U(z)

| dif
at + 7 [t = w3 + (O - wua) ] + %AXI — (35)

-0 [
dt * & dt

which depends on the numerical solution on all the grid ofat arbitrary grids. Hence SCHEME-II in equation
(10) is not energy-conservative.

The numerical solution by SCHEME-I in figure 3 oscillate®atyly on the grid expanding in the flow direction,
and as we show later, the total energy predicted by the schemes considerably with time, which seems inconsistent
with the energy-conservation of SCHEME-I. This inconsisteis reconciled in Appendix A.

Substituting the Taylor series (8) with= 1 to the discrete energy equation (31) for SCHEME-I, we abtheé
modified PDEs for the energy as follows

o Iu? 1 82U dudu
b —— = = = (AXe1 — AX) =— + (AXi11 — AX) ——
o o 2( Xi+1 — AX) 52 + (AXis1 — AX) %I
1A + A [832 8 (dudu
- = -3—[=Z=||+0(Ax). 36
6 AXii1 + AX | 03 ax(axax)}+ ( ) (36)

We see that the modified PDE for the energy conservation @djly SCHEME-I also has a numericaffdsion term
(the first term on the right-hand side of the above equatidnighvis dissipative or anti-dissipative depending on the
local grid stretching. Moreover, SCHEME-I introduces adaretion or dissipation term for the energy (the second
term on the right-hand side of the above equation) which addgsgy to or removes energy from the numerical solution
consistently. For grids expanding in the flow direction, tiwen is an energy-production term, and for grids shrinking
in the flow direction, it is an energy-dissipation term. Basm this observation, we can see that the numerical
solutions by SCHEME-I inherently contain more or less epéhgn the exact solution simply because of the energy
production or dissipation terms introduced by the scherhe.numerical solution by SCHEME-I, however, conserves
the total energ¥ in (30) on the discrete level.
Similarly we can derive the energy conservation implied BHEME-11 in equation (12) by substituting equation
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(8) to (34) as follows

: : 3
—=AXiz1AX% 2 3ox|\axax +O(Ax). (37)

T ox 6
This equation neither has the second-order numeridaision term nor has an energy production or dissipation term.
Although SCHEME-II does not ensure discrete energy coms@ivas shown in equation (35), the numerical solution
predicted by the scheme may have closer level of total ertbagythat by SCHEME-I compared to the exact solution.

In the following we compare the energy predictions of th&edént schemes for Problem-1 and Problem-II.

uZ  au? 1 [63u2 ] (8u@)

0.04 : : ; : . . . .
----- SCHEME-I (MG:a=3.6)| Problem-I 1| = ='SCHEME-I (EG:a=3.6) Problem-II |
..... SCHEME-II (MG: a=3.6) v SCHEME-II (EG: 0=3.6) N
0.03f| - - +0.1 average(Ax) 1 —— SCHEME-I (PG: p=2) g
0.8l = = = SCHEME-II (PG: p=2) -~
————— +0.5 average(Ax) P -
0.02} /
& o
I 0.01
K
==y e e »
of: B
-0.01}
-0.02
0 1 2 3 4 5 0 1 2 3 4 5

Figure 5: The measurement of the energy-conservdiiagainst timet/(2r) with SCHEME-I and SCHEME-II on the EG grid and on the PG grid.
The thin dash-dotted lines are reference lines showingittereince frome=nr.

The time series oE with the diferent schemes on thefldirent grids are compared in figure 5. From the left
plot of figure 5 for Problem-I with the MG grid, we can see th&HEME-I yields the energy-conservation. For
Problem-I1, the energy-conservation requikesconst. The slightly higher value & > = by SCHEME-I shows the
difference between the numerical prediction and the exacti@oluthe predicted value d& by SCHEME-II varies
periodically in time, and the time-averaged valuebois slightly less than the exact valle=x. This non-constant
value of E confirms that SCHEME-II does not conserve energy exactlye Viblation of the energy-conservation
by SCHEME-II seems bounded (amplitude of the variationsbisua 1% of E=r) and does not grow in time for
Problem-I.

For Problem-Il with the EG and PG grids on the right plot of fig8, the predicted values Bfby SCHEME-I on
both grids grow consistently in time as we have mentionedreefThe continuously growing energy by SCHEME-I,
however, does not violate the energy-conservation on g@ete level. On the discrete level, more energy is added to
the numerical solution through the boundaries accordiregt@ation (33). The predicted valuesby SCHEME-II
on the right plot of figure 5 vary periodically in time and dotigoow in time. The amount of energy in Problem-II
is captured accurately by SCHEME-II although this schemmoisenergy-conservative. From the performance of
the two schemes for Problem-Il, we observe that, for two canalple schemes (e.g., both second-order accurate), the
energy-conservative scheme may be worse in predictingrteyg than the non-energy-conservative scheme, which
is opposite to intuition.

To summarize, the two central finiteffiirence schemes on non-uniform grids (SCHEME-I and SCHEN &-¢
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compared in a linear convection problem in terms of thtedent numerical properties: accuracy, dissipation, dispe
sion, momentum-conservation, and energy-conservatenn® problems are found for the widely used SCHEME-I:
amplifying the numerical oscillations and adding energth®numerical solution for grids expanding in the flow di-
rection, which are dangerous to stable numerical simulati®@CHEME-I conserves momentum and energy on the
discrete level although the numerical solutions by SCHEMIEFer from the exact one significantly for certain spec-
ified non-uniform grids. SCHEME-II does not conserve moranenaind energy on the discrete level in general, but
the numerical solutions by SCHEME-II are more accurate thase by SCHEME-I for grids expanding in the flow
direction.

In LES, it is often emphasized to use energy-conservatiierses, and many energy-conservative schemes are
designed in the literature (e.g., [1, 2, 3, 4]). From the &dlawar analysis, we can see that the energy-conservative
schemes may not be able to yield more accurate numericaimmisimply because the energy-conservative schemes
may inherently introduce more energy to the numerical smistin spite of their energy-conservation on the discrete
level. To understand the properties of the schemes thotgugtihe following, we further evaluate the conservation
properties of the two schemes for the simplest non-lineavection problem: the inviscid Burgers’ equation.

3. Inviscid Burgers’ equation

3.1. Discretization

The inviscid Burgers’ equation is

ou  10u?
T <x<K <tLKT).

i , O0<x<2r, 0Kt (38)

Multiplying the inviscid Burgers’ equation witht2 we can derive the energy equation as

o? 200

—t —— = <XK <tLT).
6t+36X , O<x<2r, 0<tLT) (39)

Similar to the analysis in Section 2, we can find that the aleougtions yield the following conservations

d & 1 1

= fo udx= 2UP(0.T) - JuP(2x,T), (40)
27

dﬂt fo W2dx = gus(O,T)—gus(ZmT), (41)

which require that the numerical schemes mimic these ceasens on the discrete level.
Using SCHEME-I in equation (4) to the inviscid Burgers’ etjoa (38) on the grids shown in figure 1, we have

du Yoo (42)
dt  AX + AXis1

where the cell center values.;, can be obtained from the linear interpolation in equatign\(% denote the scheme
in equation (42) as SCHEME-IA. Combining equations (24) 1), we obtain

i SAX—— + S Uy, Sz éAx| —_ (43)

2 de 2 dt |’
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so SCHEME-IA conserves momentum. From equation (42), waleaime the implied energy discrete equation as

de UU2i+1/z - aﬁi—l/z UG, — UGy | (a4)
at " AX; + AXis1 " 2(A% + Axii1) |
Using equations (30) and (44), we obtain
dE d — 1 &1 _
dt A 1d—L§ + = Ulel/z} { UU2|,1/2 AX| } Z]; Z i u+1/2 — ULLl/z). (45)

The righthand side of equation (45) depends on the numesadations on all the grid points, so SCHEME-IA is not
energy-conservative.

An energy-conservative discretization of the inviscid @ns’ equation (38) is found in the following
u?, — U2

i+1 i-1 ] -0 (46)

dy + 1
3| 2(AX + AXir1)

dt

UG/, — uu_l/z] 2
A% + A

which is obtained by splitting the spatial derivative in atjan (38) into two parts and using the twdfdrent dis-
cretizations (the second and the third term in the abovetegdo approximate each part. We denote this scheme as

SCHEME-IB. Combining equations (24) and (46), we obtain
dc [1 dug (a7)

dc 1, 1,  du
dt Ydt

1 1, 1, 1 1,
+ = uul/2+ 6u0+ 6u1 6uu| _y, + 6uI + 6uI+1 A X — at

so SCHEME-IB is momentum-conservative. From equation, (#&)can derive the implied energy discrete equation
as

d i+l2 — -1/2
Ui2 Z[UUZ / UU2 /] 0. (48)

dt - (AX + AXiy1)/2

Using equations (30) and (48), we obtain

dE

dat ~ dt (49)

1 d 2—; 2— 1 dw?
A X1 —— U(Z) + §UU21/2} - [§UU2|_1/2 —AX)— dt }

so SCHEME-IB is energy-conservative.
Using SCHEME-II in equation (9) to the inviscid Burgers’ edjon (38), we have

dy 1 1 ) 1 1)\, 1 1),
u; — - —u — — — U7, =0 50
dt (AX|+1 AXip1 + AX&) et ¥ (Ax,- AX|'+1) P AXii1+ A% Ax ) R (50)

from which, we can derive the discrete energy equation as

dyp

dt

+( ! )Gﬁé +(1 ! )u3+( ! 1)uu2 }
- +1 - - -1
AXiip  Axar+AX) T TP A T A% AXie1 +AX AX 2
1

+§Ui2

! ! Y T TN ! usl=o. (51)
A Dxr 8% ) A T A ) T B A Ax )

We can demonstrate that SCHEME-II for the inviscid Burgaguation is neither momentum-conservative nor
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energy-conservative.

There are many variants of using the centrélledlence schemes on the inviscid Burgers’ equation, we lionit o
discussion on the above three schemes: SCHEME-IA in (A2BHEBE-IB in (46), and SCHEME-II in (50).

We can do the same analysis as in Section 2 by using the moRified for the above three schemes to understand
these schemes thoroughly. The modified PDE for SCHEME-IAjimagion (42) can be derived as

6u 100 1 0 ( ou\ 1 du du
Yo - —(AX|+1—AX|)—(U5()+ Z(AXHl )5(5(
1AX  +AX3 0’u\ 1 0 (dudu
- _— — |+ = +O(A 52
2 AXij1 + AX 36x (u6x2)+ 12 6x (8xax) (AX). (52)

The truncation errors resulted from SCHEME-IA for the imiisBurgers’ equation have similar properties as those
for the linear convection problem in equation (11). The tiesin on the righthand side of equation (52) is a numerical
diffusion term which is dissipative on grids shrinking in the fidwection (Axi11 — AX)u < 0) and anti-dissipative on
grids expanding in the flow directionA§;,1 — AXx)u > Q). Moreover, SCHEME-IA introduces a source or sink for the
momentum (the second term on the righthand side of equd@)). (Whether it is a source or sink solely depends on
the local grid stretching independent of the flow fields, ités a source (the term is non-negative)if{,1 — Ax) > 0O
and a sink (the term is non-positive) ifi%.1 — Ax) < 0. The third term on the righthand side of equation (52) is the
dispersion error.

The modified PDE for SCHEME-IB in equation (46) is

ou 1ou? 1 o ( ou) 1 dudu
Y —(AXi+1—AXi)a—X(Ua—X)+é(AXi+1 )6_>(6_X
1A, +AC [ ( 62u) 10 (dudu 3
- erﬁm [ax (“W)+ Ea_x(a_xa_x)] +O(Ax). (3)

which has the same form of the truncation error terms on tifghiand side as equation (52) except thEedénce in
the constant cdgcient of the terms, e.g., the source or sink term in (53) haalsnconstant caéicient 1/6 than 14

in (52).
The modified PDE for SCHEME-II in equation (50) is
au 100> 1 10 ( d%u 1 0 (dudu
toax T M35y (UW)J’TZ&(&&)}J’O(A)@)‘ (54)

which does not have the second-order numeridélision term and the source or sink term on the righthand sidis. T
shows the numerical superiority of SCHEME-II over SCHEMEand SCHEME-IB although SCHEME-II does not
conserve momentum on the discrete level.

We can also derive the modified PDEs for the discrete energgtens (44), (48), and (51). For SCHEME-IA
and SCHEME-IB, the modified PDEs for the discrete energy gojusare

6u2 200 1 a ( ou?\ 3 dudu
Y s —(AX|‘+1—AXi)a—X(U§)+E(Aan—AXi)Ua—Xa—X
1A + A [ d°u 1 duodu) 1(du
2
_ - & o(Ax® 55
2Ax.+1+Ax. [6x(3 X2 6 6x6x)+6(6 ” (A7), (53)
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and

2

6u2 200 1 du 4
= - _(AXi+1 AX.)—(U—) §(AX&+1 AX)U——

ot 36x

oudu

0X X OX
1AX|+1+AXI 9 ( 262

3 AXa1 + AX X\ 0 2) +0(AX). (56)

Both modified PDEs (55) and (56) are in the same form excepgliplet difference in the constant déieients. The
first terms on the righthand sides of equations (55) and (E6)ree numerical diusion terms which have the same
dissipation property as in (52) and (53). The second termhemighthand side of equations (55) and (56) are the
energy production or dissipation which depends on the lgidistretching and the flow direction. On grids expanding
in the flow direction (Ax.1 — AXx)u > 0), it is energy-production (the term is non-negative), andyrids shrinking
in the flow direction (Ax.1 — AX)u < 0), it is energy-dissipation (the term is non-positive).eTdnergy production
or dissipation term for SCHEME-IB has slightly lower maguie (4/3) than that for SCHEME-IA (R). The third
terms on the righthand side of equations (55) and (56) areuheerical dispersion terms.

The modified PDE for the discrete energy equation (57) of SKBHI is

6u2 200 1

a (2 262 1 dudu) 1 ou\’
ot 36X 2

7395 ~ U7 ax o) | o(AX), (57)

“AXA
X'”[ 3" ¢ 6 axox) " 6

which does not have the numericaffdsion term and the energy production or dissipation terrthcdlgh SCHEME-
II'is not energy-conservative, SCHEME-II is superior to SEME-IB due to its free of energy production or dissipa-
tion in the modified PDEs.

To sum up, in the above conservation analysis, we observéotloeving conservation properties for the dif-
ferent schemes: SCHEME-IA is momentum-conservative btienergy-conservative, SCHEME-IB is momentum-
conservative and energy-conservative, and SCHEME-Il ifh@emomentum-conservative nor energy-conservative.
From the analysis based on the modified PDEs, we observe@#EBE-IA and SCHEME-IB introduce the numer-
ical diffusion and the source or sink to the momentum, and the nurhdriiasion and production or dissipation to
the energy, while SCHEME-II is free of the numericaffdsion, the momentum source or sink, and the energy pro-
duction or dissipation. In the following, we perform nunualitests to evaluate thesefdrent numerical properties
of the diferent schemes for the inviscid Burgers’ equation on a periedt case and a non-periodic test case.

3.2. Periodic test case

The inviscid Burgers’ equation (38) is numerically solvaddomain [Q2x] starting from the following initial
condition to the stopping timé& = 20r,

expx) —exp2r) tanh(10(x—n)) + 1
1 - exp(2r) " 2

u(x,0) = + 1 (58)

The MG grid witha = 3.6 in equation (14) is used with the number of grid célls 50. The periodic BQI(0,t) =
u(2r,t) is applied during the time advancement. The Crank-Niaroscheme is used for the time integration.

With the periodic BC, we can find thdC/dt=0 (C=const) from equation (43) for SCHEME-IA and from equation
(47) for SCHEME-IB, andlE/dt=0 (E=const) from equation (49) for SCHEME-IB.

The time series of the momentum-conserva@oand energy-conservatidhfor the diferent schemes are shown
in figure 6. From the left plot of figure 6, we can see that the@salofC remain constant all the time for SCHEME-
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Figure 6: The measurement of the momentum-conserv&tiand the energy-conservatiéhagainst time/(2r) with SCHEME-IA, SCHEME-IB

and SCHEME-II on the MG grid for the periodic test case. (Thia tlash-dotted lines are reference lines showing tiierénce from the values
of C andE by SCHEME-IB.)

IA and SCHEME-IB due to the fact that these schemes are mamenbnservative. (The solid and dashed lines
overlap on the left plot of figure 6.) The values©fby SCHEME-II vary with time, which is consistent with the
non-momentum-conservative property of the scheme. Afieutt/2r = 1, the values o€ by SCHEME-II fluctuate
around the value of 10.35, about 1% lower than the valu&slof SCHEME-IA and SCHEME-IB. The violation of
momentum-conservation by SCHEME-II does not seem to beiggpwith time. From the right plot of figure 6, we
can see that only the values®from SCHEME-IB remain constant all the time because only E8H-IB is energy-
conservative and the other two schemes are not. Compasrgvthnon-energy-conservative schemes in the figure,
SCHEME-IA seems better than SCHEME-II in terms of energgsewvation because the magnitude of the variations
in E by SCHEME-IA is smaller that by SCHEME-II. After aboyy2r = 1, the values oE by SCHEME-II fluctuate
around the value of 17.6, about 3% lower than the valug by SCHEME-IB. The violation of energy-conservation
by SCHEME-IA and SCHEME-II do not grow with time. These reéswre consistent with the conservation analysis
based on the discrete equations, and hence confirm thasaaly

In sum, in figure 6, we examined the conservation of the nuraksiolutions by the dierent schemes, in which
we have not examined the detailed numerical solutions, (@g close the numerical solutions are to the exact one?).

In the following, we consider a non-periodic test case, iclhve explore and compare the accuracy of the numerical
solutions in addition to the conservation.

3.3. Non-periodic test case

We consider the following initial condition for the numealcsolution of the inviscid Burgers’ equation (38) on
domain [Q 2x],

1

100 0) = &~ a0 ltanh(10«— 3) + 1] ~ tanh(1— 3) + 1

(59)
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with the boundary conditionsu(0, t)=u(0, 0)~0.5002 andu(X, t)/0X/x=2: = 0. The Neumann BC on the right side is
introduced numerically for the treatment of the right boaydfor the central-dierence schemes although only one
BC is allowed mathematically. The numerical solutions ateaaced to the stopping time = 40r, at which the
steady state solutiau(x, T) = u(0, T) is expected. The EG grid witla = 3.6 in equation (14) is used with the number
of grid cells| = 50.

The time evolution of the numerical solutions for the nomipeic problem with the three schemes are shown in
figure 7 at the selected time®27=0, 0.1, 0.25, 0.5, 1, 2, 6, and 16. Tkaxis is shown in the log-scale to examine the
regions where the grid spacing is fine. The thin lines with Isgts are the numerical results from the three schemes.
The thick lines (without symbols) are high-resolution nuived solutions computed by the first-order upwind scheme.
These high-resolution numerical results serve as “exadtition for the comparison. The initial condition is smooth
and shows decaying in the flow direction, which is to mimicabaterline velocity decay in jet flows. The convection
is toward the right. The ¢lierence of the convecting velocity on the left and right euvelty causes a sharp interface
as shown at about2r = 1 in the figure. The sharp interface ultimately is convectatdod the domain, and a steady
state solutionu(x, o) = u(0, o) is expected as indicated by the “exact” solution. All theeeemes perform similarly
beforet/2z = 0.25. After that, strong oscillations behind the sharp irsteefare observed due to the dispersive nature
of all three schemes. The schemes behave qualitativegrelint upstreamx(< 1). SCHEME-IA and SCHEME-IB
produce strong oscillations upstream, while SCHEME-IIsprees the upcoming constant value very well. This can
be explained by the anti-dissipative property of SCHEMEadd SCHEME-IB on the given grids. The numerical
oscillations (produced by the numerical dispersion) arpldied by the negative numericalflision in equations (52)
and (53). In contrast, SCHEME-Il is dissipation-free, selumerical oscillations caused by the numerical dispersio
upstream (not visible in figure 7) are not amplified. At thelfiirae t/27 = 16 in figure 7, the results by SCHEME-II
reaches the steady state solution which agrees with thetes@ution well. The results by SCHEME-IA still contain
numerical oscillations, especially for the first five gridqts. The results by SCHEME-IB are improved compared to
those by SCHEME-IA probably because the energy-produttion by SCHEME-IB in equation (56) is smaller in
magnitude than that by SCHEME-IA in equation (55) althoughfirst three grid points still show strong oscillation.
For this simple non-linear convection, we show that the gneonservative scheme (SCHEME-IB) performs worse
than the non-energy-conservative scheme (SCHEME-II).efget of the schemes upstream is very informative to
the discussion of the LES simulations of jet flows in the fwoilog sections.

Figure 8 shows the time series of the value€a&ndE for the non-periodic test case with thetfdrent schemes.
The values o€ andE increase from the initial value and approach constants sét@e time. The detailed evolutions
of C andE are diterent for the three schemes. For SCHEME-II (dash-dottexgblin figure 8), the values & and
E increase initially, and, at abott2r = 3.5, they quickly become flat. During the transition, the t@aérgyE by
SCHEME-II does not exceed the final steady-state energghwihdicates good numerical stability. The predictions
of E by SCHEME-II agree with the “exact” solution very well. FOEBEME-IA (solid lines in figure 8), the values
of C increase initially, and become flat at about the same tjiae = 3.5. But the values o€ fluctuate even after a
long time ¢/27 = 20) and do not seem to become steady. And the time-averagezlofeC at the steady state stage
predicted by SCHEME-IA is slightly lower than the “exact’lva. The energfe by SCHEME-IA is always higher
than the “exact” one in the right plot of figure 8 due to the gygaroduction caused by SCHEME-IA in (55) for the
test case. The values Bfby SCHEME-IA do not seem to become steady after a long timth@eiFor SCHEME-IB
(dashed lines in figure 8), both values@fand E increase initially and overshoot at abdy®r = 5.3. Then they
reduces asymptotically to some constant values. This buetf the total energy can be explained by the energy
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Figure 7: The time evolution of the numerical solutions foe hon-periodic problem with SCHEME-IA, SCHEME-IB, and SEME-II at the
selected time$/27=0, 0.1, 0.25, 0.5, 1, 2, 6, and 16. The thin solid lines with Bgha are the numerical results from the three schemes. Tdie th
solid lines are high-resolution numerical solutions frdra first-order upwind scheme. (Theaxis is shifted byxg = 0.01 so that the first grid
pointx = 0 can be shown in the log scale of tkawxis.)
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Figure 8: The measurement of the conserva@osnd the energy conservati@for the non-periodic problem against tirty§2r) with SCHEME-
IA, SCHEME-IB and SCHEME-II on the exponential grids (EGheT“exact” solution is from a high-resolution numerical siation by the
first-order upwind scheme.

productionin (55) too. The maximum energyoy both SCHEME-IA and SCHEME-IB during the transition exdee
the final “exact” value, which indicates that they are leabkstthan SCHEME-II. The generated energy by SCHEME-
IA and SCHEME-IB degenerates the numerical accuracy andaaage serious instability in more complicated LES
calculations.

In the following, we compare SCHEME-I and SCHEME-II in theaptical LES of turbulent flows which is more
complicated, to further show the deficiency of SCHEME-I am&l superiority of SCHEME-II.

4. Large eddy simulations (LES)

The LES methods used in this study are outlined in this Sec#idaminar jet flow test case is performed first to
compare the performance of SCHEME-I and SCHEME-II in thiatieely simple problem. More complicated LES
studies are performed in the following Sections 5 and 6.

4.1. Numerical methods

The numerical methods for LES used in this study are basetl4qr2p]. The basics of the numerical methods are
summarized here. For details, the reader is referred t@2[1,46, 33, 34].

Applying the traditional filtering operation to the mass, mentum, and scalar conservation equations, we can
derive the LES equations. After modeling for the terms aatiog for the sub-filter stresses and sub-filter scalar
fluxes, the closed set of LES equations to solve for low Maahlmer flows is the following

Piven = o (60)
DUy -GuD) = V-[24:+ S| - VP (61)
S = Y2[VU+(VD)'|-YasV T, (62)
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o V- (pUE) = V-[p(r+TYVE], (63)
PE v (U2) = v-[prrovE|-¥ (64)
po= f(é8). (65)

Here the bar “—" and tilde~" denote filtering and density-weighted filtering, respeslly. The variable denotes the
filtered densityt the filtered velocity vectorp the filtered pressure; the dynamic viscosityy the sub-filter eddy
viscosity,d the unit tensor¢ the filtered mixture fraction(;?é the filtered mixture fraction squareH,the molecular
diffusivity, I' the sub-filter eddy diusivity, y the sub-filter dissipation rate of the mixture fraction. Boub-filter eddy
viscosityu;, eddy difusivity I't and dissipation ratg are modeled as

p = CpA?S, (66)
Iy = CrA%S, (67)
Y
IS = (SijSij)2 (68)
1(0u 0y 1. Jdug
S: = |24+ 2=z = 69
4 2(6Xj - 6Xi) 35”6Xk ( )

whereA is the filter width 6;; is Kronecker delta, and the model ¢beientsC, andCr are computed by the Dynamic
Model [14, 20].

For constant-density flows, equations (60)-(62) form aexdiaset of equations. The additional equations (63)-(65)
are for variable-density flows with equation (65) being ttedesequation to obtain density. A simple flamelet model
[34] is used in this work to model the density coupling.

The LES equations in the above are cast in the cylindricaldinates, and are discretized with the second-order
central-diference schemes for the spatial derivatives and the Cracddsdin scheme for the time advancement. A
staggered grid system in both space and time is used for skeetization. The QUICK scheme [14] is used for the
convection terms in the mixture fraction equations (63) @) to reduce the excessive numerical oscillations near
the upper and lower bounds of the mixture fraction [14]. rer discretization of the staggered velocity, we face the
same problem discussed in Section 2 when using centifereince schemes which will be discussed in detail in the
following Section 4.2. The pressure projection (or fractibstep method) is used to enforce continuity. An itestiv
semi-implicit scheme is employed to solve the coupled rio@ar equations. The time-step sixeis controlled by
the maximum allowed CFL number, CFE |TJAt/AX + 4(u + u)At/pAX? < CFLmay, Where the CFL number is
defined only on the quantities in the axial direction, sirtee éxplicit treatment is in the axial direction only during
the iteration employed in the current numerical methods nkare numerical details, please refer to [14, 20].

4.2. Discretization of convection terms

When discretizing the non-linear convection terms sua¥(@id) / dx, d(oW) /0y andd (o) /dz in the momentum
equation (61) on the staggered non-uniform grids, we faesdme situation of choosing SCHEME-1 or SCHEME-II
as discussed in Section 2. In the past, SCHEME-I has beendasaithantly for discretizing these convection terms
for LES studies.

We take the discretization @f(plill)/dx as an example in the following discussion, and the otherseram be
discretized similarly. The convection terms are discegtibn a non-uniform grid system shown in figure 9. The
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Figure 9: The staggered grid system for the large eddy simook&

scalars (such g8 P, £) are stored at the cell centers indicated by the circlesdrfigure, and the velocity component
Ul is located at the cell faces.

We rewriteplill asgli whereg = pii is the mass flux. The mass flgxs also stored at the cell facgto have a
natural mass conservation over the grid cell, and is conaiduben o andd' with necessary linear interpolation.

With SCHEME-I, the convectioti(olili)/dx is discretized as

(@) _ gi+1/2ai+1/2 - gi—l/zai—l/z (70)

X ) Y2AAXie1 + AX)

This central-difterence scheme is the same as the finite-volume scheme owrttrel volume K1, Xi+1,] Shown
in figure 9. The unknown quantities in equation (70) are paéated from the nearest known values with the linear
interpolation in equation (5), e.au1, = Y2(li1 + ;).

With SCHEME-II, we discretize the convectidolill)/ox as

agi\ [ 2 2 a2 2 Vg2 2 \ g (71)
x ). \AXi1  AXipp +AX Giyalivye AX  AXii1 gt AXii1 + AX  AX Giyli-s-

The unknown quantities are interpolated from the neareswknvalues.

The numerical properties of SCHEME-I and SCHEME-II haverbéiscussed comprehensively in Sections 2 and
3. In the following we compare these schemes in equationsa(7® (71) in the practical LES of several test cases.
We perform the simulations for a laminar flow first. Then we pame the schemes in the LES of turbulent jet flows
with and without density variations which exhibit strongiasions of turbulence fields in the three-dimensional spac
and time.

4.3. Test case: constant-density laminar jet witk-B@0

A constant-density laminar jet issuing into quiescent envinent is simulated with Reynolds numiiae= 300.
The computational domain in the axial and the radial dicediis [Q40D] x [0, 10D] whereD is the jet diameter.
A number of 64x 64 x 16 grid cells are used in the axial, radial and azimuthalatimas, respectively. In the axial
direction, the grid spacing is stretched in the axial dicagtwhich yields the smallest grid spacing at the jet inted a
the largest grid spacing at the outflow plane, and the ratiutabl.4 of the largest and smallest grid sizes. In the
radial direction, the grid spacing is clustered near the axid the jet pipe. A uniform grid is used in the azimuthal
direction. Fully developed laminar pipe flow is used for téeiflet condition, and the convective boundary condition
[14, 20] is used on the lateral and outflow boundaries. Thefittgb models are disabled by setti@g = 0 in equation
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(66) for the laminar simulation. SCHEME-II is implementeda code originally developed in [14] and is compared
to SCHEME-I that was used in the original code. For refereaaeiform grid in the axial direction is also used, in
which case SCHEME-I and SCHEME-II are identical. The tinepssize is controlled by CRlax = 0.5 for the time
advancement.
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Figure 10: Contour plots of the axial velocityin the laminar jet flow with non-uniform axial grid (SCHEMEahd SCHEME-II) and with uniform
axial grid.

In figure 10, the contours of the axial velocityin a x-r plane are compared with thefidirent schemes and the
different grids. SCHEME-I on the non-uniform grid generategificant fluctuations of the axial velocity (left plot
in figure 10). The strong fluctuations in the results by SCHEMiEe non-physical, and are caused by the numerical
errors. SCHEME-II on the non-uniform grid produces smoatmerical solutions (middle plot in figure 10), so does
the scheme on uniform grids (right plot in figure 10). The bprafiles of the centerline velocity are further compared
infigure 11. SCHEME-II on the uniform and non-uniform gridslys similar numerical solutions. SCHEME-I on the
non-uniform grids produces strong numerical fluctuatiamigailly (beforex/D < 10) and then departs the numerical
solution significantly from the other two.

The terrible behavior of SCHEME-I in figures 10 and 11 is cstasit with the analysis of the scheme properties
in Section 3. The behavior of SCHEME-I in figure 11 is similarthhe behavior of SCHEME-IA and SCHEME-IB
in figure 7 to produce the numerical oscillations upstreamthé current simulations with the non-uniform grid, the
grid spacing is expanded in the axial flow direction. For scates, SCHEME-I contains a second-order numerical
diffusion term which is anti-dissipative (Section 2.3) and asltergy into the numerical solutions (Section 2.6), and
hence produces the excessive numerical oscillations. irast, SCHEME-II is free of the second-order numeri-
cal diffusion and energy-production, and hence the numerical acg@and the smoothness is well preserved in the
numerical solution.
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Figure 11: Axial profiles of the centerline axial velocity in the laminar jet flow with non-uniform grid (SCHEME-I and SEME-II) and with
uniform grid.

Thus, SCHEME-I is not suitable for the numerical simulasiarf laminar jet flows on stretched (non-uniform)
grids, while SCHEME-II is capable of reproducing the smamtimerical solutions accurately. Next we compare the
different schemes in LES of turbulent jet flows.

5. LES of a constant-density turbulent jet

5.1. Simulation details

LES simulations are performed of the constant-densityuterit free jet flow measured by Amielh et al. [41].
The self-similar region and the near field are measured ftin bonstant and variable density jets. The detailed
measurements of the velocity and turbulence fields, edpeiridhe near filed, provide an excellent test case for the
comparison of the dierent schemes whiclffect is most sensitive in the near field of the jet. Only the tamtsdensity
air jet is considered here. The flow set-up consists of a raimédt with diameteD = 26mmwhich issues with fully
developed pipe flow condition into a low speed air coflow. Thgidlds number of the jet BRe=21000. The mean
jetinlet velocity at the centerling; = 12m/sand the coflow velocity i&)e = 0.9231m/s.

The LES simulations are performed on a cylinde@D] x [0, 8D] x [0, 2] in the axial, radial, and azimuthal
directions. Three dierent grids are used in the simulationg{nyxn,=96x64x48, 144x96x 72, and 28&192x144,
whereny, ny andn, denote the number of grid cells in the axial, radial and atiraldirections, respectively) for the
comparison of SCHEME-I (70) and SCHEME-II (71) and for thedst of the convergence of the results with respect
to the grid refinement. They grid cells in the axial direction are stretched in the axiahfldirection, yielding the
smallest grid spacing at the jet inlet and the largest gratism at the outflow plane, and the ratio 16 of the largest
and smallest grid sizes. In the radial direction, the grigcamy is clustered near the axis and the jet pipe. A uniform
grid is used in the periodic azimuthal direction. A sepatdS simulation of a fully developed turbulent pipe flow
is performed beforehand and the results are stored in aakdab supply the inlet boundary conditions for the jet
simulation. The convective boundary condition [14, 20]s&d in the lateral and outflow boundaries. The time-step
size is controlled by CFkax = 0.5 for the time advancement on all the grids. The simulatioedrédtiated on the
coarsest grid 9& 64 x 48 from scratch, and the simulations are marched in time arstiatistically-stationary state
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is achieved. Once the numerical results are obtained onritafid, they are interpolated to the other finer grids as
initial conditions. After the statistically-stationariase is reached, the statistics are accumulated by perfigrtime-
averaging for about five flow-through times (based on the njeganlet velocity) for all grids. Longer time-averaging
is not found to &ect the statistics.

5.2. Statistics

O Exp. Data
——288x192x144
= = = 144x096x072
————— 096x064x048
—— (thick) SCHEME-I
—— (thin) SCHEME-II
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Figure 12: Axial profiles of the normalized centerline axialocity (e —Ue)/(Uj — Ue), turbulence intensities’/(Tc — Ue) andv' /(T — Ue) in the
turbulent jet flow with the dterent grids and with the fierent schemes (SCHEME-I and SCHEME-II). (The combinatibthe line styles and
the line width denotes a test case, e.g., the thick dashediénotes the test case on grid 34d96 x 072 with SCHEME-1.)

The profiles of the statistics from the LES of the turbulentgee examined first. In figure 12 are shown the
axial profiles of the normalized centerline axial velocilly £ Ue)/(U; — Ug), turbulence intensities'/ (0. — Ue) and
V' /(0. — Ug) with the different grids and with the fierent schemes (SCHEME-I and SCHEME-II). From figure 12, we
can see that theffiect of the diferent schemes on the centerline axial velocity is slightleithe efect on the centerline
turbulence intensities are dramatic, especially on thalaxrbulence intensity’ in the near fieldX/D < 10) on the
axis. SCHEME-I significantly overpredicts the turbulentfluations on the axis compared to SCHEME-II on the same
grid. As we have discussed before, SCHEME-I introduces armggrproduction term on the current non-uniform grid
expanding in the flow direction and consistently adds enertyythe numerical solution, which precisely explains
the significant overprediction af andv' by SCHEME-I. The strong sensitivity of the centerline LESuks to the
grid refinement is evident as shown in figure 12. With the sacherme on the same grid, the axial velocity decay
rate and the turbulence intensities tend to be overpratimehe relative coarse grids. When the grids are refined,
the numerical results show monotonic convergence to thererpntal data [41] for the same scheme. THEedénce
between SCHEME-I and SCHEME-II also decreases as the grdseéined, which suggests that SCHEME-I and
SCHEME-II converge to the same asymptotic solutions. Whth finest grid 288 192 x 144, the results of both
schemes are in excellent agreement with the experimert&[4tH on the axis.

The radial profiles are shown in figure 13 of the turbulencensitiesu’/(lic — Ue) andVv'/(lic — Ue) and of
the shear stressVv//(lic — Ue)? at the axial locations/D=0.2, 2, 5 and 20 in the jet flow with the threeffdrent
grids and the two dierent schemes. The radial distamds normalized by the jet half width%. In the figure, the
improvements of the results by SCHEME-II compared to SCHEMEe shown consistently at the all axial locations
for all three turbulence quantities on all the grids basedh&ir comparison with the experimental data [41]. The
greatest improvement by SCHEME-II occurs fbion the coarsest grid 9664 x 48 near the axis at/D=0.2. For the
same scheme on the same grid, both schemes tend to ovetpinedigrbulence intensities and the shear stress on the
relative coarse grids at all the locations examined in fidulBén comparison with the experimental data [41]. With
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z/D =0.2 x/D =2 z/D =5 xz/D = 20
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Figure 13: Radial profiles of the normalized turbulenceristiesu’ /(Gic — Ue) andV’/({ic — Ue) and the shear stress/ /(lic — Ue)? at the diferent
axial locationsx/D=0.2, 2, 5 and 20 in the turbulent jet flow with thefdrent grids and with the fierent schemes (SCHEME-I and SCHEME-II).
(The combination of the line styles and the line width desatéest case, e.g., the thick dashed line denotes the tesbicagsid 144x 096x 072
with SCHEME-I.)
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the grids being refined, theftirence in the radial profiles by the two schemes decreasgbadin profiles converge
monotonically to the experimental data [41]. On the fine&d,ghe radial profiles produced by both schemes agree
with the experimental data [41] very well.

5.3. Hfect on stability and cost

As shown in Section 5.2 in the above, SCHEME-II is slightlymmaccurate than SCHEME-| on the same grid. In
another words, SCHEME-II can achieve the same numericalracg as SCHEME-| but with coarser grids. Hence
SCHEME-II reduces the computational cost of the LES sinimhast

SCHEME-I SCHEME-II

15

0.5

Figure 14: Contour plots of the axial velocity in the neardid < x/D < 5 and 0< r/D < 0.9) of the turbulent jet flow with SCHEME-I (left)
and SCHEME-II (right) on the grid 144 96 x 72.

Here we further compare SCHEME-I and SCHEME-II in terms @&f tlumerical stability and the computational
cost. The contour plots of the axial velocity in the jet neeldfiare shown in figure 14 with SCHEME-I and SCHEME-
Il on the grid 144x 96 x 72. As shown evidently in the figure, SCHEME-I causes exgessuimerical fluctuations in
the near field, which potentially causes numerical insitgbiln figure 15, the time series of the maximum resolved
axial velocityu'in the computational domain and the time step #izare monitored after the statistically-stationary
state has been reached. SCHEME-I has slightly higher gredécfor the max() than SCHEME-II. This elevated
value of max() by SCHEME-I is also dangerous to numerical stability.

On the aspect of the computational cost, we can see from figutbat SCHEME-I has smaller size of the time
step than SCHEME-II given the same GkL=0.5 on the same grid. The increased time-step size for SCHEME
II'is due to the reduced maX(Which occurs right after the inlet plane near the axis anérdeines the maximum
local CFL number. The average values of the normalized tiiee size are 0.0204 and 0.0232 for SCHEME-I and
SCHEME-II, respectively, which result in approximatelya@ncrease in the time step size by replacing SCHEME-I
with SCHEME-II. Thus, given the same CRkx, SCHEME-II reduces the computational cost by approxinyaltébb
compared to SCHEME-I.
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Figure 15: The monitoring of the maximum resolved axial egloli and the time step siz&t with SCHEME-I (left) and SCHEME-II (right) on
the grid 144x 96 x 72.

31



651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

To summarize, in this section SCHEME-I and SCHEME-II are parad for the discretization of the non-linear
convection terms in the practical LES studies. A constamisity turbulence jet [41] is chosen as a test case.
SCHEME-I significantly overpredicts the turbulence flutioas, while SCHEME-II reproduces the turbulence level
very well. Both schemes show monotonic convergence to tperarental data when the grids are refined. The
schemes are further compared in terms of the stability aeacttimputational cost, and SCHEME-II is about 10%
more dficient than SCHEME-I due to the increased time step size divesame maximum allowed CFL number.

6. LES of turbulent jet flame (DLR Flame A)

In this section, the LES simulations of a turbulent jet flarD&R Flame A) [42, 43] are performed to further
compare SCHEME-I and SCHEME-II. Turbulent combustion isrenchallenging for LES due to its large density
variations and the strong coupling between the turbulerete éind the density field. Serious stability problems may
be encountered in combustion LES. In practice, most condyusES are carried out using the low second-order
spatial discretization schemes. The performance of thesthemes (SCHEME-I and SCHEME-II) in combustion
LES is not known from any previous work.

6.1. Simulation details

The closure of combustion is as hard as the closure of turbalén LES. In this work, to test the numerical
schemesféciently, we use a simple flamelet combustion model to closesthbfilter combustion [34]. Such a model
is very attractive in terms of computational economy. TheSL&mulation details for DLR Flame A have been
described in [34], and are only briefly outlined here. DLRéaA [42, 43] consists of a simple turbulent jet flame
of CH4/H2/N2 with moderate Reynolds numbdRé=15200). The jet nozzle has a diameterf 8mm (with bulk
velocity Up=42.2ms) surrounded by a low-velocity air coflow {=0.3m's). The fuel consists of 22.1% GH33.2%

H», and 44.7% N by volume. The flame exhibits very little local extinctiomcbhence is suitable for this study using
the flamelet model to obtain the thermochemical properfiége mixture fraction transport equations (63) and (64)
are solved together with the LES equations for the mass amdentum. The density and other quantities (such as
temperaturd and species mass fractions) are retrieved from a pre-cauilaimelet table [34] given the resolved
mixture fraction? and its subfilter varianc;_eﬂ'i2 = Eé — &2, The molecular transport properties are computed from the
empirical fitsu/p = 2.22x 107 - (T /To)+%*m?/s andl’ = 2.71x 1075 - (T/To)-%9m?/s, whereT,=300K [34].

The computational domain is specified to bel[ROD] x [0, 30D] x [0, 2x] in the axial, radial and azimuthal
directions. Three diierent grids are used in the simulationgxn,xn,=96x64x48, 144<96x72, and 28&192x144).
The nk grid cells in the axial direction are stretched in the axiahfldirection, yielding the smallest grid spacing
at the jet inlet and the largest grid spacing at the outflomeland the ratio 12 of the largest and smallest grid
sizes. In the radial direction, the grid cells are clustaredr the axis and the jet pipe. A uniform grid is used in
the periodic azimuthal direction. A separate LES simutatid a fully-developed turbulent pipe flow is performed
beforehand and the results are stored in a database to gshpphlet boundary conditions for the jet simulation. The
convective boundary condition [14, 20] is used in the ldtena outflow boundaries. The time-step size is controlled
by CFLnhax = 0.25 for the time advancement for all the grids. The numerieaults are initially obtained on the
coarsest grid 9& 64 x 48 from scratch and are used as the initial conditions on tibsexjuent finer grids. The
statistics are accumulated for about five flow-through tifh@sed on the mean jet inlet velocity) for all the grids.
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x/D=5 x/D =10 x/D =40

—288x192x144 | (thick) SCHEME-I |
= = = 144%096x072 — (thin) SCHEME-II
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O Exp. Data |
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r/D
Figure 16: Radial profiles of the axial velocitiyUy, the axial turbulence intensity /Uy, the shear stresﬁ/ug, the mixture fractior, and the

rms mixture fractior¢’ at the diferent axial locations/D=5, 10 and 40 in DLR Flame A with the fiierent grids and with the fierent schemes
(SCHEME-I and SCHEME-II). (The combination of the line styland line width denotes a test case, e.g., the thick dasteeddnotes the test

case on grid 144 096x 072 with SCHEME-I.)
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6.2. Flow and turbulence fields

The radial profiles of the flow and turbulence fields in DLR Fafare explored on the three grids (< ny x
n,=96x 64 x 48, 144x 96x 72, and 288 192x 144). In figure 16 are shown the radial profiles of the axiabeiy
u/Uyp, the axial turbulence intensity /Uy, the shear stresﬁ/ug, the mixture fraction_ff, and the rms mixture
fraction¢’ at the axial locationg/D=5, 10 and 40 with the élierent grids and with the fierent schemes (SCHEME-
| and SCHEME-II). Comparing SCHEME-I and SCHEME-II, we skattthe numerical results with SCHEME-II
are consistently in better agreement with the experimetatd [42, 43] than SCHEME-I for all the locations and
all the quantities in figure 16 with only few exceptions, gthe rms mixture fraction near the axis»¢D = 10.

The improvement of the results by SCHEME-II is more evidgrdgtteam /D < 10) and less evident downstream
(x/D = 40) in figure 16. The most significant improvements are oleskforu’ near the axis ax/D = 5, which is
similar to the observations in the jet simulation in figure TBe strong grid dependency of the LES results can also be
observed in figure 16, especially upstream. With the grichesfients, the numerical results converge monotonically
to the experimental data [42, 43] for both schemes. On thetfigiid 288x 192 x 144, the numerical results of
both schemes agree with the experimental data very well.akla decay rate of the axial velocity and the mixture
fraction, and the magnitude of the turbulence intensitgasistress and the rms mixture fractions are consistently
overpredicted on the coarse grid upstream (&/d=5). When the grids are refined, this magnitude of overprigtict

is reduced. This overprediction upstream is propagateldgaownstream in some non-linear fashion, and can lead
to the opposite trend in the downstream, e.g., the sheassgeinderpredicted on the coarse gridg/& = 10 and

r/D < 1.

6.3. Combustion fields

The radial profiles of the resolved mean and rms of the tenyrex@ and the species mass fractions of, O
CO, and NO are compared in figure 17 at thetent axial locationg/D=5, 10 and 40 in DLR Flame A with the
different grids and with the fierent schemes (SCHEME-I and SCHEME-II). These quantitiesalely dependent
on the mixture fraction for the flamelet model. Similar olvsgions to figure 16 can be made for these scalars, e.g.,
the improvement by SCHEME-II compared to SCHEME-I and theveogence trend to the experimental data with
the grid refinement. On the finest grid 288192 x 144, the numerical results of the both schemes agree with the
experimental data [42] very well including the intermedigpecies CO and the pollutant NO, which validates that the
flamelet model used in this study isfBaient for the numerical study.

In summary, SCHEME-I and SCHEME-II are further compareddmbustion LES studies. A turbulent jet flame
(DLR Flame A) [42, 43] is chosen as a test case. The overaltorgments to the LES predictions by SCHEME-II
compared to SCHEME-I are evident for this test case inclydie flow and turbulence fields, and the combustion
fields. The convergence of the statistics is also observdabfihn schemes when the grids are refined.

7. Discussion

SCHEME-I on non-uniform grids introduces a second-orden@tical ditusion term in the truncation errors (Sec-
tion 2.4), so SCHEME-I can be viewed as an upwind-biased wngénd-biased finite-dference scheme depending
on the local grid stretching. For grids shrinking in the floiredtion, this scheme is dissipative, so it is an upwind-
biased scheme; for grids expanding in the flow direction Wisdocused in this study, the scheme is anti-dissipative,
so it is a downwind-biased scheme. As we know, downwind sehemn cause excessive fluctuations and cause nu-
merical instability. SCHEME-II eliminates this secondder numerical dtusion. Another possible way to remedy
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Figure 17: Radial profiles of the resolved mean and rms ofehperaturel’ and the species mass fractions af, GO, and NO at the élierent
axial locationsx/D=5, 10 and 40 in DLR Flame A with the fiierent grids and with the fferent schemes (SCHEME-I and SCHEME-II). (The
combination of the line styles and line width denotes a tasece.g., the thick dashed line denotes the test case ot4gticl 096 x 072 with
SCHEME-1.)
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this problem by SCHEME-I is to use upwind-biased schemeginQuhe study of this work, the upwind schemes
(e.qg., first-order upwind, QUICK scheme) are tested and dneyound to be too dissipative to capture the right phys-
ical turbulence fluctuations. As already pointed out by Migind Moin [44], upwind-biased finite@ierence schemes
are not suitable for LES due to their removal of energy in thggh lvave number. Therefore the idea of using the
upwind-biased scheme to suppress the excessive numbiatises is not suitable for the current LES.

The instability of SCHEME-I is not found to be a serious peshlfor the current study given the local grid
stretching rate is not too high, so that the excessive nwaldhuctuations can be tolerated by the sub-filtéfugion.
Mittal and Moin [44] reported that SCHEME-I can tolerate yal small stretching factox(%3) in the streamwise
flow direction. SCHEME-II discussed in this paper certaitdbes not have such restriction on the grid stretching for
the numerical stability. Due to the numerical oscillaticasised by SCHEME-I, the LES results are less accurate than
those by SCHEME-II, and the convergence of the results isesithan that by SCHEME-II.

It is desirable for the numerical schemes used in LES to ha@etoperty of conservation (for the momentum
and energy), and the property of dissipation-free or lowidetion. On non-uniform grid, for second-order accurate
schemes, it seems not possible to have a scheme to posdepsdparties. SCHEME-I guarantee the conservation for
momentum and energy, but is highly dissipative or antiipét/e. SCHEME-II is free of the second-order numerical
dissipation, but can not guarantee conservation. Baseukeaest cases in this work, we see that SCHEME-II is much
better than SCHEME-I in terms of avoiding strong numericailtations in the numerical solution at the expense of
losing conservation. The violation of conservation by SGHEII does not cause any serious problems for all the
test cases with dtierent levels of complexity considered in this work. By trf@nsiing the problem from the physical
space to the computational space and discretize the egaatithe uniform computational grids, as having been done
in several previous works (e.g., [2, 4, 5, 17]), does notluesthe problem as discussed in Appendix B.

8. Conclusion

In this work, the conventional second-order centréledence schemes are revisited. SCHEME-I and SCHEME-II
are compared comprehensively for a linear convection protib understand their numerical properties thoroughly.
Both schemes are numerically second-order accurate witifutly specified grids although SCHEME-I has only
formally first-order accuracy. SCHEME-I is highly dissipator anti-dissipative depending on the local grid stretch
ing, while SCHEME-II is dissipation-free. Both schemes awmerically dispersive, and SCHEME-II has lower
magnitude of the dispersion truncation errors than SCHEME=HEME-I conserves momentum and energy, while
SCHEME-II conserves neither momentum nor energy. Howes€HEME-I introduces production or dissipation
to the energy and hence the numerical solutions oscillgt@fgiantly on grids expanding in the flow direction and
contain more energy than the exact one in spite of the ensyggervation of the scheme. SCHEME-II is free of the
energy production or dissipation.

The two schemes are adapted to the analysis of the inviscigelBsl equation. Three schemes are consid-
ered: SCHEME-IA (momentum-conservative but not energyseovative), SCHEME-IB (momentum-conservative
and energy-conservative), and SCHEME-II (neither momantonservative nor energy-conservative). The schemes
are compared in a periodic and a non-periodic test problerthéofurther analysis of the conservation properties of
the diferent schemes. Thefthrent conservation properties of the schemes are confirp#uelperiodic test prob-
lem. For the non-periodic problem, both SCHEME-IA and SCHENB produce strong fluctuations upstream, while
SCHEME-II preserves the upcoming constant value very wiglle diferent behaviors of the fiierent schemes are
well explained by the modified PDE analysis.
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The application of SCHEME-I and SCHEME-II in practical LESgerformed. The schemes are first compared
in a laminar jet test case. Even for this simple laminar t8&HEME-I on non-uniform grids produces excessive
numerical oscillations and eventually destroys the smaoatherical solutions. SCHEME-II reproduces the smooth
laminar numerical solution very well. The two schemes arthfer compared in LES of a constant-density turbulent
jet and a turbulent jet flame. All the LES results by SCHEMEd mnproved to some extent by using SCHEME-II.
The greatest improvement is for the axial turbulence irtgts the near field, which is significantly overpredicted
by SCHEME-I due to its anti-dissipative nature and its agd@mergy to the numerical solution. The monotonic
convergence of the statistics is clearly shown for bothdasés and the LES results on the finest grid have a very good
agreement with the available experimental data. The nwalestability and the computational cost of SCHEME-I and
SCHEME-II are also discussed, and SCHEME-II is slightlyslesmputationally expensive compared to SCHEME-
| due to the reduced maximum axial velocity in the domain foe same maximum allowed CFL number. The
superiority of SCHEME-II over SCHEME-I is clearly demoretied in these practical LES simulations.
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Appendix A. Discrete conservations and modified PDEs

As discussed in Sections 2.5 and 2.6, SCHEME-I conservesemtm and energy at the discrete level for the
linear convection problem (1). The modified PDEs (11) and htain the truncation error terms which cannot be
expressed in the flux-form as shown in the following, i.ee thte of change of the total momentum and energy is
not solely due to the boundary values. This leads to inctersiy between the discrete level conservation and the
modified PDE for SCHEME-I. In the following, we reconcile tbisscrete momentum and energy conservations and
the modified PDEs for SCHEME-I.

The modified PDEs (11) and (36) have terms containing the gpatingAx,. To make the modified PDEs
integrable, we need to consider the grid spacing as a cantéfunction and take the limiting process — 0. We
consider the following transformation

xi = X(ih), (A1)

whereh = 1/1 andX(¢) is a function to specify the grid. For the grids considere8ection 2, the function forik(&)
is given in equations (14) and (17). From equation (A.1) asidgithe Taylor series expansion, we can write

AX, = X —X.1=hX - h—ZZX" +0(h%), (A.2)

AXis1 = AX = X1 — 2% + X1 = h?X” + O(h%), (A.3)
AXis1 +AXi = Xis1— X1 = 2hX + h;xm +0O(h°), (A.4)
AXAX1 = HPX2+0(hY), (A.5)
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whereX’ = 9X/0&, X = §°X/0£% and X" = §°X/0£3. With the above equations, we can rewrite the modified PDEs
(11) and (36) for SCHEME-I as

6u ou 12,,6u__2,26u 3
ot T ax = o X s~ gh X +0(h°), (A.6)
au2 o? hzx,,au L ey dudu
ot X 2 ax2 X OX
1 ,,,,]0%02 d (dudu 3
X [8x3 32\ 5o +0(h?). (A7)

We now view the modified PDEs (A.6) and (A.7) in the continueasse and we can integrate them ovelf to
get

d 21 ~ ) 21
d_tj; u(x, t)dx = u(0,t) — u(2r,t) + h fo T1(x t)dx (A.8)

d 21 21
d_tf u(x, t)dx = u?(0, t) — U?(2r, 1) + hzf To(x, t)dx, (A.9)
0 0

where all the truncation error terms are grouped ift(x,t) and T2(x,t) which integrations cannot be expressed
in terms of the boundary values. Comparing (A.8) and (A.%hweiquations (22) and (28), we see that the actual
momentum and energy are not conserved exactly by SCHEME-tathe termd;(x,t) and To(x, t) in equations
(A.8) and (A.9).

The momentum and energy conservations claimed in Sectiénsn2l 2.6 are for the particular total momentum
C in equation (24) and the total ener§yin equation (30). In the following we explore how the summaﬂ?p
Zl 1 2(up + up)Ax| converges to the mtegrif" uPdx, wherep = 1 for the momentumG = C!) andp = 2 for the
energy € = C|2). Substituting equation (A.4) intGP, we obtain

-1

1 1 1
Cl = FubAx+ Z SUP(AX + Axi2) + SUPAX, (A.10)

3
= %uSAxl + Z %uf’ (ZhX’ + %X”’ + O(h5)) + %u,pAm

-1
= —uprl + Z uPX’h % ;

When the number of grid cellgends to infinity, the second term in the above equation (Acafiverges t(fo1 uPX’'d¢ =
fOZ" uPdx, and the third term converges t’(6) fOZ" uP(X” /X")dx, so we obtain

/

—Xh+Z upr| +0(h%).

b ] - 1 27 h2 21 X/// 1 b .
Ce=1lmC/ = —uOAxl + uPdx+ — —dx+ SuAx + O(hY).
I—c0 2 0 6 Jo 2
From the above analysis, we can see that, for SCHEME-I onumifiorm grid, fOZ" uPdx are only conserved to
O(h?) due to the exact conservation Gf’. This is indeed consistent with the results from the modif&Es in

equations (A.8) and (A.9). Hence the momentum and energsecoations are consistent with the modified PDEs for
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SCHEME-I.

Appendix B. Effect of grid transformation

Non-uniform grids are mostly used for treating the non-amifity of the fields in numerical simulations. The
numerical discretization on non-uniform grids is more ctiogted than that on uniform grids. A second way to deal
with non-uniformity is to do grid transformation to convére problem to an equivalent problem in the computational
space in which the uniform grid is used. Using the transfdiona = X(¢) to the linear convection problem (1), we
obtain

ou 1 du
In the computational spa@e we use uniform grid; = ih (i = 0,---,1) whereh = 1/1. Discretizing the convection

term in equation (B.1) with the centralftBrence scheme, we have the following semi-discretizatioolhwe denote

as SCHEME-III
du U — Ui

ot + —th'(‘fi) =0. (B.2)

—O0— SCHEME-I (EG: a=3.6)
- ¢ -SCHEME-II (EG: 0=3.6)
=X-+-SCHEME-III (EG: 0=3.6)
Exact solution

0 0.2 04 0.6 0.8 1
x/2m

Figure B.18: Numerical solution at the stopping tim& = 10r against the positiow/(27) with SCHEME-I, SCHEME-Il and SCHEME-III (B.2)
on the EG grid in equation (14) for Problem-II.

The same numerical test shown in figure 3 is performed usingEE-IIl (B.2). The numerical results are
shown in figure B.18 and are compared with those by SCHEMEHS@HEME-II. The strong numerical oscillation
exhibited in the results by SCHEME-I is also observed in #mults by SCHEME-III with grid transformation. No
significant improvement is found in the results by SCHEME{B.2) compared to applying SCHEME-I directly to
equation (1). The modified PDE for SCHEME-III (B.2) can beided as follows,

du,du_ I Py
ot X BX g3
39

+0O(h%. (B.3)
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Using the chain ruldu/a¢ = X’'du/ox, we can write the above equation in the physical space

ou h? _,,.0u h?_,0°u h?_ 0%
S g X )5 = =X X

X275 6X3+O(h4). (B.4)

As we can see from the equation, the modified PDE for SCHENEBIR) also contains a numericalftlision term
(the first term on the righthand side of (B.4)) and the termithe same magnitude as that in the modified PDE (A.6)
for SCHEME-I, so it is not a surprise to observe the similaffgenance of SCHEME-III to SCHEME-I in figure
B.18.

Appendix C. Effect of downstream boundary treatments

For solving the hyperbolic problem (1) with the Dirichlet B8) (problem-Il), only one physical BC upstream
is needed. However, for the numerical solution the numektieatment of the downstream boundary is needed since
the central dierence schemes are used for the hyperbolic problem. In $oagiions in Section 2, the exact solution
at the downstream boundary is used for the numerical solsitice., an additional Dirichlet BC (13) is numerically
imposed downstream. In this appendix, we explore other dawam boundary treatments and evaluate theagce
on the numerical solutions of the hyperbolic problem.

We consider two other downstream boundary treatments. ©toeuse the first-order upwind scheme for the last

grid pointl,
du  u—-u_g

E - AX|

and the other is to extrapolate (with second-order acciitheyalue at the last grid point from the interior grid psint

-0, (C.1)

AX|

U =Uu-+
AX 1

(-1 = u-2). (C.2)

SCHEME-I (EG: 0=3.6) SCHEME-II (EG: 0=3.6)

—O0— Dirichlet BC
- » - Upwind scheme |
—O— Extrapolation

Exact solution

0.2 0.4 0.6 0.8 1
x/27

Figure C.19: Numerical solution at the stopping tim& = 10r against the position/(2r) with SCHEME-I and SCHEME-II on the EG grid in
equation (14) for Problem-II with the fierent downstream boundary treatments.
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846 The diferent downstream boundary treatments are compared in f©a8 In the figure, the same test case as
a7 IN figure 3 is used. Using upwind scheme (C.1) yields almasstdime numerical results as those using the Dirichlet
ws  BC (13) downstream for both SCHEME-I and SCHEME-II. The aptilation (C.2) suppresses the oscillation caused
s by SCHEME-I to some extent due to the constraint of the lastethpoints lying on a straight line. Thefldirent

o downstream treatments for problem-Il do not change theitatiaé behavior of the numerical results by the two
s NumMerical schemes, i.e., strong oscillations in the refitSCHEME-1 and the smooth results by SCHEME-II.
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