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Probability density function �PDF� calculations are reported for the dispersion from line sources in
decaying grid turbulence. The calculations are performed using a modified form of the interaction
by exchange with the conditional mean �IECM� mixing model. These flows pose a significant
challenge to statistical models because the scalar length scale �of the initial plume� is much smaller
than the turbulence integral scale. Consequently, this necessitates incorporating the effects of
molecular diffusion in order to model laboratory experiments. Previously, Sawford �Flow Turb.
Combust. 72, 133 �2004�� performed PDF calculations in conjunction with the IECM mixing
model, modeling the effects of molecular diffusion as a random walk in physical space and using a
mixing time scale empirically fit to the experimental data of Warhaft �J. Fluid Mech. 144, 363
�1984��. The resulting transport equation for the scalar variance contains a spurious production term.
In the present work, the effects of molecular diffusion are instead modeled by adding a conditional
mean scalar drift term, thus avoiding the spurious production of scalar variance. A laminar wake
model is used to obtain an analytic expression for the mixing time scale at small times, and this is
used as part of a general specification of the mixing time scale. Based on this modeling, PDF
calculations are performed, and comparison is made primarily with the experimental data of Warhaft
on single and multiple line sources and with the previous calculations of Sawford. A heated
mandoline is also considered with comparison to the experimental data of Warhaft and Lumley �J.
Fluid Mech. 88, 659 �1978��. This establishes the validity of the proposed model and the significant
effect of molecular diffusion on the decay of scalar fluctuations. The following are the significant
predictions of the model. For the line source, the effect of the source size is limited to early times
and can be completely accounted for by simple transformations. The peak centerline ratio of the rms
to the mean of the scalar increases with the Reynolds number �approximately as R�

1/3�, whereas this
ratio tends to a constant �approximately 0.4� at large times independent of R�. In addition, the model
yields a universal long-time decay exponent for the temperature variance. © 2008 American
Institute of Physics. �DOI: 10.1063/1.3006069�

I. INTRODUCTION

Turbulent mixing and dispersion of passive scalars are of
enormous interest in order to understand various phenomena
such as combustion and pollutant dispersion and is a well
researched area. The earliest theoretical studies of turbulent
diffusion were performed by Taylor1,2 in his theory of diffu-
sion by continuous movements for self-preserving turbu-
lence. Following his study, a large number of laboratory
wind tunnel measurements of diffusion of heat in the thermal
wake behind heated line elements were performed.3–7

In particular, Stapountzis et al.5 analyzed the structure
and development of the heated plume behind a single line
source in homogeneous turbulence experimentally and theo-
retically using displacement statistics between pairs of par-
ticles, and they noted that the meandering of the thermal
wake is the dominant reason for the thermal fluctuations
close to the source. Warhaft7 performed a detailed study of
the wake behind a single line source and proceeded to ana-
lyze the interference between pairs of line sources using the
inference method elaborated in Ref. 8 and also noted that a
heated mandoline can be obtained by superimposing a num-
ber of such line sources.

On the modeling side, for chemically inert flows, prob-

ability density function �PDF� methods based on the
velocity-scalar joint PDF9–12 have been proposed. PDF meth-
ods yield the convection terms in closed form while the con-
ditional acceleration and conditional scalar dissipation need
to be modeled. The Langevin equation is one among the
many stochastic models proposed as a closure for the condi-
tional acceleration term. In order to close the conditional
scalar dissipation term, various mixing models have been
proposed. In the context of chemical reactor engineering, the
interaction by exchange with the mean �IEM� model was
postulated by Villermaux and Devillon.13 Dopazo and
O’Brien14 introduced an identical model in the context of the
composition PDF equation in homogeneous turbulence but
referred to it as the linear mean-square estimation model
�LMSE�.

These models were originally proposed for statistically
homogeneous situations, and for inhomogeneous flows they
are implemented so as to be local in physical space. The
question of the connection between scalar mixing and veloc-
ity arises when the joint velocity-scalar PDF is considered.

Pope15 analyzed the modeling provided by the Langevin
equation for velocity combined with Curl’s16 mixing model
for composition. His analysis showed that in isotropic turbu-
lence, the predicted decay rate of the velocity-composition
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correlation coefficient is substantially larger than that ob-
served experimentally. It was also shown that if the scalar
mixing is biased toward fluid having similar velocities, then
the decay rate of the scalar flux is reduced to be within the
experimental range. A velocity-biased mixing model based
on these ideas was developed by Song.17

Pope18 observed that the combination of the Langevin
equation and IEM model implies that there is dissipation of
the scalar flux and that this is inconsistent with local
isotropy. It was observed that this inconsistency is avoided if,
in the IEM model, the mean composition is replaced by its
mean conditioned on velocity. Although its name arose later,
this results in the interaction by exchange with the condi-
tional mean �IECM� mixing model �Eq. �1��. In the IECM
mixing model, the particle’s composition ��t� relaxes to the
local conditional mean according to

d�

dt
= − �m�� − ���u,x�� , �1�

where �m is the mixing rate �the inverse of the mixing time
scale tm�, u and x are the particle’s velocity and position, and
�� �u ,x� denotes the mean composition at x conditioned on
the velocity being u.

Fox19 introduced the “velocity-conditioned IEM” model
in which the composition relaxes to

���� + �1 − �����u,x� �2�

for 0���1. For �=1 and �=0, this corresponds to the IEM
and the IECM model, respectively. The direct numerical
simulation �DNS� data of Overholt and Pope20 were used to
show that � decreases toward zero with increasing the Rey-
nolds number, consistent with local isotropy. The vanishing
effect of molecular diffusivity on the scalar flux was consid-
ered further by Pope,21 and apparently in this paper, the name
“IECM” is introduced.

A decade earlier, Anand and Pope22 applied a velocity-
composition PDF model to the problem of dispersion from a
line source in grid turbulence using a combination of the
Langevin equation and the IEM model. With the standard
�unconditional� application of the model, the scalar variance
greatly exceeds the observed levels. The model was also ap-
plied conditioning the scalar mean on the velocity at the
source. Close to the source �i.e., for flight times small com-
pared to the Lagrangian integral time scale� the fluid velocity
changes little from the value at the source and hence, this
conditional model is very similar to the IECM mixing model
�in this region�. With the conditional model, Anand and
Pope22 were able to match the scalar variance with the ex-
perimental data to within a factor of 2 and also proposed a
theory that completely predicts the evolution of the mean
scalar profile.

Recently, PDF calculations modeling the dispersion be-
hind single and pairs of line sources in decaying turbulence
in conjunction with the IECM mixing model were performed
by Sawford23 by using a mixing rate empirically determined
to match the experimental data. In that paper, the velocity-

conditioned scalar mean for the specific case of line sources
is also obtained analytically using the backward diffusion of
particles.

Other modeling studies that use the IECM model include
the work by Luhar and Sawford24 where they studied the
dispersion behind line and point sources in inhomogeneous
non-Gaussian turbulence in convective boundary layers us-
ing a mixing rate that is fit empirically. Sawford25 also used
the IECM mixing model with the same mixing rate as in Ref.
23 to analyze the conditional scalar statistics for a line plume
in turbulent channel flow comparing against the DNS data of
Brethouwer and Nieuswstadt.26

In order to use the IECM model for a general flow prob-
lem, the mixing rate has to be specified. It is common prac-
tice to model the mixing time scale to be proportional to the
turbulence time scale. DNS studies of homogeneous turbu-
lence mixing20,27,28 have shown that the mechanical-to-scalar
time scale ratio eventually approaches a constant value inde-
pendent of initial conditions. This appears, however, to be at
variance with the heated mandoline experiments of Warhaft
and Lumley6 which do not suggest the relaxation of this ratio
to an equilibrium value over a period of one turbulence de-
cay time. On the other hand, Sreenivasan et al.29 found a
universal decay exponent for temperature fluctuations from a
mandoline but a different exponent for a heated grid. Hence,
the long-time behavior of the mechanical-to-scalar time scale
ratio requires further study.

Due to the disparity in the length scales of the initial
plume and the turbulence length scale, meandering of the
instantaneous plume and the effects of molecular diffusion
�in comparison to turbulent diffusion� are dominant5,30–32 in
the early stages of the plume development. Conditioning on
velocity largely accounts for the fluctuations arising from
meandering close to the source, but fluctuations relative to
the conditional mean also develop. The IECM mixing model
tends to reduce the fluctuations about the conditional mean
without affecting the conditional mean itself.

The effects of molecular diffusion are twofold: transport
of the scalar in physical space and mixing in the scalar space.
Conventionally, the molecular transport has been modeled by
a random walk in physical space22,23 but this results in a
spurious production term in the scalar variance transport
equation. In the context of filtered density function methods,
McDermott and Pope33 modeled the molecular transport by a
mean drift term in the scalar evolution equation and the re-
sulting variance equation does not contain spurious produc-
tion terms.

In the present work, PDF calculations are performed for
single and multiple line sources in decaying grid turbulence
using a modified IECM mixing model with the effects of
molecular diffusion incorporated directly in the mixing
model itself. The results of the calculations are compared
with the experimental data of Warhaft,7 the data of Sawford
and Tivendale reported by Sawford,23 and the recent calcu-
lations of Sawford.23 An array of line sources is also consid-
ered with comparison to the experimental data of Warhaft
and Lumley.6 In this paper, the authors suggest that the pas-
sive scalar variance decay rate is uniquely determined by the
wavenumber of the initial scalar fluctuations relative to the
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turbulence integral length scale. On the other hand,
Sreenivasan et al.29 found that the decay rate of scalar fluc-
tuations from an array of line sources is independent of the
initial conditions.

The rest of the paper is organized as follows. Section II
describes the experimental setup and relevant parameters.
Section III gives a brief overview of the modeling and analy-
sis behind the present work. The implementation details are
covered in Sec. IV. Section V presents the model calculations
and results along with appropriate discussions for a single
line source, a pair of line sources, and an array of line
sources. The final section, Sec. VI, summarizes the important
conclusions.

II. EXPERIMENTAL DETAILS

A sketch of the experimental setup for a single line
source in grid turbulence is shown in Fig. 1. The turbulence
generating grid is taken to be the origin for the downstream
distance x. The flow is in the x direction, as shown in Fig. 1,
with a mean speed U. A fine heated wire forming a thermal
line source is placed normal to the direction of the mean flow
at a distance of xo from the turbulence generating grid. The z
direction is taken parallel to the thermal line source and y is
taken to be the third normal direction. The source size is
sufficiently small that it does not affect the velocity field and
the temperature excess produced by the source heating soon
falls to within a few degrees of the mean flow temperature.
As a result, the excess temperature is a conserved passive
scalar except in the near vicinity of the heated line element.
We are interested in understanding the diffusion and mixing
of the passive scalar in the wake behind the line source. In
particular, we are interested in the scalar mean and variance
profiles downstream of the source.

The velocity fluctuations u, v, and w are taken to be in
the direction of the mean flow, perpendicular to the source,
and parallel to the source, respectively. The velocity variance
decays according to the power law given by

��
2�x� = ��

2�M�� x

M
	−m

, �3�

where �=u ,v ,w. The grid mesh spacing is given by M and
m is the velocity variance decay exponent. Following
Sawford,23 the transverse velocity variance data of Warhaft

have been refitted with a decay exponent of m=1.4 to facili-
tate modeling.

The physical parameters relevant to the laboratory mea-
surements of Warhaft7 are consolidated in Table I.

III. MODELING

A. Turbulence

In the laboratory frame of reference, the line source is
placed at a distance xo from the turbulence grid. One-point
statistics depend solely on x and y and are measured by a
stationary probe positioned at various distances downstream
of the source. In the reference frame moving with the mean
flow, to an excellent approximation, the line source appears
as an initial plane area source, and the flow evolves in time.
The time t in the moving frame is related to streamwise
position x in the laboratory frame by

x�t� = xo + Ut . �4�

Consequently, with Taylor’s hypothesis, only the dispersion
perpendicular to this area source is relevant. Thus, in this
frame, one-point statistics depend solely on y and t. While
the measurements are naturally made in the laboratory frame,
it is most convenient to perform the modeling in the moving
frame.

For decaying grid turbulence, the rate of decay of the
velocity variance �Eq. �3�� can be re-expressed as a function
of travel time from the source as

��
2�t� = ��

2�0��1 +
t

to
	−m

, � = u,v,w , �5�

where to is the flight time to the source. Using Eq. �5�, the
turbulent kinetic energy k�t� and the turbulent dissipation
��t� can therefore be obtained as

k�t� = 1
2 ��u

2�t� + �v
2�t� + �w

2 �t�� , �6�

��t� = −
d

dt
k�t� . �7�

In the Lagrangian PDF modeling framework, the turbu-
lent flow is represented by a large number of particles, all of
which are considered to be statistically identical. Each par-

FIG. 1. �Color online� Sketch of the experimental setup showing the wind
tunnel. The source �dot� is at a distance xo from the turbulence generating
grid.

TABLE I. Parameters in the laboratory measurements for diffusion behind a
single line source in grid turbulence �Ref. 7�, effective source size �o, mesh
spacing M, position of the source with respect to the grid, xo /M, mean speed
U, velocity standard deviation at one mesh length from the grid, �w ,�u ,�v,
velocity variance decay exponent m, and molecular diffusivity 	.

�o 1.27
10−4 m

2.5
10−5 m

M 2.54
10−2 m

xo /M 20, 52, 60

U 7 ms−1

�u 2.44 ms−1

�w ,�v 2.27 ms−1

m 1.4

	 2.1
10−5 m2 s−1
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ticle carries a set of properties—velocity v�t�, position y�t�,
and scalar ��t�. Stochastic models are constructed to evolve
each of the particle’s properties in time. The Langevin equa-
tion is one of the typical stochastic models used to model the
velocity of the particle following the fluid. Conventionally, to
model the position y�t�, the evolution equation for fluid par-
ticle velocity dy /dt=v is augmented by a random term to
account for molecular diffusion. Hence y�t� is a model for
the position of a molecule and evolves as

dy = vdt + 
2	dW1, �8�

where W1�t� is a Wiener process and 	 is the molecular dif-
fusivity. In the present work, the position y�t� is instead mod-
eled as

dy

dt
= v , �9�

and the effects of molecular diffusion are directly incorpo-
rated into the mixing model, the details of which are elabo-
rated in Sec. III B. While the present model uses Eq. �9�, the
analysis in this section considers both Eqs. �8� and �9�. In
both cases the model for v�t� is that for the velocity follow-
ing a fluid particle �i.e., additional effects due to molecular
motion34 are neglected� and is

dv = A�v,t�dt + 
C0�dW

= − �1

2
+

3

4
C0	�

k
vdt + 
C0�dW , �10�

where A�v , t� is the drift term and W�t� is a second Wiener
process �independent of W1�t��. We use the standard value of
2.1 for the Langevin equation model constant35 C0 in all our
calculations unless otherwise specified.

Single particle displacement statistics can be used to ob-
tain the mean scalar field. Hence the displacement of a par-
ticle from a location at the source at the initial time, defined
as �y�t�=y�t�−y�0�, can be related to the evolution of the
mean scalar profile, which is a Gaussian field with character-
istic width �p centered on the plume centerline. Taking into
account the effect of the source size �o on the evolution of
the plume width, �p can be written as

�p
2 = �o

2 + �y
2, �11�

where �y
2= ��y2� is the mean-square displacement. Anand

and Pope22 derived �y
2 analytically from Eqs. �8� and �10� to

be

�y
2 = 2	t + �o

2, �12�

where the contribution from turbulent dispersion, �o
2, is

given by

�o
2 = 2�v

2�to�to
2� �1 + t/to�r−s

r�r − s�
+

�1 + t/to�−s

rs
−

1

s�r − s�� ,

�13�

with r and s being

r =
m

2
�3

2
C0 − 1	 + 1, �14�

s =
m

2
�3

2
C0 + 1	 − 1. �15�

B. Mixing model

Various mixing models have been proposed13–19,21 as a
closure for the conditional scalar dissipation term in the
velocity-scalar joint PDF transport equation. The simplest of
these is the IEM model.13,14 With the IEM mixing model, the
particle’s composition ��t� relaxes to the local mean as

d�

dt
= − �m�� − ���x�� , �16�

where x is the particle’s position, �� �x� is the mean compo-
sition at x, and �m is the mixing rate given by

�m =
C��

2k
, �17�

with C�
1.2–3.36 The IEM model makes an unjustifiable
assumption regarding the independence of the scalar mixing
term with the velocity field and is inconsistent with local
isotropy. On the other hand, conditioning the scalar mean on
velocity is consistent with local isotropy and hence corrects
the deficiency of the IEM model by performing mixing lo-
cally in velocity-physical space.

For a Lagrangian PDF calculation, the Langevin equa-
tion coupled with a mixing model comprise a set of stochas-
tic differential equations for velocity, displacement, and sca-
lar carried by a particle, from which the transport equation
for the Lagrangian joint PDF of velocity and scalar can be
derived. The various moment conservation equations can be
obtained from the joint PDF transport equation.

1. IECM mixing model

In this subsection we consider the IECM mixing model
as used by Sawford23 in which the direct effects of molecular
diffusivity are modeled by a random walk in position �Eq.
�8��. Then in the following subsection �Sec. III B 2� we con-
sider the modified IECM model which instead uses Eq. �9�
and the direct effects of molecular diffusion are accounted
for differently �by Eq. �37�, below�. The analysis shows that
the two models yield the same behavior for the mean, �� �y�,
and the conditional mean, �� �V ,y�, but a different behavior
for the variance, ���2�.

With the IECM mixing model as used by Sawford,23 the
transport equation for the joint PDF of velocity, scalar, and

position, f̃�V ,� ,y ; t�, and the joint PDF of velocity and po-
sition, g̃�V ,y ; t�, can be derived from Eqs. �1�, �8�, and �10�,
in which the molecular transport is modeled as a random
term in the position equation. Here, V and � refer to the
velocity and scalar sample space variables, respectively. The

transport equations for f̃ and g̃ are given by
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� f̃

�t
+

�Vf̃

�y
+

�A�V� f̃

�V
+

�
�V,�,y� f̃

��
= 	

�2 f̃

�y2 +
1

2
C0�

�2 f̃

�V2

�18�

and

� g̃

�t
+

�Vg̃

�y
+

�A�V�g̃
�V

= 	
�2g̃

�y2 +
1

2
C0�

�2g̃

�V2 , �19�

where 
�V ,� ,y�=−�m�t���− �� �V ,y��. Note that the coeffi-
cients in Eqs. �18� and �19� depend on time.

From Eq. �18�, transport equations for the different mo-
ments of the scalar can be obtained. In particular, the trans-
port equations for the mean �Eq. �20�� and the mean square
�Eq. �31�� of the scalar are of interest. Multiplying Eq. �18�
by � and integrating over the �� ,V� sample space, we obtain
the transport equation for ��� to be

����
�t

+
��v��

�y
= 	

�2���
�y2 , �20�

which is identical to the exact conservation equation. The
IECM mixing model does not affect the mean scalar field as
all the moments first-order in � are unaffected by mixing:

��n
���� = 0, n = 0,1,2, . . . . �21�

Therefore, single particle displacement statistics can be used
to obtain the mean scalar field. Hence, the square of the
mean plume width �p is given by Eq. �11� as the sum of �o

2

and the particle displacement variance �y
2.

Likewise, the transport equation for the conditional
mean, c̃= �� �V ,y�, can be obtained from Eqs. �18� and �19�
based on its definition,

�
0

�

� f̃�V,�,y�d� = c̃g̃�V,y� , �22�

as

� c̃

�t
+ V

� c̃

�y
+ A

� c̃

�V
= 	

�2c̃

�y2 +
1

2
C0�

�2c̃

�V2 + Co�
� ln g̃

�V

� c̃

�V

+ 	
� ln g̃

�y

� c̃

�y
. �23�

Since the conditional mean is also unaffected by mixing with
the IECM model, its transport equation can be obtained from
the displacement statistics23 �in other words, g̃� and the
source condition is effected by considering particles that
cross the source at the initial time and hence, �g /�y is non-
zero. For the case of a single line source of strength Q in grid
turbulence, one obtains

���V,y� =
Q


2��̃
exp�−

1

2
� y − ỹ

�̃
	2� , �24�

where the conditional center ỹ�V , t� is

ỹ = �vyV�y/�v �25�

and the width �̃�t� is

�̃ = 
�o
2 + �y

2�1 − �vy
2 � . �26�

Here �vy�t�= �v�y� /�y�v is defined to be the correlation co-
efficient between the velocity and displacement from the
source and is given by

�vy =
1

�v�y

�v
2�to�to

r
��1 + t/to�r−s−1 − �1 + t/to�−s−1� . �27�

The conditional mean can also be obtained by solving Eq.
�23� with the appropriate initial condition on c̃. In this case,
all particles that are initially distributed in the physical do-
main are considered and �g /�y becomes zero. It has been
verified that, consistently, this procedure also yields solution
Eq. �24�.

With �� being the fluctuation in � about its mean, the
transport equation for the scalar flux �v��� can be obtained
from Eq. �18� by multiplying by V� and integrating:

�

�t
�v��� +

�

�y
�v2�� = �A�� + �v
� + 	

�2

�y2 �v��� . �28�

A consequence of local isotropy of the velocity and scalar
fields is that �v
� is zero. For the IEM model we obtain
instead

�v
� = − �m�v�� − ����� = − �m�v��� � 0, �29�

while with the IECM model the contribution from the mixing
term is

�v
� = − �m�v�� − ���v��� = 0. �30�

Similarly, the transport equation for the mean square of
the scalar can be obtained by multiplying the joint PDF
transport equation, Eq. �18�, by �2 and integrating over the
entire �� ,V� sample space, which yields

���2�
�t

+
��v�2�

�y
= 	

�2��2�
�y2 − 2�m� , �31�

where � is defined by Eq. �33�. The modeled scalar variance
transport equation can be obtained from Eqs. �20� and �31� as

����2�
�t

+ 2�v���
����
�y

+
��v��2�

�y

= 	
�2���2�

�y2 + 2	� ����
�y

	2

− 2�m� , �32�

where evidently

2�m� = 2�m���2� − �c̃2�� �33�

is the scalar variance dissipation according to the IECM
model. Comparing the IECM model scalar variance transport
equation given by Eq. �32� against the exact scalar variance
transport equation,

����2�
�t

+ 2�v���
����
�y

+
��v��2�

�y

= 	
�2���2�

�y2 − 2	� ���

�xi

���

�xi
� , �34�

it is apparent that the modeled scalar variance transport equa-
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tion gives rise to a spurious production term P given by

P = 2	� ����
�y

	2

. �35�

2. Modified IECM mixing model

In order to eliminate the spurious production term in the
scalar variance transport equation, in the present model, dif-
fusion is removed from the position equation �i.e., Eq. �9� is
used in place of Eq. �8��, and the effects of molecular diffu-
sion are directly incorporated into the mixing model along
lines similar to McDermott and Pope.33 The molecular diffu-
sion is modeled into the IECM mixing model by the addition
of a conditional mean scalar drift term, H�u ,x�, defined as

H�u,x� = 	�2���u,x� , �36�

to obtain the modified IECM mixing model,

d�

dt
= H�u,x� − �m�� − ���u,x�� . �37�

The transport equations for the joint PDF of position, veloc-
ity, and scalar, f�V ,� ,y ; t�, and the joint PDF of position and
velocity, g�V ,y ; t�, can be derived from Eqs. �9�, �10�, and
�37� as

� f

�t
+

�Vf

�y
+

�A�V�f

�V
+

�H�V,y�f

��
+

�
�V,y,��f

��

=
1

2
C0�

�2f

�V2 �38�

and

�g

�t
+

�Vg

�y
+

�A�V�g
�V

=
1

2
C0�

�2g

�V2 , �39�

respectively. Note that we distinguish between the PDFs f
and g according to the modified IECM model and the corre-

sponding PDFs f̃ and g̃ according to the original IECM
model. The evolution equation for f , Eq. �38�, contains the

term in H, which is absent from Eq. �18� for f̃ , whereas Eq.
�19� for g̃ contains the term in 	 which is absent from Eq.
�39� for g.

It is important to observe that the evolution equations for
the mean ��� and the scalar flux �v��� derived from Eqs.
�38� and �39� agree with Eqs. �20� and �28�, respectively, and
so the two model variants yield identical fields of ��� and
�v���.

The scalar variance transport equation derived from Eqs.
�38� and �39� contains no production terms and can be writ-
ten as

����2�
�t

+ 2�v���
����
�y

+
��v��2�

�y

= 2	��c
�2c

�y2� − ���
�2���
�y2 � − 2�m���2� − �c2�� ,

�40�

where c= �� �V ,y� is the conditional scalar mean. �Note that

we distinguish between the conditional means c̃ and c given
by the two model variants.� The transport equation for the
conditional scalar mean can be obtained from Eqs. �38� and
�39� as

�c

�t
+

�Vc

�y
+ A

�c

�V
= 	

�2c

�y2 +
1

2
C0�

�2c

�V2 + Co�
� ln g

�V

�c

�V
.

�41�

Comparing Eq. �41� with Eq. �23�, we observe that Eq. �41�
is of the same form as Eq. �23� except for the omission of the
term in � ln g̃ /�y. The modified IECM mixing model affects
the evolution of the conditional mean through the term
	�2c /�y2, and therefore displacement statistics cannot be
used to obtain the conditional mean analytically. Since Eq.
�41� is linear in c, it admits a Gaussian solution with an
initial condition, c= ���t=0, and can be solved for. On the
other hand, for the line source, the source condition is ef-
fected by the initial condition on the conditional mean and
hence, the term �g /�y becomes zero, reducing Eq. �23� to
Eq. �41�, implying that c̃=c for identical initial conditions.

In summary, the two variants of the IECM model lead to
identical results for the mean ���, the conditional mean
�� �V ,y�, and the scalar flux �v���. However, the variance

TABLE II. Characteristics of the velocity field corresponding to the param-
eters in Table I; effective source size �o, source position relative to the grid,
xo /M, Kolmogorov length scale �, turbulence length scale L, integral scale
Reynolds number, RL=ko

2 /�o
2�, and Taylor scale Reynolds number R�

=
�20 /3�RL at the source.

�o 1.27
10−4 2.5
10−5 �m�

xo /M 20 52 60

� 1.99
10−4 3.53
10−4 3.84
10−4 �m�
L 1.02
10−2 1.35
10−2 1.43
10−2 �m�
RL 431 294 278

R� 54 44 43

10
−3

10
−2

10
−1

10
0

10
1

0

0.5

1

1.5

t/t
o

i(0
,t)

FIG. 2. �Color online� Comparison of the centerline intensity of fluctuations
obtained using the laminar thermal wake model: 	=0 �dot-dashed line� and
	=2.1
10−5 m2 s−1 �solid line�; Warhaft �Ref. 7� data ��� and Warhaft
�Ref. 7� data �o=1.27
10−4 m ���; Sawford’s �Ref. 23� model calcula-
tions �dashed line� plotted against flight time from the source for source
position xo /M =52 and source size �o=2.5
10−5 m.
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���2� evolves differently �as revealed by the right-hand sides
of Eqs. �32� and �40��. Most importantly, the modified IECM
model avoids the spurious production term P.37

C. Laminar thermal wake modeling

There are three relevant length scales in the passive sca-
lar diffusion behind a line source: the instantaneous plume
width �p, the Kolmogorov length scale �, and the turbulence
integral length scale L. The relative magnitudes of the three
length scales are summarized in Table II. The source is suf-
ficiently small so as not to affect the underlying velocity
field, and it is comparable to the Kolmogorov length scale at
the source location. For such small sources with �o /L�1,
one of the dominating factors that influence the evolution of
the scalar variance in the vicinity of the source is the mo-
lecular diffusivity.30 In addition to the direct effect of mo-
lecular processes, the instantaneous plume is affected by the
velocity at the source at the initial time.22

Very close to the source, the scalar field can therefore be
locally modeled as evolving due to molecular diffusion in a
constant and uniform velocity field, given by the velocity at
the source at the initial time, vo. The instantaneous scalar
field can thus be modeled as a Gaussian of width 
�o

2+2	t
convected by a distance vot. As a consequence, for a fluid
particle with position y�t� and velocity v�t�, the scalar carried
by the particle is �according to this model at early time�
given by

��y,v;t� =
Q


2��̄
exp�−

1

2
� y − vt

�̄
	2� , �42�

where the thermal wake thickness �̄�t� is

�̄ = 
�o
2 + 2	t . �43�

Thus, the effects of both the molecular diffusion �on the
plume width� and the randomness in vo �on the plume me-
andering� are accounted for. To evaluate the correctness of
the model, the centerline intensity of fluctuations i�0, t�
= ���2�y=0

1/2 / ���y=0 is compared to the experimental data and
model calculations by Sawford23 in Fig. 2. Including the ef-
fects of molecular diffusion in modeling the plume as a lami-
nar thermal wake close to the source gives good agreement
with the other two data sets in the initial stages of the plume
development. However, as may be seen, ignoring molecular
diffusion grossly overpredicts the scalar variance. From Fig.
2, it can also be inferred that, as expected, this model is valid
only in the initial stages of the plume development when the
ratio of turbulence integral length scale to the plume width is
much larger than unity.

D. Mixing rate

In Sec. III D 1, the mixing rate �m for the IECM model
valid at small times is obtained using the laminar wake mod-
eling approach. At large times, the mixing rate is taken to be
the standard model �Eq. �17��. Such a specification for the
IECM model is compared to the mixing rate used by
Sawford.23 Section III D 2 derives the mixing rate for the

modified IECM mixing model along lines similar to Sec.
III D 1, imposing conditions of realizability and bounded-
ness.

1. IECM model

By definition, the IECM model �Eq. �1�� acts to reduce
the fluctuations of the scalar about its conditional mean at a
rate given by the mixing rate �m �which is the inverse of the
mixing time scale�. The model has no effect on the scalar
mean. Molecular diffusion on the other hand has a direct
effect on the scalar mean.

With C� �in Eq. �17�� defined to be a constant, the mix-
ing time scale is proportional to the turbulence time scale for
all times during all stages of the plume development. As a
consequence, the IECM model �with constant C�� does not
predict the correct evolution of the scalar variance due to the
spurious production term in the scalar variance transport
equation.

In order to match the laboratory measurements,
Sawford23 used experimental data to obtain an empirically fit
time scale of the form

tm

to
= ��mto�−1 = 0.6

t

to
�1 + tanh� ln�t/to� + 2.3

0.9
	� . �44�

We now develop an alternative specification of the mix-
ing rate which is based on an analytic expression for �m at
small times, obtained from the laminar thermal wake model.
Close to the source, the transport equation for the mean
square of scalar �Eq. �31�� can be integrated over y to give
the transport equation for the integral mean square of the
scalar as
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FIG. 3. �Color online� Comparison of mixing rate definitions with flight
time from the source: Modified mixing model �mTo �dashed line�; IECM
model �mTo �thick solid line�, �m

�To �thin solid line�; Sawford’s �Ref. 23�
empirical mixing rate �dot-dashed line�.
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�
−�

� ���2�
�t

dy = − 2�m�
−�

�

��2�dy

+ 2�m�
−�

� �
−�

�

���V,y�2fv�V�dVdy . �45�

At early times, various moments of the scalar can be ob-
tained from Eq. �42� using the laminar thermal wake model-
ing approach described in Sec. III C and hence the mixing
rate close to the source �m

0 is obtained as

��m
0 �−1 = 2

�̄3

	 � 1

�̄
−

1


�o
2 + �y

2�1 − �vy
2 �
� . �46�

Let T denote the turbulence time scale T=k /� and L the
length scale L=k3/2 /�. At the source location, To�T �t=0�
is simply related to the flight time to the source, to as To

= to /m. The integral length scale at the source, Lo, can be
obtained as ko

3/2 /�o where ko and �o refer to the turbulent
kinetic energy and dissipation at the source location, respec-
tively. For t /To�1, Eq. �46� can be simplified to

�m
0 �t�To �

m	

2�vo

2 To
�To

t
	3

. �47�

The above analysis deduces the appropriate mixing rate
�m

0 �t� at very early times, whereas the appropriate rate �m
��t�

at late times is taken from the standard model �Eq. �17��.
Thus, for t /To�1 we obtain

�m
��t�To =

C��To

2k
=

C�

2
�1 +

t

mTo
	−1

�
mC�

2

To

t
. �48�

The specification for the mixing rate �for all times�,

�m�t� = �m
0 �t� + �m

��t� , �49�

given in nondimensional form as

�m�t�To =
m	

2�vo

2 To
�To

t
	3

+
mC�

2
�To

t
	 , �50�

i.e., the sum of the rates given by Eqs. �47� and �48�, is
comparable to Eq. �44� both near to and far from the source.

2. Modified IECM model

As was done in Sec. III D 1, an analytic expression for
the mixing rate �m

0 at small times, t /To�1, can be obtained
by conserving the integral of the modeled scalar variance
transport equation �Eq. �40�� using the laminar thermal wake
model. This approach yields �m

0 to be

�m
0 �

3	

2�o
2 . �51�

However, at large times, t /To�1, �m is taken to be �m
�.

Since the two relevant time scales in the passive scalar dif-
fusion from a line source at the source location are the scalar
time scale at the source, �	, defined as

�	 =
�o

2

	
, �52�

and the turbulence time scale at the source, To, their ratio �
can be defined as

� �
�	

To
. �53�

From Eqs. �48� and �51�, the mixing rate that is valid for all
times can be specified as

1

�m�t�
= tm�t� =

2

3
�	 + �T�t� − To�

2

C�

�54�

and in nondimensional form as

1

�mTo
=

tm

To
=

2

3
� + � T

To
− 1	 2

C�

. �55�

In order for the modified IECM mixing model �Eq. �37�� to
satisfy realizability and boundedness constraints on the sca-
lar, the mixing rate �m should be such that �m��m

min where

�m
min =

	

�̃2 , �56�

and the specification of the mixing rate �Eq. �55�� satisfies
realizability and boundedness for ��1. All the calculations
reported are performed with the mixing rate specification
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FIG. 4. Width of the mean scalar profile normalized by the turbulence
length scale at the source against normalized flight time from the source for
source position xo /M =52; �p from Eq. �11� �solid line� and �p from the
present model calculations ���.

101514-8 S. Viswanathan and S. B. Pope Phys. Fluids 20, 101514 �2008�

Downloaded 04 Nov 2008 to 128.84.43.196. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



given using Eq. �55�. The only adjustable parameter that Eq.
�55� is dependent on is the model constant, C�.

Figure 3 compares the different definitions of the mixing
rates given by Eqs. �44�, �48�, �50�, and �55�. By construc-
tion, the specified mixing rates �50� and �55� smoothly blend
into the large-time asymptote �48� and with Eq. �44� for
t /To�1. There is no agreement between Eqs. �44� and �50�
for t /To�1 because Eq. �47� is based on the laminar thermal
wake modeling while Eq. �44� is empirically fit to match the
wind tunnel laboratory data. Also, Eq. �55� is derived for an
entirely different mixing model.

E. Summary of the model

In summary, the modified IECM mixing model, which is
used to obtain the results presented in the following sections,
consists of Eqs. �9�, �10�, �37�, and �54� �or equivalently Eq.
�55� given in nondimensional form�. Unless otherwise stated,
the model coefficients take the values C0=2.1 and C�=1.5.

IV. IMPLEMENTATION

We represent the flow by an ensemble of N=10 000 par-
ticles, which at time t have properties y�t�, v�t�, and ��t�.
Initially, the solution domain extends between ��y�0�,
where �y�0�=10�o. The particles are uniformly distributed
in the solution domain and are initialized with a Gaussian
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FIG. 5. �Color online� Comparison of the centerline intensity of fluctua-
tions, i�0, t�, plotted against flight time from the source. Warhaft �Ref. 7�
data: xo /M =20, �o=1.27
10−4 m ���, xo /M =52, �o=2.5
10−5 m ���,
xo /M =52, �o=1.27
10−4 m ���, and xo /M =60, �o=1.27
10−4 m ���.
Sawford’s �Ref. 23� calculations using the mixing rate given by Eq. �44�:
xo /M =20, �o=1.27
10−4 m �thin solid line� and xo /M =52, �o=1.27

10−4 m �thin dashed line�. Present calculations: xo /M =20, �o=1.27

10−4 m �thick solid line�, xo /M =52, �o=1.27
10−4 m �thick dashed
line�, and xo /M =60, �o=1.27
10−4 m �dotted line�.
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FIG. 6. �Color online� Comparison of IECM model calculations with the
mixing rate given by Eq. �17� with the model calculations done with Eq.
�50� showing the centerline intensity of fluctuations, i�0, t�, against flight
time from the source. IECM model calculations using mixing rate given by
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10−4 m �thick dot-dashed line�. Present cal-
culations: xo /M =52, �o=1.27
10−4 m �thick dashed line� and xo /M =20,
�o=1.27
10−4 m �thick solid line�. Warhaft �Ref. 7� data: xo /M =20, �o

=1.27
10−4 m ���, xo /M =52, �o=2.5
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FIG. 7. �Color online� Radial profiles of rms scalar normalized by its cen-
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velocity distribution N�0,�v
2�0��. The particles’ scalar values

are initialized to the mean scalar field �which is a Gaussian
with characteristic width �o�.

The particle properties are advanced in time by a first-
order explicit Euler scheme with variable time stepping, the
time step �t being defined as 1/1000 of the mixing time
scale, tm=1 /�m, where �m is given by Eq. �54�. For the line
source, the modified IECM mixing model �37� reduces to

d�

dt
= 	

�2c

�y2 − �m�� − c� , �57�

where c is the conditional scalar mean and is known analyti-
cally �Eq. �24��. If the conditional scalar mean is approxi-
mated as being a constant across the time step, then, given
��t�, ��t+�t� is known analytically as the solution to Eq.
�57�,

��t + �t� = ��t�exp�− �m�t� + ��t��1 − exp�− �m�t�� ,

�58�

where

��t� = c� 	

�̃2�t��m
�� y�t� − ỹ�t�

�̃�t�
	2

− 1� + 1� �59�

and ỹ and �̃ are given by Eqs. �25� and �26�, respectively.
The particle’s scalar can therefore be advanced in time.

The width of the thermal wake is determined from Eqs.
�11� and �12� at the beginning of every time step. When the
width of the thermal wake, �p, exceeds a quarter of the cur-
rent domain half-width, �y�t�, the solution domain is ex-
panded as follows. The size of the solution domain is
doubled. An additional N particles are temporarily intro-
duced into the expanded domain such that the resulting par-
ticle distribution is uniform in physical space. Since the com-
putational cost scales linearly with the number of particles
for a given time step, to keep the computational cost con-
stant, only every alternate particle of the 2N particles is re-
tained in the newly expanded domain. In additional to cost
control, this procedure also ensures that the thermal wake is
well resolved within the solution domain. For the time period
of the simulation, there are a significant number of particles
per unit turbulence integral scale, and hence only the reso-
lution of the thermal wake is of concern. Reflective boundary
conditions are applied at the domain boundaries.
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FIG. 9. �Color online� Higher moments on the centerline against flight time from the source: Present calculations �solid line�; Sawford �Ref. 23� IECM
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FIG. 10. �Color online� Radial profiles of higher-order moments measured at varying distances from the source. Present calculations �solid line�; Sawford
�Ref. 23� IECM calculations �dashed line�; Sawford and Tivendale �Ref. 23� data ���: �a� skewness at t /To=0.0014, �b� skewness at t /To=0.22, �c� skewness
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Figure 4 plots the normalized width of the mean scalar
profile �obtained using a quantile-quantile plot of particle
position compared to an error function� against normalized
flight time from the source. The good agreement between the
theoretical prediction22 given by Eqs. �11� and �12� and
model calculations using the modified IECM model verifies
the numerics of the calculations—at least for the scalar
mean.

The radial profiles of various statistics used to compare
the present model calculations with the experimental data are
obtained by binning the particles in physical space, in bins of
size approximately half of �p. Small bins give rise to larger
statistical errors while large bins smear out the gradients.
This smearing probably explains the small discrepancies be-
tween the model calculations and experimental data in re-
gions with steeper gradients �shown in the later sections�.
Various statistics are obtained by averaging over 20 indepen-
dent simulations.

V. RESULTS AND DISCUSSION

A. A single line source

Detailed PDF calculations have been performed with the
modified IECM model using the mixing rate given by Eq.
�55�, and the results are compared to the experimental data of
Warhaft7 and the previous calculations of Sawford.23 Higher-
order scalar moments, namely, skewness and kurtosis, are
also compared against the experimental data of Sawford and
Tivendale reported by Sawford.23

Figure 5 plots the centerline intensity of fluctuations,
i�0, t�= ���2�y=0

1/2 / ���y=0, against flight time from the source
for various source conditions as detailed in the figure. The
experiments are performed with two source sizes. The larger

source is used when measurements are taken at distances far
away from the source for xo /M =20 so that the measurements
are not corrupted by background noise. Since the model cal-
culations are oblivious to such effects, only one source size
is used. The centerline intensity of fluctuations agrees well
with the experimental data and with the previous model cal-
culations of Sawford23 throughout the development of the
plume. Contrasting this against Fig. 6 in which the IECM
model with Eq. �17� is used and molecular diffusion is ne-
glected in the scalar evolution equation, we see that molecu-
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FIG. 11. �Color online� Evolution of the centerline cross-correlation coeffi-
cient for various source spacings, do /M =0.09,0.31,0.55,0.98,1.38,1.97.
The sources are placed at a distance of xo /M =20 from the turbulence gen-
erating grid: Warhaft �Ref. 7� data ���; Sawford �Ref. 23� model calcula-
tions �dot-dashed line�; present calculations �solid line�.
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respective centerline values when the sources are positioned at xo /M =20
from the turbulence grid for different spacings between the sources, do: �a�
do /M =0.31 and t /To=2.31, �b� do /M =0.55 and t /To=1.19, and �c� do /M
=0.98 and t /To=9.31; present model calculations �solid line�; Warhaft �Ref.
7� data: �1 ���, �2 ���, and �1+�2 ���.
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lar diffusion effects are significant in the correct estimation
of the evolution of the scalar variance in both near-field and
far-field stages of the plume development.

Radial profiles of the normalized rms scalar at four dis-
tinct stages of the plume development are plotted in Fig. 7
and the integral measure of the variance, I=����2�dy nor-
malized by 2�Lo /Q2 is plotted in Fig. 8. The present calcu-
lations are successful in predicting both the shape of the
profiles and also the locations of the extrema at various time
instants in the development of the thermal wake and there is
good agreement with the experimental data.

It is also of significant interest to study the model pre-
dictions of the higher-order scalar moments especially skew-
ness and kurtosis. Experimental data from Sawford and Tiv-
endale reported by Sawford23 and previous IECM model
calculations from Sawford23 are used to compare with the
model predictions. Figure 9 plots the centerline values of
skewness S and kurtosis K against flight time from the source

while Fig. 10 compares the radial profiles of the skewness
and kurtosis measurements made at three different times,
t /To=0.0014,0.22,7.2, with the experimental data. Even
though the centerline values of the moments are not in per-
fect agreement with the data for all times, the radial profiles
match the experimental observations well. However, the cen-
terline predictions are more accurate than the previous model
calculations.

B. A pair of line sources

A nontrivial extension can be made from a single line
source to a pair of line sources in grid turbulence. The two
sources, numbered 1 and 2, are placed parallel to each other
separated by a distance do at a distance xo from the turbu-
lence generating grid. The origin of the coordinate system is
chosen so that the locations of the sources are �x ,y�
= �xo , �do /2�. In the experiments, a range of source separa-
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FIG. 13. �Color online� Radial profiles of the cross-correlation coefficient �12 between sources 1 and 2 for different spacings between the two sources, do /M.
The sources are positioned at xo /M =20 from the turbulence generating grid: �a� t /To=1.19, �b� t /To=2.31, �c� t /To=6.51, and �d� t /To=9.31. Present model
calculations �solid line�. Warhaft �Ref. 7� data: do /M =0.05 ���, do /M =0.31 ���, do /M =0.55 ���, do /M =0.98 ���, and do /M =1.38 ���.
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tions was considered, from do=1.2 mm to do=127 mm. We
are interested in modeling the mixing and interference of the
plumes from these two line sources.

The scalar fields corresponding to the two sources 1 and
2 are denoted in the laboratory frame by �1�x ,y� and

�2�x ,y�, respectively. The means and variances of �1 and �2

are the same as for the single source �with the appropriate
shift in origin�. In the moving reference frame, the scalar
fields are denoted by �1�y , t� and �2�y , t�. The correlation
coefficient, �12�y , t�, is defined as
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FIG. 14. �Color online� �a� Radial profiles of rms scalar corresponding to each of the four sources in an array, normalized by their respective centerline values
at t /To=4.41; �b� radial profiles of rms scalar corresponding to �2+�3; �c� radial profiles of rms scalar corresponding to �2+�4; �d� radial profiles of rms
scalar corresponding to �1+�4; �e� radial profiles of rms scalar corresponding to all the four sources. The radial profiles in �b�–�e� are normalized by the mean
centerline value obtained from �a�. Present model calculations �solid line�; Warhaft �Ref. 7� data ���.
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�12 =
��1��2��

��1�
2�1/2��2�

2�1/2 , �60�

where � j�=� j − �� j� is the fluctuation in the jth scalar about
its mean.

In the present work, the PDF model using Eq. �55� is
applied to a pair of line sources and is used to calculate the
correlation coefficient �12. Each particle in the simulation
now has two properties, �1 and �2, in addition to its velocity
and position. Each � j , j=1,2, evolves by the modified IECM
model Eq. �37� with conditional means defined similarly to
Eq. �24� relative to their respective sources. For instance, the
conditional mean, ��1 �y ,v�, is given by

��1�y,v� =
Q


2�
�o
2 + �y

2�1 − �vy
2 �


exp�−
1

2� y − do/2 − �vyv�y/�v


�o
2 + �y

2�1 − �vy
2 �

	2� , �61�

where source 1 is located at a distance do /2 from the origin.
Thus, the correlation coefficient can be calculated and com-
pared to the detailed laboratory measurements available.7

The experimental data for the pair of line sources form part
of the same data set as the single line source. The relevant
parameters are listed in Table I with �o=1.27
10−4 m and
xo /M =20.

In the experiments, the correlation coefficient can be es-
timated with multiple sources that are sometimes on or off
using the inference method.8 For a pair of line sources, let �B

correspond to the scalar field when both the sources are ac-
tive. Then, with the assumption that the two scalar fields are
linearly additive, we can write

�B = �1 + �2, �62�

�B� = �1� + �2�, �63�

��B�
2� = ��1�

2� + ��2�
2� + 2��1��2�� . �64�

Therefore, using Eqs. �60� and �64� the correlation coeffi-
cient can be written as

�12 =
��B�

2� − ��1�
2� − ��2�

2�
2��1�

2�1/2��2�
2�1/2 . �65�

�This technique is used in the experiments, whereas in the
calculations, joint statistics of the scalars are extracted from
the particles’ scalar values.�

The evolution of the centerline correlation coefficient
between the two sources is plotted in Fig. 11 for a range of
source separations. The present model calculations are com-
pared to the previous calculations of Sawford23 and labora-
tory data of Warhaft.7 The present model calculations cor-
rectly predict the evolution of the centerline correlation
coefficient for a range of source separations.

The scalar rms is a relative quantity dependent on the
strength of the source. In order to make comparisons with
laboratory data, the scalar rms profiles are normalized by the
centerline scalar rms for a single source. Figure 12 compares
the model predictions of the normalized radial profiles of rms
scalar with experimental data for three different source spac-
ings, do�mm�=8,14,25. The plots show the rms scalar pro-
files for �1, �2, and �1+�2 assuming that the scalar fields

TABLE III. Parameters in the laboratory measurements of Warhaft and
Lumley �Ref. 6�. Definitions are given in Table I.

�o 3.21
10−4 m

M 2.54
10−2 m

xo /M 20

U 6.5 ms−1

�u ,�v ,�w 2.275 ms−1

m 1.34

	 2.26
10−5 m2 s−1
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FIG. 15. �Color online� Radial profiles of the cross-correlation coefficient � between pairs of sources at t /To=4.41. Diffusion behind an array of four sources
is considered. The sources are positioned at xo /M =20 from the turbulence grid: �a� do /M =1, sources 2 and 3; �b� do /M =2, sources 2 and 4; �c� do /M =3,
sources 1 and 4. Present model calculations �solid line�; Warhaft �Ref. 7� data ���.
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are linearly additive. The present model calculations, as can
be seen, correctly reproduce the laboratory measurements.

The radial profiles of the correlation coefficient �12 can
be obtained using Eq. �60� in the model calculations and are
plotted in Fig. 13 at different stages in the plume develop-
ment. At every stage, multiple source separations are consid-
ered and comparison is made with the experimental data. The
agreement is good as regards both the shape of the profile
and the location of the minima on the centerline between the
two sources. �The overprediction in �12 seen at y /M =0 in
Fig. 13�a� may be due to the smearing introduced by the
binning used to extract statistics.�

C. An array of line sources

The decay of the scalar variance downstream of a heated
mandoline �a set of multiple line sources placed parallel to
one another a distance xo downstream of the turbulence gen-
erating grid� can be understood by studying the interference
between multiple line sources.7

As the first step, an array of four line sources is consid-
ered in place of the pair of sources in Sec. V B. The relevant
parameters for diffusion behind an array of four line sources
are listed in Table I with �o=1.27
10−4 m and xo /M =20.
The distance between adjacent line sources is do and will be
referred to as the mandoline spacing later on in the section.

As in Sec. V B, PDF calculations are performed with the
modified IECM model by making a simple extension to four
line sources. The sources are located at a distance of xo /M
=20 from the turbulence grid and adjacent sources are sepa-
rated by a nondimensional distance of do /M =1. The mea-
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FIG. 16. �Color online� Experimental data of decay of normalized scalar
fluctuations, �= ���2� / ���2�x/M=100, downstream of a heated mandoline
from the turbulence generating grid. Relevant parameters are listed in Table
III: do /M =1 and xo /M =20 ���, do /M =2 and xo /M =20 ���, and do /M
=2 /3 and xo /M =44 ���.
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FIG. 17. �Color online� Decay of normalized scalar fluctuations, �
= ���2� / ���2�x/M=100, downstream of a heated mandoline from the turbulence
generating grid. Experimental data: do /M =1 and xo /M =20 ���, do /M =2
and xo /M =20 ���, and do /M =2 /3 and xo /M =44 ���. Present model cal-
culations are denoted by lines: do /M =1 and xo /M =20 �solid line�, do /M
=2 and xo /M =20 �dashed line�, and do /M =2 /3 and xo /M =44 �dot-dashed
line�.
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FIG. 18. �Color online� Decay of normalized scalar fluctuations, �
= ���2� / ���2�x/M=100, against flight time from the source. Experimental data:
do /M =1 and xo /M =20 ���, do /M =2 and xo /M =20 ���, and do /M =2 /3
and xo /M =44 ���. Present model calculations are denoted by lines:
do /M =1 and xo /M =20 �solid line�, do /M =2 and xo /M =20 �dashed line�,
and do /M =2 /3 and xo /M =44 �dot-dashed line�. A dashed line of slope
−mC�=−2.1 is shown for reference.
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surements are made at a distance of x� /M =63 from the
sources or equivalently at a time instant of t /To=4.41. The
origin of the coordinate system is defined at the midpoint
between the four line sources i.e., the four sources are lo-
cated at �x ,y�= �xo , � �2j−1�do /2�, j=1,2.

Figure 14 plots the radial profiles of the normalized sca-
lar rms. Normalization is done with respect to the scalar rms
value on the centerline of a single source. The radial profiles
of the scalar rms corresponding to each source is plotted in
�a� for all the four sources numbered 1–4. Each of these
profiles is statistically identical to the single line source but
shifted in physical space appropriately. Subfigures �b�, �c�,
and �d� plot the radial profiles of scalar rms corresponding to
� j +�k, �j−k�=1,2 ,3, respectively. The profiles are shifted
appropriately in physical space depending on the choice of
the sources, j and k. Finally subfigure �e� plots normalized
rms scalar profile for � j=1

4 � j. The effect of the interference
between multiple line sources in reducing the total rms at the
centerline between the four sources is captured by the model
calculations and the agreement with the experimental data is
good.

The radial profiles of the pairwise correlation coeffi-
cients for sources separated by distances do /M =1,2 ,3 are
plotted in Figs. 15�a�–15�c�, respectively. Each of the curves
here is obtained from the data in Figs. 14�a�–14�d�. This
confirms that the individual rms profiles and the pairwise
correlation coefficients are sufficient to estimate the rms sca-
lar profile corresponding to � j=1

4 � j.

D. The heated mandoline

The decay of scalar variance downstream of a heated
mandoline is equivalent to considering the interference be-
tween multiple line sources equally spaced and placed paral-
lel to each other at some distance from the turbulence gen-

erating grid.7 Over the downstream range of the experiments,
the scalar variance in a given experiment appears to decay
according to the power law

���2�
T2 = B� x

M
	−n

, x � xo, �66�
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FIG. 19. �Color online� Effect of model coefficients C0 and C� on scalar fluctuations. �a� Maximum centerline intensity of fluctuations, imax, against different
placements of the source with respect to the turbulence grid, xo /M. �b� Centerline intensity of fluctuations, i�0, t��, against xo /M where t� /To=1.82. Symbols
are from present calculations for different combinations of C0 and C�: C0=2.1 and C�=1.3 ���, C0=2.1 and C�=1.5 ���, C0=2.1 and C�=2 ���, C0=3 and
C�=1.3 ���, C0=3 and C�=1.5 ���, and C0=3 and C�=2 ���. Solid horizontal lines correspond to the experimental data.
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FIG. 20. �Color online� Correlation coefficient between a pair of line
sources at t /To=2.8 plotted for different source separations, do /M
=0.09,0.31,0.55,0.98,1.38, for various combinations of C0 and C�. Sym-
bols are from present calculations for different combinations of C0 and C�:
C0=2.1 and C�=1.3 ���, C0=2.1 and C�=1.5 ���, C0=2.1 and C�=2 ���,
C0=3 and C�=1.3 ���, C0=3 and C�=1.5 ���, and C0=3 and C�=2 ���.
Solid horizontal lines correspond to the experimental data.
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where x is measured from a virtual origin �within a few mesh
lengths of the grid�, T is the mean temperature of the flow
without any of the sources being active, n is the scalar vari-
ance decay exponent, and B is a constant. From the experi-
ments of Warhaft and Lumley,6 the scalar variance decay rate
was found to be uniquely determined by the length scale of
the initial scalar fluctuations relative to the integral turbu-
lence length scale. The scalar variance decay rate n was
shown to completely depend on the wavelength of the initial
scalar field determined by the mandoline spacing do.

The relevant turbulence parameters characterizing the
experimental data are listed in Table III. The experiments
were carried out with the mandoline placed a distance
xo /M =20 and for two configurations of the mandoline with
spacings of do /M =1 and 2. The scalar variance decay expo-
nents were empirically obtained to be n=3.20 and 2.06, re-
spectively, for the two mandoline configurations.

In the present calculations, PDF calculations similar to
the array of line sources �described in Sec. V C� are per-
formed to compare with the experimental data for the two

mandoline configurations. The model calculations are per-
formed with a number of line sources, ns, such that the ad-
dition of any more line sources would hardly affect the scalar
variance at the measurement point. Closer to the source �in
the laboratory frame of reference�, fewer sources are suffi-
cient, while farther away, more are required.

Figure 16 plots the experimental data from Warhaft and
Lumley6 for do /M =1,2 and Warhaft7 for do /M =2 /3 of the
decay of the scalar variance downstream of the turbulence
grid. Figure 17 compares the model calculations against the
experimental data and there is clearly a good match between
the two. Plotting the scalar variance with distance from the
turbulence grid does show a dependence on the ratio of the
length scale of the initial scalar fluctuations to the integral
turbulence length scale. On the other hand, Fig. 18 plots the
same data, both numerical and experimental, as a function of
flight time from the source, t /To, and the constant decay rate
in the scalar fluctuations is apparent across all do /M beyond
a certain value of t /To. For large times, the model predicts a
decay exponent of mC� which evaluates to 2.1 for C�=1.5

TABLE IV. Parameters corresponding to the cases performed in Sec. V F. Velocity variance at the source
location �isotropic turbulence�, �vo

2 , Velocity variance decay exponent m, turbulence mesh spacing M, mean
speed U, source size �o, Taylor scale Reynolds number at the source location, R�, and ratio of source to
turbulence integral scale at the source location, �.

�vo

2

�m2 /s2� m
M

�cm�
U

�m/s�
�o

�m� R� �

1 0.45 1.2 11.4 3.66 2.5
10−5 400 5.8
10−5

2 0.45 1.2 11.4 3.66 2.01
10−3 400 4.7
10−4

3 2.35 1.2 5 8.35 2.5
10−5 400 1.3
10−4

4 0.36 1.2 5 3.26 2.5
10−5 250 1.3
10−4

5 5.6 1.2 11.4 12.88 5.7
10−5 750 1.3
10−4
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FIG. 21. �Color online� Centerline intensity of fluctuations, i�0, t�, vs flight time from the source for �=1.3
10−4 and different values of R�: R�=750 �solid
line�, R�=400 �dashed line�, and R�=250 �dotted line�.

101514-18 S. Viswanathan and S. B. Pope Phys. Fluids 20, 101514 �2008�

Downloaded 04 Nov 2008 to 128.84.43.196. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



and both the calculations and experimental data agree with
the model prediction. This is consistent with the findings of
Sreenivasan et al.29 who observed from their heated mando-
line experiments that the scalar variance decays at a constant
rate independent of xo and do /M. The measured decay expo-
nent from their experiments is 2.2 �i.e., within 5% of that
from the present model�.

E. The effect of the choices of C0 and C�

All results reported so far were performed using the
standard values of C0=2.1 and C�=1.5, whereas the calcu-
lations of Sawford23 for both the single and pair of line
sources are presented for C0=3. In order to study the effect
of the choice of the above mentioned model parameters, cal-
culations were repeated for the different combinations of
C0=2.1, 3 and C�=1.3, 1.5, 2 and compared to the experi-
mental data.

Figure 19 compares the centerline intensity of fluctua-
tions, i�0, t�, for the six different combinations of C0 and C�

with the experimental data for three placements of the
source, xo /M =20,52,60. Subplot �a� compares the maxi-
mum of i observed from the experiments for a given xo /M to
the estimates obtained from the present calculations at the
same time. Subplot �b� compares the experimentally ob-
served value of i�0, t��, where t� /To
1.82 to the calculations
at the same time. The value C�=2 underpredicts the scalar
variance irrespective of C0, whereas C�=1.3 yields better
agreement with the experimental data. Our choices of C0

=2.1 and C�=1.5 compare well with the C0=2.1 and C�

=1.3 combination at least for the single line source.
Similarly, Fig. 20 compares the estimated centerline cor-

relation coefficient �12cl
between a pair of line sources using

different combinations of model parameters to the experi-
mentally observed value at the same time for various source
separations at a time instant of t /To
2.8. The combination
of C0=3 and C�=1.5 yields the most accurate results but, as
for the single line source, our choice of the model parameters
gives results with a reasonable accuracy.

F. Effect of the Reynolds number and source size

Presently, the experimental data available for dispersion
studies behind line sources in decaying grid turbulence are at
relatively small Taylor scale Reynolds numbers, R�
60. As
a natural consequence, it is of significant relevance to be able
to understand and predict the behavior of the scalar field at
higher Reynolds numbers.

From the experimentalists’ viewpoint, for a grid of fixed
geometry, the problem of dispersion from a single line source
requires three independent parameters to completely charac-
terize the turbulence field, viz., U, M, and the viscosity �
=	 Pr, where Pr is the Prandtl number, and two independent
parameters to completely characterize the source, namely, �o

and xo. On the other hand, since dispersion of the scalar
plume is only dependent on the turbulence statistics at the
source location, the relevant number of independent dimen-
sional parameters required for simulating the dispersion from
a single line source reduces to four and these can be taken as
ko, �o, �o, and 	 �for a given Pr�. Two length scales and two
time scales that can be formed given the above four quanti-
ties are Lo, �o, To, and �	, from which at most two indepen-
dent nondimensional groups can be formed. In this work, we
choose to work with the length scale ratio �=�o /Lo and the
Taylor scale Reynolds number R�.
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In order to understand the effect of each of these nondi-
mensional quantities on the evolution of the scalar field, the
results from a set of five cases are presented for different
combinations of � and R�. Both � and R� are chosen to vary
by an order of magnitude. The value of � is typically chosen
over the range of 5
10−5–5
10−4, whereas R� is chosen to
vary between 100 and 1000. The details are summarized in
Table IV.

Additionally, calculations are also performed for larger
ranges in both R�
70–7000 and �
2
10−5–2
10−3

with an aim to study their effects on the centerline intensity
of fluctuations. In particular, the maximum value imax and the
large-time asymptote i� are analyzed in the �-R� space.

1. Dependence on the Reynolds number R�

As the first step, the dependence of various scalar statis-
tics on R� is studied at a given value of �. The Langevin
model constant C0 is taken to be independent of R� and equal
to 2.1. Figures 21–24 plot the centerline intensity of fluctua-
tions, the normalized mean plume width, the normalized in-
tegral scalar variance, and higher moments of skewness and
kurtosis, respectively, against flight time from the source for
�=1.3
10−4 and for three different values of R�—250, 400,
and 750.

Figure 21 displays an increase in the peak value of the
centerline fluctuation intensity with an increase in R�. Addi-
tionally, the behavior at very early time �t /To�3
10−5� is
independent of R�. Far downstream, again i seems to be in-
dependent of R� for a constant C0 assumption. Figure 22
shows that the normalized mean plume width, �p /Lo, is in-
dependent of R� except at small times. Figure 23 compares
the effect of R� on the evolution of the normalized integral
scalar variance I. At very small times, I is independent of R�.

Far downstream also, there is a similar trend. In the interme-
diate regime, the decay rate of the integral scalar variance is
the same and is given by the slope of the curve, whereas R�

has a direct effect on the magnitude. Figure 24 exhibits in-
dependence of the higher moments of the scalar from R� at
very small times. For very large times, an increase in R� is
equivalent to a shift of the plot to smaller t /To.

Second, i is analyzed further over a larger range of R� in
terms of imax and i�, which are the maximum value of i and
the large-time asymptote, respectively. Figure 25 shows a
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FIG. 24. �Color online� Skewness S and kurtosis K against flight time from the source for �=1.3
10−4 and different values of R�: R�=750 �solid line�,
R�=400 �dashed line�, and R�=250 �dotted line�.
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FIG. 25. �Color online� Maximum centerline intensity of fluctuation against
R� for �=1.3
10−4. The solid lines indicate 95% confidence intervals.
Dashed line of slope 1/3 is shown for reference.
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log-log plot of imax versus R�. In the range of R� considered,
imax varies approximately as R�

1/3 �as is shown by the dashed
line� and does not appear to saturate to a constant level.
Since, the scalar mean is not affected by R� for constant C0,
an increasing trend in imax implies that the scalar fluctuations
are increasing. Figure 26 is aimed at studying the effect of R�

on i� and as is evident from the plot, i� is independent of R�.
Third, the effect on imax and i� of incorporating a R�

dependence on C0 is studied based on Pope.12 Figure 27
compares imax obtained under the assumption that C0=2.1

with the estimates made incorporating the R� dependence of
C0. The estimates of imax from the two approaches are within
the 95% confidence intervals. Figure 28, however, shows
some sensitivity to the value of C0: including for the R�

dependence of C0 results in a decrease in i� of no more than
10%.
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FIG. 26. �Color online� Estimate of the centerline intensity of fluctuation as
t→� against R� for �=1.3
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FIG. 27. �Color online� Maximum centerline intensity of fluctuation against
R� for �=1.3
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confidence intervals.
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2. Dependence on normalized source size �

Next, the effect of �=�o /Lo on the scalar field is studied
at a constant value of R� of 400. As in Sec. V F 1, the cen-
terline intensity of fluctuations, mean plume width, integral
scalar variance, skewness, and kurtosis are probed to under-
stand the effect of � on the scalar field.

Figure 29 plots the centerline intensity of fluctuations
against flight time from the source for three different values
of �, 5.8
10−5, 1.3
10−4, and 4.7
10−4. Except for the
effect of the variation in � at very early times, there is little
dependence of i on �. Similar trends are observed in Fig. 30
for the normalized mean plume width, �p /Lo, in Fig. 31 for
the normalized integral scalar variance I, and in Fig. 32 for
skewness and kurtosis.

Since � affects the various scalar statistics only at very
small times close to the source, each of the quantities can be
appropriately scaled to make them independent of �. The
effect of the source size on the mean plume width is purely
an additive effect as is evident from Eq. �11� and therefore,
��p

2 −�o
2� /Lo is independent of �. Figure 33 confirms this

observation.
Moreover, the centerline intensity of fluctuations, i, at

very small times can be analytically obtained using the lami-
nar thermal wake modeling approach to be

i�0,t� =
 G2 + 1

2G2 + 1

− 1, �67�

where

G�t� = ��vo

2 To

2	
	� t2

To�t + 1
2�	�� . �68�

Since i is a function of G only at very small times, accurate
calculations of i can be expected to scale as G does at small
times. Figure 34 shows the plot of i against t2 / �To�t
+�	 /2�� both in linear-log scale and log-log scale, thereby
effectively eliminating the influence of � on i. Figures 35
and 36 plot imax and i�, respectively, over a larger range of �
at R�=460. Both the figures show no sensitivity to � �at least
for ��10−3�, strengthening the conclusion earlier from this
section that � affects the statistics only at very early times.

VI. CONCLUSIONS

Detailed PDF calculations have been performed of the
dispersion from line sources in grid turbulence. The PDF
method uses the modified IECM mixing model, which is
summarized in Sec. III E. The model calculations are prima-
rily compared with the experiments of Warhaft7 and the
IECM model calculations of Sawford23 for single and pairs
of line sources. An extension is also made to simulate an
array of four line sources and heated mandolines.

Due to the disparity in the length scales of the plume and
turbulent energy-containing motions very close to the source,
the effects of molecular diffusion have to be accounted for in
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the scalar evolution equation. However, modeling the mo-
lecular diffusion as a random walk in the evolution equation
for particle displacement in conjunction with the IECM mix-
ing model gives rise to a spurious production term in the
scalar variance transport equation. The spurious production
term is avoided by instead incorporating the effects of mo-
lecular diffusion directly into the IECM mixing model by the
addition of a conditional scalar drift term.

Modeling the instantaneous plume as a laminar thermal
wake provides a model for the evolution of the mixing rate
very close to the source. This small-time asymptote, �m

0 �t�,
Eq. �51�, provides a nongeneral model for the early time
behavior of the mixing time scale. Far away from the source,
all memory about the initial source conditions is lost and the
mechanical-to-scalar time scale ratio eventually asymptotes
to a constant as determined by various DNS studies. Hence,
the large-time asymptote of the mixing rate �m

��t� is retained
to be proportional to the turbulence rate � /k. The new mix-
ing rate specification used here is simply a blending of the
two asymptotic expressions, which is correct in both the lim-
its, �m=�m

0 at t=0 and �m→�m
� as t→�.

The above mentioned mixing rate involves only one ad-
justable parameter, that being the time scale ratio C�. Even
though the proposed time scale was derived from the trans-
port equation of the integral mean square of the scalar, model
calculations using this time scale not only predict different
statistics correctly on the plume centerline but also the radial
profiles at different stages in the development of the plume,
including higher moments, skewness, and kurtosis, for which
comparisons are made with the experimental data of Sawford
and Tivendale reported by Sawford23 and with the previous
calculations of Sawford23 for the single line source.

The PDF model is applied to a pair of line sources and
an array of four line sources and is shown to perform well in
comparison to the experimental data. The cross-correlation
coefficient between any pair of sources gives an indication of

the extent of flapping of the wake and interwake interfer-
ences. These accurate predictions suggest that the effects of
molecular diffusion have been incorporated accurately. The
modified IECM model is also tested to verify the dependence
of the scalar variance decay rate on the distance between the
sources in the mandoline with respect to the integral turbu-
lence length scale.6 The present calculations agree with the
experimental data of Warhaft and Lumley6 and are consistent
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with the observations of Sreenivasan et al.29 which show
that, at distances far downstream from the mandoline, the
scalar variance decay rate is independent of the length scale
ratio �when plotted against distance from the mandoline�.

The choices of standard values for the model parameters,
C0=2.1 and C�=1.5, compare well with the experimental
observations. Additionally, dispersion from a single line
source is studied in greater detail over a range of the param-
eter space. The effect of the source size is only significant at
very small times from the source, whereas with a constant C0

assumption, the effects of Reynolds numbers are evident
only at intermediate times. The large-time asymptote of the
centerline intensity of fluctuations tends to a constant �ap-
proximately 0.4� independent of both the nondimensional
source size and Reynolds numbers for the range of parameter
space explored, while the maximum value of the centerline
fluctuation intensity shows a dependence on the Reynolds
number �approximately as R�

1/3� but not on the source size.
Data from experiments and/or DNS are required to corrobo-
rate the model predictions at large Reynolds numbers.
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