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Abstract

The conventional second-order central finite-difference schemes for discretizing the convection terms on non-uniform

structured grids are revisited in the context of large-eddysimulations (LES) of turbulent flows. Two schemes are dis-

cussed: one is based on the standard finite-difference form on uniform grids (SCHEME-I) and the other is based on the

Taylor series expansion (SCHEME-II). The two schemes are compared extensively in terms of the different numerical

properties: accuracy, dissipation, dispersion, momentum-conservation,and energy-conservation. SCHEME-I is inher-

ently conservative for momentum and is used in the design of different energy-conservativeschemes, while, in general,

SCHEME-II is not conservative for momentum and is not found so far to be able to produce any energy-conservative

scheme. SCHEME-I is usually considered to be superior over SCHEME-II for LES due to the conservation property.

However, it is found that the numerical solution by SCHEME-Imay contain more energy than the exact solution and

the numerical solution may oscillate strongly in spite of the energy-conservation of the scheme. On non-uniform

grids, SCHEME-I introduces a second-order numerical diffusion term that can be anti-dissipative, resulting in local

oscillations that can interact with the boundary conditions to cause the energy of the solution to increase. In contrast,

SCHEME-II does not have such a numerical diffusion term, and it produces much less numerical oscillations than

SCHEME-I for the test cases with grids expanding throughoutin the flow direction. The performance of the two

schemes is examined in the numerical simulations of a linearconvection problem, a non-linear convection problem

governed by the inviscid Burgers’ equation, a laminar free jet, a constant-density turbulent jet, and a turbulent non-

premixed jet flame. The superiority of SCHEME-II over SCHEME-I is clearly demonstrated in these test cases of

different levels of complexity. SCHEME-II, which did not gain attention in past LES, is suggested for practical LES

compared to the widely used SCHEME-I to capture the right level of turbulent kinetic energy.
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1. Introduction1

Large eddy simulations (LES) have recently attracted greatinterest in the numerical simulations of turbulent flows,2

both for fundamental studies and for industrial applications. This is largely due to the rapidly increasing power of3

high-performance computers which makes the ever challenging LES computations affordable to more studies.4

Significant advancement has been made in the development of numerical algorithms for LES. The principle of5

LES requires that the turbulent eddies down to the resolution scale (usually specified by the filter width∆) need to be6

tracked with sufficient numerical accuracy, which poses a great challenge to the numerical schemes. In the past, high-7

order finite-difference schemes with good conservation property for LES havebeen developed. Morinishi et al. [1]8
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developed a family of fully conservative high-order finite-difference schemes for staggered uniform grids in Cartesian9

coordinates for incompressible flows. Vasilyev [2] generalized [1] to non-uniform grids, and Nicoud [3] generalized10

[1] to variable-density problems. Morinishi et al. [4] further developed high-order conservative schemes for staggered11

non-uniform grids in cylindrical coordinates for incompressible flows, and Desjardins et al. [5] extended the work12

to variable-density problems in cylindrical coordinates.Nagarajan et al. [6] proposed a high-order scheme for LES13

of compressible turbulent flows on Cartesian uniform grids based on the compact scheme of Lele [7]. Shishkina and14

Wagner [8] developed a fourth-order finite-volume scheme for incompressible flows on cylindrical staggered grids.15

The use of the second-order finite-difference schemes in LES is controversial. Ghosal [9] showed that the numeri-16

cal truncation errors from the low-order schemes may exceedthe LES model terms. The dynamic analysis of Park and17

Mahesh [10], however, showed that the contribution of the LES model terms is much more significant than those of the18

finite-differencing and aliasing errors for LES with the energy-conserving second-order central-differencing schemes,19

which possibly justifies the use of the second-order schemesin LES. When predicting the low-order statistics (the20

first and second moments) that are of most interest in engineering applications, the second-order schemes are found21

satisfactory [11, 12], although they are not adequate for predicting higher-order statistics. The energy-conservative22

second-order schemes are also discussed in [1, 2, 4] when thehigher-order schemes are concerned. The energy-23

conserving second-order schemes for incompressible flows on uniform grids were discussed in many articles, e.g.,24

[13, 14, 15]. Ham et al. [16] developed a fully conservative second-order finite-difference scheme for incompress-25

ible flows on non-uniform grids. Fukagata and Kasagi [17] developed an energy-conservative second-order scheme26

for cylindrical coordinates. The second-order central finite-difference schemes are used widely in LES studies of27

turbulent flows [18, 19, 14, 20, 21, 22, 23] and turbulent combustion [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].28

In spite of the wide use of second-order central-difference schemes, their important numerical properties on non-29

uniform grids are not fully comprehended in the context of LES. In this work, we revisit the second-order central-30

difference discretization. We limit our discussion to the schemes for the momentum-convection terms on staggered31

non-uniform structured grids. Two schemes that are used widely in the literature are discussed, and their numerical32

properties are analyzed, especially the numerical dissipation and the numerical energy production or dissipation that33

are missing from the literature.34

The first scheme (SCHEME-I) is the direct extension of the central-difference scheme on uniform grids. On non-35

uniform grids, this finite-difference scheme is identical to the finite-volume scheme whichis inherently conservative36

for momentum. It is probably this conservation property that makes this scheme very popular. It is used dominantly37

in the second-order accurate LES calculations on non-uniform grids (e.g., [18, 19, 14, 20, 21, 24, 25, 26, 27, 28, 29,38

30, 31, 32, 33, 34]). The design of some energy-conserving schemes on non-uniform grids is based on SCHEME-I39

[1, 16]. However, it is shown later in this work that this scheme on non-uniform grids has a second-order numerical40

diffusion term which is dissipative or anti-dissipative depending on the local grid stretching and the flow direction. For41

expanding grid stretching in the flow direction, this schemeis anti-dissipative, resulting in oscillations that can interact42

with the boundary conditions to add energy to the numerical solution. Such a situation is often encountered in jet flow43

simulations in which the grid size is stretched in the axial flow direction to account for the increasing turbulence44

length scales. Such numerical diffusion of SCHEME-I adds numerical kinetic energy into the turbulence system for45

LES and makes the numerical simulation unreliable. To quantify the effect of such numerical diffusion, in this work46

we use jet flows (a laminar jet, a constant-density turbulentjet, and a turbulent jet flame) as test cases to reveal the47

poor performance of SCHEME-I in such flows and to demonstratethe capability of the second scheme. The second48

scheme (SCHEME-II) is based on the Taylor series expansion which gains almost no attention in recent LES studies49
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on non-uniform grids. It is shown that SCHEME-II is free of the numerical diffusion and of the energy production or50

dissipation. In the various test cases of different levels of complexity in this work, SCHEME-II performsmuch better51

than the widely used SCHEME-I in LES of turbulent flows on non-uniform grids.52

The above observations may look contradictory to the conclusions in the literature because SCHEME-I is well53

known for its inherent momentum-conservation and is used inthe design of different energy-conserving schemes54

[1, 16], while SCHEME-II, in general, is neither momentum-conservative nor energy-conservative. The discrete55

conservations and the modified PDEs for SCHEME are reconciled in Appendix A.56

SCHEME-I and SCHEME-II are identical on uniform grids. In some previous LES studies, the discretization57

strategy is to transform the equations from the physical space to the computational space and to discretize the equations58

in the computational space on uniform grids [2, 4, 5, 17]. Such a strategy does not reduce the strong oscillations in59

the numerical results by SCHEME-I on the expanding grids. Further analysis is presented in Appendix B.60

The above two schemes on non-uniform grids have been known for more than forty years and have been discussed61

in many previous works. Crowder and Dalton [35] applied SCHEME-II in a model Poiseuille pipe flow to study the62

effectiveness of using non-uniform grids. In de Rivas [36], thetruncation errors of SCHEME-I and SCHEME-II on63

non-uniform grids were studied, and it was shown that SCHEME-I had formally first-order truncation errors while64

it could achieve second-order accuracy on continuously stretched non-uniform grids, and SCHEME-II had formally65

second-order errors on any grid. Hoffman [37] also found that SCHEME-I had second-order accuracyfor carefully66

chosen non-uniform grids by examining the truncation errors of SCHEME-I in the physical space and in the trans-67

formed computational space. Veldman and Rinzema [38] compared the performance of SCHEME-I and SCHEME-II68

in a one-dimensional boundary problem in which convection dominates. Based on their numerical experiments, they69

concluded that SCHEME-I reproduced the exact solution of the problem much better than SCHEME-II. Their con-70

clusion is opposite to ours simply because their test case favors SCHEME-I in producing smooth numerical solutions71

due to the numerical diffusion introduced by the scheme (see Section 2.3 for details). Their work was followed by de72

Oliveira and Patricio [39] to study the numerical oscillations caused by the different schemes on non-uniform grids.73

The same test case was used, and hence they did not provide a complete understanding of the scheme’s behavior on74

non-uniform grids. None of the above studies paid attentionto the numerical dissipation properties of the two schemes75

or discussed the schemes in the context of LES which is vulnerable to numerical dissipation. In the existing literature,76

the understanding of the two schemes is incomplete and some conclusions are misleading.77

This work is motivated by the situations mentioned above. Werevisit the two widely known second-order central-78

difference schemes on non-uniform grids and provide comprehensive comparison of the schemes. In particular we79

compare the two schemes in LES studies of a turbulent jet and ajet flame.80

This paper is organized as follows. In Section 2, the two schemes are discussed for a linear convection problem in81

terms of the different numerical properties: accuracy, dissipation, dispersion, momentum-conservation, and energy-82

conservation. In Section 3, the two schemes are compared in anon-linear convection problem governed by the inviscid83

Burgers’ equation. In Section 4, we discuss the LES method used in this study. A laminar test case is presented to84

compare the performance of the two schemes. In Section 5, theLES of a constant-density turbulent jet is performed to85

compare the two schemes in this more complicated case. In Section 6, the LES of a turbulent jet flame (DLR Flame A)86

is performed to further compare the two schemes. Brief discussion is presented in Section 7. Finally, the conclusions87

are drawn in Section 8.88
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2. Linear convection89

2.1. Discretization90

We consider a one-dimensional linear convection test case91

∂u(x, t)
∂t

+
∂u(x, t)
∂x

= 0, (0 6 x 6 2π, 0 6 t 6 T), (1)

with a smooth initial conditionu(x, 0) = sin(x), and with the periodic boundary condition (BC) (Problem-I)92

u(x, t) = u(x+ 2π, t), (2)

or with the Dirichlet BC (Problem-II)93

u(0, t) = sin(−t). (3)

For hyperbolic problems (1), only one boundary condition isallowed for Problem-II (2). As discussed later, a numeri-94

cal treatment at the downstream boundaryx = 2π is needed since central difference schemes are used in the following95

numerical solutions. The two problems with the different BCs have the same exact solution ofu(x, t) = sin(x− t), i.e.,96

a sine wave traveling to the right.97
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Figure 1: Non-uniform structured grid system.

We use a finite-difference method to solve equation (1) numerically. The grid system used in the numerical98

solution is shown in figure 1. The domain [0, 2π] is divided intoI non-uniform grid cells with the cell boundaries at99

xi and the cell centers atxi = (xi−1 + xi)/2 (i = 1, · · · , I ). The grid spacing is∆xi = xi − xi−1. The discrete variable100

ui = u(xi, t) is located at the cell boundary, which is to mimic the grid staggering of the velocity components used101

widely in computational fluid dynamics (CFD).102

A straightforward discretization of the spatial derivative (the convection term) in equation (1) is SCHEME-I:103

(
∂u
∂x

)

i

=
ui+1/2 − ui−1/2

1/2(∆xi+1 + ∆xi)
=

ui+1 − ui−1

∆xi+1 + ∆xi
, (4)

where the spatial derivative is discretized at the cell boundaryxi , and the cell center value is interpolated linearly from104

the cell boundary values:105

ui±1/2 = 1/2(ui±1 + ui). (5)

This discretization is the direct extension of the central-difference scheme on uniform grids. In this work, we focus on106

the discretization of the convection term, and keep the timederivative in the original form in the discretization. With107

5



SCHEME-I in equation (4), the semi-discrete form of equation (1) is108

dui

dt
+

ui+1 − ui−1

∆xi+1 + ∆xi
= 0. (6)

The second scheme (SCHEME-II) approximates the spatial derivative in equation (1) as109

(
∂u
∂x

)

i

= aiui+1/2 + biui + ciui−1/2, (7)

with coefficientsai , bi, andci to be determined.110

By performing a Taylor series expansion, we have111

ui± j = ui +

(
∂u
∂x

)

i

(
xi± j − xi

)
+

1
2

(
∂2u
∂x2

)

i

(
xi± j − xi

)2
+

1
6

(
∂3u
∂x3

)

i

(
xi± j − xi

)3
+ · · · . (8)

Substituting (8) with j = 1/2 into (7) and matching the terms up to the second-order derivative, we can derive112

SCHEME-II uniquely as follows113

(
∂u
∂x

)

i

=

(
2
∆xi+1

−
2

∆xi+1 + ∆xi

)
ui+1/2 +

(
2
∆xi
−

2
∆xi+1

)
ui +

(
2

∆xi+1 + ∆xi
−

2
∆xi

)
ui−1/2

=

(
1
∆xi+1

−
1

∆xi+1 + ∆xi

)
ui+1 +

(
1
∆xi
−

1
∆xi+1

)
ui +

(
1

∆xi+1 + ∆xi
−

1
∆xi

)
ui−1, (9)

where the linear interpolation (5) is used. With SCHEME-II in the above, the semi-discretization of equation (1) is114

dui

dt
+

(
1
∆xi+1

−
1

∆xi+1 + ∆xi

)
ui+1 +

(
1
∆xi
−

1
∆xi+1

)
ui +

(
1

∆xi+1 + ∆xi
−

1
∆xi

)
ui−1 = 0. (10)

It can be seen that the difference between SCHEME-I and SCHEME-II vanishes when uniform grids (∆xi = ∆xi+1)115

are used.116

The modified PDEs corresponding to the semi-discrete equations (6) and (10) provide valuable insight into the117

schemes’ properties. Substituting the Taylor series expansion in (8) with j = 1 to the discrete equations (6) and (10),118

we can derive their modified PDEs.119

The modified PDE for equation (6) (SCHEME-I) is120

∂u
∂t
+
∂u
∂x
= −

1
2

(∆xi+1 − ∆xi)
∂2u
∂x2
−

1
6

∆x3
i+1 + ∆x3

i

∆xi+1 + ∆xi

∂3u
∂x3
+O

(
∆x3

)
, (11)

and the modified PDE for equation (10) (SCHEME-II) is121

∂u
∂t
+
∂u
∂x
= −

1
6
∆xi+1∆xi

∂3u
∂x3
+O

(
∆x3

)
, (12)

where for simplicity the subscripti is omitted from all the derivatives, and∆x (without a subscript) is a nominal grid122

size to indicate the order of magnitude.123

In the following, we compare the different numerical properties of SCHEME-I and SCHEME-II. In the numerical124

tests, the second-order Crank-Nicholson scheme is used to approximate the temporal derivative in the semi-discrete125

6



equations (6) and (10). For problem-II (3), we specially treat the downstream boundary as a Dirichlet BC and impose126

u(2π, t) = sin(−t) (13)

from the exact solution. The effect of the different downstream boundary treatments is evaluated in Appendix C, and127

no qualitative effect on the numerical solutions is found.128

Three different grids are used in the numerical tests: the exponentialgrid (EG), the polynomial grid (PG), and the129

matching grid (MG) that matches on the ends.130

Exponential Grid (EG): The exponential grid is defined by131

xi = 2π
[
exp

(
αi
I

)
− 1

]/ [
exp(α) − 1

]
(i = 0, · · · , I ), (14)

whereα is a parameter to specify the grid stretching rate andI is the number of the grid cells. We define the grid size132

ratioγi = ∆xi+1/∆xi . Substituting equation (14) toγi , we have133

γi =
∆xi+1

∆xi
=

xi+1 − xi

xi − xi−1
= exp

(
α

I

)
, (15)

which is constant for the exponential grids. The ratio of thelargest and smallest grid size is134

β =
∆xI

∆x1
=

xI − xI−1

x1 − x0
= exp

[
α

(
1−

1
I

)]
. (16)

When the number of grid cellsI tends to infinity, the ratioβ of the largest and smallest grid cells for the exponential135

grid tends to exp(α).136

Polynomial Grid (PG): The polynomial grid is defined by137

xi = 2π
( i
I

)p

(i = 0, · · · , I ), (17)

wherep is a parameter to specify the grid stretching. We consider a special casep = 2, and the ratioγi is138

γi =
xi+1 − xi

xi − xi−1
=

2π
(

i+1
I

)2
− 2π

(
i
I

)2

2π
(

i
I

)2
− 2π

(
i−1
I

)2
= 1+

1
i − 1/2

, (18)

which is not a constant. The maximum stretching occurs ati = 1 at whichγ1 = 3, and the minimum stretching occurs139

at i = I − 1 at whichγI−1 = 1+ 1/(I − 3/2). When the number of grids cellsI tends to infinity, the maximum stretching140

of the grid does not change (γ1 = 3), and the minimum stretching reduces toγ∞ = 1. The ratio of the largest and141

smallest grid size isβ = 2I − 1 which becomes infinite whenI tends to infinity. For the polynomial grid (17) with142

p = 2, the difference of the grid size is constant, i.e.,∆xi+1 − ∆xi = 4π/I2.143

Matching Grid (MG): The matching grid is defined by the exponential grids for (i 6 I/2) and reflecting the grid144

sizes toi > I/2 so that∆xI−i = ∆xi+1 (i = 0, · · · , I/2). The grid spacing then varies smoothly from one end to the other145

and the periodic BC can be properly imposed.146

In this work, the EG and PG grids are only used when Problem-II(with the Dirichlet BC in (3)) is solved. it is not147

straightforward to solve Problem-I (with periodic BCs in (2)) on EG and PG grids without extra boundary treatment.148
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The MG grids can be used for solving both Problem-I and Problem-II straightforwardly.149

2.2. Numerical accuracy150

From the modified PDE (11), we can see that in general SCHEME-Iis formally first-order accurate due to the151

leading truncation error term on the order ofO(|∆xi+1 − ∆xi |). However, as shown in many previous works (e.g., in152

[36, 37] and in the textbook [40]), SCHEME-I has second-order accuracy on a stretched grid satisfying|∆xi+1−∆xi | =153

O(∆x2). SCHEME-II is formally second-order accurate for any gridaccording to the modified PDE (12). For further154

discussion on the numerical accuracy of the schemes on non-uniform grids, the reader is referred to [36, 37, 40].155

10
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SCHEME−I  (EG: α=0.01)
SCHEME−I  (EG: α=5.00)
SCHEME−II (EG: α=0.01)
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Reference lines (slope=2)

Figure 2: Numerical errorε against the nominal grid size∆x with SCHEME-I and SCHEME-II on the exponential grids with the different grid
stretching rates for Problem-II (with the Dirichlet BC).

Here we present numerical tests to examine the effect of the grid stretching on the numerical accuracy. Problem-II156

(3) on the EG grids is solved numerically with SCHEME-I and SCHEME-II, and the numerical results are compared157

in figure 2. Two different grid stretching rates are used: a low stretching rate (α = 0.01, exp(α) = 1.01) and a high158

stretching rate (α = 5.0, exp(α) = 148.41). The numerical solutions are marched to the stopping time T = 2π (one159

period) with the initial conditionu(x, 0) = sin(x), and the numerical errors are measured at the stopping timeas160

ε =

√√√
1
I

I∑

i=1

(ui(T) − u(xi,T))2 (19)

with ui(T) andu(xi,T) being the numerical solution and exact solution at timeT, respectively. The nominal grid size161

∆x is specified as∆x = 2π/I in figure 2.162

From figure 2, for the low grid stretching rate (α = 0.01) with which the grid is almost uniform, we can see that163

the results of SCHEME-I and SCHEME-II are indistinguishable because SCHEME-I and SCHEME-II are identical164

on uniform grids. For the high grid stretching rate (α = 5.0), the numerical errorε of SCHEME-II is about half of165
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that of SCHEME-I. For all the test results, the numerical error ε shows second-order decay (ε ∼ O(∆x2)) as the grids166

are refined compared to the reference lines with slope two in figure 2, indicating the second-order accuracy of both167

schemes on the grids considered.168

2.3. Numerical dissipation169

From the modified PDE (11) for SCHEME-I, we can see that this scheme introduces a second-order numerical170

diffusion (dissipation) term (the first term on the right-hand side of equation (11) with a numerical diffusivity νnum =171

−1/2(∆xi+1 − ∆xi)) which is dissipative or anti-dissipative depending on the local grid stretching. For grids expanding172

in the flow direction (∆xi+1 > ∆xi), the numerical diffusivity νmum is negative and hence this term is anit-dissipative.173

Any numerical oscillations appearing in the numerical solutions are amplified by the negative numerical diffusion,174

and hence the numerical solutions are potentially unstable. For grids shrinking in the flow direction (∆xi+1 < ∆xi),175

the numerical diffusivity νnum is positive and the term is dissipative. This dissipative nature of the numerical schemes176

is often useful in CFD to help stabilize the numerical solutions, while excessive numerical diffusion may damp the177

numerical solutions too much and hence jeopardize the numerical accuracy. In contrast, SCHEME-II does not have178

the second-order numerical diffusion term according to the modified PDE (12).179

The above numerical dissipation property of SCHEME-I was not fully appreciated in any previous work although180

the modified PDE for SCHEME-I was often mentioned when discussing the numerical accuracy (e.g., [36, 37, 38, 39,181

40]). In the work by Veldman and Rinzema [38] and by de Oliveira and Patricio [39], SCHEME-I and SCHEME-182

II were compared in a convection-diffusion boundary layer problem with a grid shrinking in the flowdirection. In183

this case, the numerical diffusivity νnum introduced by SCHEME-I is positive, and hence SCHEME-I is inherently184

dissipative to suppress the numerical oscillations. Veldman and Rinzema [38] concluded that SCHEME-I is better185

than SCHEME-II, which is only partially correct. De Oliveira and Patricio [39] also obtained smoother numerical186

solutions using SCHEME-I than those using SCHEME-II, and further observed the excessive numerical diffusion187

when the numerical diffusivity νnum is comparable to the diffusivity in the model equation. None of the previous188

works compared the two schemes on grids expanding in the flow direction.189

Here we perform a test to compare the schemes on grids expanding in the flow direction to examine the numerical190

oscillations produced by the schemes. Problem-II (3) is solved numerically on the EG grid in equation (14) with191

a high grid stretching rateα = 3.6 (exp(α) ≈ 36.6) and with the number of grid cellsI = 50. The numerical192

simulations are marched to the stopping timeT = 10π, i.e., returning to the initial condition after five periods.193

The numerical solutions atT = 10π are compared in figure 3 with SCHEME-I and SCHEME-II on the EG grid194

expanding in the flow direction. Excessive numerical oscillations are observed in the numerical solution (circles in195

figure 3) by SCHEME-I due to the amplification of the numericaloscillations by SCHEME-I on the given grids.196

In contrast, the numerical solution by SCHEME-II (diamondsin figure 3) reproduces the exact smooth solution197

(solid line in figure 3) very well. The numerical oscillations with the wave length of two grid cells in figure 3198

are caused by the numerical dispersion discussed in Section2.4 below. For grids expanding in the flow direction,199

SCHEME-I consistently amplifies the magnitude of these numerical oscillations, while SCHEME-II does not alter the200

magnitude of the oscillations. (SCHEME-II has high-order dissipation terms (fourth-order derivatives and higher) in201

the truncation errors in equation (12) which produces a dissipative or anti-dissipative effect. This is in contrast to the202

dissipative-free nature of the central-difference schemes on uniform grids. The dissipation effect of SCHEME-II is of203

high-order and is not discussed in this work for the second-order schemes.)204

The above numerical dissipation property of SCHEME-I makesit not appropriate for LES. However, SCHEME-I205

is widely used in LES (e.g., [18, 19, 14, 20, 21, 24, 25, 26, 27,28, 29, 30, 31, 32, 33, 34]). The negative numerical206
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Figure 3: Numerical solutionu at the stopping timeT = 10π against the positionx/(2π) with SCHEME-I and SCHEME-II on the EG grid in
equation (14) for Problem-II (with the Dirichlet BC).

diffusion for grids expanding in the flow direction amplifies the numerical oscillations and makes the LES solutions207

tend to unstable. The magnitude of the numerical diffusion (no matter positive or negative) is on the order of∆x2
208

which is comparable to the LES model terms and hence makes theLES results unreliable. SCHEME-II is more209

appropriate for LES compared to SCHEME-I since it does not have the second-order numerical diffusion terms in the210

truncation errors.211

Another way to address the non-uniformity is to convert the problem in physical space to a problem in the com-212

putational space so that the uniform grids can be used. As discussed in Appendix B, such practice is similar to213

considering the problem in physical space by using SCHEME-Iand hence is not recommended for LES.214

2.4. Numerical dispersion215

An intrinsic difficulty of using central-difference schemes for the first-order derivative is the numerical dispersion216

which causes the numerical oscillations, e.g., the oscillations with the wave length of two grid sizes in figure 3 for217

both SCHEME-I and SCHEME-II. The numerical oscillations produced by SCHEME-I are significantly amplified by218

the numerical dissipation discussed in the above Section 2.3. The numerical oscillations produced by SCHEME-II219

are small for the test case in figure 3 and are only evident in the region with the course grids (nearx = 2π). It is not220

straightforward to compare the numerical oscillations caused by SCHEME-I and SCHEME-II in figure 3 due to the221

interference by the numerical dissipation. Instead we directly compare the magnitude of the dispersion term in the222

modified PDEs (11) and (12). For SCHEME-I, the magnitude of the numerical dispersion term (the second term on223

the right-hand side of equation (11)) is224

H1 =

∣∣∣∣∣∣−
1
6

∆x3
i+1 + ∆x3

i

∆xi+1 + ∆xi

∂3u
∂x3

∣∣∣∣∣∣ =
1
6

∣∣∣∣∣∣
∂3u
∂x3

∣∣∣∣∣∣
[
∆xi+1∆xi + (∆xi+1 − ∆xi)

2
]
, (20)
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and for SCHEME-II the magnitude of the numerical dispersionterm is225

H2 =

∣∣∣∣∣∣−
1
6
∆xi+1∆xi

∂3u
∂x3

∣∣∣∣∣∣ ≤
1
6

∣∣∣∣∣∣
∂3u
∂x3

∣∣∣∣∣∣
[
∆xi+1∆xi + (∆xi+1 − ∆xi)2

]
= H1. (21)

Therefore the numerical dispersion errorH2 in SCHEME-II is smaller in magnitude thanH1 in SCHEME-I. The more226

stretched the grids are, the greater the difference is of the dispersion errorsH1 andH2.227

2.5. Momentum-conservation228

The conservation principle of equation (1) imposes an additional constraint on the finite-difference schemes, i.e.,229

the schemes are able to mimic the conservation principle on the discrete level [1]. Several conservative discrete230

operators were introduced to discretize the Navier-Stokesequations [1, 16]. SCHEME-I (4) is the conservative discrete231

operator on non-uniform grids [16].232

Integrating the conservation equation (1) on [0, 2π], we obtain233

d
dt

∫ 2π

0
u(x, t)dx= u(0, t) − u(2π, t). (22)

So the net change of the integral
∫ 2π

0
u(x, t)dx (total momentum) is caused only by the difference of the momentum-234

fluxes on the boundaries,u(0, t) − u(2π, t). For Problem-I (2), we haveu(0, t) = u(2π, t), hence235

d
dt

∫ 2π

0
u(x, t)dx= 0. (23)

For Problem-II (3) with the downstream boundary treatment (13), we also have the result in equation (23). Thus236

the momentum-conservation requires
∫ 2π

0
u(x, t)dx= const at all times over the domain. We simply approximate the237

integral
∫ 2π

0
u(x, t)dxby238

C =
I∑

i=1

1
2

(ui−1 + ui)∆xi . (24)

on the grid system in figure 1. Performing the summation (24) for SCHEME-I in equation (6), we obtain239

dC
dt

=
d
dt


1
2

u0∆x1 +

I−1∑

i=1

1
2

(∆xi + ∆xi+1)ui +
1
2

uI∆xI



=

[
1
2
∆x1

du0

dt
+

1
2

(u0 + u1)

]
−

[
1
2

(uI−1 + uI ) −
1
2
∆xI

duI

dt

]
. (25)

The above equation shows that the net change ofC by SCHEME-I is caused only by the difference of the boundary240

values, i.e, SCHEME-I mimics the conservation law in equation (22) on the discrete level. Hence, SCHEME-I is241

conservative for the momentum. For Problem-I, we can obtainthat dC/dt = 0 andC = const by imposing the242

periodic BCuI+i = ui and∆xI+i = ∆xi ; for Problem-II, we obtain thatdC/dt = (u0 + u1)/2− (uI−1 + uI )/2 , 0 due to243

the non-periodicity of the numerical solutions.244

For SCHEME-II in equation (10), we can write down the summation as245

dC
dt
=

1
2
∆x1

du0

dt
+

I−1∑

i=1

1
2

[
(ui+1 − ui)/γi + (ui − ui−1)γi

]
+

1
2
∆xI

duI

dt
, (26)
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whereγi = ∆xi+1/∆xi . In general the righthand side of equation (26) depends on the numerical solutions on all grid246

points except some special cases, e.g.γi=const which is the EG grid in equation (14). Thus, for arbitrary grids,247

SCHEME-II does not conserve the momentum on the discrete level exactly.248
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Figure 4: The measurement of the momentum-conservationC against timet/(2π) with SCHEME-I and SCHEME-II on the MG grid for Problem-I
(left plot) and on the EG grid and the PG grid for Problem-II (right plot). The thin dash-dotted lines are reference lines showing the difference from
C=0.

In the following, we perform the numerical tests to examine the momentum-conservation of the two schemes. The249

number of the grid cells isI = 50 and the numerical solutions are marched toT = 10π from the initial condition. The250

time series ofC with the different schemes for Problem-I and Problem-II are compared in figure 4.251

For Problem-I (left plot of figure 4), the MG grid is used withα = 3.6 in equation (14). The momentum-252

conservation requiresC=0 at all times for Problem-I. The values ofC by SCHEME-I (dash-dotted line) are zero253

throughout the time, confirming the momentum-conservationof the scheme. The values ofC by SCHEME-II (dotted254

line) are not zero exactly, indicating the violation of the momentum-conservation by the scheme. The violation,255

however, does not grow with time, and varies around zero periodically in time.256

For Problem-II (right plot of figure 4), two different grids are compared for SCHEME-I and SCHEME-II for the257

momentum-conservation: the EG grid in equation (14) (α = 3.6, γi = const) and the PG grid in equation (17) (p = 2,258

1 < γi 6 3). For this problem, the values ofC are not zero for both schemes according to equations (25) and(26).259

From the right plot of figure 4, we can make the following observations:260

1. The values ofC from all four test cases vary periodically in time. The magnitude ofC by SCHEME-I is about261

twice of that by SCHEME-II for both the EG and PG grids;262

2. Although the predicted values forC by SCHEME-I and SCHEME-II look similar, they are qualitatively dif-263

ferent. The non-zero values ofC by SCHEME-I (solid and dash-dotted lines) are caused only bythe non-zero264

net change of the momentum-fluxes on the boundaries as shown in equation (25). This does not contradict the265

fact that SCHEME-I conserves momentum in spite of the non-zero values ofC predicted by the scheme. The266

non-zero values ofC on the EG grid by SCHEME-II (dotted line) are also caused onlyby the non-zero net267

change of the momentum-fluxes on the boundaries as shown in equation (26) due to the fact that SCHEME-II268

conserves momentum on the EG grid. The non-zero values ofC on the PG grid by SCHEME-II (dashed line),269
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however, are caused by the violation of the momentum-conservation by the scheme as well as by the net change270

of the momentum-fluxes on the boundaries;271

3. For Problem-II, the violation of the momentum-conservation seems comparable in magnitude to the boundary272

effect, and the non-momentum-conservative SCHEME-II does notshow disadvantages over the momentum-273

conservative SCHEME-I in predicting the values of total momentumC.274

The intrinsic momentum-conservation property of SCHEME-Iis perhaps the main reason for its wide use in275

CFD. Here based on the analysis and the numerical tests, we see that, for Problem-II, SCHEME-II (non-momentum-276

conservative) has comparable performance to SCHEME-I in predicting the values ofC for the linear convection277

problem.278

2.6. Energy-conservation279

From figure 3, we can see that the numerical solution by SCHEME-I oscillates strongly, while that by SCHEME-II280

is smoother and closer to the exact solution. An immediate question to follow is whether SCHEME-I conserves energy281

in addition to the momentum-conservation. The energy-conservation is often recommended for designing numerical282

schemes for LES.283

The conservation law in equation (1) implies conservation of the energyu2(x, t)/2, i.e.,284

∂u2(x, t)
∂t

+
∂u2(x, t)
∂x

= 0 (06 x 6 2π, 0 6 t 6 T). (27)

So similar to equations (25), the energy conservation implies285

d
dt

∫ 2π

0
u2(x, t)dx= u2(0, t) − u2(2π, t), (28)

i.e., the net change of the total energy is due to the difference of the energy-fluxes on the boundaries. For both286

Problem-I and Problem-II, we haveu(0, t) = u(2π, t) = sin(−t), so the energy-conservation yields287

d
dt

∫ 2π

0
u2(x, t)dx= 0 and

∫ 2π

0
u2(x, t)dx= const. (29)

We approximate twice the total energy
∫ 2π

0
u2(x, t)dxon the discrete level as288

E =
I∑

i=1

1
2

(u2
i−1 + u2

i )∆xi . (30)

on the grid system in figure 1.289

For SCHEME-I in equation (6), the implied discretization ofthe energy equation is290

du2
i

dt
+

ũui+1/2 − ũui−1/2

(∆xi+1 + ∆xi)/2
= 0 (31)

where the tilde ”∼” is a special interpolation operator introduced by Morinishi et al. [1]291

φ̃ψi±1/2 =
1
2
φi±1ψi +

1
2
φiψi±1 (32)
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Combining equations (30) and (31), we obtain292

dE
dt

=
d
dt


1
2

u2
0∆x1 +

I−1∑

i=1

1
2

(∆xi + ∆xi+1)u2
i +

1
2

u2
I∆xI



=


1
2
∆x1

du2
0

dt
+ ũu1/2

 −
ũuI−1/2 −

1
2
∆xI

du2
I

dt

 , (33)

which mimics the energy-conservation in equation (28), i.e., SCHEME-I conserves energy. For Problem-I, we have293

dE/dt=0 (or E=const) after applying the periodic BC; for Problem-II, we havedE/dt , 0 due to the non-periodicity294

of the numerical solutions.295

For SCHEME-II in equation (10), the implied discretizationof the energy equation is296

du2
i

dt
+

(
2
∆xi+1

−
2

∆xi+1 + ∆xi

)
ũui+1/2 +

(
2
∆xi
−

2
∆xi+1

)
u2

i +

(
2

∆xi+1 + ∆xi
−

2
∆xi

)
ũui−1/2 = 0, (34)

which is in the similar form to the discretization in equation (10). Combining equations (30) and (34), we have297

dE
dt
=

1
2
∆x1

du2
0

dt
+

I∑

i=1

[
(ui+1ui − u2

i )/γi + (u2
i − uiui−1)γi

]
+

1
2
∆xI

du2
I

dt
, (35)

which depends on the numerical solution on all the grid points for arbitrary grids. Hence SCHEME-II in equation298

(10) is not energy-conservative.299

The numerical solution by SCHEME-I in figure 3 oscillates strongly on the grid expanding in the flow direction,300

and as we show later, the total energy predicted by the schemegrows considerably with time, which seems inconsistent301

with the energy-conservation of SCHEME-I. This inconsistency is reconciled in Appendix A.302

Substituting the Taylor series (8) withj = 1 to the discrete energy equation (31) for SCHEME-I, we obtain the303

modified PDEs for the energy as follows304

∂u2

∂t
+
∂u2

∂x
= −

1
2

(∆xi+1 − ∆xi)
∂2u2

∂x2
+ (∆xi+1 − ∆xi)

∂u
∂x

∂u
∂x

−
1
6

∆x3
i+1 + ∆x3

i

∆xi+1 + ∆xi

[
∂3u2

∂x3
− 3

∂

∂x

(
∂u
∂x

∂u
∂x

)]
+O

(
∆x3

)
. (36)

We see that the modified PDE for the energy conservation implied by SCHEME-I also has a numerical diffusion term305

(the first term on the right-hand side of the above equation) which is dissipative or anti-dissipative depending on the306

local grid stretching. Moreover, SCHEME-I introduces a production or dissipation term for the energy (the second307

term on the right-hand side of the above equation) which addsenergy to or removes energy from the numerical solution308

consistently. For grids expanding in the flow direction, theterm is an energy-production term, and for grids shrinking309

in the flow direction, it is an energy-dissipation term. Based on this observation, we can see that the numerical310

solutions by SCHEME-I inherently contain more or less energy than the exact solution simply because of the energy311

production or dissipation terms introduced by the scheme. The numerical solution by SCHEME-I, however, conserves312

the total energyE in (30) on the discrete level.313

Similarly we can derive the energy conservation implied by SCHEME-II in equation (12) by substituting equation314
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(8) to (34) as follows315

∂u2

∂t
+
∂u2

∂x
= −

1
6
∆xi+1∆xi

[
∂3u2

∂x3
− 3

∂

∂x

(
∂u
∂x

∂u
∂x

)]
+O

(
∆x3

)
. (37)

This equation neither has the second-order numerical diffusion term nor has an energy production or dissipation term.316

Although SCHEME-II does not ensure discrete energy conservation as shown in equation (35), the numerical solution317

predicted by the scheme may have closer level of total energythan that by SCHEME-I compared to the exact solution.318

In the following we compare the energy predictions of the different schemes for Problem-I and Problem-II.319
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Figure 5: The measurement of the energy-conservationE against timet/(2π) with SCHEME-I and SCHEME-II on the EG grid and on the PG grid.
The thin dash-dotted lines are reference lines showing the difference fromE=π.

The time series ofE with the different schemes on the different grids are compared in figure 5. From the left320

plot of figure 5 for Problem-I with the MG grid, we can see that SCHEME-I yields the energy-conservation. For321

Problem-I, the energy-conservation requiresE=const. The slightly higher value ofE > π by SCHEME-I shows the322

difference between the numerical prediction and the exact solution. The predicted value ofE by SCHEME-II varies323

periodically in time, and the time-averaged value ofE is slightly less than the exact valueE=π. This non-constant324

value ofE confirms that SCHEME-II does not conserve energy exactly. The violation of the energy-conservation325

by SCHEME-II seems bounded (amplitude of the variations is about 1% ofE=π) and does not grow in time for326

Problem-I.327

For Problem-II with the EG and PG grids on the right plot of figure 5, the predicted values ofE by SCHEME-I on328

both grids grow consistently in time as we have mentioned before. The continuously growing energy by SCHEME-I,329

however, does not violate the energy-conservation on the discrete level. On the discrete level, more energy is added to330

the numerical solution through the boundaries according toequation (33). The predicted values ofE by SCHEME-II331

on the right plot of figure 5 vary periodically in time and do not grow in time. The amount of energy in Problem-II332

is captured accurately by SCHEME-II although this scheme isnot energy-conservative. From the performance of333

the two schemes for Problem-II, we observe that, for two comparable schemes (e.g., both second-order accurate), the334

energy-conservative scheme may be worse in predicting the energy than the non-energy-conservative scheme, which335

is opposite to intuition.336

To summarize, the two central finite-difference schemes on non-uniform grids (SCHEME-I and SCHEME-II) are337
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compared in a linear convection problem in terms of the different numerical properties: accuracy, dissipation, disper-338

sion, momentum-conservation, and energy-conservation. Serious problems are found for the widely used SCHEME-I:339

amplifying the numerical oscillations and adding energy tothe numerical solution for grids expanding in the flow di-340

rection, which are dangerous to stable numerical simulations. SCHEME-I conserves momentum and energy on the341

discrete level although the numerical solutions by SCHEME-I differ from the exact one significantly for certain spec-342

ified non-uniform grids. SCHEME-II does not conserve momentum and energy on the discrete level in general, but343

the numerical solutions by SCHEME-II are more accurate thanthose by SCHEME-I for grids expanding in the flow344

direction.345

In LES, it is often emphasized to use energy-conservative schemes, and many energy-conservative schemes are346

designed in the literature (e.g., [1, 2, 3, 4]). From the above linear analysis, we can see that the energy-conservative347

schemes may not be able to yield more accurate numerical solutions simply because the energy-conservative schemes348

may inherently introduce more energy to the numerical solutions in spite of their energy-conservation on the discrete349

level. To understand the properties of the schemes thoroughly, in the following, we further evaluate the conservation350

properties of the two schemes for the simplest non-linear convection problem: the inviscid Burgers’ equation.351

3. Inviscid Burgers’ equation352

3.1. Discretization353

The inviscid Burgers’ equation is354

∂u
∂t
+

1
2
∂u2

∂x
= 0, (0 6 x 6 2π, 0 6 t 6 T). (38)

Multiplying the inviscid Burgers’ equation with 2u, we can derive the energy equation as355

∂u2

∂t
+

2
3
∂u3

∂x
= 0, (0 6 x 6 2π, 0 6 t 6 T). (39)

Similar to the analysis in Section 2, we can find that the aboveequations yield the following conservations356

d
dt

∫ 2π

0
udx=

1
2

u2(0,T) −
1
2

u2(2π,T), (40)

357

d
dt

∫ 2π

0
u2dx=

2
3

u3(0,T) −
2
3

u3(2π,T), (41)

which require that the numerical schemes mimic these conservations on the discrete level.358

Using SCHEME-I in equation (4) to the inviscid Burgers’ equation (38) on the grids shown in figure 1, we have359

dui

dt
+

u2
i+1/2
− u2

i−1/2

∆xi + ∆xi+1
= 0, (42)

where the cell center valuesui±1/2 can be obtained from the linear interpolation in equation (5). We denote the scheme360

in equation (42) as SCHEME-IA. Combining equations (24) and(42), we obtain361

dC
dt
=

[
1
2
∆x1

du0

dt
+

1
2

u2
1/2

]
−

[
1
2

u2
I−1/2 −

1
2
∆xI

duI

dt

]
, (43)
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so SCHEME-IA conserves momentum. From equation (42), we canderive the implied energy discrete equation as362

du2
i

dt
+

ũu2
i+1/2 − ũu2

i−1/2

∆xi + ∆xi+1
+ ui

[
ũui+1/2 − ũui−1/2

2(∆xi + ∆xi+1)

]
= 0. (44)

Using equations (30) and (44), we obtain363

dE
dt
=


1
2
∆x1

du2
0

dt
+

1
2

ũu2
1/2

 −

1
2

ũu2
I−1/2 −

1
2
∆xI

du2
I

dt

 −
I−1∑

i=1

1
4

ui
(
ũui+1/2 − ũui−1/2

)
. (45)

The righthand side of equation (45) depends on the numericalsolutions on all the grid points, so SCHEME-IA is not364

energy-conservative.365

An energy-conservative discretization of the inviscid Burgers’ equation (38) is found in the following366

dui

dt
+

1
3

[
ũui+1/2 − ũui−1/2

∆xi + ∆xi+1

]
+

2
3


u2

i+1 − u2
i−1

2(∆xi + ∆xi+1)

 = 0. (46)

which is obtained by splitting the spatial derivative in equation (38) into two parts and using the two different dis-367

cretizations (the second and the third term in the above equation) to approximate each part. We denote this scheme as368

SCHEME-IB. Combining equations (24) and (46), we obtain369

dC
dt
=

[
1
2
∆x1

du0

dt
+

1
6

ũu1/2 +
1
6

u2
0 +

1
6

u2
1

]
−

[
1
6

ũuI−1/2 +
1
6

u2
I +

1
6

u2
I+1 −

1
2
∆xI

duI

dt

]
, (47)

so SCHEME-IB is momentum-conservative. From equation (46), we can derive the implied energy discrete equation370

as371

du2
i

dt
+

2
3


ũu2

i+1/2 − ũu2
i−1/2

(∆xi + ∆xi+1)/2

 = 0. (48)

Using equations (30) and (48), we obtain372

dE
dt
=


1
2
∆x1

du2
0

dt
+

2
3

ũu2
1/2

 −

2
3

ũu2
I−1/2 −

1
2
∆xI

du2
I

dt

 , (49)

so SCHEME-IB is energy-conservative.373

Using SCHEME-II in equation (9) to the inviscid Burgers’ equation (38), we have374

dui

dt
+

(
1
∆xi+1

−
1

∆xi+1 + ∆xi

)
u2

i+1/2 +

(
1
∆xi
−

1
∆xi+1

)
u2

i +

(
1

∆xi+1 + ∆xi
−

1
∆xi

)
u2

i−1/2 = 0, (50)

from which, we can derive the discrete energy equation as375

du2
i

dt
+

[(
1
∆xi+1

−
1

∆xi+1 + ∆xi

)
ũu2

i+1/2 +

(
1
∆xi
−

1
∆xi+1

)
u3

i +

(
1

∆xi+1 + ∆xi
−

1
∆xi

)
ũu2

i−1/2

]

+
1
2

u2
i

[(
1
∆xi+1

−
1

∆xi+1 + ∆xi

)
ui+1 +

(
1
∆xi
−

1
∆xi+1

)
ui +

(
1

∆xi+1 + ∆xi
−

1
∆xi

)
ui−1

]
= 0. (51)

We can demonstrate that SCHEME-II for the inviscid Burgers’equation is neither momentum-conservative nor376
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energy-conservative.377

There are many variants of using the central difference schemes on the inviscid Burgers’ equation, we limit our378

discussion on the above three schemes: SCHEME-IA in (42), SCHEME-IB in (46), and SCHEME-II in (50).379

We can do the same analysis as in Section 2 by using the modifiedPDEs for the above three schemes to understand380

these schemes thoroughly. The modified PDE for SCHEME-IA in equation (42) can be derived as381

∂u
∂t
+

1
2
∂u2

∂x
= −

1
2

(∆xi+1 − ∆xi)
∂

∂x

(
u
∂u
∂x

)
+

1
4

(∆xi+1 − ∆xi)
∂u
∂x

∂u
∂x

−
1
2

∆x3
i+1 + ∆x3

i

∆xi+1 + ∆xi

[
1
3
∂

∂x

(
u
∂2u
∂x2

)
+

1
12

∂

∂x

(
∂u
∂x

∂u
∂x

)]
+O(∆x3). (52)

The truncation errors resulted from SCHEME-IA for the inviscid Burgers’ equation have similar properties as those382

for the linear convection problem in equation (11). The firstterm on the righthand side of equation (52) is a numerical383

diffusion term which is dissipative on grids shrinking in the flowdirection ((∆xi+1−∆xi)u < 0) and anti-dissipative on384

grids expanding in the flow direction ((∆xi+1−∆xi)u > 0). Moreover, SCHEME-IA introduces a source or sink for the385

momentum (the second term on the righthand side of equation (52)). Whether it is a source or sink solely depends on386

the local grid stretching independent of the flow fields, i.e., it is a source (the term is non-negative) if (∆xi+1−∆xi) > 0387

and a sink (the term is non-positive) if (∆xi+1 − ∆xi) < 0. The third term on the righthand side of equation (52) is the388

dispersion error.389

The modified PDE for SCHEME-IB in equation (46) is390

∂u
∂t
+

1
2
∂u2

∂x
= −

1
2

(∆xi+1 − ∆xi)
∂

∂x

(
u
∂u
∂x

)
+

1
6

(∆xi+1 − ∆xi)
∂u
∂x

∂u
∂x

−
1
6

∆x3
i+1 + ∆x3

i

∆xi+1 + ∆xi

[
∂

∂x

(
u
∂2u
∂x2

)
+

1
2
∂

∂x

(
∂u
∂x

∂u
∂x

)]
+O(∆x3). (53)

which has the same form of the truncation error terms on the righthand side as equation (52) except the difference in391

the constant coefficient of the terms, e.g., the source or sink term in (53) has smaller constant coefficient 1/6 than 1/4392

in (52).393

The modified PDE for SCHEME-II in equation (50) is394

∂u
∂t
+

1
2
∂u2

∂x
= −

1
2
∆xi∆xi+1

[
1
3
∂

∂x

(
u
∂2u
∂x2

)
+

1
12

∂

∂x

(
∂u
∂x

∂u
∂x

)]
+O(∆x3). (54)

which does not have the second-order numerical diffusion term and the source or sink term on the righthand side. This395

shows the numerical superiority of SCHEME-II over SCHEME-IA and SCHEME-IB although SCHEME-II does not396

conserve momentum on the discrete level.397

We can also derive the modified PDEs for the discrete energy equations (44), (48), and (51). For SCHEME-IA398

and SCHEME-IB, the modified PDEs for the discrete energy equations are399

∂u2

∂t
+

2
3
∂u3

∂x
= −

1
2

(∆xi+1 − ∆xi)
∂

∂x

(
u
∂u2

∂x

)
+

3
2

(∆xi+1 − ∆xi) u
∂u
∂x

∂u
∂x

−
1
2

∆x3
i+1 + ∆x3

i

∆xi+1 + ∆xi


∂

∂x

(
2
3

u2∂
2u
∂x2
−

1
6

u
∂u
∂x

∂u
∂x

)
+

1
6

(
∂u
∂x

)3 +O(∆x3), (55)
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and400

∂u2

∂t
+

2
3
∂u3

∂x
= −

1
2

(∆xi+1 − ∆xi)
∂

∂x

(
u
∂u2

∂x

)
+

4
3

(∆xi+1 − ∆xi) u
∂u
∂x

∂u
∂x

−
1
3

∆x3
i+1 + ∆x3

i

∆xi+1 + ∆xi

∂

∂x

(
u2∂

2u
∂x2

)
+O(∆x3). (56)

Both modified PDEs (55) and (56) are in the same form except theslight difference in the constant coefficients. The401

first terms on the righthand sides of equations (55) and (56) are the numerical diffusion terms which have the same402

dissipation property as in (52) and (53). The second terms onthe righthand side of equations (55) and (56) are the403

energy production or dissipation which depends on the localgrid stretching and the flow direction. On grids expanding404

in the flow direction ((∆xi+1 − ∆xi)u > 0), it is energy-production (the term is non-negative), andon grids shrinking405

in the flow direction ((∆xi+1 − ∆xi)u < 0), it is energy-dissipation (the term is non-positive). The energy production406

or dissipation term for SCHEME-IB has slightly lower magnitude (4/3) than that for SCHEME-IA (3/2). The third407

terms on the righthand side of equations (55) and (56) are thenumerical dispersion terms.408

The modified PDE for the discrete energy equation (57) of SCHEME-II is409

∂u2

∂t
+

2
3
∂u3

∂x
= −

1
2
∆xi∆xi+1


∂

∂x

(
2
3

u2∂
2u
∂x2
−

1
6

u
∂u
∂x

∂u
∂x

)
+

1
6

(
∂u
∂x

)3 +O(∆x3), (57)

which does not have the numerical diffusion term and the energy production or dissipation term. Although SCHEME-410

II is not energy-conservative, SCHEME-II is superior to SCHEME-IB due to its free of energy production or dissipa-411

tion in the modified PDEs.412

To sum up, in the above conservation analysis, we observe thefollowing conservation properties for the dif-413

ferent schemes: SCHEME-IA is momentum-conservative but not energy-conservative, SCHEME-IB is momentum-414

conservative and energy-conservative, and SCHEME-II is neither momentum-conservative nor energy-conservative.415

From the analysis based on the modified PDEs, we observe that SCHEME-IA and SCHEME-IB introduce the numer-416

ical diffusion and the source or sink to the momentum, and the numerical diffusion and production or dissipation to417

the energy, while SCHEME-II is free of the numerical diffusion, the momentum source or sink, and the energy pro-418

duction or dissipation. In the following, we perform numerical tests to evaluate these different numerical properties419

of the different schemes for the inviscid Burgers’ equation on a periodic test case and a non-periodic test case.420

3.2. Periodic test case421

The inviscid Burgers’ equation (38) is numerically solved on domain [0, 2π] starting from the following initial422

condition to the stopping timeT = 20π,423

u(x, 0) =
exp(−x) − exp(−2π)

1− exp(−2π)
+

tanh(10(x− π)) + 1
2

+ 1. (58)

The MG grid withα = 3.6 in equation (14) is used with the number of grid cellsI = 50. The periodic BCu(0, t) =424

u(2π, t) is applied during the time advancement. The Crank-Nicholson scheme is used for the time integration.425

With the periodic BC, we can find thatdC/dt=0 (C=const) from equation (43) for SCHEME-IA and from equation426

(47) for SCHEME-IB, anddE/dt=0 (E=const) from equation (49) for SCHEME-IB.427

The time series of the momentum-conservationC and energy-conservationE for the different schemes are shown428

in figure 6. From the left plot of figure 6, we can see that the values ofC remain constant all the time for SCHEME-429
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Figure 6: The measurement of the momentum-conservationC and the energy-conservationE against timet/(2π) with SCHEME-IA, SCHEME-IB
and SCHEME-II on the MG grid for the periodic test case. (The thin dash-dotted lines are reference lines showing the difference from the values
of C andE by SCHEME-IB.)

IA and SCHEME-IB due to the fact that these schemes are momentum-conservative. (The solid and dashed lines430

overlap on the left plot of figure 6.) The values ofC by SCHEME-II vary with time, which is consistent with the431

non-momentum-conservative property of the scheme. After aboutt/2π = 1, the values ofC by SCHEME-II fluctuate432

around the value of 10.35, about 1% lower than the values ofC by SCHEME-IA and SCHEME-IB. The violation of433

momentum-conservation by SCHEME-II does not seem to be growing with time. From the right plot of figure 6, we434

can see that only the values ofE from SCHEME-IB remain constant all the time because only SCHEME-IB is energy-435

conservative and the other two schemes are not. Comparing the two non-energy-conservative schemes in the figure,436

SCHEME-IA seems better than SCHEME-II in terms of energy-conservation because the magnitude of the variations437

in E by SCHEME-IA is smaller that by SCHEME-II. After aboutt/2π = 1, the values ofE by SCHEME-II fluctuate438

around the value of 17.6, about 3% lower than the value ofE by SCHEME-IB. The violation of energy-conservation439

by SCHEME-IA and SCHEME-II do not grow with time. These results are consistent with the conservation analysis440

based on the discrete equations, and hence confirm that analysis.441

In sum, in figure 6, we examined the conservation of the numerical solutions by the different schemes, in which442

we have not examined the detailed numerical solutions (e.g., how close the numerical solutions are to the exact one?).443

In the following, we consider a non-periodic test case, in which we explore and compare the accuracy of the numerical444

solutions in addition to the conservation.445

3.3. Non-periodic test case446

We consider the following initial condition for the numerical solution of the inviscid Burgers’ equation (38) on447

domain [0, 2π],448

u(x, 0) =
1

exp(x− 3/20)[tanh(10x− 3)+ 1] − tanh(10x− 3)+ 1
(59)
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with the boundary conditions:u(0, t)=u(0, 0)≈0.5002 and∂u(x, t)/∂x|x=2π = 0. The Neumann BC on the right side is449

introduced numerically for the treatment of the right boundary for the central-difference schemes although only one450

BC is allowed mathematically. The numerical solutions are advanced to the stopping timeT = 40π, at which the451

steady state solutionu(x,T) = u(0,T) is expected. The EG grid withα = 3.6 in equation (14) is used with the number452

of grid cellsI = 50.453

The time evolution of the numerical solutions for the non-periodic problem with the three schemes are shown in454

figure 7 at the selected timest/2π=0, 0.1, 0.25, 0.5, 1, 2, 6, and 16. Thex-axis is shown in the log-scale to examine the455

regions where the grid spacing is fine. The thin lines with symbols are the numerical results from the three schemes.456

The thick lines (without symbols) are high-resolution numerical solutions computed by the first-order upwind scheme.457

These high-resolution numerical results serve as “exact” solution for the comparison. The initial condition is smooth458

and shows decaying in the flow direction, which is to mimic thecenterline velocity decay in jet flows. The convection459

is toward the right. The difference of the convecting velocity on the left and right eventually causes a sharp interface460

as shown at aboutt/2π = 1 in the figure. The sharp interface ultimately is convected out of the domain, and a steady461

state solutionu(x,∞) = u(0,∞) is expected as indicated by the “exact” solution. All threeschemes perform similarly462

beforet/2π = 0.25. After that, strong oscillations behind the sharp interface are observed due to the dispersive nature463

of all three schemes. The schemes behave qualitatively different upstream (x < 1). SCHEME-IA and SCHEME-IB464

produce strong oscillations upstream, while SCHEME-II preserves the upcoming constant value very well. This can465

be explained by the anti-dissipative property of SCHEME-IAand SCHEME-IB on the given grids. The numerical466

oscillations (produced by the numerical dispersion) are amplified by the negative numerical diffusion in equations (52)467

and (53). In contrast, SCHEME-II is dissipation-free, so the numerical oscillations caused by the numerical dispersion468

upstream (not visible in figure 7) are not amplified. At the final time t/2π = 16 in figure 7, the results by SCHEME-II469

reaches the steady state solution which agrees with the “exact” solution well. The results by SCHEME-IA still contain470

numerical oscillations, especially for the first five grid points. The results by SCHEME-IB are improved compared to471

those by SCHEME-IA probably because the energy-productionterm by SCHEME-IB in equation (56) is smaller in472

magnitude than that by SCHEME-IA in equation (55) although the first three grid points still show strong oscillation.473

For this simple non-linear convection, we show that the energy-conservative scheme (SCHEME-IB) performs worse474

than the non-energy-conservative scheme (SCHEME-II). Theeffect of the schemes upstream is very informative to475

the discussion of the LES simulations of jet flows in the following sections.476

Figure 8 shows the time series of the values ofC andE for the non-periodic test case with the different schemes.477

The values ofC andE increase from the initial value and approach constants after some time. The detailed evolutions478

of C andE are different for the three schemes. For SCHEME-II (dash-dotted lines in figure 8), the values ofC and479

E increase initially, and, at aboutt/2π = 3.5, they quickly become flat. During the transition, the totalenergyE by480

SCHEME-II does not exceed the final steady-state energy, which indicates good numerical stability. The predictions481

of E by SCHEME-II agree with the “exact” solution very well. For SCHEME-IA (solid lines in figure 8), the values482

of C increase initially, and become flat at about the same timet/2π = 3.5. But the values ofC fluctuate even after a483

long time (t/2π = 20) and do not seem to become steady. And the time-averaged value ofC at the steady state stage484

predicted by SCHEME-IA is slightly lower than the “exact” value. The energyE by SCHEME-IA is always higher485

than the “exact” one in the right plot of figure 8 due to the energy production caused by SCHEME-IA in (55) for the486

test case. The values ofE by SCHEME-IA do not seem to become steady after a long time neither. For SCHEME-IB487

(dashed lines in figure 8), both values ofC andE increase initially and overshoot at aboutt/2π = 5.3. Then they488

reduces asymptotically to some constant values. This overshoot of the total energy can be explained by the energy489
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Figure 7: The time evolution of the numerical solutions for the non-periodic problem with SCHEME-IA, SCHEME-IB, and SCHEME-II at the
selected timest/2π=0, 0.1, 0.25, 0.5, 1, 2, 6, and 16. The thin solid lines with symbols are the numerical results from the three schemes. The thick
solid lines are high-resolution numerical solutions from the first-order upwind scheme. (Thex-axis is shifted byx0 = 0.01 so that the first grid
point x = 0 can be shown in the log scale of thex-axis.)
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IA, SCHEME-IB and SCHEME-II on the exponential grids (EG). The “exact” solution is from a high-resolution numerical simulation by the
first-order upwind scheme.

production in (55) too. The maximum energyE by both SCHEME-IA and SCHEME-IB during the transition exceeds490

the final “exact” value, which indicates that they are less stable than SCHEME-II. The generated energy by SCHEME-491

IA and SCHEME-IB degenerates the numerical accuracy and maycause serious instability in more complicated LES492

calculations.493

In the following, we compare SCHEME-I and SCHEME-II in the practical LES of turbulent flows which is more494

complicated, to further show the deficiency of SCHEME-I and the superiority of SCHEME-II.495

4. Large eddy simulations (LES)496

The LES methods used in this study are outlined in this Section. A laminar jet flow test case is performed first to497

compare the performance of SCHEME-I and SCHEME-II in this relatively simple problem. More complicated LES498

studies are performed in the following Sections 5 and 6.499

4.1. Numerical methods500

The numerical methods for LES used in this study are based on [14, 20]. The basics of the numerical methods are501

summarized here. For details, the reader is referred to [14,20, 26, 33, 34].502

Applying the traditional filtering operation to the mass, momentum, and scalar conservation equations, we can503

derive the LES equations. After modeling for the terms accounting for the sub-filter stresses and sub-filter scalar504

fluxes, the closed set of LES equations to solve for low Mach number flows is the following505

∂ρ

∂t
+ ∇ ·

(
ρ ũ

)
= 0, (60)

∂ρ ũ
∂t
+ ∇ ·

(
ρ ũ ũ

)
= ∇ ·

[
2(µ + µt)S

]
− ∇p, (61)

S = 1/2
[
∇ ũ +

(
∇ ũ

)T
]
− 1/3δ∇ · ũ, (62)
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∂ρξ̃

∂t
+ ∇ ·

(
ρ ũ ξ̃

)
= ∇ ·

[
ρ(Γ + Γt)∇ξ̃

]
, (63)

∂ρξ̃2

∂t
+ ∇ ·

(
ρ ũ ξ̃2

)
= ∇ ·

[
ρ(Γ + Γt)∇ξ̃2

]
− χ̃, (64)

ρ = f
(
ξ̃, ξ̃2

)
. (65)

Here the bar “–” and tilde “∼” denote filtering and density-weighted filtering, respectively. The variableρ denotes the506

filtered density,̃u the filtered velocity vector,p the filtered pressure,µ the dynamic viscosity,µt the sub-filter eddy507

viscosity,δ the unit tensor,̃ξ the filtered mixture fraction,̃ξ2 the filtered mixture fraction squared,Γ the molecular508

diffusivity,Γt the sub-filter eddy diffusivity, χ̃ the sub-filter dissipation rate of the mixture fraction. Thesub-filter eddy509

viscosityµt, eddy diffusivity Γt and dissipation ratẽχ are modeled as510

µt = Cµρ∆
2|S|, (66)

Γt = CΓ∆
2|S|, (67)

|S| =
(
Si j Si j

)1/2
(68)

Si j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
−

1
3
δi j
∂uk

∂xk
(69)

where∆ is the filter width,δi j is Kronecker delta, and the model coefficientsCµ andCΓ are computed by the Dynamic511

Model [14, 20].512

For constant-density flows, equations (60)-(62) form a closed set of equations. The additional equations (63)-(65)513

are for variable-density flows with equation (65) being the state equation to obtain density. A simple flamelet model514

[34] is used in this work to model the density coupling.515

The LES equations in the above are cast in the cylindrical coordinates, and are discretized with the second-order516

central-difference schemes for the spatial derivatives and the Crank-Nicolson scheme for the time advancement. A517

staggered grid system in both space and time is used for the discretization. The QUICK scheme [14] is used for the518

convection terms in the mixture fraction equations (63) and(64) to reduce the excessive numerical oscillations near519

the upper and lower bounds of the mixture fraction [14]. For the discretization of the staggered velocity, we face the520

same problem discussed in Section 2 when using central-difference schemes which will be discussed in detail in the521

following Section 4.2. The pressure projection (or fractional-step method) is used to enforce continuity. An iterative522

semi-implicit scheme is employed to solve the coupled non-linear equations. The time-step size∆t is controlled by523

the maximum allowed CFL number, CFL= |ũ|∆t/∆x + 4(µ + µt)∆t/ρ∆x2 6 CFLmax, where the CFL number is524

defined only on the quantities in the axial direction, since the explicit treatment is in the axial direction only during525

the iteration employed in the current numerical methods. For more numerical details, please refer to [14, 20].526

4.2. Discretization of convection terms527

When discretizing the non-linear convection terms such as∂(ρũũ)/∂x, ∂(ρṽṽ)/∂yand∂(ρw̃w̃)/∂z in the momentum528

equation (61) on the staggered non-uniform grids, we face the same situation of choosing SCHEME-I or SCHEME-II529

as discussed in Section 2. In the past, SCHEME-I has been useddominantly for discretizing these convection terms530

for LES studies.531

We take the discretization of∂(ρũũ)/∂x as an example in the following discussion, and the other terms can be532

discretized similarly. The convection terms are discretized on a non-uniform grid system shown in figure 9. The533
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Figure 9: The staggered grid system for the large eddy simulations.

scalars (such asρ, p, ξ̃) are stored at the cell centers indicated by the circles in the figure, and the velocity component534

ũ is located at the cell facesxi .535

We rewriteρũũ asgũ whereg = ρũ is the mass flux. The mass fluxg is also stored at the cell facexi to have a536

natural mass conservation over the grid cell, and is computed fromρ andũ with necessary linear interpolation.537

With SCHEME-I, the convection∂(ρũũ)/∂x is discretized as538

(
∂gũ
∂x

)

i

=
gi+1/2ũi+1/2 − gi−1/2ũi−1/2

1/2(∆xi+1 + ∆xi)
. (70)

This central-difference scheme is the same as the finite-volume scheme over thecontrol volume [xi−1/2, xi+1/2] shown539

in figure 9. The unknown quantities in equation (70) are interpolated from the nearest known values with the linear540

interpolation in equation (5), e.g., ˜ui+1/2 = 1/2(ũi+1 + ũi).541

With SCHEME-II, we discretize the convection∂(ρũũ)/∂x as542

(
∂gũ
∂x

)

i

=

(
2
∆xi+1

−
2

∆xi+1 + ∆xi

)
gi+1/2ũi+1/2 +

(
2
∆xi
−

2
∆xi+1

)
gi ũi +

(
2

∆xi+1 + ∆xi
−

2
∆xi

)
gi−1/2ũi−1/2. (71)

The unknown quantities are interpolated from the nearest known values.543

The numerical properties of SCHEME-I and SCHEME-II have been discussed comprehensively in Sections 2 and544

3. In the following we compare these schemes in equations (70) and (71) in the practical LES of several test cases.545

We perform the simulations for a laminar flow first. Then we compare the schemes in the LES of turbulent jet flows546

with and without density variations which exhibit strong variations of turbulence fields in the three-dimensional space547

and time.548

4.3. Test case: constant-density laminar jet with Re=300549

A constant-density laminar jet issuing into quiescent environment is simulated with Reynolds numberRe= 300.550

The computational domain in the axial and the radial directions is [0, 40D] × [0, 10D] whereD is the jet diameter.551

A number of 64× 64× 16 grid cells are used in the axial, radial and azimuthal directions, respectively. In the axial552

direction, the grid spacing is stretched in the axial direction, which yields the smallest grid spacing at the jet inlet and553

the largest grid spacing at the outflow plane, and the ratio about 11.4 of the largest and smallest grid sizes. In the554

radial direction, the grid spacing is clustered near the axis and the jet pipe. A uniform grid is used in the azimuthal555

direction. Fully developed laminar pipe flow is used for the jet inlet condition, and the convective boundary condition556

[14, 20] is used on the lateral and outflow boundaries. The sub-filter models are disabled by settingCµ = 0 in equation557
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(66) for the laminar simulation. SCHEME-II is implemented in a code originally developed in [14] and is compared558

to SCHEME-I that was used in the original code. For reference, a uniform grid in the axial direction is also used, in559

which case SCHEME-I and SCHEME-II are identical. The time-step size is controlled by CFLmax = 0.5 for the time560

advancement.561
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Figure 10: Contour plots of the axial velocityu in the laminar jet flow with non-uniform axial grid (SCHEME-Iand SCHEME-II) and with uniform
axial grid.

In figure 10, the contours of the axial velocityu in a x-r plane are compared with the different schemes and the562

different grids. SCHEME-I on the non-uniform grid generates significant fluctuations of the axial velocity (left plot563

in figure 10). The strong fluctuations in the results by SCHEME-I are non-physical, and are caused by the numerical564

errors. SCHEME-II on the non-uniform grid produces smooth numerical solutions (middle plot in figure 10), so does565

the scheme on uniform grids (right plot in figure 10). The axial profiles of the centerline velocity are further compared566

in figure 11. SCHEME-II on the uniform and non-uniform grids yields similar numerical solutions. SCHEME-I on the567

non-uniform grids produces strong numerical fluctuations initially (beforex/D < 10) and then departs the numerical568

solution significantly from the other two.569

The terrible behavior of SCHEME-I in figures 10 and 11 is consistent with the analysis of the scheme properties570

in Section 3. The behavior of SCHEME-I in figure 11 is similar to the behavior of SCHEME-IA and SCHEME-IB571

in figure 7 to produce the numerical oscillations upstream. In the current simulations with the non-uniform grid, the572

grid spacing is expanded in the axial flow direction. For suchcases, SCHEME-I contains a second-order numerical573

diffusion term which is anti-dissipative (Section 2.3) and addsenergy into the numerical solutions (Section 2.6), and574

hence produces the excessive numerical oscillations. In contrast, SCHEME-II is free of the second-order numeri-575

cal diffusion and energy-production, and hence the numerical accuracy and the smoothness is well preserved in the576

numerical solution.577
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Figure 11: Axial profiles of the centerline axial velocityuc in the laminar jet flow with non-uniform grid (SCHEME-I and SCHEME-II) and with
uniform grid.

Thus, SCHEME-I is not suitable for the numerical simulations of laminar jet flows on stretched (non-uniform)578

grids, while SCHEME-II is capable of reproducing the smoothnumerical solutions accurately. Next we compare the579

different schemes in LES of turbulent jet flows.580

5. LES of a constant-density turbulent jet581

5.1. Simulation details582

LES simulations are performed of the constant-density turbulent free jet flow measured by Amielh et al. [41].583

The self-similar region and the near field are measured for both constant and variable density jets. The detailed584

measurements of the velocity and turbulence fields, especially in the near filed, provide an excellent test case for the585

comparison of the different schemes which effect is most sensitive in the near field of the jet. Only the constant-density586

air jet is considered here. The flow set-up consists of a roundair jet with diameterD = 26mmwhich issues with fully587

developed pipe flow condition into a low speed air coflow. The Reynolds number of the jet isRe=21000. The mean588

jet inlet velocity at the centerlineU j = 12m/sand the coflow velocity isUe = 0.9231m/s.589

The LES simulations are performed on a cylinder [0, 60D] × [0, 8D] × [0, 2π] in the axial, radial, and azimuthal590

directions. Three different grids are used in the simulations (nx×ny×nz=96×64×48, 144×96×72, and 288×192×144,591

wherenx, ny andnz denote the number of grid cells in the axial, radial and azimuthal directions, respectively) for the592

comparison of SCHEME-I (70) and SCHEME-II (71) and for the study of the convergence of the results with respect593

to the grid refinement. Thenx grid cells in the axial direction are stretched in the axial flow direction, yielding the594

smallest grid spacing at the jet inlet and the largest grid spacing at the outflow plane, and the ratio 16 of the largest595

and smallest grid sizes. In the radial direction, the grid spacing is clustered near the axis and the jet pipe. A uniform596

grid is used in the periodic azimuthal direction. A separateLES simulation of a fully developed turbulent pipe flow597

is performed beforehand and the results are stored in a database to supply the inlet boundary conditions for the jet598

simulation. The convective boundary condition [14, 20] is used in the lateral and outflow boundaries. The time-step599

size is controlled by CFLmax = 0.5 for the time advancement on all the grids. The simulations are initiated on the600

coarsest grid 96× 64× 48 from scratch, and the simulations are marched in time until a statistically-stationary state601
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is achieved. Once the numerical results are obtained on the first gird, they are interpolated to the other finer grids as602

initial conditions. After the statistically-stationary state is reached, the statistics are accumulated by performing time-603

averaging for about five flow-through times (based on the meanjet inlet velocity) for all grids. Longer time-averaging604

is not found to affect the statistics.605

5.2. Statistics606
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(ũ
c
−

U
e
)/

(U
j
−

U
e
)

x/D

 

 

Exp. Data
288×192×144
144×096×072
096×064×048
(thick) SCHEME−I
(thin)  SCHEME−II

0 10 20 30 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

u
′
/
(ũ
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Figure 12: Axial profiles of the normalized centerline axialvelocity (ũc−Ue)/(U j −Ue), turbulence intensitiesu′/(ũc−Ue) andv′/(ũc −Ue) in the
turbulent jet flow with the different grids and with the different schemes (SCHEME-I and SCHEME-II). (The combination of the line styles and
the line width denotes a test case, e.g., the thick dashed line denotes the test case on grid 144× 096× 072 with SCHEME-I.)

The profiles of the statistics from the LES of the turbulent jet are examined first. In figure 12 are shown the607

axial profiles of the normalized centerline axial velocity (ũc − Ue)/(U j − Ue), turbulence intensitiesu′/(ũc − Ue) and608

v′/(ũc−Ue) with the different grids and with the different schemes (SCHEME-I and SCHEME-II). From figure 12, we609

can see that the effect of the different schemes on the centerline axial velocity is slight, while the effect on the centerline610

turbulence intensities are dramatic, especially on the axial turbulence intensityu′ in the near field (x/D < 10) on the611

axis. SCHEME-I significantly overpredicts the turbulent fluctuations on the axis compared to SCHEME-II on the same612

grid. As we have discussed before, SCHEME-I introduces an energy production term on the current non-uniform grid613

expanding in the flow direction and consistently adds energyinto the numerical solution, which precisely explains614

the significant overprediction ofu′ andv′ by SCHEME-I. The strong sensitivity of the centerline LES results to the615

grid refinement is evident as shown in figure 12. With the same scheme on the same grid, the axial velocity decay616

rate and the turbulence intensities tend to be overpredicted on the relative coarse grids. When the grids are refined,617

the numerical results show monotonic convergence to the experimental data [41] for the same scheme. The difference618

between SCHEME-I and SCHEME-II also decreases as the grids are refined, which suggests that SCHEME-I and619

SCHEME-II converge to the same asymptotic solutions. With the finest grid 288× 192× 144, the results of both620

schemes are in excellent agreement with the experimental data [41] on the axis.621

The radial profiles are shown in figure 13 of the turbulence intensitiesu′/(ũc − Ue) and v′/(ũc − Ue) and of622

the shear stress̃u′v′/(ũc − Ue)2 at the axial locationsx/D=0.2, 2, 5 and 20 in the jet flow with the three different623

grids and the two different schemes. The radial distancer is normalized by the jet half widthr 1
2
. In the figure, the624

improvements of the results by SCHEME-II compared to SCHEME-I are shown consistently at the all axial locations625

for all three turbulence quantities on all the grids based ontheir comparison with the experimental data [41]. The626

greatest improvement by SCHEME-II occurs foru′ on the coarsest grid 96×64×48 near the axis atx/D=0.2. For the627

same scheme on the same grid, both schemes tend to overpredict the turbulence intensities and the shear stress on the628

relative coarse grids at all the locations examined in figure13 in comparison with the experimental data [41]. With629
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the grids being refined, the difference in the radial profiles by the two schemes decreases, and both profiles converge630

monotonically to the experimental data [41]. On the finest grid, the radial profiles produced by both schemes agree631

with the experimental data [41] very well.632

5.3. Effect on stability and cost633

As shown in Section 5.2 in the above, SCHEME-II is slightly more accurate than SCHEME-I on the same grid. In634

another words, SCHEME-II can achieve the same numerical accuracy as SCHEME-I but with coarser grids. Hence635

SCHEME-II reduces the computational cost of the LES simulations.636
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Figure 14: Contour plots of the axial velocity in the near field (0 6 x/D 6 5 and 06 r/D 6 0.9) of the turbulent jet flow with SCHEME-I (left)
and SCHEME-II (right) on the grid 144× 96× 72.

Here we further compare SCHEME-I and SCHEME-II in terms of the numerical stability and the computational637

cost. The contour plots of the axial velocity in the jet near field are shown in figure 14 with SCHEME-I and SCHEME-638

II on the grid 144× 96× 72. As shown evidently in the figure, SCHEME-I causes excessive numerical fluctuations in639

the near field, which potentially causes numerical instability. In figure 15, the time series of the maximum resolved640

axial velocityũ in the computational domain and the time step size∆t are monitored after the statistically-stationary641

state has been reached. SCHEME-I has slightly higher predictions for the max(˜u) than SCHEME-II. This elevated642

value of max(˜u) by SCHEME-I is also dangerous to numerical stability.643

On the aspect of the computational cost, we can see from figure15 that SCHEME-I has smaller size of the time644

step than SCHEME-II given the same CFLmax=0.5 on the same grid. The increased time-step size for SCHEME-645

II is due to the reduced max(˜u) which occurs right after the inlet plane near the axis and determines the maximum646

local CFL number. The average values of the normalized time step size are 0.0204 and 0.0232 for SCHEME-I and647

SCHEME-II, respectively, which result in approximately 10% increase in the time step size by replacing SCHEME-I648

with SCHEME-II. Thus, given the same CFLmax, SCHEME-II reduces the computational cost by approximately 10%649

compared to SCHEME-I.650
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To summarize, in this section SCHEME-I and SCHEME-II are compared for the discretization of the non-linear651

convection terms in the practical LES studies. A constant-density turbulence jet [41] is chosen as a test case.652

SCHEME-I significantly overpredicts the turbulence fluctuations, while SCHEME-II reproduces the turbulence level653

very well. Both schemes show monotonic convergence to the experimental data when the grids are refined. The654

schemes are further compared in terms of the stability and the computational cost, and SCHEME-II is about 10%655

more efficient than SCHEME-I due to the increased time step size giventhe same maximum allowed CFL number.656

6. LES of turbulent jet flame (DLR Flame A)657

In this section, the LES simulations of a turbulent jet flame (DLR Flame A) [42, 43] are performed to further658

compare SCHEME-I and SCHEME-II. Turbulent combustion is more challenging for LES due to its large density659

variations and the strong coupling between the turbulence field and the density field. Serious stability problems may660

be encountered in combustion LES. In practice, most combustion LES are carried out using the low second-order661

spatial discretization schemes. The performance of the twoschemes (SCHEME-I and SCHEME-II) in combustion662

LES is not known from any previous work.663

6.1. Simulation details664

The closure of combustion is as hard as the closure of turbulence in LES. In this work, to test the numerical665

schemes efficiently, we use a simple flamelet combustion model to close the subfilter combustion [34]. Such a model666

is very attractive in terms of computational economy. The LES simulation details for DLR Flame A have been667

described in [34], and are only briefly outlined here. DLR Flame A [42, 43] consists of a simple turbulent jet flame668

of CH4/H2/N2 with moderate Reynolds number (Re=15200). The jet nozzle has a diameter ofD= 8mm (with bulk669

velocityUb=42.2m/s) surrounded by a low-velocity air coflow (Ue=0.3m/s). The fuel consists of 22.1% CH4, 33.2%670

H2, and 44.7% N2 by volume. The flame exhibits very little local extinction, and hence is suitable for this study using671

the flamelet model to obtain the thermochemical properties.The mixture fraction transport equations (63) and (64)672

are solved together with the LES equations for the mass and momentum. The densityρ and other quantities (such as673

temperaturẽT and species mass fractions) are retrieved from a pre-computed flamelet table [34] given the resolved674

mixture fractionξ̃ and its subfilter variancẽξ ′2 = ξ̃2 − ξ̃2. The molecular transport properties are computed from the675

empirical fitsµ/ρ = 2.22× 10−5 · (T̃/T0)1.66m2/s andΓ = 2.71× 10−5 · (T̃/T0)1.69m2/s, whereT0=300K [34].676

The computational domain is specified to be [0, 120D] × [0, 30D] × [0, 2π] in the axial, radial and azimuthal677

directions. Three different grids are used in the simulations (nx×ny×nz=96×64×48, 144×96×72, and 288×192×144).678

The nx grid cells in the axial direction are stretched in the axial flow direction, yielding the smallest grid spacing679

at the jet inlet and the largest grid spacing at the outflow plane, and the ratio 12 of the largest and smallest grid680

sizes. In the radial direction, the grid cells are clusterednear the axis and the jet pipe. A uniform grid is used in681

the periodic azimuthal direction. A separate LES simulation of a fully-developed turbulent pipe flow is performed682

beforehand and the results are stored in a database to supplythe inlet boundary conditions for the jet simulation. The683

convective boundary condition [14, 20] is used in the lateral and outflow boundaries. The time-step size is controlled684

by CFLmax = 0.25 for the time advancement for all the grids. The numerical results are initially obtained on the685

coarsest grid 96× 64× 48 from scratch and are used as the initial conditions on the subsequent finer grids. The686

statistics are accumulated for about five flow-through times(based on the mean jet inlet velocity) for all the grids.687
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6.2. Flow and turbulence fields688

The radial profiles of the flow and turbulence fields in DLR Flame A are explored on the three grids (nx × ny ×689

nz=96× 64× 48, 144× 96× 72, and 288× 192× 144). In figure 16 are shown the radial profiles of the axial velocity690

ũ/Ub, the axial turbulence intensityu′/Ub, the shear stress̃u′v′/U2
b, the mixture fractionξ̃, and the rms mixture691

fractionξ ′ at the axial locationsx/D=5, 10 and 40 with the different grids and with the different schemes (SCHEME-692

I and SCHEME-II). Comparing SCHEME-I and SCHEME-II, we see that the numerical results with SCHEME-II693

are consistently in better agreement with the experimentaldata [42, 43] than SCHEME-I for all the locations and694

all the quantities in figure 16 with only few exceptions, e.g., the rms mixture fraction near the axis atx/D = 10.695

The improvement of the results by SCHEME-II is more evident upstream (x/D ≤ 10) and less evident downstream696

(x/D = 40) in figure 16. The most significant improvements are observed foru′ near the axis atx/D = 5, which is697

similar to the observations in the jet simulation in figure 13. The strong grid dependency of the LES results can also be698

observed in figure 16, especially upstream. With the grid refinements, the numerical results converge monotonically699

to the experimental data [42, 43] for both schemes. On the finest grid 288× 192× 144, the numerical results of700

both schemes agree with the experimental data very well. Theaxial decay rate of the axial velocity and the mixture701

fraction, and the magnitude of the turbulence intensity, shear stress and the rms mixture fractions are consistently702

overpredicted on the coarse grid upstream (e.g.,x/D=5). When the grids are refined, this magnitude of overprediction703

is reduced. This overprediction upstream is propagated to the downstream in some non-linear fashion, and can lead704

to the opposite trend in the downstream, e.g., the shear stress is underpredicted on the coarse grids atx/D = 10 and705

r/D < 1.706

6.3. Combustion fields707

The radial profiles of the resolved mean and rms of the temperature T and the species mass fractions of O2,708

CO, and NO are compared in figure 17 at the different axial locationsx/D=5, 10 and 40 in DLR Flame A with the709

different grids and with the different schemes (SCHEME-I and SCHEME-II). These quantities are solely dependent710

on the mixture fraction for the flamelet model. Similar observations to figure 16 can be made for these scalars, e.g.,711

the improvement by SCHEME-II compared to SCHEME-I and the convergence trend to the experimental data with712

the grid refinement. On the finest grid 288× 192× 144, the numerical results of the both schemes agree with the713

experimental data [42] very well including the intermediate species CO and the pollutant NO, which validates that the714

flamelet model used in this study is sufficient for the numerical study.715

In summary, SCHEME-I and SCHEME-II are further compared in combustion LES studies. A turbulent jet flame716

(DLR Flame A) [42, 43] is chosen as a test case. The overall improvements to the LES predictions by SCHEME-II717

compared to SCHEME-I are evident for this test case including the flow and turbulence fields, and the combustion718

fields. The convergence of the statistics is also observed for both schemes when the grids are refined.719

7. Discussion720

SCHEME-I on non-uniform grids introduces a second-order numerical diffusion term in the truncation errors (Sec-721

tion 2.4), so SCHEME-I can be viewed as an upwind-biased or downwind-biased finite-difference scheme depending722

on the local grid stretching. For grids shrinking in the flow direction, this scheme is dissipative, so it is an upwind-723

biased scheme; for grids expanding in the flow direction which is focused in this study, the scheme is anti-dissipative,724

so it is a downwind-biased scheme. As we know, downwind scheme can cause excessive fluctuations and cause nu-725

merical instability. SCHEME-II eliminates this second-order numerical diffusion. Another possible way to remedy726
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Figure 17: Radial profiles of the resolved mean and rms of the temperatureT and the species mass fractions of O2, CO, and NO at the different
axial locationsx/D=5, 10 and 40 in DLR Flame A with the different grids and with the different schemes (SCHEME-I and SCHEME-II). (The
combination of the line styles and line width denotes a test case, e.g., the thick dashed line denotes the test case on grid144× 096× 072 with
SCHEME-I.)
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this problem by SCHEME-I is to use upwind-biased schemes. During the study of this work, the upwind schemes727

(e.g., first-order upwind, QUICK scheme) are tested and theyare found to be too dissipative to capture the right phys-728

ical turbulence fluctuations. As already pointed out by Mittal and Moin [44], upwind-biased finite-difference schemes729

are not suitable for LES due to their removal of energy in the high wave number. Therefore the idea of using the730

upwind-biased scheme to suppress the excessive number oscillations is not suitable for the current LES.731

The instability of SCHEME-I is not found to be a serious problem for the current study given the local grid732

stretching rate is not too high, so that the excessive numerical fluctuations can be tolerated by the sub-filter diffusion.733

Mittal and Moin [44] reported that SCHEME-I can tolerate only a small stretching factor (< %3) in the streamwise734

flow direction. SCHEME-II discussed in this paper certainlydoes not have such restriction on the grid stretching for735

the numerical stability. Due to the numerical oscillationscaused by SCHEME-I, the LES results are less accurate than736

those by SCHEME-II, and the convergence of the results is slower than that by SCHEME-II.737

It is desirable for the numerical schemes used in LES to have the property of conservation (for the momentum738

and energy), and the property of dissipation-free or low dissipation. On non-uniform grid, for second-order accurate739

schemes, it seems not possible to have a scheme to possess both properties. SCHEME-I guarantee the conservation for740

momentum and energy, but is highly dissipative or anti-dissipative. SCHEME-II is free of the second-order numerical741

dissipation, but can not guarantee conservation. Based on the test cases in this work, we see that SCHEME-II is much742

better than SCHEME-I in terms of avoiding strong numerical oscillations in the numerical solution at the expense of743

losing conservation. The violation of conservation by SCHEME-II does not cause any serious problems for all the744

test cases with different levels of complexity considered in this work. By transforming the problem from the physical745

space to the computational space and discretize the equations in the uniform computational grids, as having been done746

in several previous works (e.g., [2, 4, 5, 17]), does not resolve the problem as discussed in Appendix B.747

8. Conclusion748

In this work, the conventional second-order central-difference schemes are revisited. SCHEME-I and SCHEME-II749

are compared comprehensively for a linear convection problem to understand their numerical properties thoroughly.750

Both schemes are numerically second-order accurate with carefully specified grids although SCHEME-I has only751

formally first-order accuracy. SCHEME-I is highly dissipative or anti-dissipative depending on the local grid stretch-752

ing, while SCHEME-II is dissipation-free. Both schemes arenumerically dispersive, and SCHEME-II has lower753

magnitude of the dispersion truncation errors than SCHEME-I. SCHEME-I conserves momentum and energy, while754

SCHEME-II conserves neither momentum nor energy. However,SCHEME-I introduces production or dissipation755

to the energy and hence the numerical solutions oscillate significantly on grids expanding in the flow direction and756

contain more energy than the exact one in spite of the energy-conservation of the scheme. SCHEME-II is free of the757

energy production or dissipation.758

The two schemes are adapted to the analysis of the inviscid Burgers’ equation. Three schemes are consid-759

ered: SCHEME-IA (momentum-conservative but not energy-conservative), SCHEME-IB (momentum-conservative760

and energy-conservative), and SCHEME-II (neither momentum-conservative nor energy-conservative). The schemes761

are compared in a periodic and a non-periodic test problem for the further analysis of the conservation properties of762

the different schemes. The different conservation properties of the schemes are confirmed by the periodic test prob-763

lem. For the non-periodic problem, both SCHEME-IA and SCHEME-IB produce strong fluctuations upstream, while764

SCHEME-II preserves the upcoming constant value very well.The different behaviors of the different schemes are765

well explained by the modified PDE analysis.766
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The application of SCHEME-I and SCHEME-II in practical LES is performed. The schemes are first compared767

in a laminar jet test case. Even for this simple laminar test,SCHEME-I on non-uniform grids produces excessive768

numerical oscillations and eventually destroys the smoothnumerical solutions. SCHEME-II reproduces the smooth769

laminar numerical solution very well. The two schemes are further compared in LES of a constant-density turbulent770

jet and a turbulent jet flame. All the LES results by SCHEME-I are improved to some extent by using SCHEME-II.771

The greatest improvement is for the axial turbulence intensity in the near field, which is significantly overpredicted772

by SCHEME-I due to its anti-dissipative nature and its adding energy to the numerical solution. The monotonic773

convergence of the statistics is clearly shown for both testcases and the LES results on the finest grid have a very good774

agreement with the available experimental data. The numerical stability and the computational cost of SCHEME-I and775

SCHEME-II are also discussed, and SCHEME-II is slightly less computationally expensive compared to SCHEME-776

I due to the reduced maximum axial velocity in the domain for the same maximum allowed CFL number. The777

superiority of SCHEME-II over SCHEME-I is clearly demonstrated in these practical LES simulations.778
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Appendix A. Discrete conservations and modified PDEs785

As discussed in Sections 2.5 and 2.6, SCHEME-I conserves momentum and energy at the discrete level for the786

linear convection problem (1). The modified PDEs (11) and (36) contain the truncation error terms which cannot be787

expressed in the flux-form as shown in the following, i.e., the rate of change of the total momentum and energy is788

not solely due to the boundary values. This leads to inconsistency between the discrete level conservation and the789

modified PDE for SCHEME-I. In the following, we reconcile thediscrete momentum and energy conservations and790

the modified PDEs for SCHEME-I.791

The modified PDEs (11) and (36) have terms containing the gridspacing∆xi . To make the modified PDEs792

integrable, we need to consider the grid spacing as a continuous function and take the limiting process∆xi → 0. We793

consider the following transformation794

xi = X(ih), (A.1)

whereh ≡ 1/I andX(ξ) is a function to specify the grid. For the grids considered in Section 2, the function formX(ξ)795

is given in equations (14) and (17). From equation (A.1) and using the Taylor series expansion, we can write796

∆xi = xi − xi−1 = hX′ −
h2

2
X′′ +O(h3), (A.2)

∆xi+1 − ∆xi = xi+1 − 2xi + xi−1 = h2X′′ +O(h4), (A.3)

∆xi+1 + ∆xi = xi+1 − xi−1 = 2hX′ +
h3

3
X′′′ +O(h5), (A.4)

∆xi∆xi+1 = h2X′2 +O(h4), (A.5)
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whereX′ = ∂X/∂ξ, X′′ = ∂2X/∂ξ2 andX′′′ = ∂3X/∂ξ3. With the above equations, we can rewrite the modified PDEs797

(11) and (36) for SCHEME-I as798

∂u
∂t
+
∂u
∂x
= −

1
2

h2X′′
∂2u
∂x2
−

1
6

h2X′2
∂3u
∂x3
+O

(
h3

)
, (A.6)

799

∂u2

∂t
+
∂u2

∂x
= −

1
2

h2X′′
∂2u2

∂x2
+ h2X′′

∂u
∂x

∂u
∂x

−
1
6

h2X′2
[
∂3u2

∂x3
− 3

∂

∂x

(
∂u
∂x

∂u
∂x

)]
+O

(
h3

)
. (A.7)

We now view the modified PDEs (A.6) and (A.7) in the continuoussense and we can integrate them over [0, 2π] to800

get801

d
dt

∫ 2π

0
u(x, t)dx= u(0, t) − u(2π, t) + h2

∫ 2π

0
T1(x, t)dx, (A.8)

802

d
dt

∫ 2π

0
u2(x, t)dx= u2(0, t) − u2(2π, t) + h2

∫ 2π

0
T2(x, t)dx, (A.9)

where all the truncation error terms are grouped intoT1(x, t) and T2(x, t) which integrations cannot be expressed803

in terms of the boundary values. Comparing (A.8) and (A.9) with equations (22) and (28), we see that the actual804

momentum and energy are not conserved exactly by SCHEME-I due to the termsT1(x, t) andT2(x, t) in equations805

(A.8) and (A.9).806

The momentum and energy conservations claimed in Sections 2.5 and 2.6 are for the particular total momentum807

C in equation (24) and the total energyE in equation (30). In the following we explore how the summation Cp
I =808

∑I
i=1

1
2(up

i−1 + up
i )∆xi converges to the integral

∫ 2π

0
updx, wherep = 1 for the momentum (C = C1

I ) andp = 2 for the809

energy (E = C2
I ). Substituting equation (A.4) intoCp

I , we obtain810

Cp
I =

1
2

up
0∆x1 +

I−1∑

i=1

1
2

up
i (∆xi + ∆xi+1) +

1
2

up
I ∆xI (A.10)

=
1
2

up
0∆x1 +

I−1∑

i=1

1
2

up
i

(
2hX′ +

h3

3
X′′′ +O(h5)

)
+

1
2

up
I ∆xI

=
1
2

up
0∆x1 +

I−1∑

i=1

up
i X′h+

h2

6

I−1∑

i=1

up
i

X′′′

X′
X′h+

1
2

up
I ∆xI +O(h4).

When the number of grid cellsI tends to infinity, the second term in the above equation (A.10) converges to
∫ 1

0
upX′dξ =811 ∫ 2π

0
updx, and the third term converges to (h2/6)

∫ 2π

0
up(X′′′/X′)dx, so we obtain812

Cp
∞ = lim

I→∞
Cp

I =
1
2

up
0∆x1 +

∫ 2π

0
updx+

h2

6

∫ 2π

0
up X′′′

X′
dx+

1
2

up
I ∆xI +O(h4).

From the above analysis, we can see that, for SCHEME-I on non-uniform grid,
∫ 2π

0
updx are only conserved to813

O(h2) due to the exact conservation ofCp
I . This is indeed consistent with the results from the modifiedPDEs in814

equations (A.8) and (A.9). Hence the momentum and energy conservations are consistent with the modified PDEs for815
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SCHEME-I.816

Appendix B. Effect of grid transformation817

Non-uniform grids are mostly used for treating the non-uniformity of the fields in numerical simulations. The818

numerical discretization on non-uniform grids is more complicated than that on uniform grids. A second way to deal819

with non-uniformity is to do grid transformation to convertthe problem to an equivalent problem in the computational820

space in which the uniform grid is used. Using the transformation x = X(ξ) to the linear convection problem (1), we821

obtain822

∂u
∂t
+

1
X′
∂u
∂ξ
= 0. (B.1)

In the computational spaceξ, we use uniform gridξi = ih (i = 0, · · · , I ) whereh = 1/I . Discretizing the convection823

term in equation (B.1) with the central-difference scheme, we have the following semi-discretization which we denote824

as SCHEME-III825

dui

dt
+

ui+1 − ui−1

2hX′(ξi)
= 0. (B.2)

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/2π

u

 

 

SCHEME−I   (EG: α=3.6)
SCHEME−II  (EG: α=3.6)
SCHEME−III (EG: α=3.6)
Exact solution

Figure B.18: Numerical solutionu at the stopping timeT = 10π against the positionx/(2π) with SCHEME-I, SCHEME-II and SCHEME-III (B.2)
on the EG grid in equation (14) for Problem-II.

The same numerical test shown in figure 3 is performed using SCHEME-III (B.2). The numerical results are826

shown in figure B.18 and are compared with those by SCHEME-I and SCHEME-II. The strong numerical oscillation827

exhibited in the results by SCHEME-I is also observed in the results by SCHEME-III with grid transformation. No828

significant improvement is found in the results by SCHEME-III (B.2) compared to applying SCHEME-I directly to829

equation (1). The modified PDE for SCHEME-III (B.2) can be derived as follows,830

∂u
∂t
+
∂u
∂x
= −

h2

6X′
∂3u
∂ξ3
+O(h4). (B.3)
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Using the chain rule∂u/∂ξ = X′∂u/∂x, we can write the above equation in the physical spacex,831

∂u
∂t
+ (1+

h2

6X′
X′′′)

∂u
∂x
= −

h2

2
X′′

∂2u
∂x2
−

h2

6
X′2

∂3u
∂x3
+O(h4). (B.4)

As we can see from the equation, the modified PDE for SCHEME-III (B.2) also contains a numerical diffusion term832

(the first term on the righthand side of (B.4)) and the term is in the same magnitude as that in the modified PDE (A.6)833

for SCHEME-I, so it is not a surprise to observe the similar performance of SCHEME-III to SCHEME-I in figure834

B.18.835

Appendix C. Effect of downstream boundary treatments836

For solving the hyperbolic problem (1) with the Dirichlet BC(3) (problem-II), only one physical BC upstream837

is needed. However, for the numerical solution the numerical treatment of the downstream boundary is needed since838

the central difference schemes are used for the hyperbolic problem. In the discussions in Section 2, the exact solution839

at the downstream boundary is used for the numerical solutions, i.e., an additional Dirichlet BC (13) is numerically840

imposed downstream. In this appendix, we explore other downstream boundary treatments and evaluate their effect841

on the numerical solutions of the hyperbolic problem.842

We consider two other downstream boundary treatments. One is to use the first-order upwind scheme for the last843

grid point I ,844

duI

dt
+

uI − uI−1

∆xI
= 0, (C.1)

and the other is to extrapolate (with second-order accuracy) the value at the last grid point from the interior grid points,845

uI = uI−1 +
∆xI

∆xI−1
(uI−1 − uI−2). (C.2)
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Figure C.19: Numerical solutionu at the stopping timeT = 10π against the positionx/(2π) with SCHEME-I and SCHEME-II on the EG grid in
equation (14) for Problem-II with the different downstream boundary treatments.
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The different downstream boundary treatments are compared in figureC.19. In the figure, the same test case as846

in figure 3 is used. Using upwind scheme (C.1) yields almost the same numerical results as those using the Dirichlet847

BC (13) downstream for both SCHEME-I and SCHEME-II. The extrapolation (C.2) suppresses the oscillation caused848

by SCHEME-I to some extent due to the constraint of the last three points lying on a straight line. The different849

downstream treatments for problem-II do not change the qualitative behavior of the numerical results by the two850

numerical schemes, i.e., strong oscillations in the results by SCHEME-I and the smooth results by SCHEME-II.851
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