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1 Introduction

The velocity/wave-vector PDF method was developed for inhomogeneous turbu-
lent flows in Van Slooten and Pope [1] where several wave vector models (WVM’s)
were introduced. The formulation is based on the particle representation model
(PRM) of Kassinos and Reynolds [2] and provides an exact description for the
rapid distortion of homogeneous turbulence (RDT). The PRM is extended to gen-
eral homogeneous turbulence in Kassinos and Reynolds [3] through the interacting
particle representation model (IPRM). The purpose of this report is to express the
IPRM in the form of a WVM and to critique the various WVM’'s.

2 Model Formulations

2.1 Wave Vector Models

An exact representation of RDT is achieved by adding a unit vector, the wave
vector, into the PDF formulation. Since PDF methods are typically applied via
stochastic models for the behavior of a fluid particle, a stochastic system in the
WVM approach requires an additional model for the wave vector, e*. The particle
fluctuating velocity, u*, and wave vector evolve in RDT by ordinary differential
equations,

* 6<UT> * * _*
du; = oz u;(6;r — 2€fe€r)dt (1)
and a(U,)
de; = —=="LLex (6, - etel)dt,
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where the Eulerian mean velocity gradient, 0 (U,) /dz,, is specified for homoge-
neous turbulence. The details of the analysis from a PDF point of view are con-
tained in Van Slooten and Pope [1] and are based on the development of the PRM
from Kassinos and Reynolds [2].

The Reynolds stress equation is simplified in RDT by neglecting the dissipation
of turbulent kinetic energy, ¢, and the return-to-isotropy tensor,

1 (s
ij = —;HSJ') + 2eq, (3)

where IIS) is the slow pressure-rate-of-strain correlation and e;; = ¢;;/(2¢) — 6;;/3
is the normalized anisotropy of the dissipation tensor, €;;. The rapid pressure—
rate-of-strain correlation is still unclosed in the Reynolds stress equation and is in
RDT exaccly repircscated by the WVM. For non-RDT homogeneous turbulence, a
“decay” model is added to Eqgs. (1) and (2) to model the return-to-isotropy tensor,
which is the only unclosed term in the Reynolds stress anisotropy equation for
decaying turbulence. The decay models are constructed independently of the RDT
equations, but do alter the model for the rapid pressure-rate-of-strain correlation
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through an effect on M;jp, = (ujujeye;)/2k. This tensor is contracted with the

mean velocity gradient to yield the model for the rapid pressure-rate-of-strain
correlation.

The general u-e decay model is derived from the general form of two coupled
vector-valued diffusion processes by imposing four constraints on the system (Van

Slooten and Pope [1]). Two constraints are deterministic and apply to every real-
ization of system. They are:

1. e* remains of unit length (by definition);

2. e® and u* maintain orthogonality due to the continuity equation in Fourier
space.

The remaining two constraints are based on physical arguments for decaying tur-
bulence and impose restrictions on the statistical behavior of the system. They
are:

3. the PDF of velocity tends to an isotropic joint-normal distribution;

4. the evolution of the turbulent kinetic energy is known

dk
== (4)

|
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The general model is far too complex for a realistic application, but it serves
as a guide to the construction and analysis of specific models that are based on
assumptions into the behavior of the system.

Beyond providing an exact representation of RDT, the WVM’s represent the
structure dimensionality and circulicity tensors (Kassinos and Reynolds [2]) with-
out additional assumptions

Dy; — (efejuius) (5)

and
Fij < €amejnp(€] €pumUp), (6)
where €, is the alternating symbol. The structure dimensionality tensor provides
information on the directions of dimensional independence, and the structure cir-
culicity tensor provides information on the large-scale vorticity field. The normal-
ized tensors, d;; = D;;/(2k) and f;; = F;;/(2k), and the normalized anisotropies,
d; = di; — 6;/3 and ff; = fi; — 6;;/3, are available for modeling of terms like the
return-to-isotropy tensor. Also available are the Reynolds stress tensor, (u;u;), the

normalized Reynolds stress tensor, rij = (u;v;)/(2k), and the anisotropy of the
Reynolds stress tensor, b;j; = r;; — 6;5/3.



2.2 Isotropic Diffusion of e Model (Iso model)

The first decay model constructed in Van Slooten and Pope [1] is the isotropic
diffusion of e model. The model assumes an isotropic diffusion or random walk of
e* on the unit sphere with a time scale proportional to the turbulent time scale

1/2
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where a. is a model parameter and W (¢) is an independent, vector-valued Wiener

process. Applying the constraints of a decay model and assuming that the random-

ization of u* relative to e* is described by a simple diffusion process, the stochastic

velocity equation becomes
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where a, is a model parameter and W'(t) is another independent, vector-valued
Wiener process. The parameters (a., a,) = (0.3, 0.3) are specified through compari-
son with experimental and direct numerical simulation (DNS) data in homogeneous
shear. At the Reynolds stress level, the Iso model represents the return-to-isotropy
tensor as

eny WY
6i5 = (2+ 3au) byj + 2ac (b — d%) + a, [(e" &) = <uu] >] ' ©)

The model is linear in the anisotropies of the Reynolds stress and structure dimen-
sionality tensors, but contains additional tensors whose behavior has less physical
meaning.

2.3 Langevin Velocity Model (Lang model)

The Langevin velocity model is constructed in Van Slooten and Pope [1] by spec-

ifying the Langevin equation with an anisotropic drift term as the model for the
particle velocity,
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where a, and vy are model parameters. The corresponding model for the wave
vector is derived bv applying the decay model constraints
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where a. is a model parameter. The motivation of the model is a representation

of the return-to-isotropy tensor that is a closed general function of the Reynolds
stress anisotropies

1 1
bij = [2 + 3a, — 4y (-3: - bmnbmn)] bij — 4y (bublj - gbmnbmnfsij) : (12)

The model parameters (a, a,, v) = (0.03, 2.1, 2.0) are set to constant values
through comparisons with experimental and DNS data in a homogeneous shear
flow.

2.4 Interacting Particle Representation Model (IPRM)

In the IPRM of Kassinos and Reynolds (3], the modeling of non-RDT homogeneous
turbulence is viewed as an interaction between particles that results in an addi-
tional velocity gradient. The effective gradient is defined as the sum of the mean
deformation and the particle interaction gradient. The interaction of particles is
also assumed to add a rotational randomization of the velocity vector about the
wave vector which is modeled by the slow rotational randomization (SRR) model.
The SRR model has no effect on the energy of particles and vanishes when the
circulicity tensor lies in the plane normal to the wave vector. The details of the
analysis are located in Kassinos and Reynolds [3].

The decay model contained in the IPRM is expressed in the notation of the
WVM as

de; = = (%) gmaciy [6in = cles] dt (13)
and
* 3 * % a’U€ * * *
du; = <2k> Gmnly, [6im — (2a.+1)efel,] dt — ( ) Q fraepequidt
Qe A, 1/2 .
- [( p )Q foqepequsus; €ipgdWpey, (14)

where the normalized interaction gradient tensor, g, and the normalized effective
rotation rate, Q*, are defined by

gii = 'rildlj — L (u:u7>< e]usus> (15)
VT rpgdesTsp  4K2 TpglqsTsp
and
= \/gmn (gmn = Gnm)- (16)

Tue paraiucters (a., a,) = (1.1, 4.25) are calculated from the values given in
Kassinos and Reynolds [3].

The normalized interaction gradient tensor takes an interesting form. In the
formation of the WVM for RDT, the particle velocity and wave vector are modeled
after the Fourier mode of velocity, %, and a time evolving unit wave number vector,
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e. The Fourier transform of the fluctuating velocity gradient, Ou; /0x;, is KU;é;,
where £ is the magnitude of the wave number vector. The normalized interaction
gradient tensor is a tensor representation of the fluctuating velocity gradient and
takes a form analogous to its Fourier transform.

The diffusion in the velocity equation is replaced by a statistically equivalent
term to achieve a model in a form similar to the general u-e decay model. Two
stochastic models for the diffusion in the velocity equation are considered

dXi = —€pgdWpe, (17)

and
dY; = (6; — eje}) dw;. (18)
Each realization of the stochastic increments differ, but the models are statistically

equivalent. The conditional mean of the increments are zero while the conditional
covariance of the increments are equal,

(dXidX;le™ = n) = (dYidYjle" = n) = (65 — nimy)- (19)

The governing equations for the joint PDF of velocity and wave vector, f(v,n;t),

are then identical
of 1 & niM;
ot 20v0v, [f (6” T )| T (20)

where (7, v) are the state space variables for (e*, u*). The IPRM is then modified
to

% £ * * % Au€ '\ Ay * % %
du; = — <%> Imnly, [Oim — (2a + 1)efer ] dt — (T) Q" fpgepequ;dt
Ayl \ A, * _* k% 12 * %
+ |:<7> Q quepequsus] (61']' —€; 6j> de, (21)

which is statistically identical to Eq. (14).
The return-to-isotropy tensor for the IPRM follows from Eq. (21)

2
Gij = GikTkj + GikThi —§5ij - S2ae + 1)gmn [Minjm + Mjnim]

production rapid redistribution
'*‘fLuQ*qu [2Mijpq — bijdpq + Liqu]; (22)
from SRR

where Ly, = (ejefeseruiut)/2k is a fourth-order correlation defined in Kassinos
and Reynolds [2]. The non-RDT terms are assumed to act as an additional veloc-
ity gradient in the IPRM. The 1csulting model for the return-to-isotropy tensor in
Eq. (22) contains “production” and “rapid redistribution” terms due to the addi-
tional velocity gradient. The randomization due to the SRR model adds a term to

the modeled return-to-isotropy tensor, but in axisymmetric flows this term is zero
(Q* =0.0).




2.5 Dissipation Model

The PDF models presented still require additional information for closure. In
the implementations for homogeneous turbulence, a mean dissipation equation is
applied. The standard dissipation model is

de 22 P
primin [C'sr; - 52} ) (23)

where P is the production of turbulent kinetic energy. The values of C.; = 1.5625
and C¢; = 1.9 are selected to yield a typical value for (P/e) = 1.6. This model
is known to be deficient in rotational flows and Kassinos and Reynolds [3] have
developed a model with a rotational correction

de &? P /
Et— = —k—:- [CEIT - 52] - CRE danana (24)

where §2 is the mean vorticity vector and the parameters (Ce;, Cey, Cr) = (1.5,
1.833, 0.01) are defined. Beyond the specification of the parameters, the new model
differs from the standard model only in flows with mean rotation. It provides a
significant improvement in the results for the difficult case of an elliptical flow. In
the Lang and Iso models, an improvement is found for elliptical flows by altering
Cpg to 0.1. In all other flows, the standard parameter values of the Kassinos and
Reynolds dissipation model are used.

2.6 Model Summary
The key ideas from the construction of the models are summarized below.

e Iso Model

1. Basis: isotropic diffusion of the wave vector in Eq. (7)

2. Return-to-isotropy tensor: linear in b;; and d

i;» but additional tensors
in Eq. (9) have less physical meaning

3. Decay model constraints: all four constraints met
e Lang Model

1. Basis: a general model for the return-to-isotropy tensor at the Reynolds
stress level of closure in Eq. (12)

2. Velocity equation: Langevin equation with an anisotropic drift term in
Eq. (10)

3. Decay model constraints: all four constraints met

¢ IPRM



1. Basis: interaction between particles modeled as an additional velocity
gradient

2. Interacting particle velocity gradient: tensor form in Eq. (15) relates to
the Fourier transform of the fluctuating velocity gradient

3. Slow randomization model (SRR)

— the rotation of the interacting particle gradient adds a randomiza-
tion in the particle velocity equation

— cases exist were SRR is identically zero (e.g., axisymmetric flows)

4. Return-to-isotropy tensor: contains production and rapid redistribution
from interacting particle velocity gradient as well as a term from the
SRR in Eq. (22)

5. Decay model constraints: constraints 1, 2, and 4 are met, while con-
straint 3 is discussed below

3 Analysis of IPRM

3.1 Particle vs. Cluster Formulation

In the particle formulation of the WVM, the stochastic equations for individual
particles are solved via a Monte Carlo technique which is the standard implementa-
tion of PDF methods. The approach is applied to homogeneous turbulence in Van
Slooten and Pope [1] and is readily extended to inhomogeneous turbulent flows.
The inhomogeneous cases of a temporal shear layer and swirling/non-swirling co-
axial jets are studied in Van Slooten, Jayesh, and Pope [4] and Van Slooten and
Pope [5].

The cluster formulation is developed in Kassinos and Reynolds [2] as an alterna-
tive approach to solving the RDT particle equations. A cluster is defined as a group
of particles whose wave vectors are identical for all time, and a cluster-average of
a particle quantity is defined as the expectation of the quantity over the particles
in the cluster. The unconditional mean is then calculated by averaging over all of
the clusters. The WVM is implemented in the cluster formulation by solving the
wave vector and the cluster-averaged Reynolds stress equations via Monte Carlo
techniques. If the wave vector equation is deterministic and independent of the
cluster-averaged Reynolds stress tensor (e.g., IPRM), then the definition of the clus-
ter may be simplified to a group of particles having the same e*(ty) for any specific
to. The cluster-average is then the expectation conditioned on a particular value
of the wave vector at a certain time, (- |e*(ty) = m,;t), and the cluster-averaged
Reyuolds stress equation is deterministic. For models with stochastic wave vector
equations, a cluster represents the behavior of the particles following one trajectory
in wave vector space. The equation for the cluster-averaged Reynolds stress tensor
then contains stochastic terms that correspond to the stochastic terms in the wave
vector equation.



In Kassinos and Reynolds [2], the cluster formulation is demonstrated to have
better computational properties than the particle formulation, but there are limi-
tations to the cluster approach. Velocity moments other than the Reynolds stresses
cannot be determined from the cluster-averaged Reynolds stress tensor. Therefore,
the cluster approach is not directly applicable to inhomogeneous turbulence, be-
cause terms such as the turbulent transport and scalar flux are no longer handled
explicitly by the method. Also, WVM’s are in general not closed at the level of
the wave vector and cluster-averaged Reynolds stress tensor (e.g., Iso and Lang
models).

3.2 Stability of Particle Formulation

Through numerical simulations, it is found that the particle implementation of the
IPRM is unstable in homogeneous shear and elliptical streamline flows. This sta-
bility issue is studied through an ensemble of NV particles with identical initial wave
vectors, e™(0) = e for n = 1,---, N. The particle wave vectors are identical for
all time in the IPRM, and the ensemble represents the particle version of a cluster.
The stability of the ensemble is indicative of the stability of the particle formulation
since the cluster-averaged Reynolds stress tensor is a Lagrangian representation of
the conditional Reynolds stress tensor. An error tensor is defined that character-
izes the difference between the ensemble-averaged and cluster-averaged Reynolds
stress tensor

1 & ), (n
\ij = 72_; uf™ul™ — (uu;]ed), (25)
which evolves by
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as can be deduced from Eq. (21). Both the limit as N — oo and the conditional
expectation of the error are zero by definition,

lim ;=0 (27)
and
T (n) (n 0
)\,J|e Z — (uujle’) = 0. (28)
n:l



The conditional expectation of the second invariant of the error temsor, I =

(AijAij]€%) characterizes the magnitude of the error for a finite ensemble and evolves
by

dlr
d_t = ( ) gm /\1])\n]Ie >+gjn<)\ij)‘ni|e0>]
+ < ) 2ae+1 gmn [ ;()\,’j)\inleo> + e:e:n(/\ij)\jn|e°)]
2a,¢ .
< )Q que [2E - (dij €; ]) <)‘2J’\55i )]
6a,e\ A, . ((usuy)?|e®)
+(55) @t (29)

The first three terms do not provide a stability problem since the dissipation to
kinetic energy ratio does not typically grow without bound, and the error is made
small for suitably large V. The final term is proportional to 1/N, but the expec-
tation ((usus)?|e?) is likely to grow exponentially for some values of €° in certain
flows. In the cases of homogeneous shear and elliptical streamline flows, the parti-
cle implementation of the IPRM is found to become unstable after a certain time.
This time to blow up is found to increase with the number of particles in the
simulation, which is consistent with Eq. (29).

3.3 Return-to-Isotropy Modeling

The Iso and Lang models are based on an assumption that the primary effects of the
non-RDT terms is to impose a return-to-isotropy on not only the Reynolds stress
tensor, but also the directional spectrum. The isotropic form of the directional
spectrum

k
Iij(e) = E(éij — eiej), (30)
and the directional energy spectrum
1 k
I'(e) = =T = — 1
(€) = STu(e) = —, (31)

are known. The modeled PDF’s of velocity from the Iso and Lang models are also
designed to decay to a joint normal distribution in isotropic turbulence.

Neither a return-to-isotropy behavior nor a decay to a joint normal distribution
of the velocity PDF is explicitly demanded of the IPRM in its construction. A brief
analysis is performed on an extreme case that illustrates potential problems in the
behavior of the IPRM. A turbulent flow is considered in which the directional and
directional energy spectra are non-isotropic and defined by

Tij(e) = (é; — eie;)l(e) (32)

and

4
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where n(") are four unit vectors in a tetrahedral configuration. The corresponding
Reynolds stress and dimensionality tensors are isotropic which gives an isotropic
form for the normalized interaction gradient tensor, gmm = 6mn. The particle
equations for the IPRM are greatly simplified in this case

der =0 (34)

and

e (£
du? = (2k)uldt. (35)

The PDF of velocity will not decay to a joint normal distribution without the
diffusion term in the Langevin equation for the particle velocity. For the directional
spectrum and directional energy spectrum, the governing equations are

dFij _ 3
=) (36)
and ir
I3
== (E) I, (37)

Both spectra decay in magnitude, but there is no evolution to the isotropic, uniform
directional energy spectrum. The fundamental problem is a lack of diffusion in the
particle equations for this case.

The wave vector equation in the IPRM contains no diffusion, while the diffusion
due to the SRR model in the velocity equation is identically zero in some cases
(e.g., axisymmetric turbulence). Without diffusion it is difficult to characterize
the return-to-isotropy behavior of the IPRM for general flows. It is suggested that
further implementations of the IPRM to decaying turbulence be performed.

4 Applications in Homogeneous Turbulence

The Iso and Lang models and the IPRM are applied to homogeneous turbulence in
Van Slooten and Pope [1] and Kassinos and Reynolds [3], respectively. Some of the
cases studied in these references include: homogeneous shear with/without frame
rotation: axisymmetric contraction and expansion; and elliptical streamline flows.
A summary of these results is contained here for the purpose of model comparison.

In the case of homogeneous shear without frame rotation, the simulations are
compared to the experimental data of Tavoularis and Karnik [6] and the DNS data
of Rogers. Moin, and Reynolds [7]. The Lang model predicts the Reynolds stress
anisotropy better than the IPRM, but it may be seen from Table 4 that both models
perform quite well. The Iso model, however, fails to correctly distribute the kinetic
energy amongst the span-wise and cross-stream normal Reynolds stresses. The
predicted kinetic energy evolution for homogeneous shear with frame rotation is
compared to the large-eddy simulation data of Bardina, Ferziger, and Reynolds [8].
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Table 1: Asymptotic values for homogeneous shear flows from: experiments of
Tavoularis and Karnik [6] (TK); DNS data of Rogers, Moin, and Reynolds [7]
(RMR); Isotropic Diffusion of e Model (Iso) and Langevin Velocity Model (Lang)
wave vector models with Standard (St) and Kassinos and Reynolds (KR) dissipa-
tion models; and Interacting Particle Representation Model [3] (IPRM).

TK RMR Lang St Lang KR IPRM Iso St Iso KR
b33 0.18+0.04 0.215 0.194 0.204 0.26 0.223 0.231
b3% —-0.16 £ 0.01 -0.158 -0.165 -0.167 -0.16 -0.156 -0.156
b3s -0.11+0.02 -0.153 -0.131 -0.137 -0.17  -0.203 -0.206
b33 —0.06 £ 0.03 -0.062 -0.063 -0.067 -0.08 -0.020 -0.026
(P/e)oo 1.47+0.14 1.80 1.60 1.72 1.86 1.60 1.59
(Sk/e)sw 4.60£0.14 5.7 4.83 5.15 5.97 5.12 5.12

All three models provide the correct qualitative behavior (not shown), but the
quantitative comparison is poor, a common result among second-order closures.

The comparisons in the cases of axisymmetric contraction and expansion are
much more interesting. For axisymmetric contraction, DNS data by Lee and
Reynolds [9] exist at various initial normalized strain-rates. The assumptions of
RDT apply for the highest strain-rate case (Sk/e)y = 55.7 where S = max(V(U)).
All of the models provide an exact representation of RDT and predict the data in
this case very well. In Fig. 1, the Reynolds stress anisotropies from the models are
compared to the DNS data for the low strain-rate case, (Sk/¢)y = 0.557, and to
the experimental data of Tucker [10] with (Sk/e)y = 2.1. The IPRM and Iso mod-
els predict the DNS data very well, but both models over-predict the anisotropy
from the experimental data. The Lang model predicts the experimental data quite
well, but under-predicts the data from the low strain-rate DNS case. The Reynolds
stress anisotropy budgets from the models are compared to the low strain-rate DNS
data in Fig. 2, where PE?)/S, Hg)/(%S), and —(c/2Sk) (¢s; — 2b;;) represent the
production of anisotropy, the normalized rapid pressure-rate-of-strain correlation,
and the return-to-isotropy of the anisotropy, respectively. With the production
treated explicitly, the difference in the anisotropies is primarily due to the model-
ing of the return-to-isotropy tensor. The IPRM and Iso model have a significantly
smaller return to isotropy than that of Lang model, which is appropriate for this
case. It appears that the small return-to-isotropy is, however, inappropriate for
the experimental data. '

The modeiiug of the return-to-isotropy tensor also plays a crucial role in the
simulation of axisymmetric expansion. The DNS data of Lee and Reynolds [9] at
low and high initial strain-rates, (Sk/e)o = 0.408 and 40.8, are compared to the
model predictions of the Reynolds stress anisotropies in Fig. 3. All models match
the high strain-rate (i.e., near RDT) case very well, but there is a markedly different

12



0.2 . r
(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
St

Figure 1: Evolution of Reynolds stress azisc‘repies in axisymmetric contraction
with: —, Lang; ---. IPRM; and ---, Iso; models compared to: (a) experimental

data (Tucker [10]); and (b) DNS data (Lee and Reynolds [9]); where: O, by;; and
A, baa.
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Figure 2: Evolution of Reynolds stress anisotropy budget for the 11-component of
axisymmetric contraction with: —. Lang; ---, IPRM; and ---, Iso; models compared
to the DNS data of Lee and Reynolds [9] in the (Sk/e)y = 0.557 case where: O,

PY/S; A, 1) /(2kS); and V, —(2/2S5k) (é1, — 2b11).
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behavior between the models in the low strain-rate case. The IPRM predicts an
increased anisotropy as in the DNS data, while the Iso and Lang models predict
a decrease of the anisotropy. An examination of the anisotropy budgets in Fig. 4
shows that the source of the difference is again the return-to-isotropy model. The
return-to-isotropy of the anisotropy term consists of two parts: the return-to-
1sotropy tensor and a normalization term, (¢/Sk)b;;. For the DNS data and the
IPRM, the return-to-isotropy tensor is smaller than the normalization term, and
the return-to-isotropy of the anisotropy actually increases the anisotropy of the
flow! This behavior is not captured by any standard Reynolds stress model.

The final case considered is the elliptic streamline flow for which DNS data is
reported in Blaisdell and Shariff [11] and [12]. Elliptical streamlines are generated
by the mean velocity gradient:

_ 0 0 S+w
6;Uf> = 0 0 0 , (38)
T3 S—w 0 0

with |w| > [S], while |w| < |S| generates hyperbolic streamlines. The flow is param-
eterized by the aspect ratio of the elliptical streamlines, E = \/ (S+w)/(w=29),

and the initial Rossby number, Ry = (¢/kw)o, where Q = \/ (S +w)(w—9) is the
rotational frequency. The case e2 from Blaisdell and Shariff [12] is selected in which
E =125, Q = 4.44, and Ry = 0.133. Model results are only shown for the Lang
and Iso models, because the particle simulation of the IPRM is numerically unsta-
ble for elliptical flows (see Sec. 3.2). Both a stability analysis and the DNS data
indicate that the kinetic energy grows exponentially in this case. From Fig. 5, the
Lang and Iso models predict an exponential growth, but do not capture the cor-
rect rate. In Fig. 6, the anisotropies of the normal Reynolds stresses are predicted
quite well by the Iso and Lang models, but both models severely under-predict
the anisotropy of the shear stress. From the results in Kassinos and Reynolds [3],
the IPRM appears to capture better the growth of the shear stress indicated by
the DNS data. The RDT solution is also shown in Figs. 5 and 6, and provides
surprisingly good comparisons with the DNS data for the anisotropies. However,
the kinetic energy grows too rapidly without any dissipation, and the oscillations
do not decay as in the DNS data.

The fact that the RDT solution compares favorably with the DNS data is an
indication that the turbulent cascade process may not be fully developed. The
cascade process is represented in the Reynolds stress equation by the dissipation
and the return-to-isotropy tensor and is known to be strongly affected by both
rotation and Reynolds number. The dissipation is the loss of kinetic energy at the
large scaies duc to the cascade of energy to the small scales, and corrections to the
modeled dissipation equation are often required for rotating flows (e.g., Sec. 2.5).
A decreasing Reynolds number alters the cascade process through a decrease in the
separation of the dissipative and energetic scales. The slow pressure-rate-of-strain
correlation in the return-to-isotropy tensor acts to scramble the Reynolds stresses
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Figure 3: Evolution of Reynold: ctress anisotropies in axisymmetric expansion
from: (a) IPRM: (b) Iso model; and (c) Lang model; compared to the DNS Data
of Lee and Reynolds [9] (symbols) for: (—, O), (Sk/e)y = 0.408; and (-, A),
(Sk/<)o = 40.8.
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Figure 3 (Continued)
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Figure 4: Evolution of Reynolds stress anisotropy budget for the 11-component of
axisymmetric expansion with: —, Lang; ---, IPRM; and ---, Iso; models compared
to the DNS data of Lee and Reynolds [9] in the (Sk/e)p = 0.408 case where: O,
PY/S; A, T /(2kS); and V, —(/25k) (611 — 2b11).
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Figure 5: Evolution of kinetic energy in elliptical streamline flow with £ = 1.25
and Ry = 0.133 for: —, DNS of Blaisdell and Shariff [11]; ---, Lang; ---, Iso; and
-+, RDT.
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Figure 6: Evolution of Reynolds stress anisotropies in an elliptical streamline flow
with E'= 1.25 and Ry = 0.133 for (a): —, DNS of Blaisdell and Shariff [11]; -—,
Lang; and ---, Iso; and for (b): —, DNS of Blaisdell and Shariff [11]; and - - -, RDT.
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Table 2: Turbulent Reynolds number of DNS data from: Rogers, Moin, and
Reynolds [7] (RMR); Lee and Reynolds [9] (LR); and Blaisdell and Shariff [12]
(BS) in homogeneous shear (HS), axisymmetric contraction (AXC) and expansion
(AXE), and elliptical streamline flow (ELL).

Reference Case R; = 4k*/ev
RMR HS 150 ~ 1500
LR AXC 48 ~ 61
LR AXE 44 ~ 88
BS ELL 51

and is strongly Reynolds number dependent.

The IPRM provides good predictions of the DNS data in an elliptical stream-
line flow and axisymmetric contraction and expansion. There is relatively little
return-to-isotropy in these cases which is modeled correctly by the IPRM. The Iso
and Lang models have a greater return-to-isotropy and fail to correctly represent
some of these cases. However, the Lang model provides better predictions than
either the IPRM or Iso model in an experimental case of axisymmetric contraction
and in homogeneous shear. The return-to-isotropy tensor in decaying turbulence
is known to have a dependence on the Reynolds number of the flow, and numer-
ous researchers have developed models with a strong Reynolds number dependency
(e.g., Lumley and Newman [13] and Chung and Kim [14]). The turbulent Reynolds
numbers, R; = 4k?/ve, for the DNS data previously examined are provided in Ta-
ble 4 and are quite low in all but the homogeneous shear case. For inhomogeneous
turbulence at high Reynolds numbers, the return-to-isotropy tensor can be an im-
portant term. As an example, it is the dominant source of cross-stream normal
stress in a temporal shear layer. Therefore, it is reasonable to be concerned about
the application of the IPRM to high Reynolds number flows, despite its very good
performance in the cases illustrated here.

5 Summary and Conclusions

The important observations developed in this work follow.

1. The Iso model in Egs. (7) and (8) and the Lang model in Egs. (10) and (11)
are coupled stochastic differential equations (SDE’s) for the velocity and wave
vector.

2. The IPRM consists of an ordinary differential equation (ODE) for the wave
vector in Eq. (13) and an SDE for the velocity in Eq. (14) or equivalently in

Eq. (21). For a specific class of flows where * is zero the velocity equation
becomes an ODE.
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10.

11.

In the rapid distortion limit, all models simplify to the WVM for RDT,
Egs. (1) and (2), which is an exact representation of the flow.

. In the absence of mean velocity gradients, the Iso and Lang models meet all

four constraints of a decay model, while the IPRM in general does not cause
the PDF of velocity to tend to an isotropic joint-normal distribution.

. In the Lang model, the return-to-isotropy tensor in Eq. (12) is a general

function of the Reynolds stress anisotropy, while in the Iso model, Eq. (9),
the tensor is modeled as a linear function of the Reynolds stress and dimen-
sionality anisotropies with additional terms. For the IPRM, the return-to-
isotropy tensor in Eq. (22) contains a production and rapid redistribution
of the interacting particle gradient as well as a term from the SRR. Further

applications to decaying turbulence are required to characterize the behavior
of the IPRM’s return-to-isotropy tensor.

. The cluster formulation improves the numerical implementation of the WVM’s,

but is not directly applicable to all models nor to inhomogeneous turbulence.
The particle formulation is appropriate for inhomogeneous turbulence, but
the particle implementation for the IPRM is unstable in some flows.

The IPRM provides very good results in comparison with DNS data even for
the difficult case of elliptical streamline flows. However, the DNS data is at
low Reynolds numbers where the return-to-isotropy is weak.

The addition of new stochastic terms to the IPRM that are possibly Reynolds
number dependent may prove worthwhile for high Reynolds number flows and
may also improve the stability of the IPRM’s particle implementation.

. The Iso model performs worse than both the IPRM and Lang model for the

important case of homogeneous shear and is not recommended for further
study.

The Lang model performs well in homogeneous shear and in several cases
of inhomogeneous turbulence (the temporal shear layer and swirling/non-
swirling co-axial jets). In comparison with some low Reynolds number DNS
data, the Lang model provides a too strong return-to-isotropy.

More sophisticated RSM’s can be represented through the Lang model by

changing the constant coefficients into functions of the Reynolds number and
anisotropy invariants.
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