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A spatially inhomogeneous model problem for studying turbulent nonpremixed reacting flow with reversible
reaction is proposed, which admits stationary solutions that are periodic in physical space. The thermochemical
state of the fluid is characterized by two composition variables: mixture fraction j(x, t) and reaction progress
variable Y(x, t). A linear gradient in the mean mixture fraction field is imposed in the x2 direction, so that, in
a forced stationary velocity field, the mixture fraction field attains statistical stationarity. The reaction progress
variable Y(x, t) is statistically homogeneous in x1 and x3, and is statistically periodic in x2. The flow is called
periodic reaction zones. The solutions are parametrized by the Damköhler number and the reaction zone
thickness parameter. At sufficiently high Damköhler number there is stable reaction, but as the Damköhler
number is decreased below a critical value, global extinction occurs. The range of parameter values is chosen
such that the model problem reproduces important phenomena such as stable near-equilibrium reaction, local
extinction, and global extinction. Monte Carlo simulations are performed to solve for the joint probability
density function of velocity, turbulent frequency, and composition. The predictions for critical Damköhler
number are compared for two different mixing models: the interaction by exchange with the mean (IEM)
model, and the Euclidean Minimum Spanning Tree (EMST) model. The results obtained using the simpler
conditional moment closure (CMC) model are also presented for comparison. The model problem is
formulated to permit direct numerical simulations (DNS) using pseudo-spectral methods, which require
periodic boundary conditions. The DNS study of this model problem, which is reported in a separate
publication, provides additional insight into the phenomenon of extinction in inhomogeneous turbulent reactive
flows. © 1999 by The Combustion Institute

NOMENCLATURE

B thermochemical parameter
Bn EMST model constant
C0 model constant in simplified

Langevin model
C3 model constant in turbulent

frequency model
Cf model constant in scalar variance

equation
D number of composition variables
Da Damköhler number
Dau upper estimate of the critical

Damköhler number
Dal lower estimate of the critical

Damköhler number
eQ term in the CMC closure
eỹ term in the CMC closure
E.I. extinction index
f thermochemical function
g thermochemical function
k turbulent kinetic energy

l lengthscale of the turbulence, [
u93/e

L computational box length in x2
direction

M number of multiple independent
simulations

N number of particles
Npc number of particles per cell
q Ye 2 Q, departure from

equilibrium of the conditional
mean of Y

Q mean of Y conditioned on j
Rl Taylor-scale Reynolds number
S reaction rate
Sv source term in turbulent frequency

equation
t time
Ts simulation time
Tt transport timescale
u, u9 fluctuating velocity field, standard

deviation of velocity fluctuations
U, U velocity
w importance weight
W, dW Wiener process, increment thereof
x Cartesian vector in physical space*Corresponding author. E-mail shankar@lanl.gov
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X particle position
Y reaction progress variable
Ye equilibrium value of the reaction

progress variable
y Ye 2 Y, departure from

equilibrium of the reaction
progress variable

ỹ Y 2 Q, departure of Y from its
conditional mean

Greek Symbols

a model parameter controlling the
variance decay rate

gt eddy diffusivity
G molecular diffusivity
Dje mixture fraction scale associated

with equilibrium function
curvature in j space

DjL jump in mean mixture fraction
over computational box of length
L

Djr reaction zone thickness in mixture
fraction space

Djrss
reaction zone thickness in mixture
fraction space as defined in the
self-similar thermochemistry

e mean dissipation rate of
turbulence

h sample space variable of j
Q mixing model term
n edge index
j mixture fraction
j9 standard deviation of the mixture

fraction
ǰ mixture fraction fluctuation field
ĵr reaction zone thickness parameter

[ Djr/j9
ĵrss

reaction zone thickness parameter
as defined in the self-similar
thermochemistry

s model parameter in particle v
equation

t time-scale, turbulence time-scale
t* characteristic chemical reaction

timescale
tf characteristic mixing timescale
tc thermochemical parameter

controlling the magnitude of the
reaction rate

f, f composition

x, ^x& scalar dissipation, mean scalar
dissipation

v, ^v& particle turbulent frequency, mean
turbulent frequency

Subscripts

R quantity associated with the
reaction zone

T quantity associated with the tree
e equilibrium
i, j, m, n particle index in ensemble, index

of Cartesian coordinate
k index of Cartesian coordinate
l lean, lower value of interval
pc per cell
r rich
s stoichiometric
ss statistically stationary value, or

value in self-similar
thermochemistry

b index of composition variable
n edge index
f quantity associated with

composition
[ ]T time averaged quantity
[ ]L spatially averaged quantity

Superscripts

i particle index in ensemble
b index of composition variable
∧ scaled quantity
9 fluctuating quantity, standard

deviation thereof
0 second derivative

INTRODUCTION

Prediction of the extinction characteristics of
turbulent nonpremixed flames is an important
and challenging area of current research. An
important parameter in nonpremixed flames is
the Damköhler number:

Da ; tf/t*, (1)

which is the ratio of the characteristic mixing
timescale tf to the characteristic chemical time-
scale t*.

When the Damköhler number is very large,
the fluid composition almost everywhere in the
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physical domain is very close to chemical equi-
librium because reaction is rapid compared to
the time taken to mix with neighboring fluid. In
such situations models based on the equilibrium
assumption or those based on small departures
from equilibrium may be used with confidence.
However, in most turbulent flames there is a
range of turbulent timescales (or, in other
words, mixing timescales) and there is a corre-
sponding range of Damköhler numbers. As the
Damköhler number decreases at any given
physical location (as a result of an increase in
the local scalar dissipation rate), departures
from equilibrium become significant and may
result in local extinction. If the Damköhler
number is too small to sustain stable combus-
tion in a sufficiently large fraction of the fluid
volume, global extinction occurs.

Experiments on piloted jet diffusion flames
by Masri et al. [1] provide direct evidence of
these phenomena. Clearly, modeling such jet
diffusion flames based on equilibrium or near-
equilibrium assumptions is questionable. Com-
putations of piloted jet flames using the PDF
transport equation approach have been per-
formed with finite-rate chemistry [2–4]. While
the calculations of Norris and Pope [4] are
successful in predicting the jet velocity at which
global extinction occurs, the details of local
extinction are not well represented. These dis-
crepancies were attributed to three factors: de-
ficiencies in the mixing model, differential dif-
fusion effects which were neglected, and
experimental error. In spite of establishing the
overall success of the PDF approach in model-
ing turbulent nonpremixed flames, these calcu-
lations highlight the need for a better under-
standing of such reactive flows.

While the comparison of model predictions
with experimental data is the ultimate test of a
model, it is difficult to pinpoint the model
deficiencies in comparisons with experiment for
several reasons. In real flows there are many
complex coupled processes and it is difficult to
isolate the effects of the physical process being
modeled. The modeled terms, e.g., Lagrangian
time series of composition or conditional scalar
dissipation, are often not amenable to direct
measurement.

On the other hand direct numerical simula-
tions (DNS) can be used to perform controlled

numerical experiments on simple turbulent re-
active flows and all flow properties of interest
can be extracted. Since many features charac-
teristic of turbulent flames can be represented
in a simpler model problem, a satisfactory
model for turbulent flames should perform
comparably in a simpler turbulent reactive flow.
Modeling deficiencies may be identified more
easily in the model problem setting. Further-
more, the model behavior in the simpler flow
problem can be used to gain valuable insight
into the model performance in real turbulent
flames. In fact, such computations of practical
combusting flows are an ongoing part of this
research effort and this work is intended as an
important complement thereof.

The present contribution constitutes an inter-
mediate step to the comparison of model pre-
dictions with DNS. The objectives of the present
work are two-fold: the first is to construct a
simple inhomogeneous, nonpremixed reactive
flow model problem that is amenable to DNS;
the second is to study the effect of PDF models
of molecular mixing on model predictions over
a range of flow conditions including those close
to extinction. In particular, it is of interest to
determine whether the new principle of local-
ness [5, 6] required of mixing models enables a
more accurate representation of mixing in reac-
tive flows.

In general a constant-density, constant-diffu-
sivity (equal for all species), nonpremixed tur-
bulent reactive flow can be characterized by a
Reynolds number (say the Taylor-scale Reyn-
olds number Rl), Damköhler number and a
reaction zone thickness parameter defined as

ĵr ; Djr/j9, (2)

where Djr is the characteristic width of the
reaction zone in mixture-fraction space and j9 is
the r.m.s. mixture fraction. These parameters
may be functions of space and time.

In order to obtain a quantitative description
of extinction in this (Rl, Da, ĵr) parameter
space with finite computer resources, the model
problem is necessarily very simple both in terms
of flow and thermochemistry. The velocity field
is constant-density, statistically stationary, ho-
mogeneous isotropic turbulence. A simple ther-
mochemical model for one-step reversible reac-
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tion is employed, with the thermochemical state
of the fluid described by two variables: the
mixture fraction and reaction progress variable.
It is advantageous to consider a model problem
which admits statistically stationary solutions.
This removes the temporal dependence of the
parameters and also allows study of flow char-
acteristics independent of the influence of initial
conditions. Even with these simplifications, a
statistical description of extinction using numer-
ical simulations is subject to statistical variability
and is dependent on the duration of the simu-
lation [7].

In previous studies of extinction by Lee and
Pope [7], stationarity was achieved by artificially
forcing the mixture fraction field, but in this
model problem stationarity is achieved by im-
posing a linear mean gradient in the mixture
fraction. The mean gradient in mixture fraction
also results in a “flame brush,” which is a more
realistic case than that considered in Lee and
Pope [7]. The flow under consideration has
statistical inhomogeneity only in the reaction
progress variable and only in the spatial dimen-
sion along which the linear mean gradient in
mixture fraction is imposed.

At high Reynolds number, the extinction
characteristics are expected to become indepen-
dent of the Reynolds number. One of the goals
of these simulations is a characterization of
global extinction by means of a stability diagram
in Da 2 ĵr parameter space similar to that
shown in Lee and Pope [7].

The following section describes the model
problem and governing equations. This is fol-
lowed by a description of the reaction rates used
in this study. Then the section on turbulent
combustion models describes the conditional
moment closure (CMC) model and the PDF
turbulent combustion models which are com-
pared in this work. Results for a range of
parameters using the different turbulent com-
bustion models are then presented. It is found
that the models are in good agreement for large
values of the reaction zone thickness parameter
ĵr, but there are significant differences for small
values of ĵr. These differences are discussed in
the light of the modeling assumptions inherent
in each model and are summarized in the final
section.

PERIODIC REACTION ZONES MODEL
PROBLEM

Multiple parallel slabs of reactants have been
considered by Leonard and Hill [8] to investi-
gate scalar dissipation and mixing in temporally
evolving turbulent reacting flow. The periodic
reaction zones (PRZ) model problem described
here has two major differences with respect to
Leonard and Hill’s problem. The first is that
PRZ admits statistically stationary solutions,
which are advantageous when studying extinc-
tion. The second difference is that PRZ is based
on the concept of “anti-flames” to achieve sta-
tionary solutions, whereas this is not the case in
the temporally evolving case considered by Leo-
nard and Hill.

The velocity field in this model problem is
constant-density, statistically stationary, homo-
geneous isotropic turbulence. At high Reynolds
number the velocity field can be characterized
by e, the mean dissipation rate and k, the kinetic
energy of the turbulence. A mean turbulent
frequency ^v& [ e/k, and a velocity scale u9 [
=2k/3 are defined in terms of k and e. These
quantities can then be used to define a charac-
teristic lengthscale l 5 u93/e and timescale t 5
k/e of the turbulence.

The thermochemical state of the fluid is
characterized by two composition variables: the
mixture fraction j(x, t) and the reaction
progress variable Y(x, t). The mixture fraction
is a conserved passive scalar and evolves by

Dj

Dt
5 G¹2j, (3)

where G is the molecular diffusivity. The fluctu-
ating mixture fraction field is defined as

ǰ~x, t! 5 j~x, t! 2 ^j&~x, t!.

In Lee and Pope [7], the mean mixture fraction
field is homogeneous, and a statistically homo-
geneous, periodic, statistically stationary fluctu-
ating mixture fraction field is generated by
artificial forcing. In the present work a gradient
in the mean mixture fraction field is imposed in
the x2 direction which results in a more realistic
“flame brush.” The simplest way to achieve this
is to impose a linear gradient ­^j&/­ x2 5 con-
stant. This results in a periodic, statistically
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homogeneous fluctuating mixture fraction field,
which attains statistical stationarity after suffi-
cient time has evolved for the flow to equili-
brate. The mixture fraction variance evolution is
given by

­^ǰ2&

­t
5 22^ǰu2&

­^j&

­ x2
2 ^x&, (4)

where the terms on the right-hand side are
production of mixture fraction variance due to
the imposed mean mixture fraction gradient,
and mean scalar dissipation

^x& ; 2GK ­ǰ

­ xk

­ǰ

­ xk
L .

In stationary isotropic turbulence, the fluctuat-
ing mixture fraction field decays in the absence
of mean gradient production. The mixing time-
scale, which is the characteristic timescale for
decay of mixture fraction variance j92 5 ^ǰ2&, is
given by

tf ; j92/^x&. (5)

For non-zero values of the imposed linear gra-
dient, the mixture fraction variance attains a
stationary value in which there is a balance
between production and mean scalar dissipation
[9]. It is also found that the pdf of mixture
fraction is close to a Gaussian [9].

The reaction progress variable evolution is
given by

DY
Dt

5 G¹2Y 1 S~j, Y!, (6)

where S(j, Y) is the reaction rate and the
molecular diffusivity G is taken to be equal to
the mixture fraction diffusivity.

A new thermochemical model is employed
for a one-step reversible reaction (fuel 1 oxi-
dant º product), which is similar to the one
used in Lee and Pope [7]. For the sake of clarity,
only the features of the thermochemistry perti-
nent to this section are presented here. A more
complete description is given in Subramaniam
and Pope [10]. The reaction progress variable Y
is the mass fraction of product. At chemical
equilibrium, Y adopts the value Ye(j) which is
specified as an analytic expression in terms of j
and the stoichiometric value of the mixture

fraction js (0 , js , 1). The reaction rate is
zero at equilibrium [S(j, Ye) 5 0], and also
along the Y 5 0 contour [S(j, 0) 5 0]. The
reaction rate as a function of composition (j, Y)
is also given by an analytic expression. (The
exact specification of these functions and the
rationale for developing this thermochemical
model is detailed in Subramaniam and Pope
[10].) For a stoichiometric mixture fraction of
0.5, Fig. 1 shows a sketch of the equilibrium
function and the normalized reaction rate con-
tours.

In combustion problems with two uniform
reactant streams, j is usually defined as a con-
served scalar that goes from zero in one reac-
tant stream (say the oxidant stream) to unity in
the second reactant stream (fuel). In this case
the mixture fraction everywhere in the flow is
bounded by 0 # j # 1. In contrast to this usual
state of affairs, in the periodic reaction zone
model problem, j is unbounded, and hence the
entire thermochemistry requires modified defi-
nition and interpretation.

In a DNS of periodic reaction zones, the
solution domain is a cube of side L, and a mean
gradient of magnitude DjL /L is imposed in the
x2 direction, where the jump in the mean mix-
ture fraction DjL is specified. The velocity u(x,
t), and the fluctuating component of the mix-
ture fraction ǰ(x, t) are periodic in all three
coordinate directions. The specification of peri-
odic boundary conditions is equivalent to ex-
tending the solution domain periodically in all

Fig. 1. Sketch of the equilibrium function Ye(j) and nor-
malized reaction rate contours S(j, Y)/Smax for the model
thermochemistry.
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spatial directions. In particular, the periodic
boundary condition on ǰ implies

ǰ~x1, x2 1 mL, x3, t! 5 ǰ~x1, x2, x3, t!, m integer.

Thus, for the general interval mL#x2#(m11)L,
the mean mixture fraction ^j& ranges from mDjL
to (m 1 1)DjL, and hence for any finite DjL, j
is an unbounded variable over the whole domain.
Consequently for this model problem it is neces-
sary to extend the definition of the thermochem-
istry to all values of j. This is done such that

(i) imposing the periodic boundary condition
[Y(j 5 m) 5 0] in composition space at
the integer-valued mixture fraction isosur-
faces j(x, t) 5 m, in conjunction with an
appropriate extension of S(j, Y), results in
Y(x, t) periodic in x2,

(ii) within each interval [mL, (m 1 1) L]
there is a flame brush, and

(iii) at sufficiently high Da (far from extinction)
Y becomes statistically stationary.

One way to attempt to do this is simply to
extend the thermochemistry by periodically re-
peating the thermochemistry in the [0, 1] mix-
ture fraction interval as depicted in Fig. 2,
namely,

Ye~j! 5 Ye~j 2 j!, j [y @0, 1#, (7)

S~j, Y! 5 S~j 2 j, Y!, j [y @0, 1#, (8)

where j is the largest integer smaller than j.
However, this simple periodic extension is un-
suitable since it cannot result in a non-trivial

stationary solution corresponding to stable re-
action [cf. (iii)]. Consider the volume average of
the mean progress variable

@^Y&#L~t! ;
1
L E

0

L

^Y&~ x2, t! dx2.

Since in this periodic extension the reaction rate
function is always non-negative [S(j, Y) $ 0],
the volume average of ^Y& must always increase
(except for the case where the reaction rate is
zero everywhere). This implies that there are
only two trivial stationary solutions to the prob-
lem: either the flow is in chemical equilibrium
everywhere (Y 5 Ye) or there is no product
anywhere (Y 5 0 everywhere). This follows
from our assumptions that the reaction rate is
zero at equilibrium and along the Y 5 0
contour. Clearly this extension procedure is not
useful for studying the range of combustion
phenomena which are of interest.

The alternative extension procedure that is
used here is to first extend the thermochemistry in
the [0, 1] mixture fraction interval “anti-symmet-
rically” to the [21, 0] interval, and then periodi-
cally repeat the structure in the mixture fraction
interval [21, 1] as depicted in Fig. 3, specifically

Ye~j! 5 Ye~j 2 j!, j [ @2m, 2m 1 1#, (9)

Ye~j! 5

2 Ye~uj 2 ju!, z j [ @2m 2 1, 2m#, (10)

Fig. 2. Symmetric extension of the thermochemistry: equi-
librium function and normalized reaction rate contours are
shown.

Fig. 3. Antisymmetric extension of the thermochemistry:
equilibrium function and normalized reaction rate contours
are shown.
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S~j, Y! 5

S~j 2 j, Y!, z j [ @2m, 2m 1 1#, (11)

S~j, Y! 5

2 S~uj 2 ju, Y!, z j [ @2m 2 1, 2m#, (12)

where j is the smallest integer larger than j. In
order for the mean mixture fraction to extend
over one period of the antisymmetric extension
of the thermochemistry [i.e., ^j&( x2 5 0) 5 0,
^j&( x2 5 L) 5 2], the jump in the mean
mixture fraction over the length L is given by

DjL 5 2. (13)

This implies that the gradient in the mean
mixture fraction is ­^j&/­ x2 5 DjL/L 5 2/L.
Since each reaction zone period is statistically
identical, it is sufficient to simulate only one
such period.

The alternating positive and negative equilib-
rium functions can be interpreted as zones
corresponding to flames and “anti-flames.” In
the interval j [ [2m, 2m 1 1], which is
interpreted as a flame, reactants enter from
either end of the interval and are converted to
product which leaves the interval due to trans-
port. In the interval j [ [2m 2 1, 2m], which
is interpreted as an “anti-flame,” “anti-reac-
tants” (which are products leaving the adjacent
flame zones) enter from either end of the
interval and are converted to “anti-product”
(which is reactant) which again leaves the inter-
val due to transport: see Fig. 3. Each interval in
mixture fraction space j [ [2m, 2m 1 1], is a
statistically identical copy of the interval j [ [0,
1] and similarly for the “anti-flame” intervals—
each interval in mixture fraction space j [
[2m 2 1, 2m], is a statistically identical copy of
the interval j [ [21, 0]. Furthermore, each fluid
particle in the “anti-flame” interval with com-
position (j, Y) is statistically identical to a fluid
particle in the mixture fraction interval [0, 1]
with composition (j 2 j, 2Y). As a conse-
quence, even though in this model problem the
mixture fraction and progress variable take on
seemingly “unphysical” values outside the inter-
val [0, 1], they can be interpreted in physical
terms by the mathematical relations in the
preceding paragraph.

Flames and anti-flames are separated by the

constant-property surfaces, j(x, t) 5 integer.
These surfaces are time-dependent and each
one is not necessarily connected. In order to
conform with the idea that j 5 0 and j 5 1
correspond to pure reactants (i.e., Y 5 0), the
boundary condition (Y 5 0) is imposed on the
surfaces j 5 integer.

In Fig. 4, the DNS solution of PRZ [11] with
isosurfaces of the stoichiometric mixture frac-
tion for the flame and anti-flame is shown. The
periodic layered mixture fraction field is clearly
visible, with the wrinkled isosurfaces corre-
sponding to fluctuations in the mixture fraction
field. The spatial variation of the mean mixture
fraction and the mean progress variable in the
flow at this time are also shown.

REACTION RATES

The reaction rate function S(j, Y), is specified
according to the self-similar thermochemical
model [10]. The motivation, development and
details of this self-similar thermochemistry
(SSTC) are described in Subramaniam and
Pope [10]. The reaction rate S(j, Y) is ex-
pressed as

S~j, Y! 5
Dje

tc
Ŝ~ĵ, ŷ!, (14)

where Dje and tc are the primary thermochemi-
cal parameters, and Ŝ(ĵ, ŷ) is a non-dimen-
sional scaled reaction rate function defined in
terms of the scaled variables ĵ and ŷ.

Fig. 4. DNS solution of PRZ with stoichiometric isosurfaces
of j 5 js 5 0.5 (upper surface) and j 5 2js 5 20.5 (lower
surface). The corresponding spatial profiles of mean mix-
ture fraction and mean progress variable are shown on the
right. Adapted from Overholt and Pope [8] by permission of
the authors.
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The thermochemical parameter Dje is a mix-
ture fraction scale associated with the curvature
of the equilibrium function in mixture fraction
space

Y 0e~j! ; d2Ye~j!/dj2,

and in the SSTC it is defined as

Dje ;
4

puY 0emax
u
, (15)

where uY 0emax
u is the maximum value of the

curvature of the equilibrium function. The other
primary thermochemical parameter tc, is a
chemical timescale which controls the magni-
tude of the reaction rate, and is varied to
simulate different Damköhler numbers.

Now the scaled reaction rate function Ŝ(ĵ, ŷ)
is defined. In this study, the stoichiometric value
of the mixture fraction js, is chosen to be 0.5.
This results in a symmetric equilibrium function
Ye(j). For this symmetric case, the scaled vari-
ables ĵ and ŷ in the SSTC are defined as follows:

ĵ 5 ~j 2 js!/Dje, (16)

ŷ 5
Ye 2 Y

Dje
. (17)

The scaled reaction rate function Ŝ(ĵ, ŷ) is
expressed as a product of two functions,

Ŝ~ĵ, ŷ! 5 f~ ŷ! g~ĵ!, (18)

where,

f~ ŷ! 5 Bŷ exp~1 2 Bŷ!, (19)

g~ĵ! 5 exp$2CG~ĵ!%, (20)

and where G(ĵ) is given by

G~ĵ! ;
Ymax 2 Ye

Dje
5

4
p

ĵ arctan~ĵ! 2
2
p

ln@1

1 ĵ2#. (21)

Note that the maximum value of g(ĵ) occurs at
j 5 js, i.e. g(0) 5 1. At equilibrium ( y 5 0) f
is zero, and it attains its maximum value of 1 at
ŷ 5 B21.

The constants B and C are secondary ther-
mochemical parameters that determine the
width of the reaction rate function in ŷ and ĵ
space, respectively. The parameter B plays the

role of activation energy. The reaction rate in a
typical combustion process is significantly large
close to equilibrium and rapidly decays far from
equilibrium. This trend is captured by the shape
of the function f( y) for suitable choices of the
parameter B and Dje (see Fig. 5). The peak of
the function g at stoichiometric mixture fraction
is also characteristic of the variation of reaction
rate in typical combustion systems (see Fig. 6).

Extinction in diffusion flames is often charac-
terized by an S-curve which is a plot of maxi-
mum temperature versus a reduced Damköhler
number [12]. One way to establish the practical
relevance of the present thermochemical model
is to demonstrate that the model is capable of
reproducing similar extinction characteristics.
In Fig. 7 the maximum progress variable (which
can be interpreted as temperature) is plotted vs
the reciprocal of the normalized mean scalar
dissipation rate (equivalent to a Damköhler
number normalized by its value at extinction)
for simulations performed using this thermo-
chemical model and the conditional moment
closure (details of the conditional moment clo-
sure are given in the first part of the next
section). Similar results were also obtained us-
ing the laminar flamelet model. It is clear from
Fig. 7 that this thermochemical model repro-
duces the upper and middle branches of the
S-curve which is observed in extinction of diffu-

Fig. 5. Plot of the function f( y) showing the reaction zone
thickness for the cases that are investigated in the simula-
tions. The self-similar thermochemistry is used with B 5
0.096. The curves correspond to different values of the
parameter Dje: —— Dje 5 1.27324 3 1022 (Y 0e max 5
2100), for ĵr 5 10; – – – Dje 5 4.244 3 1023 (Y 0e max 5
2300), for ĵr 5 1 and ĵr 5 0.27.
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sion flames. The detailed characteristics of the
S-curve can be modified by suitable choice of
the thermochemical parameters.

The characteristic reaction timescale t* asso-
ciated with this reaction rate specification can
be ascertained by considering the Taylor series

expansion of S(j, y) in powers of y about the
equilibrium contour y 5 0:

S~j, y! 5 S~j, 0! 1 yF­S~j, y!

­ y G
y50

1 · · ·

Since S(j, 0) is zero (the reaction rate is zero at
equilibrium), for small y, the reaction rate is
approximately y[­S(j, y)/­ y]y50. Noting that

F­S~j, y!

­ y G
y50

5 g~j! Be/tc,

the reaction rate for small y at j 5 js (note g(js)
5 1) is given by yBe/tc. From this relation the
characteristic reaction timescale t* is deduced
to be

t* ; tc/~Be!. (22)

At stoichiometric mixture fraction, the reaction
rate can be written in terms of the departure
from equilibrium y, and the characteristic reac-
tion timescale t* as

S~js, y! 5
y

t*
1 2~ y2!.

It may be noted that the maximum reaction rate
is Smax 5 Dje/tc 5 (DjeBe)/t*. Since both f and
g are maximized by unity, tc can be used to
adjust the actual magnitude of the reaction rate.

The reaction zone thickness in mixture frac-
tion space is defined as

Djr 5 jr 2 jl, (23)

where the lean and rich limits of the reaction
zone in mixture-fraction space (jl and jr respec-
tively) are defined to be the lower and upper
values of j at which g(j) equals 0.1.

Simulations are performed using three differ-
ent reaction rate specifications corresponding to

TABLE 1

Summary of Thermochemical Parameters for Each Casea

ĵr 5 10 ĵr 5 1 ĵr 5 0.27

Dje 1.27 3 1022 2.24 3 1023 2.24 3 1023

uY 0emax
u 100 300 300

Djr 0.6 0.2 0.067
Djrss

0.048 0.016 8.46 3 1023

C 0.055 0.055 0.197

a The thermochemical constant B is 0.096 for all cases.

Fig. 6. Plot of the function g(j) in the self-similar thermo-
chemistry specification, showing the reaction zone thickness
for the three cases that are investigated in the simulations.
For ĵr 5 10 and ĵr 5 1 the value of C is 0.055, while for ĵr

5 0.27 it is 0.197. The values of the different reaction zone
thickness are: Djr 5 0.6, ĵr 5 10; Djr 5 0.2, ĵr 5 1; Djr 5
0.067, ĵr 5 0.27 (see Table 1). The intersection of the
horizontal line at height 0.1 with the function g(j) defines
the reaction zone thickness Djr.

Fig. 7. Extinction characteristics of the thermochemical
model represented as the S-curve observed in diffusion
flame extinction. The maximum progress variable (temper-
ature) is plotted versus the reciprocal of the normalized
mean scalar dissipation rate for simulations performed
using the conditional moment closure model. The quantity
xe represents the mean scalar dissipation rate corresponding
to extinction.
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broad (ĵr [ Djr/j9 5 10), moderate (ĵr 5 1) and
thin (ĵr 5 0.27) reaction zones. The values of
the thermochemical parameters (barring the
chemical timescale tc) used in these three cases
are tabulated in Table 1. The corresponding
functions f( y) and g(j) are shown in Figs. 5 and
6, respectively. The normalized reaction rate
functions for the broad, moderate and thin
reaction zone cases are shown in Figs. 8–10,
respectively. For simulations with the same re-
action zone thickness, when the value of tc is
varied (in order to simulate different
Damköhler numbers) there is a corresponding
change in the magnitude of the reaction rate.
However, the shape of the reaction rate func-

tion in composition space remains the same for
all simulations with the same reaction zone
thickness. The rationale for choosing these par-
ticular values of the thermochemical parame-
ters may be found in Subramaniam and Pope
[10].

TURBULENT COMBUSTION MODELS

Conditional Moment Closure

In this section the conditional moment closure
(CMC) model of Bilger [13], as applied to the
periodic reaction zone problem, is described.
The starting point for the derivation of the
CMC model equation is the evolution of the
mixture-fraction and progress variable fields
(Eqs. 3, 6). In a turbulent flow, both Y(x, t) and
j(x, t) are random fields. The sample space
variable of j is denoted by h. The expectation of
Y(x, t) conditional on j(x, t) 5 h is denoted
Q(h, x, t), i.e.,

Q~h, x, t! ; ^Y~x, t!uj~x, t! 5 h&. (24)

For brevity ^Y(x, t)uj(x, t) 5 h& is denoted by
^Yuh&. The deviation ỹ(x, t) of the progress
variable Y(x, t) from its conditional mean is
defined as

ỹ~x, t! 5 Y~x, t! 2 Q~j@x, t#, x, t!. (25)

The evolution equation for Q(h, x, t) is

Fig. 8. Contours of the normalized reaction rate function
Ŝ(j, y) for the broad reaction zone case: B 5 0.096, C 5
0.055.

Fig. 9. Contours of the normalized reaction rate function
Ŝ(j, y) for the moderate reaction zone case: B 5 0.096,
C 5 0.055.

Fig. 10. Contours of the normalized reaction rate function
Ŝ(j, y) for the thin reaction zone case: B 5 0.096, C 5
0.197.
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­Q
­t

1 ^Uiuh&
­Q
­ xi

5 S~h, Q!

1 G^¹j z ¹juh&
­2Q
­h2 1 eQ 1 eỹ, (26)

where

eQ 5 GF ­

­ xi
S­Q

­ xi
D 1

­2Q
­h ­ xi

K ­j

­ xi
UhLG (27)

and

eỹ 5 2KS­ ỹ
­t

1 Ui
­ ỹ
­ xi

2 G
­2ỹ

­ xi­ xi
DUhL . (28)

Consistent with the basic assumption that the
difference between Y(x, t) and its mean condi-
tioned on the mixture fraction is small, the
terms in eỹ are assumed to be negligible com-
pared to the other terms in the equation for Q.
At sufficiently high Reynolds number, the terms
in eQ are also negligible [13].

If fluctuations in Y arise from fluctuations in
j and if the fluctuating mixture fraction field is
statistically homogeneous, then ­Q/­ xi must be
negligible. By using these closure hypotheses,
Eq. (26) can be written as

­Q
­t

5 S~h, Q! 1
^xuh&

2
­2Q
­h2 , (29)

where x 5 2G¹j z ¹j is defined to be the scalar
dissipation. The conditional mean scalar dissi-
pation, ^xuh& is assumed to be equal to the
unconditional mean scalar dissipation ^x& since
the pdf of j is Gaussian. For stationary solutions
the temporal derivative must be zero, and the
resulting final form of the equation for Q is

­2Q
­h2 1

2S~h, Q!

^x&
5 0. (30)

The boundary conditions on Q are Q(h 5 0) 5
0 and Q(h 5 1) 5 0.

The reaction rate expression corresponding
to the self-similar thermochemistry (Eqs. 14 and
18) can be substituted into Eq. 30 to obtain

­2Q
­h2 1

2
^x&

Djef~q̂! g~ĥ!

tc
5 0, (31)

where q̂ 5 q/Dje, q 5 Ye(h) 2 Q(h), and ĥ 5
(h 2 js)/Dje. Substituting the expression for the

mixing timescale in terms of the scalar dissipa-
tion (Eq. 5) and the expressions for the func-
tions f and g (Eqs. 19 and 20) in Eq. 31 results
in

­2Q
­h2 1

2
j92 Djeq̂ exp$@2Bq̂ 2 CG~ĥ!#%

z
tfBe

tc
5 0. (32)

The CMC equation (Eq. 32) can be rewritten
in terms of the non-dimensional parameters Da
and ĵrss

by using the relations in Eqs. 22 and 1 as

­2Q
­h2 1

1
Dje

q̂ exp$@2Bq̂ 2 CG~ĥ!#%

z Daĵrss

2 S8C
p
D 5 0, (33)

where Djrss
[ Dje=p/(4C), and ĵrss

5 Djrss
/j9.

This equation admits stable solutions only for a
limited range of parameter values Da and ĵrss

.
For given ĵrss

, there is a critical value of Da,
Dacrit (ĵrss

), below which Eq. 33 admits no
solutions, while for Da greater than Dacrit there
are two solutions: one of which is stable and the
other which is unstable. By solving for the
critical Damköhler number corresponding to
the desired range of values in ĵrss

space (while
keeping the thermochemical constants B and C
fixed), the global extinction boundary as pre-
dicted by the CMC model can be determined in
Da 2 ĵrss

space.

PDF Method

In Monte Carlo simulations of inhomogeneous
flows the solution domain in physical space is
discretized into a number of cells for the pur-
pose of extracting local mean quantities that
appear in the particle evolution equations.
Within each cell at any given time t, the joint
pdf of velocity, composition and turbulent fre-
quency is represented by an ensemble of N
particles. The position, velocity and turbulent
frequency of the ith particle are denoted by X(i),
U(i) and v(i) respectively. If the number of
compositions is D, then fbi (b 5 1, . . . , D)
represents the composition of the ith particle
(i 5 1, . . . , N). Each particle is assigned an
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importance weight wi (such that the particle
weights sum to unity) which determines its
relative contribution in estimates of the means
and higher order moments of the particle prop-
erties.

Physical Sub-models

The evolution equations of the particle proper-
ties are:

dX~i! 5 U~i! dt (34)

dU~i! 5 2
3
4

C0^v&~U~i!~t! 2 ^U&! dt

1 ÎC0k^v& dW (35)

dv~i! 5 2~v~i! 2 ^v&!C3^v& dt 2 ^v&v~i!Svdt

1 Î$2s2^v&v(i)C3^v&% dW* (36)

dfbi

dt
5 Qb

(i) 1 Sb~@fi#!, b 5 1, 2. (37)

The position equation simply states that each
particle moves with its own velocity. The mean
quantities in Eqs. 35 and 36 are evaluated at
(X(i), t). The velocity evolves by the simplified
Langevin model for stationary isotropic turbu-
lence with the constant-density simplification
[14], [15]. The model constant C0 is fixed at its
standard value of 2.1. The term dW represents
an increment in the isotropic Wiener process
W(t). The details of this model and its perfor-
mance may be found in Pope [16]. The turbu-
lent frequency evolves by the Jayesh and Pope
[17] model with simplifications resulting from
the homogeneity assumption incorporated in
Eq. 36. In the equation for turbulent frequency
(Eq. 36), the term dW* represents an increment
in the Wiener process W*(t), which is indepen-
dent of the Wiener process in the velocity
equation. For stationary homogeneous turbu-
lence the modeled source term Sv is set to zero,
thus ensuring that ^v& is stationary. The values
of the model constants in the turbulent fre-
quency equation are C3 5 1 and C4 5 0.25.
The pdf of the stationary and homogeneous
turbulent frequency is a gamma distribution.
Further details of the turbulent frequency
model may be found in Jayesh and Pope [17].
The composition variables are defined as f1 5 j

and f2 5 Y. In the composition evolution
equation (Eq. 37), the term Qb represents the
mixing model, the term Sb([fi]) represents the
reaction rate of the bth scalar (which is non-
zero only for b 5 2), and [fi] represents the
vector of compositions corresponding to the
location of the ith particle in composition space.
The self-similar model thermochemistry speci-
fication for the reaction rate is used. The two
different mixing models used in this study, IEM
and EMST, are now described.

Mixing Models

A comprehensive discussion of the issues con-
cerning pdf mixing models may be found in
Subramaniam and Pope [5]. It is shown in that
work that mixing models should satisfy several
performance criteria including the properties of
boundedness, independence, and extension to
multiple reactive scalars. Current mixing models
reflect a compromise between these various
performance criteria since none of them satis-
fies all the criteria. In the context of modeling
nonpremixed turbulent reacting flows, it is our
belief that the properties of boundedness, ex-
tension to multiple scalars, and localness in
composition space, are the most important per-
formance criteria. Consequently some pdf mix-
ing models have not been considered in this
study in spite of their excellent performance
with respect to some of the other performance
criteria. Notable among those omitted are the
mapping closure mixing model [18, 19], and the
binomial Langevin model [20]. The mapping
closure model is omitted in spite of its excellent
performance in the decaying scalar test because
for multiple scalars the mappings become non-
unique, and the model is dependent on the
species ordering that is chosen. Similarly, even
though the binomial Langevin model performs
very well in the decaying scalar test, it is not
considered in this study since the imposition of
boundedness in the multiple scalar case intro-
duces a dependency of the model results on
species order.

One of the salient conclusions in Subrama-
niam and Pope [5] is that mixing models should
be local in composition space, in order to accu-
rately model the physics of mixing in nonpre-
mixed turbulent reacting flows. This modeling
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principle is not incorporated in mixing models
such as the IEM [21], Curl’s [22], and modified
Curl’s model. The IEM model is chosen as
representative of this family of models that are
non-local in composition space. In Subrama-
niam and Pope [5] it was shown that the IEM
model performs poorly in the diffusion flame
test problem, since it is non-local in composition
space. Norris and Pope [23] have also shown
that both Curl’s and modified Curl’s model also
perform poorly in the diffusion flame test for
the same reason.

In the IEM model [21], the ith particle’s
compositions evolve by

dfbi

dt
5 2

1
2

Cf^v&~fbi 2 ^fb&!, (38)

where Cf is a model constant chosen to be 2.0.
While this model is attractive on account of its
simplicity it is known to perform unsatisfactorily
in certain reactive flows [23, 4].

The EMST mixing model is based on inter-
actions between particles that are local in com-
position space. It is an extension of the mapping
closure particle model to multiple scalars. Only
the salient features of the model are presented
here for completeness. A complete description
of the EMST model and its validation in inert
and reactive tests may be found in Subrama-
niam and Pope [5] and [6].

At any given time a subset of NT particles is
chosen for mixing from the ensemble of N
particles in the cell, based on an age property
associated with each particle. A Euclidean min-
imum spanning tree is constructed on this sub-
set of NT particles so that each particle is
connected with at least one neighbor particle
(see Fig. 11). The vector of particle composi-
tions f(i) 5 fb(i), i 5 1, . . . NT evolves as

w(i)
df(i)

dt
5 2a O

n51

NT21

Bn$~f(i) 2 fnn
!dimn

1 ~f(i) 2 fmn
!dinn

%, (39)

where the nth edge connects the particle pair
(mn, nn) and d represents the Kronecker delta.
The specification of the model constants Bn and
a is described in Subramaniam and Pope [5],
and [6].

The PDF2DV Program

These physical sub-models are incorporated in a
FORTRAN program called PDF2DV devel-
oped by Pope [24] to calculate the properties of
statistically two-dimensional (plane or axi-sym-
metric) turbulent reactive flows. The problem
under consideration has spatial structure in only
the x2 direction. Periodic boundary conditions
are imposed at x2 5 0 and x2 5 L on the
fluctuating velocity, turbulent frequency, fluctu-
ating mixture fraction and progress variable.
The flow parameters for the simulations are
given in Tables 2 and 3.

The grid is chosen to be uniform in the
computational domain 0 # x2 # L and the grid
spacing is chosen such that there are at least five
computational cells per integral scale l (see
Table 4). Only the mean progress variable field
^Y(x, t)& has a spatial variation in x2 that has to

Fig. 11. Euclidean Minimum Spanning Tree constructed on
the mixing subset of an ensemble of particles in 2-D
composition space (open circles represent particles in the
non-mixing state); N 5 512 particles, joint-normal
distribution.

TABLE 2

Summary of Velocity-Field Statistics Which are Common
to all the Cases in the PDF Simulations

l—integral length scale 1.0
k—turbulent kinetic energy 1.5
u9—turbulence intensity (=2k/3) 1.0
e—mean dissipation rate 1.0
^v&—mean turbulent frequency (e/k) 0.67
t—turbulence timescale 1.5
tf—mixing timescale 0.75
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be resolved. This is guaranteed provided the
fluctuating mixture fraction field (i.e., the flame
brush) is resolved spatially.

In the periodic reaction zones problem the
mixture fraction variance attains a stationary
value when the production due to mean gradi-
ent balances the scalar dissipation. The r.m.s.
value of the stationary mixture fraction scales as

j9 ,
­^j&

­ x2
3 l. (40)

If the length of the computational domain in the
x2 direction is L and DjL is the jump in mean
mixture fraction across the domain, then substi-
tuting

­^j&

­ x2
5

DjL

L
,

the r.m.s. mixture fraction scaling can be written
as

j9 , DjL
l
L

. (41)

Using this relation between the r.m.s. mixture
fraction j9 and the integral scale l (Eq. 41), it is
clear that resolving the integral scale l ensures
that all the composition mean fields are spatially
well resolved.

Particle properties are advanced over a time

step Dt, chosen such that all important flow
timescales are resolved (see Table 4), using the
method of fractional steps [14]. The time step
restriction on Dt arises from the convective
timescale which is the smallest of the flow
timescales. The effects of mixing and reaction
on the reactive scalar Y are implemented
through a first-order splitting strategy [25]. The
change in Y due to reaction over a time step Dt
is computed analytically (details in [6], [10]),
thus avoiding the need for expensive sub-step-
ping of the chemical timescale which would
have made the high Damköhler number calcu-
lations prohibitive. The particle number density
is uniform in physical space. For small values of
ĵr, within a computational cell, the thermo-
chemical composition scales (Djr and Dje) are a
small fraction of the region accessed by the
particle compositions (which is determined by
the r.m.s. mixture fraction j9). For these cases,
the number of particles per cell Npc has to be
increased to ensure that the thermochemical
scales are adequately resolved. For the details
of the convergence of important flow statistics
with respect to Npc the reader is referred to
Subramaniam [6], [10].

DESCRIPTION OF TEST CASES

The turbulent velocity field parameters which
are the same for all the cases are tabulated in
Table 2. The different value of stationary mix-
ture fraction standard deviation for each case is
generated by changing L, the length of the
computational domain. Since the jump in the
mean mixture fraction over the computational
box-length L is held fixed at 2, changing L
effectively changes the imposed mean mixture
fraction gradient. The different computational

TABLE 3

Summary of Case-Specific Flow Parameters in the PDF
Simulations

ĵr 5 10 ĵr 5 1 ĵr 5 0.27

L—computational box-length 31.13 9.34 7.78
j9—nominal r.m.s. mixture fraction 0.06 0.2 0.24
Tt—transport timescale 58.1 5.23 3.63

TABLE 4

Summary of Numerical Parameters for Each Case in the PDF Simulations

ĵr 5 10 ĵr 5 1 ĵr 5 0.27

Nc—number of cells in [0, L] 156 50 40
Dx2/l—spatial resolution 0.2 0.19 0.19
Npc—nominal number of particles per cell: 80 750 1120
CDtm

—Dt # CDtm
tf 0.1 0.1 0.1

CDtu
—Dt # CDtu

Dx2/(2u9) 0.4 0.4 0.4
Dt—time step 0.036 0.036 0.038
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box-lengths, mixture fraction standard deviation
and associated transport timescale are tabulated
in Table 3. The fundamental and derived ther-
mochemical parameters for each case are given
in Table 1.

The case with ĵr 5 10 (j9 ' 0.06, Djr 5 0.6)
corresponds to broad reaction zones. Consider
fluid at a physical location where the mean
mixture fraction is stoichiometric. The fluctua-
tions in mixture fraction at this location are
small compared to Djr and are almost always
confined within the reaction zone in composi-
tion space. The case with ĵr 5 1 (j9 ' 0.2, Djr 5
0.2) corresponds to moderate reaction zone
thickness parameter. The mixture fraction fluc-
tuations are of the order of the reaction zone
thickness Djr. The case with ĵr 5 0.27 (j9 ' 0.24,
Djr 5 0.067) corresponds to thin reaction zones.
The mixture fraction fluctuations are large com-
pared to the reaction zone thickness Djr. This is
expected to be a severe test of the mixing
models.

Simulation Strategy

The objective is to perform simulations for each
of the three cases (corresponding to fixed values
of ĵr) for a range of Damköhler numbers span-
ning the range of physical states from stable
reaction to global extinction. One important
outcome of these simulations will be an esti-
mate of the critical Damköhler corresponding
to global extinction.

In order to obtain these estimates it is neces-
sary to quantitatively characterize global extinc-
tion in a PDF simulation. In the DNS of homo-
geneous combustion Lee and Pope [7] used an
imbalance index, which is a non-dimensional
measure of the imbalance between mixing and
reaction terms in the evolution equation of the
volume-averaged-perturbation [ y(x, t)] [7], to
characterize global extinction. In the present
study an extinction index is defined based on the
temporal evolution of the particle composition
values in the PDF simulation.

Extinction Index

All the simulations are evolved from the initial
condition of chemical equilibrium. In composi-
tion space all the particles initially lie along the

equilibrium line Ye(j). See Figure 12. After
sufficient time has elapsed for the effect of
initial conditions to be negligible, the particle
properties reach statistical stationarity.

At very high Da, reaction forces these parti-
cles to remain close to the equilibrium line,
while mixing tends to draw them away from
equilibrium. At the other extreme if there is no
reaction (inert case), then mixing forces the
particles to the Y 5 0 line, which corresponds to
global extinction. Intermediate values of the Da
number result in particles populating the com-
position plane somewhere between these two
extreme states. At any time t, one measure of
the departure of particles from the equilibrium
line in composition space is the expectation of
the progress variable conditioned on mixture
fraction ^Yuj&(t). However, it is preferable to
characterize extinction by a single variable
rather than a function. An alternative measure
could be the mean progress variable evaluated
at the physical location where the mean mixture
fraction is stoichiometric, [^Y&( x2, t)]^j&( x2)5js

.
This physical location is always at x2 5 L/4 in
the simulations and the mean progress variable
at this location is denoted ^Y&s(t) [ ^Y&(L/4, t)
5 [^Y&( x2, t)]^j&( x2)5js

.
However, this measure suffers from two

drawbacks. Firstly, it is subject to relatively large
statistical variations (since only the particles in
the cell located at x2 5 L/4 contribute to this
quantity) and secondly for the broad reaction
zones case this quantity is not truly representa-

Fig. 12. Initial condition for the PDF simulations: mixture
fraction j is uniformly distributed in [0, 2]; progress variable
Y is initially at equilibrium Ye(j).
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tive of the state of particles in the reaction zone.
To alleviate both these difficulties, instead of
using ^Y&s it is preferable to use the reaction-
zone-conditioned mean progress variable
^YujR&. For 0 # j # 1 this is defined as

^YujR& ; ^Y(i)ujl # j(i) # jr&. (42)

This quantity is a direct measure of the state of
particles in the reaction zone.

Furthermore, noting that each fluid particle
in the “anti-flame” interval with composition (j,
Y) is statistically identical to a fluid particle in
the mixture fraction interval [0, 1] with compo-
sition (j 2 j, 2Y), the particle composition
values (uY(i)u) in the “anti-reaction zone” may be
used in computing ^YujR&, thereby reducing the
statistical error.

For the inert case, the decay of the mean
progress variable can be estimated. Once sta-
tionarity is reached, the ratio of the change in
^YujR&(t) from its value at t 5 Tt (Tt is the
transport timescale defined below) to the
change in ^YujR&(t) from its value at t 5 Tt for
the decaying inert case can be used to quantify
extinction.

If the characteristic lengthscale of variation of
^Y& in x2 is L, and ^u2Y& is estimated using the
standard eddy diffusivity approximation as
^u2Y& ; gt­^Y&/­ x2, then to a good first ap-
proximation:

^Y&~ x2, t! 5 ^Y&~ x2, 0! exp~2t/Tt!,

where the transport timescale Tt 5 L2/gt. Nu-
merical simulations confirm this behavior with
Tt ' 0.04 (L/l )2t.

Using ^YujR& the extinction index [E.I.(t)] is
defined as

E.I.~t! ;
@^YujR&~t! 2 ^YujR&~Tt!#

@^YujR&~Tt!~exp~1 2 t/Tt! 2 1!#
,

t . Tt. (43)

The denominator is the change in ^YujR& from
t 5 Tt if the flow were inert, and the numerator
is the corresponding change in ^YujR& for non-
zero reaction at the Damköhler specified in the
simulation. The changes in ^YujR& are computed
with respect to the t 5 Tt instant so as to ensure
that the effect of initial conditions is negligible
by t 5 Tt, the largest timescale in the flow.

Given the statistical variability inherent in
turbulent flows, global extinction can only be
quantified probabilistically. In Lee and Pope [7]
the authors suggest two possible ways to quan-
tify global extinction: (i) the probability of ex-
tinction at a normalized time and (ii) the nor-
malized mean time to extinction in the context
of DNS. Both these quantities are beyond the
scope of current computational capabilities for
either PDF or DNS. In this light, an imprecise
definition of extinction for practical purposes is
used based on the extinction index. At any Da*,
after the simulation has evolved for a time Ts
(where Ts . Tt and is usually two to four times
Tt)

if E.I.~Ts! $ 0.25;global extinction ;

Da # Da*,

else if E.I.~Ts! , 0.25;stable reaction ;

Da $ Da*.

The evolution of the extinction index for repre-
sentative cases showing stable reaction and ex-
tinction is presented in Fig. 13. By performing
simulations for a range of Da, starting from a
very high value of Da which is evolved for Ts ;
[2 2 4]Tt and then progressively reducing the
Da in steps by a fixed fraction (and evolving the
flow for Ts at each Da), a rough bracket of the
critical Damköhler number [Dal, Dau] corre-
sponding to global extinction can be determined
using the criterion expressed in Eq. 43. This
then implies that for Da . Dau there is stable

Fig. 13. Evolution of ^YujR& and E.I. for the ĵr 5 10 case.
Da 5 5 (stable reaction): —— ^YujR&, - - - - E.I.; Da 5
0.35 (extinction): – z – z – ^YujR&, z z z E.I.
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reaction with high probability and that for Da ,
Dal there is a high probability of global extinction.
A sketch of the variation of probability of stable
reaction with Damköhler is shown in Fig. 14.

Simulation Algorithm

The simulations and the prediction of global
extinction based on E.I. are sensitive to the
initial condition from which the run is started
and are also subject to statistical variability. The
effect of statistical variability can be quantified,
within the bounds of the computational ex-
pense-accuracy trade-off, by performing multi-
ple independent simulations (MIS) at a given
Damköhler number. Thus by performing say M
MIS at Dau and Dal, the probability of extinc-
tion (or stable reaction) can be estimated at Dal
and Dau.

The sensitivity to initial conditions requires
that the ratio by which the Damköhler is re-
duced in the search for [Dal, Dau] not be so
large as to cause extinction when a smaller ratio
would have led to stable reaction. An acceptable
value for this ratio is determined empirically to
be 0.7.

The considerations of statistical variability
and sensitivity to initial conditions dictate the
formulation of the following simulation algo-
rithm, which enables extracting the [Dal, Dau]
estimates from the simulations accurately, at
minimum computational cost.

Algorithm:

0. Establish stable reaction at a high
Damköhler denoted Da0 (estimated from

the CMC predictions) by evolving the flow
for Ts 5 3Tt.

1. Reduce the Damköhler by a pre-determined
factor (0.5) in a series of steps, evolving each
Da for Ts 5 2.1Tt till global extinction is
observed. Thus obtain preliminary estimates
for [Dal, Dau].

2. Perform multiple (M 5 4) independent
simulations1 starting at the preliminary esti-
mate Dau, reducing the Da by a factor of 0.7,
evolving the flow for Ts 5 3Tt or to extinc-
tion, whichever is earlier. Thus obtain refined
estimates of [Dal, Dau] and estimates of the
probability of extinction at these Damköhler
numbers.

Results

The model predictions for the stability limits in
Da-ĵr space are shown in Fig. 15. See Table 5.
The CMC model predictions for the critical
Damköhler corresponding to extinction scale as
ĵr

22 for the ĵr 5 10 and ĵr 5 1 cases, as expected.
The prediction for the thin reaction zone case
(ĵr 5 0.27) deviates from this scaling since the
thermochemical constant C is different for this
case. While there is reasonably good agreement

1 For the ĵr 5 0.27 case the IEM model prediction for
critical Damköhler number differs from the CMC and
EMST predictions by several orders of magnitude. Multiple
independent simulations were not performed for this case
since the IEM model is grossly in error.

Fig. 14. Sketch of the probability of stable combustion
showing plausible locations for the lower and upper brack-
ets on the critical Damköhler number.

Fig. 15. Stability diagram in the Da-ĵr plane showing the
different model predictions for the stability boundary: h

CMC; open triangles IEM; solid triangles EMST. The line
represents Da 5 56.02 ĵR

22.
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among the models for broad reaction zones, it is
found that the predictions diverge with decreas-
ing reaction zone thickness parameter. The
definition of global extinction used in this study
is largely insensitive to the effect of statistical
variability. For the cases where MIS were per-
formed (the only exception being the IEM for ĵr
5 0.27 for reasons noted earlier), it is found that
all four simulations exhibited stable combustion
at Dau and global extinction at Dal. However,
these results must be cautiously interpreted
within the limited definition of global extinction
used in this study.

Quantitative comparisons of the model pre-
dictions are also made and the statistic that is
compared is defined in terms of the mean
perturbation from equilibrium of the progress
variable conditioned on the reaction zone
^yujR&(t), which is defined as

^yujR&~t! ; ^~Ye~j(i)~t!! 2 Y(i)~t!!u

jl # j(i)~t! # jr&. (44)

This quantity attains a stationary state after one
transport timescale Tt has elapsed and time-
averaging may be performed for t . Tt. The
predictions of the PDF models for this time-
averaged quantity, [^yujR&]T are compared with
the average value of q(h) in the reaction zone
obtained from the CMC predictions in Table 6.
The results are now discussed on a case-by-case
basis.

Broad Reaction Zone Case: ĵr 5 10

For this case the numerical parameters used to
obtain the CMC result are tabulated in Table 7.
The CMC model prediction for the critical
Damköhler number for ĵr 5 10 is 0.527. The
perturbation of the conditional mean progress
variable from equilibrium (qM) at Dacrit is
shown in Fig. 16. The IEM prediction for this
case is (Dal 5 0.35, Dau 5 0.5). The scatter

plots for Da 5 0.5 and Da 5 0.35 are shown in
Figs. 17 and 18, respectively. The EMST predic-
tion for this case is also (Dal 5 0.35, Dau 5
0.5). The scatter plots for Dau 5 0.5 and Dal 5
0.35 are shown in Figs. 19 and 20, respectively.
The IEM model result for Da 5 0.5 shows a
slightly higher degree of scatter which may be
attributed to the non-local nature of the model.
However, apart from this the IEM and EMST
results are very similar for this case, and the
critical Damköhler number predictions are in
good agreement with the CMC result.

Moderate Reaction Zone Case: ĵr 5 1

The CMC model prediction for the critical
Damköhler number for ĵr 5 1 is 56.02 (numer-
ical parameters used to obtain this solution are
shown in Table 7). The perturbation of the
conditional mean progress variable from equi-
librium (qM) at Dacrit is shown in Fig. 21. The
IEM prediction for this case is (Dal 5 1260,
Dau 5 1500), while the EMST prediction for
this case is (Dal 5 122.5, Dau 5 175). Both
PDF models predict significantly higher critical
Damköhler numbers than the CMC model. This
may be due to the fact that in the CMC model
spatial homogeneity is assumed, whereas in the

TABLE 5

Global Extinction Predictions

ĵr 5 10 ĵr 5 1 ĵr 5 0.27

Dacrit (CMC) 0.527 56.02 204.2
[Dal, Dau] (IEM) [0.35, 0.5] [1260, 1500] [8 3 105, 1.6 3 106]
[Dal, Dau] (EMST) [0.35, 0.5] [122.5, 175] [700, 1000]

TABLE 6

Comparison of Stationary Values of ^yujR& From the PDF
Simulations Using IEM and EMST Models With the
Mean Value of q(h) in the Reaction Zone Obtained

From CMC

CMC EMST IEM

ĵr 5 10
Da 5 0.527 0.14 0.066 0.075
ĵr 5 1
Da 5 2000 2.5 3 1024 0.10
Da 5 175 3.98 3 1023 1.03 3 1022 —
ĵr 5 0.27
Da 5 2000 2.42 3 1023 9.98 3 1024 —
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physical problem there is a “flame brush.” The
PDF models contain the transport of progress
variable flux in closed form and presumably
constitute a better model of the physical prob-
lem. The difference between the IEM and
EMST predictions can be traced to the fact that
the IEM model is non-local in composition
space, whereas the EMST model is local in
composition space. The scatter plots for Da 5
1500 and Da 5 1260 using the IEM model are
shown in Figs. 22 and 23, respectively. For the
stable reaction case (Fig. 22), the IEM model
suggests that the pdf in composition space in the
reaction zone is composed of 3 distinct regions:
(i) a d-function at equilibrium, (ii) relatively low
probability density regions close to equilibrium
corresponding to reaction terms being domi-
nant, and (iii) region of high probability density
corresponding to a dynamic balance between
reaction, mixing and transport. For the case
corresponding to global extinction (Fig. 23), the
particles are found to be collapsing to the Y 5
0 line. The scatter plots for Dau 5 175 and Dal
5 122.5 using the EMST model are shown in
Figs. 24 and 25, respectively. In this case for

stable reaction, there is considerably less scatter
of particles away from the equilibrium line. The
EMST model consistently predicts higher
^YujR& for stable reaction compared to IEM for
all the cases. For the extinguishing case (cf. Figs.
25 and 23), there is a significant difference
between the EMST and IEM model behavior.
As opposed to the uniform collapse from equi-
librium seen in the IEM scatter plot, the EMST
model shows distinctly different behavior de-
pending on whether or not the particles are in
the reaction zone in mixture fraction space.
Within the reaction zone there is a balance
between mixing and reaction, with transport
moving reactive particles out of the reaction
zone into cells where the mean composition
(^j&, ^Y&) lies outside the reaction zone in
composition space (j [ [js 2 Djr/2, js 1 Djr/2],
Y [ [Yl, Ye(j)]) (where Yl corresponds to f( y)
5 0.1). In the IEM model these reactive parti-
cles are mixed toward the cell mean resulting in

Fig. 16. Perturbation q(h) 5 Ye(h) 2 Q(h) obtained from
the CMC model at Dacrit 5 0.527 for the ĵr 5 10 case.

Fig. 17. Scatter plot of progress variable Y vs. mixture
fraction j for the ĵr 5 10 case at t 5 163 (2.8Tt) using the
IEM mixing model. The Damköhler number for this simu-
lation (Da 5 0.5) corresponds to stable reaction. The solid
line is the equilibrium line Ye(j).

TABLE 7

Summary of Numerical Parameters for Each Case in the CMC Solution

ĵr 5 10 ĵr 5 1 ĵr 5 0.27

N—number of grid points in 0 # h # 1 240 240 240
Nr—number of grid points in [js 2 Djr/2, js 1 Djr/2] 169 71 81
r—grid density parameter 1.0 1.0 0.2
W—non-uniform grid width parameter 0.005 0.005 1 3 1025

Dhmin/Dje—resolution in mixture fraction space 6.28 3 1023 7.4 3 1023 2.99 3 1023
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extinction at higher critical Damköhler num-
bers. In the EMST model, the reactive particles
are mixed with their neighbors in composition
space, and as a consequence they may remain in
the reaction zone longer. This accounts for the
lower critical Damköhler predictions which
seem to be more consistent with the problem
physics.

While the thermochemical model does ex-
hibit the abrupt transition characteristic of
flame extinction (as shown in Fig. 7), in the pdf
simulations there is a range of Damköhler num-
bers, and only those particles whose Damköhler

number is close to the extinction value experi-
ence this abrupt transition corresponding to
local extinction. When sufficiently many parti-
cles experience extinction, the criterion for
global extinction is satisfied and the flame is
deemed extinct. This transient phenomenon,
which is also subject to statistical variability,
cannot be inferred from scatter plots of instan-
taneous scalar values. In order to contrast the
differences between the IEM and EMST mod-
els’ particle trajectories in composition space
just prior to global extinction, the scatter plots
in Figs. 23 and 25 (and also Fig. 28) have been
selected at output times prior to when all the
particles are on the extinction (Y 5 0) line. The
later output times of those simulations would

Fig. 18. Scatter plot of progress variable Y vs mixture
fraction j for the ĵr 5 10 case at t 5 116.3 (2Tt) using the
IEM mixing model. The Damköhler number for this simu-
lation (Da 5 0.35) corresponds to global extinction. The
solid line is the equilibrium line Ye(j).

Fig. 19. Scatter plot of progress variable Y vs mixture
fraction j for the ĵr 5 10 case at t 5 115.2 (1.98Tt) using
the EMST mixing model. The Damköhler number for this
simulation (Da 5 0.5) corresponds to stable reaction. The
solid line is the equilibrium line Ye(j).

Fig. 20. Scatter plot of progress variable Y vs mixture
fraction j for the ĵr 5 10 case at t 5 115.4 (1.98Tt) using
the EMST mixing model. The Damköhler number for this
simulation (Da 5 0.35) corresponds to global extinction.
The solid line is the equilibrium line Ye(j).

Fig. 21. Perturbation q(h) 5 Ye(h) 2 Q(h) obtained from
the CMC model at Dacrit 5 56.02 for the ĵr 5 1 case.

751MIXING MODEL PERFORMANCE COMPARISON



only show all the particles on the extinction line,
which does not provide information which is
useful in comparing the models.

Thin Reaction Zone Case: ĵr 5 0.27

The CMC model prediction for the critical
Damköhler number for ĵr 5 0.27 is 204.2 (see
Fig. 26 and Table 7). This case constitutes a
severe test for the PDF mixing models. The
reaction zone in composition space is small and
it is expected that reaction can be sustained only
at Damköhler numbers higher than the CMC

prediction. However, it is seen that while the
EMST model prediction is within an order of
magnitude of the CMC result, the IEM predic-
tion is several orders of magnitude higher. For
the IEM model, stable reaction could be sus-
tained only at a Damköhler number of 1.6 3
106. The EMST prediction for this case is (Dal
5 700, Dau 5 1000). The scatter plot for stable
reaction (Fig. 27) shows more particles depart-
ing from the equilibrium line compared to the
stable reaction scatter plot for the moderate
reaction zone thickness case (Fig. 24). This may

Fig. 22. Scatter plot of progress variable Y vs mixture
fraction j for the ĵr 5 1 case at t 5 15.7 (3Tt) using the
IEM mixing model. The Damköhler number for this simu-
lation (Da 5 1500) corresponds to stable reaction. The
solid line is the equilibrium line Ye(j).

Fig. 23. Scatter plot of progress variable Y vs mixture
fraction j for the ĵr 5 1 case at t 5 19.8 (3.78Tt) using the
IEM mixing model. The Damköhler number for this simu-
lation (Da 5 1260) corresponds to global extinction. The
solid line is the equilibrium line Ye(j).

Fig. 24. Scatter plot of progress variable Y vs mixture
fraction j for the ĵr 5 1 case at t 5 15.67 (2.99Tt) using the
EMST mixing model. The Damköhler number for this
simulation (Da 5 500) corresponds to stable reaction. The
solid line is the equilibrium line Ye(j).

Fig. 25. Scatter plot of progress variable Y vs mixture
fraction j for the ĵr 5 1 case at t 5 7.77(1.48Tt) using the
EMST mixing model. The Damköhler number for this
simulation (Da 5 122.5) corresponds to global extinction.
The solid line is the equilibrium line Ye(j).
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be attributed to the fact that while the
Damköhler number in the thin reaction zone
scatter plot is equal to the upper bracket of the
critical Damköhler number for that case (Dau
5 1000), the Damköhler number in the moder-
ate reaction zone scatter plot (Da 5 500 in Fig.
24) is higher than the upper bracket of the
critical Damköhler number (Dau 5 175). The
scatter plot corresponding to global extinction
(Fig. 28) is not significantly different from the
moderate reaction zone thickness case.

CONCLUSION

A model problem, periodic reaction zones, for
studying turbulent nonpremixed reacting flow

has been developed, which admits stationary
solutions that are periodic in physical space.
Several important characteristics of turbulent
flames are represented in this model problem,
notably the presence of “flame-brush”-type so-
lutions and a non-linear reaction rate function
in composition space. For this simple problem,
the different reacting flow regimes ranging from
stable reaction to extinction may be character-
ized by points in the Da-ĵr parameter space. A
model thermochemistry is developed, which
permits access to a broad range of values in this
parameter space. The predictions of three dif-
ferent models of turbulent combustion are com-
pared for three different values of the non-
dimensional reaction zone thickness:
corresponding to broad (ĵr 5 10), moderate (ĵr
5 1) and thin (ĵr 5 0.27) reaction zones. The
model predictions are in good agreement for
the broad reaction zones, but considerable dif-
ferences arise for the moderate and thin reac-
tion zone cases. It is conjectured that the tur-
bulent transport of progress variable could
account for the differences between the CMC
and PDF models. The differences in the PDF
model predictions can be attributed to the fact
that the IEM mixing model is non-local in
composition space, whereas the EMST mixing
model satisfies the localness property. It is
found that in the range of moderate to thin
reaction zones, violation of the localness princi-

Fig. 26. Perturbation q(h) 5 Ye(h) 2 Q(h) obtained from
the CMC model at Dacrit 5 204.2 for the ĵr 5 0.27 case.

Fig. 27. Scatter plot of progress variable Y vs mixture
fraction j for the ĵr 5 0.27 case at t 5 10.87 (3Tt) using the
EMST mixing model. The Damköhler number for this
simulation (Da 5 1000) corresponds to stable reaction.
The solid line is the equilibrium line Ye(j).

Fig. 28. Scatter plot of progress variable Y vs mixture
fraction j for the ĵr 5 0.27 case at t 5 7.29 (2Tt) using the
EMST mixing model. The Damköhler number for this
simulation (Da 5 700) corresponds to global extinction.
The solid line is the equilibrium line Ye(j).
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ple can result in very significant differences in
model predictions. It is believed that this local-
ness principle provides a more physically accu-
rate representation of mixing in such reactive
flows and certainly the trend in the results is
plausible. The PDF results obtained using the
IEM and EMST mixing models are consistent
with those obtained for piloted jet diffusion
flames by Masri, Subramaniam and Pope [26],
and suggest that EMST is more reliable than
IEM at predicting global extinction.

While the DNS study of PRZ [11] could not
access the same parameter range as the PDF
simulations reported here, its results lend strong
support to this hypothesis. The DNS study also
shows that there is large spatial variability (or
intermittency) in the scalar dissipation, which is
instrumental in triggering local extinction. This
indicates that, in order to predict local extinc-
tion, mixing models must include the effect of
fluctuations in the scalar dissipation, as is done
in Fox’s spectral relaxation model [27].

This work was supported by the Air Force Office
of Scientific Research, grant F49620-94-1-0098.
The authors thank Dr. M. R. Overholt for permis-
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