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A model for inhomogeneous turbulence is constructed that provides an exact representation of
rapidly distorted homogeneous turbuler®DT). The fundamental quantity modeled is the joint
PDF of the velocity and wave vector which is related to the unit wavenumber vector. This joint PDF
provides a model equation for the evolution of ttieectional spectrumthe integral over the
wavenumber magnitude of the velocity spectrum. At this level the rapid pressure—rate-of-strain
correlation is closed yielding exact equations in RDT. For decaying turbulence, the
return-to-isotropy terms are modeled by stochastic diffusion equations for the velocity and wave
vector. A general model of this type is constructed along with four simplified versions. The decay
models are combined with the RDT model to give complete models for homogeneous turbulence,
which are tested for several flows. The homogeneous models are then extended in a general manner
to inhomogeneous turbulence. €997 American Institute of PhysidS1070-663097)01404-9

I. INTRODUCTION from RDT (Cambon and Jacquifiand Mansour, Shih, and
Reynold$®) indicate that the invariants decay. Reynolds and
A fundamental goal in turbulence modeling is the cre-Kassino$® conclude that the Reynolds stress tensor forms an
ation of robust and accurate models for the Reynolds stredasufficient basis for modeling the rapid pressure—rate-of-
equation. Although the present work is in the context of PDFstrain correlation. In addition, Speziale, Abid, and Blaisdell
methods, modeled Reynolds stress equations are still dé&tave shown that RSM’'s behave poorly when compared to
rived. The background for PDF methods is then best undettinear stability analysis for complex rotational cases such as
stood in the context of Reynolds stress mod&SM'’s). in elliptical flows. For homogeneous turbulence, linear sta-
For a wide range of inhomogeneous and homogeneousility theory is equivalent to RDT, so again the Reynolds
turbulent flows the rapid pressure—rate-of-strain correlatiorstress closures fail for rapidly distorted rotating flows.
is a dominant term, which makes its modeling crucial to all  The study of RDT has a long history dating back to the
RSM's. The standard modeling approach is based on theriginal work of Prandf® and Taylor'® Batchelor and
exact integral expressions derived by Chéar the case of Proudmaf’ continued this work by deriving an exact expres-
homogeneous turbulence. The integrals are not closed faion for the Reynolds stresses in axisymmetric contraction
RSM'’s, but are instead modeled as functions of the Reynoldand plane strain. Other references of note include:
stress anisotropy tensor. The slow or turbulent-turbulent inTownsend?! Lee and Reynold$? Lee?® Lee, Kim, and
teraction term requires the modeling of a second-order tenMoin;?* and Hunt and Carruthefs.Although the Reynolds
sor, B, while for the rapid term a model of a fourth-order stress equation for RDT includes thenclosed rapid
tensor,M, is required. Rottacreated the first model of this pressure—rate-of-strain correlation, a closed and linear repre-
form by approximating the slow tensor as a linear function ofsentation exists in Fourier space from which the exact solu-
the anisotropies. Other researchers have since formulatebns for the Reynolds stresses are derived. RSM's are often
models for both tensors with varying levels of complexity. constructed to yield the correttitial response wheisotro-
Some of the rapid models created are presented in thgic turbulence is subjected to a particular rapid distortion,
following references: Launder, Reece, and Rb8ihih and  but the results for general flows in the RDT limit are typi-
Lumley? Haworth and Pope;Fu, Launder, and Tsele- cally unsatisfactory.
pidakis® Speziale, Sarkar, and GatskiJohansson and As a means to introduce improved modeling of the RDT
Hallback:® and Ristorcelli, Lumley, and Abid;while other  limit Reynolds and Kassindé$and Kassinos and Reynofds
slow models are presented in: Lumley and Newrfan; have gone beyond standard RSM approaches by including
Sarkar and Speziafé;and Chung and Kin? structural information of the turbulence. For RDT, they have
The general results of the rapid models have been mixecadded evolution equations for another second-order tensor,
For simple irrotational flows with small anisotropies, the lat- which they call thestructure dimensionalityThis allows in-
est models work very well, but for arbitrarily complex inho- creased functionality of the model fM, but introduces new
mogeneous flows RSM’s have not performed up to expectaelosure problems in the equation for the dimensionality ten-
tions. This is particularly true for flows that contain sor. Additionally, a new model formulation for RDT based
rotational effects. In fact, recent analysis indicates that albn an eddy axis tensor is presented. The results for this RDT
RSM'’s are fundamentally flawed in certain rotational flows. model are very good, and an extension to non-RDT flows is
Reynold$® demonstrated that the rapid rotation of aniso-presented in Kassinos and Reynolildmproving the ex-
tropic turbulence in RSM’s has no effect on the invariants oftended model is a topic of their current resedtth.
the Reynolds stress anisotropy tensor, while the exact results The contribution of the present work is the development
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of a general PDF model for inhomogeneous turbulence thaor homogeneous turbulence the mean velocity is specified
maintains the exact solution for rapid distortions of homoge-by a spatially uniform mean velocity gradient. The fluctuat-
neous turbulence. Standard PDF methods for inert flows coring velocity is described by continuity and conservation of
sist of models for the PDF of velocitfPopé® and Haworth momentum equations which are derived from the Navier-
and Pop® or joint PDF of velocity and turbulent frequency Stokes equations:

(Pope and Chefl and Popdh), while in reacting flows com-

position is also includePopé?). PDF methods have several Ui -0, (2a)
advantages over traditional moment closuf@ep&®®?). In IXi

particular, realizability is assured by construction so that gng

RSM is expressible by a PDF model only if it maintains

realizability (Pope®® Durbin and Spezialé and Wouters, M LML i) "y >ﬁ_ B (9_P'+ Fu;
Peeters, and Roekaetts Also, convection and reaction are ot ! 124 ! 124 ! X X Vax|ax| '
treated exactly which are very important issues for inhomo- (2b)
geneous turbulence and reacting flows, respectifRopé®). The Reynolds stresse&y;u;), are the primary variable

To achieve exact representation for rapid distortions, they interest in turbulence modeling. Their evolution is derived

standard velocity PDF models are extended by the inclusiofgm Eq. (2b) with the condition of statistical homogeneity
of a stochastic vectog”, called the wave vector. The added gppjied:

directional information results in a model for physical space

variables that corresponds to thirectional spectrumin dduiuj) — ATl — e (33

Fourier(wavenumberspace. Thus, the model forms a bridge dt M

betwegn Reynold§ stress modeling and ;pe_ctral moc;ieling. where the symbolic terms are: productiort,; ; pressure—
This work begins in Sec. |1 A with a brief introduction to. 0 ¢ gtrajn correlation[l;; ; and dissipationg;; . These

the issues at the RSM level. Definitions and properties 0[erms are defined by ! )

spectral variables are presented in Sec. Il B. A further intro-

duction to the general theory of rapid distortions is presented HUj) (U;)

in Sec. Il A, while a wave space PDF formulation for RDT 1= —(uiu|>(9—xl—<u|uj) ox

is constructed in Sec. Il B. An equivalent PDF formulation

for RDT in physical space is described in Sec. Il C with a  Lij=2(P’syj), (30

further examination of the correspondences between the stgpq

chastic and physical systems given in Sec. IlI D. The ap-

proaches utilized in Secs. Il B, Il C, and Ill D are an adap- _ [ 94 du;

tation of the particle representation model for RDT presented =7 IXy Xy |’

t_)y Kassinos and Reynql%fsand are a Monte Carlo mtegra}- where the fluctuating pressur@,, and the fluctuating rate-
tion of the RDT governing equations. The new construction : 1
. . ; . ) of-strain, s;; =3(du; /dx; + du; / 9x;), are used.
is designed to contain the formulation used in PDF methods g . .

: ) The Reynolds stresses are split into isotropic and aniso-
which allows the extension of the method to non-RDT flows. : -

- tropic parts through the use of the turbulent kinetic energy,

In Sec. IV A, the approach and motivations for the ex-) L), and the anisotropy of the Reynolds stresses:
tension to generali.e., non-RDT homogeneous turbulence = 27"~ Py y '
are examined. The idea is to construct a model for decaying BRI
turbulence which is then combined with the RDT model to Y — 39 - S
yield a model for general homogeneous turbulence. In Sec. )
IV B, a general model for decaying turbulence along with For mcompressmle, homogeneous turbulence the Reynolds
four simplified models are derived and presented. The comSt'€SS anisotropy equation is
bined models are tested for several types of flows and the db; e
results discussed in Sec. IV C. The further extension of the W:{/Pﬁb@ i i — (8= byp), (58
homogeneous model to inhomogeneous turbulence is intro-
duced in Sec. V, while a brief summary of the results andvhere
conclusions are given in Sec. VI.

(3b)

(3d)

, 1 ,
. BACKGROUND 'O/)i(jb)Eﬂ[*‘///)ij_f/)ll(bij_"%éij)]u (5b)
A. Reynolds stress closures and
The primary issues in turbulence modeling are addressed [ _ ®ii 15 (50
in homogeneous turbulent flows of Newtonian fluids with N 2e 3T

constant densityp, and kinematic viscosityy. The incom-

. ) , . Interms of a RSM, the pr ion of anisotropy(? | is in
pressible Navier-Stokes equations govern the evolution 01“n terms of & S , the productio ora sotropy;;”, 1s
the Eulerian velocity,U(x.t), which is also expressed in closed form, while models are required for the pressure—rate-

. : i of-strain correlation and the dissipation tensor from which
terms of its mearkU(x,1)), and fluctuationu(xt): both the dissipations= 3¢, and the deviatoric dissipation,
U(x,t) =(U(x,t)) +u(x,t). (1) e, are derived.
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Chou' derived integral expressions for the pressure-B. Wavenumber space variables
rate-of-strain correlation in homogeneous turbulence from In the later development of stochastic PDF models it is

the exact solution of the Poisson equation for the fluctuating:rucial to demonstrate the level of correspondence between

pressure: the stochastic and the physical systems. This correspondence
PP’ HUY) du,  ouy du,, occurs in wavenumber space, and certain spectral variables
= -_— (6) are required to relate the results to the Reynolds stresses. The

9x19%1 . % ax’J X 9% velocity spectrum is defined as the Fourier transform of the
raf)id slow two-point velocity correlation:
Corresponding to the two source terms, the pressure—rate-of- 13
strain correlation is split into rapid and slow partd;; ‘I’ij(K)E<—) fRij(r)e"’”dr. (12)
=T{)+11{Y. The rapid correlation is expressed as a func- 27
tion of a fourth-order tenso: . . _
(U) The integral of the symmetric part of this tensdrij%
1% . - i
Hi(-’)=4k [ (Migi + M), @) (i +CI>],),_ over the_ ma_gnltude of the wavenumber vector,
J Xy x=|x], defines thedirectional spectrum
which is closed at the level of the two-point velocity corre- .
lattion, Ry (r)=(u; (X) u(x+1)): Fij(e)Ef 2% (xe)dx, 13
0
" 1 1 &*Ryl(r) @
ikjl = — T . . . L
H 8wkJ [r| arjor, wheree= i/ « is the unit wavenumber vector. The directional
The slow correlation is expressed as a function of a secondiPectrum is symmetric by definition and real due to conju-
order tensorB: gate symmetry. Related to the directional spectrum is the

directional energy spectrum
MY =&(B;; +B;), (9a)

which is closed at the level of the two-point triple velocity
correlation,Ci (r) =(u;(X) u(X+ryu(x+r)):

I'(e)=3y(e). (14

5 The spectral variables are related to the Reynolds
1 (1 Ca(r) . (op  Stresses and the turbulent kinetic energy through the inverse
Ame ) |r| arjoror, Fourier transform:

The assumption of local isotropy at high Reynolds num-
bers yields an isotropic dissipation tensor. For lower Rey- (Uin>=f (I)ij(")d":f I'j(e)dS(e), (153
nolds numbers, the slow pressure—rate-of-strain correlation
and the deviatoric dissipation are combined to give the
return-to-isotropy tensowp;; : and

=T+ 26, (10 _f
ij P ij - k= F(e)dS(e), (15b)

For the stress anisotropy equation, dissipation effects from ) . i
the kinetic energy equation scale in a similar manner as th&heredS(e) is the differential element on the surface of the

return-to-isotropy tensor, and they are both labeledlaw unit sphere. These relationships provide valuable physical

terms. The resulting Reynolds stress anisotropy equation idnterpretations of the spectral variables. The velocity spec-
trum is the Reynolds stress density in wavenumber space,
dby; 1

9% _ b o o while the directional spectrum and the directional energy
dt '/i' * ZkH'J 2k(¢II 2b), (19) spectrum are the densities on the unit sphere in wavenumber
in which there are three terms that require modeling: the

space of the Reynolds stresses and turbulent kinetic energy,
. ) . .9 " fespectively.
rapid pressure—rate-of-strain correlation; the dissipation; ancF The form of the spectral variables in isotropic turbulence
the return-to-isotropy tensor.

. is a useful property. For the velocity spectrum the isotropic
For a rotating reference frame, the Reynolds stress eques 1 is w ellpkngwn)EB atchelo?®): ysp P
tions are altered in two ways: '

(i) the Coriolis force adds kinematic terms similar to the E(k) KK
ion: D (k)= 5| &~ —2|, (16)
production; j 4?7 k2
(i)  the rapid pressure—rate-of-strain correlation includes
the frame rotation rate tensor. whereE(x) is the energy spectrum,
The frame rotation is expressed through either the frame
rotation rate tenso’, or the angular velocity of the frame, _f 1 9
QF, which are related vi&)};= Of €, . E(0)= | 53 Pu(ke)xdSe). (17
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The isotropic form of the directional spectrum is independent

of the energy spectrum:

k
rij(e)zﬂ(éij_eiej)a (18

For a single Fourier mode a general solution of &)
exists of the form:

u(x,t)=0(t)e™Vx, (24)

while the directional energy spectrum is uniform over thewhereu(t) is the Fourier velocity mode ana(t) is a time

unit sphere:

k
r(e=,_. (19)

varying wavenumber. These variables evolve via

The spectral variables are also related to the fourth-order

tensor in the rapid pressure—rate-of-strain correlation:

1 KjK| 1
Mikjlzﬂ TTq)ik(K)dK:ﬂJ’ eel(e)dSe),

(20

so that knowledge of either the velocity or directional spec- -

trum is sufficient toclosethe rapid pressure—rate-of-strain
correlation forall homogeneous turbulent flows. Therefore,

d—a‘——Ma (8im—2€1em) (253

dt - 0—,Xn n im iem/»

dei  A(Up)-

o Tax K (25b)
and

de AU~ .

q ok, en(On— &k, (250

modeling approaches that are based on either spectrum C@here the evolution of the time varying unit wavenumber

provide improved results over RSM’s.

Ill. RAPID DISTORTION THEORY
A. General theory

In turbulence modeling the quantities of interdgse.,

Reynolds stressgare dominated by the large, energy con-
taining scales of the flow. For these scales, RDT applie%

time scale
S =|v(U)| %, on the flow that is much smaller than that

when the mean distortion imposes a
of the large scalesy=k/e. This condition is expressed
through a constraint on the normalized she@train- or
rotation) rate parameter:

Sk
—|>1.

- (21)

The continuity equation, Ed2a), is unchanged by this scal-

ing, but the turbulent convection and the viscous terms in E

(2b) and the slow pressure term in E) are negligible. The

vector, e(t) = k(t)/|x(t)|, is also given. The solution main-
tains continuity through

u(t)- s(t)=u(t)-e(t)=0. (26)

The time varying wavenumbers are commonly viewed as a
deforming spacéRogalld®’), but interpreting them as a La-
rangian system of particles evolving in a fixed wave space
is equivalent. This viewpoint provides a clearer picture of the
modeling in this work.

The velocity spectrum is defined in a fixed wave space
and is related to Fourier velocity modes in this fixed wave
space. These modes, are defined in the standard manner by
a Fourier series expansion of an assumed periodic velocity
field with periodL, which results in discrete wavenumbers,
/. The definitions of the two-point velocity correlation and
the velocity spectrum are then used to give:

q.

3
momentum and Poisson pressure equations are then linear in qpij(,‘):dimw(%) 2/: <(éi(/))*éj(/)>5(lf—/),

the fluctuating velocity:

t?Ui n 19<U|> (U aui . P’ 29

U ( '>0_X|_ e (223
and

P’ a{U,) dup

XX Xy IX (220

The Reynolds stress equation, E§a), and the anisotropy
equation, Eq(5a), are simplified by the elimination of the

(27)

where the complex conjugate operator} ()s used, and a
delta operator is defined to give a relationship between the
discrete and continuous wavenumbers:

1 K=/,

. 2
0 otherwise. (28)

5(K—/)=[

From Eqs.(25) and (27), the RDT equation for the ve-

slow pressure—rate-of-strain correlation and the dissipatiofPCity Spectrum is derived through the use of the standard

tensor:

W;%ﬁni({), (233
and

%:@i(ib) n % . (230
1088 Phys. Fluids, Vol. 9, No. 4, April 1997
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ID;; iy HUm) 0P &<Uj>q). B ‘9<Ui>q) .
at L SR ) AL L
07<Un> KiKn KjKn
+2 v 2 q)mj+ 7q)im- (29
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Integrating the symmetric part over the wavenumber magni

7 - ey Stochastic wavenumber vectog*. The velocity field that
tude yields the RDT equation for the directional spectrum:

corresponds tN realizations ofx* andU* is equivalent to

ol 5 H(Up) dT; 3 ﬁ(Um)F the sum of N modes:
P I S U R e VR N "
(9<UJ> (9<UI> U(X):n—E_N u(n)elk AX, (328)
- im— ij -
M Mo where conjugate symmetry is maintained by
8<U“> (=M = (j(My* “(—N)— _ ~(n) _
T2 LeenlimTejenl'im]. (30 uV=(u™*  and & &, for n 1,N_(32b)

Both the velocity and directional spectra evolve elased In Appendix A, a method is developed for specifying the
equations in the RDT limit under consideration. Also, thestochastic variables in a manner that results in a random
directional spectrum is a compact description of the flow inhomogeneous vector field with a prescribed spectrum. By
that no further simplification from it maintains a closed gov- comparison of Eq¥324 and(A11), a proper initial velocity

erning equation for RDT. field is generated, if
= 1 Zm 33
B. PDF formulation for RDT in Fourier space u= \/ﬁ ) (333

In this work, PDF methods are viewed as modeling the
exact and generally unclosed one-point, one-time PDF equa-
tions that are derived from the Navier-Stokes equations. The &M= ", (33b

model PDF equation is constructed so that it is equivalent to 5n) )
the PDF equation for a simple stochastic system which i&vhereZ™ is a zero-mean random vector whose covariance

easily simulated via Monte Carlo techniques. In this sectiofnatrix is determined by the spectrum, E412), and«™ is
and the two following sections the particle representatiorf* andom vector with a distribution defined in E44).
model by Kassinos and Reynoffiss adapted for PDF meth- ) _ )

ods. From this new construction the method is extendible t&- PDF formulation for RDT in physical space

non-RDT flows. In addition, the construction illustrates dif-  The previous section constructed a PDF method for RDT
ferences between these PDF methods and standard PL¥ing Fourier space variables. To extend this method for in-
methods. homogeneous turbulent flows, it is necessary to construct a

From the previous section the solution for a single Fou-method that is based on physical space variables. A stochas-
rier mode in the RDT limit consists of ordinary differential tic system consisting of the velocity*, and a unit vector,
equations forx andu. The equations for RDT are closed at €, is written:
the directional spectrum level for which it is sufficient to

- HU
consider the unit wavenumber vecter,in place of the full duf = — éxr> ui (8, —2ef ef)dt, (343
vector. For general initial velocity fields, the PDF formula- s
tion of the problem is constructed by setting the unit wave-and
numbers and velocity modes to be the random varialefes, (U,)
o* i ic vari de’ = — ——ef (5,—efel)dt (34b
and u*, respectively. These stochastic variables evolve by € X er (ois—ej 5 )dt.
S

the deterministic RDT equations, E@5). The fundamental _ . _ . .
variable is then the joint PDF of unit wavenumber and ve-These equations are identical to the evolution equations for
locity mode f(ﬂ v), where (3,v) are the state space vari- the Fourier amplitude of velocity and the unit wavenumber,

e, 1( Cn S -
ables for &,0%). The joint PDF equation as derived via Eq. (25), which is the Justn‘lcat_lon for Ia_belln_g_ the wave

) vector. Therefore, the one-point, one-time joint PDF of ve-
standard approaches:

locity and wave vectorf* (V, 5), corresponds identically to

of U, 9 ( 7, ﬂs)f} f(v,n) since they evolve by the same equation:
Al gl 5 s
o oxe g T %sT 2 gt KUy @ (5_ _ s
HU;) d 770\ at MXs I, ARG
Zlud 8, -2, (31)
o 7 A NV P L A P 35
is an exact representation of the Navier-Stokes equations in axs oV;| ST T2 ' (35

the RDT I'm'j[' The.reforAe; a MoAn*te.CarIo simulation based onAgain, the stochastic system is an exact Monte Carlo inte-
the stochastic variables} andu*, is an exact Monte Carlo gration for RDT, and is called the-e RDT Model. The

integration of the RDT equations. _ _ evolution of the stochastic system defined hete, ¢*), is

The PDF approach for RDT in Fourier space is com-gnajogous to the system from Kassinos and ReyrfSids,
pleted by the specification of an initial distribution@f and  (v,n), wherev is the velocity andn is the unit gradient
u*, while the velocity field requires the distribution of the vector.
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The specification of a stochastic velocity evolution by d(u¥ Uj*> LI Y,
the velocity Fourier mode equation requires justification T=—(ui U >a—x_<u' uj)
which is demonstrated by the correspondence between the !

Reynolds stresses of the stochastic and physical systems. KUn) o v s . % % %

First, correspondence is established between the spectrum +2 X [(&F u e um) + (& Ui eq up) 1.

variables of RDT and the stochastic model through a sto-

chastic tensor: (40
From a comparison with the physical Reynolds stress equa-

_ tion for RDT, Eq.(239), the production is of the same form,
Aﬁ(”)zf ViVi (V. pdV=(ufuf e =7) s (), while M is represented by a fourth-order correlation of sto-
(36) chastic variable$Kassinos and Reynoléf:

a(Uj)

ax,

where the marginal PDF of the wave vectbf(#), and the
stochastic Reynolds stresses conditional on the wave vector ZkMimjn:f eienl'im(e)dS(e)
(Kassinos and Reynolﬁ% are introduced. The evolution

equation for the new tensor is found by integrating the joint M
PDF equation: <—>f . A (pdy
s7s
IAS; . 7 77n> AUy dAS =(ufuprefen). (42)
— V)m| Orn—
at MmN 9% Iy Reynold$® and Reynolds and Kassid8shave defined
Dne U ) (U, other tensors which give additional structural information
-3 PV A — ax] A% about the turbulence. The structure dimensionality tensor,
K ' m D, provides information on directions of dimensional inde-
aUp) KU [ o . mion _pendenge, while the structure circulicity tensEr,prq\{ide;
T Tox Ajm+2 X P - Al 37 information on the structure of the large-scale vorticity field.
m m

These variables are defined through the use of a fluctuating
By comparison with Eq(30) the new stochastic tensor is vector stream functiortlr’:
shown to evolve in the exact manner as the directional spec-

trum. Thus, it is the stochastic model for the directional spec- _ IV
trum (Kassinos and Reynol&f: Ui= E”kﬁ_xj’ (42)
Aﬁ(ﬂ)HFij(e)- (39) \év:f?rzzg,ﬁ;s the alternating tensor. The structure tensors are
The spectral correspondence is combined with the rela- P ke
tionship between the Reynolds stresses and the directional DijE<_| _'> = f 2o, (K)dxk, (439
spectrum, Eq(153, to demonstrate the correspondence be- X IX; K
tween the Reynolds stresses from the physical and stochastig,
systems:
(9\I’i (?qu K| Knp
FijE ‘9_XI‘9_XI :filmfjnpf 7q)mp(K)dKr (43b)

(uiuj)=fFij(e)dS(e)<—>JAi’](n)dn=(ui*uf). (39
where the integral relationships with the velocity spectrum

Therefore, the equation for the Fourier mode of the velocityapply for homogeneous turbulence. From the integral rela-

is an appropriate model for the stochastic velocity. tions, the structure tensors correspond to correlations of the
Both PDF methods based on this RDT approach andgtochastic variable&assinos and Reynoltf:

standard PDF methods provide a model for the rapid pres- . o

sure term in the evolution equation for the PDF of velocity. i< (Ui Ui & €f'), (443

However, standard PDF methods are constructed to correy, g

spond to the Reynolds stresses and RSM'’s, while the new

methods correspond to the directional spectrum. Fij < €imejnp{UmUp e €r ). (44b

The trace of these tensors is twice the turbulent kinetic en-
ergy as is evidenced by the stochastic model.
D. Correspondence to Reynolds stress and structure A geometric relation exists between the structure tensors
based models and the Reynolds stress tensor which is shown by expressing
With a PDF model based on the velocity and the wavethe vector product of the alternating tensors in terms of Dirac
vector, the evolution of the statistical quantities such as thé&lelta functions:
Reynolds stresses are specified. The model Reynolds stress _
L. . . . . im€ino= Gii (OinOmp— 10 0mn) T Sin( 81 Omi— 6 6,
equation is derived from the stochastic evolution equation €iim €inp = 91j(Oin Smp™ Gip Imn) +* Ain( Gip Om; ~ i} Smp)
for the velocity: + 8ip( 81 Smn— inOmj) - (45
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The relation which applies for homogeneous turbulenceB. u-e PDF models for decaying turbulence

(Kassinos and Reynol€f3 is A general model fou* ande* in decaying turbulence is

Fij+ Dy +(uiu;) =2k 8;; . (46)  created from which four simplified models are also con-
structed. The general form for the two coupled vector-valued
In summary, the inclusion of directional information diffusion processes is expressed using two independent, iso-
from the evolution equation for the wave vector results in antropic Wiener processeslW anddW’, which gives a sys-
exact PDF model for RDT, which is expressible as a modetem of Ito stochastic differential equatiofSDE’s):
for the directional spectrum. With this model the rapid
pressure—rate-of-strain correlation and the structure dimerflui’ =ai(u™, e )dt+ Ay (U™, e*)dW; + Bj; (u*,e*)dW,
sionality and circulicity tensors are all exactly represented in (509

def :gi(U* ,e* )dt+ Gij(u* ,e* )d\/\/l
IV. PDF MODEL FOR HOMOGENEOUS TURBULENCE +Hij(U* €)dW,, (50b)

A. Motivation where one of the diffusion tensoré(B, G, or H) may be

RDT governs the behavior of turbulence in the limiting arbitrarily set to zero.
case of very strong mean distortions and is exactly repre- Constraints on the general diffusion process are required
sented by theu-e RDT Model. In the opposing limit, the to construct a model that is physically meaningful for decay-
energy containing scales of the turbulence have time tdg turbulence. Two constraints that apply for every realiza-
equilibrate with the slowly changing mean flows. This istion of the stochastic system are required to maintain the
again expressed as a condition on the normalized sheagnalogy with the unit wavenumber and Fourier mode of ve-
(strain- or rotation) rate parameter: locity begun in the RDT model. These deterministic con-

straints are:
Sk

. <1. (47) (1) €* remains of unit lengttiby definition);

(2) € andu* maintain orthogonality due to the continuity
The most basic flow of this type is decaying turbulence  €quation in Fourier space.
where there is no mean velocity gradient. Typical engineery, aqgition, two statistical constraints based on physical ar-

ing flows are neither rapidly nor slowly distorted, but haveguments for decaying turbulence are imposed as well. They
turbulent time scales that are of the same order as the meafje-

distortion time scale:
( Sk

&

(1) the PDF of velocity tends to an isotropic joint-normal
distribution;

~1 (48) (2) the evolution of the turbulent kinetic energy is known:

In this sectionu-e joint PDF models are first developed for dk
decaying turbulence, which are combined with the RDT dat & (51)
Model to give general models for homogeneous turbulence.

The Reynolds stress anisotropy equation, Edl), is  With these constraints the stochastic system provides realiz-
simplified for decaying turbulence by the elimination of the able models for the directional spectrum and the Reynolds

production and rapid pressure—rate-of-strain correlation: ~ stresses. Also, the form of the directional spectrum model
maintains continuity.

%_ NN —2b;) 49) The details of the derivation are given in Appendix B,
dt |2k (¢ e and the resulting model is summarized here:
The dissipation and return-to-isotropy are new terms over th e\l - _ K —~
: & Qur =| = || 7, ke* + 30U + 232 ——ur + 3k |dt

RDT case and both require modeling.

The behavior o&* is known for RDT, while in decaying
turbulence experiments demonstrate that the return-to-isot-  +A;;dW,+BjdW, , (529
ropy tensor causes a reduction in the anisotropy of the Reyénd
nolds stresse¢see Warhaft® Choi and Lumley*® Chung
and Kimt?). A return to isotropy in the directional energy e u
spectrum is a diffusion of the kinetic energy from some ar- de*= K GHCY +'§2\/—'_+(5”- —eef )'g'ja]dt
bitrary distribution back to the isotropic, uniform distribu- k
ti:)n. This motiva_tes t_he modeling of the stochastiq variables, + Gy dW, + H;;dW (52
e* and u*, by diffusional processes. When applied to the !

Reynolds stress equation, the diffusionebfalters the rapid where the coefficients are defined in E¢B13), (B14), and
pressure—rate-of-strain correlation and may be involved ir{B16), and one constraint remains on the anisotropic drift
modeling the return-to-isotropy tensor. terms:

k

*
uS uS

*
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JKader +tur =O0. (59

This model is called the Generate Decay Model, and its
main purpose is to serve as a guide for the construction of
simplified models that are based on assumptions into the +
evolution of eitheu* or €. The simplified models that are

tested in this paper are given below.

1. Isotropic Diffusion of e Model (Iso)

In this model the evolution of* is taken to be an iso-
tropic diffusion which is equivalent to a random walk of

€* on the unit sphere. The model has two parametgrsnd
a., which govern the time scales of the decay ¢dr and
€*, respectively. The stochastic equations are

*

& u
duf = —§| | [1+3a,+acuf dt+ Haue) o 5 dt
s vs
a.e 1/2
—| ] erurdwi+(ae) T8 —efet 1AW,
(543
and
* 8ee * 8ce 12 * A%
def =— D erdt+ e [Si—efe1dW,. (54b

The return-to-isotropy tensor based on this model is a func-

tion of e*,

¢ij:(2+3au)bij +2ae(bij _dﬁ)

PRELY
i v * |k
s

uzu

, (59)

+a,

where the anisotropy of the structure dimensionality tensor i

defined as
D
dd= 2_12_ 15 . (56)

2. Madified Isotropic Diffusion of e Model (Mlso)

In an effort to improve the Isotropic Diffusion oé

age

de*=—(—)e*dt—(ﬁ)[a-—e*e*]b- er dt
i i k ij i< jIel

12

age . *
[Si—e e JdW,.

k-
The return-to-isotropy tensor based on this model is again a
function ofe*:

_4'}’[(%_ bmnbmn)bij + (by blj - %bmnbmngij )] (58

(57b)

* 0k
U uj

¢ij:(2+3au)bij +Zae(bij_d%)+au

<ei*e,*>—<

ug

ug

3. Langevin Velocity Model (Lang)

In this model the equation for the velocity is specified as
the Langevin equation with an anisotropic drift term that is
proportional to the Reynolds stress anisotropy. For this
model, the velocity evolution is independent &f. Again,
there are three parametess;, a., andy; which are related
to the decay time scales. The stochastic equations are

€ ye
dui*:_%(E [1+3a,Jufdt+ s
X[bjj = bmbmndijJuf dt+(aye)*dW;, (593
and
ye
def=—3 | et ay 0 e,*dt—(?>

* A%
i~

Ui €
x[&u—e?e}*]b,—.e.**dt—(aus)”{u*u*}dvv'
s ¥s

* k%
aege i U

K

112 o
oi—e e —

" *)dvv(. (59b)
S uS

She return-to-isotropy model takes the standard form found
in Reynolds stress closures and matches any RSM with an

appropriate specification of the model parameters:
¢ij=(2+3ay)b;;
_47[(%_ bmnbmn)bij + (by, bIj - %bmnbmnﬁij )] (60)

The diffusion ofe* affects only the rapid pressure—rate-of-
strain correlation in non-decaying turbulence.

Model, anisotropic drift terms are introduced that are propor-
tional to the Reynolds stress anisotropy through a constant

parameter;y. The stochastic equations are

&
duf = _%(E [1+3a,+ac]ufdt

™

Y
_) [bij - bmnbmn‘sij]uj* dt

K

) uF aee|\"?
+§(au8)mdt— T (SHRVH dVV|
+(age)q & —efef 1dW, (579

and

1092 Phys. Fluids, Vol. 9, No. 4, April 1997

4. Structure Langevin Velocity Model (SLang)

In this model the basic Langevin equation is kept, but
new anisotropic drift terms that are proportional to the aniso-
tropic part of the structure dimensionality tensor are in-
cluded. This model then has four parametexs; a., v,
and y,; and the stochastic equations are

dujk:_l<i)[l+§a Jurdt+ E)[b—b bindii JUF dt
: 2k 2y U; K ij — PmnPmn2ij 14;
V28

15

)[dﬁ—bmndf,‘mﬁij]u}*dH(aus)lldeVi, (613
and
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& & ¥
del*:—%(E et Ay efdt—(%)
s 03¢
Y2€
><[5ij—ei*ej*]b“er‘dt—(T)[&”
—ererldierdi—(ae) — *}dV\A =
usu
s vs \‘[:r-
1/2 * % 0.1
ae8 Ui U| ,
- T) (5i,—ei* e|* - m) daw; . (61b
The return-to-isotropy tensor is then modeled as 0.0 ; : . :
02 -0.1 0.0 0.1 0.2 0.3 0.4
¢ij=(2+3ay)bj; E=(b;byb /6"

- 471[(%_ bmnbmn)bij + (bj bIj - %bmnbmn‘sij )]

FIG. 1. Mapping of Reynolds stress anisotropy invariants in homogeneous

. 14a a 4ls 148p ap shear with 8K ¢)y=1.0 for models: —, Lang- - -, SLang; --, Iso; - - -,
4yl 3dii Brnndmn(bij + 36i)) + 2(djjby; + dJ' bii)]. Miso; compared to asymptotic states from experimertsTavoularis and
(62) Karnik (Ref. 43; and DNS:+, Rogerset al. (Ref. 42.

C. Model performance (i)  the asymptotic balances between terms are more ap-
The models for homogeneous turbulence consist of one parent in the anisotropy budgets.

of the four simplified decay models combined with the RDT The anisotropy budgets also provide more rigorous tests for
model. Additional closure information is also required, and ittyurbulence models than the evolution of the anisotropy, be-

is provided by a simple dissipation model: cause the models for the slow and rapid terms are examined
de &2 . P . o separately.
at k| Cerg ™ Ce2) (63)

1. Homogeneous shear

The parametersC,; and C,,, are set to 1.5625 and 1.9, Homogeneous shear flows are defined by the mean ve-
respectively, which yield an asymptotic production-to-dis-locity gradient:
sipation ratio that is representative of many flows:

C.,—1 U
& _ =S

(Ple),.= (69)

o O O

10
0 0
0 0

This model does not take into account the decrease in diss

pation that is known to occur in rotational flows, and the!In Fig. 1, the trajectories of the Reynolds stress anisotropy

kinetic energy is expected to be underpredicted in thes'env"’m"’mts from the four models: Lang, Slang, Iso, and Miso;

cases. Further information on modeling of the dissipation iSre presented for homogeneous shear, and the asymptotic

42
contained in: Hanjalic and Laundérand Launder, Reece, States are compared to the DNS data from Rogtea:f.ﬁ and
and Rod? the experimental data from Tavoularis and KarnikThe

model parameters are specified to yield good results for the

The purpose of this work is to introduce a new method- . i
comparison and are:

ology in turbulence modeling, and not to formulate itieal
model of this type. For this reason, the specification of modeli) Lang:a,=0.03,a,=2.1, y=2.0;
parameters is governed by convenience rather than the desiie) = SlLang:a.=0.2,a,=2.1, y;=2.4, y,=0.2;
for optimal values. The parameters are set to yield accurat@i) Iso:a.,=0.3,a,=0.3;

asymptotic values for the Reynolds stress anisotropy invarifiv) Mlso: a,=0.65,a,=1.7, y=2.5.

ants for homogeneous shear flows which are important i . . : .
) . S he asymptotic states are further examined in Table | which
many common engineering applications. In fact, the set o

. ) : O fsummarizes the experimental and DNS data as well. The
model parameters given below is not unique in its level o s .
accuracy Lang, SLang, and MIso models are within the experimental

Where possible the anisotropy budgets from the modelrange given, while the Iso model does not provide the proper

istribution of energy between the 22 and 33 components.
and DNS data are compared. These budgets are properly Further compagriysons with the DNS data 01? Rogers

scaled and have several advantages over the unscaled Ree¥'al.42 are made. In Fig. 2, the kinetic energy from the mod-

nolds stress budgets: els is shown to grow much faster than that of the DNS. This
(i) the anisotropy budgets for flows with different initial defect is due to the dissipation modeling. The evolution of

shear-rate parameters are directly comparable; the Reynolds stress anisotropies for the Lang model are
Phys. Fluids, Vol. 9, No. 4, April 1997 P. R. Van Slooten and S. B. Pope 1093
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TABLE |. Asymptotic values for homogeneous shear flows from: Tavou-

laris and Karnik(Ref. 43 (TK), Rogers, Moin, and Reynold&Ref. 42 0.3 T T T
(RMR); Isotropic Diffusion ofe Model (Iso); Modified Isotropic Diffusion
of e Model (MIso); Langevin Velocity Model(Lang); Structure Langevin
Velocity Model (SLang.
TK RMR Iso Miso Lang SlLang
b7 0.18£0.04 0.215 0.223 0.195 0.194 0.185 b;;
b7, —0.16£0.01 —-0.158 —0.156 —0.170 —0.165 -0.173
b3, —0.11+0.02 -0.153 -0.203 —-0.132 —-0.131 -0.118
bZs —0.06+0.03 —0.062 —0.020 —-0.063 —0.063 —0.067
(Ple). 147014 180 16 16 1.6 1.6 e
(SKe),, 4.60+0.14 5.7 512 472 4.83 4.62 B et ]
v S ARt - DR EEEE - PP Ll
02F F
given in Fig. 3, while their complete budgets are presented in 0.0 o 150

Fig. 4. The transient results for the evolution of the anisotro-

pies are quite gOOd’ while the asymptotic values are Ver¥lG. 3. Evolution of Reynolds stress anisotropy for homogeneous shear

good. In the anisotropy budget comparisons, the results akgws with (Sks),=2.36. Comparison between Langevin Velocity Model
also quite good, especially for the asymptotic balance ofiines and DNS of Rogerst al. (Ref. 42 (symbolg: (—,@), bys; (- - -,
terms, which are not directly forced by the selection ofV), biz; (---0), bz; (---,A), bas.

model parameters.

2. Homogeneous shear with frame rotation

=0.25 case growing the fastest. However, the quantitative
comparison is poor which is a problem common with many

Adding frame rotation perpendicular to the plane of thesecond-order closures. This problem is largely attributable to
shear is a common test of turbulence models. The angulanhe dissipation modeling.

velocity is:

Qf=10,0017.

(66)

3. Axisymmetric contraction and expansion
Axisymmetric flows are specified by

The effects of frame rotation are compared to the large-eddy
simulations by Bardina, Ferziger, and ReynditiErom Spe-
ziale and Mac Giolla Mhuirié? the solution depends on the

initial shear-rate parameter and on the rotation—to—rate-of-

strain ratio,Q/S. Linear stability analysigi.e., RDT) shows
that the flow is unstable with exponential growths in kinetic

energy roughly in the range,<00/S<0.5.

1 0 O
HU; _1

( .>:S 0 -1 o0 | 67
&Xi 0 0 _%

with S>0 for contraction andS<0 for expansion. From

~ The evolution of the kinetic energy for the Lang model symmetry the Reynolds stress anisotropy produced by these
is representative of all four models and is shown in Fig. 5flows remains in an axisymmetric form where the only non-

The model gives the correct qualitative behavior with allzero components are related by,=bgs=—

three cases being unstable and the energy in &S

05| ° o ® J
[ ] L J
0.0 L . .
0.0 5.0 10.0 15.0
St

FIG. 2. Evolution of kinetic energy in homogeneous shear flow with
(SKe)y=2.36: @, DNS of Rogerst al. (Ref. 42; —, Lang - - -, SLang;

---, Iso; - - -, Miso.
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ib;. In addi-
tion only one component of the fourth-order tenshf, is
required to fully specify the rapid pressure—rate-of-strain
correlation:

H(lrl): 12K SMyqa;. (68)

With these simplifications axisymmetric contraction and ex-
pansion form the two most basic irrotational flows.

The results from the models are first compared to the
experimental data from Tuck¥rfor axisymmetric contrac-
tion. The evolution of the kinetic energy and Reynolds stress
anisotropies are presented in Figs. 6 and 7. The kinetic en-
ergy from all of the models compares with the experimental
data quite well, while the anisotropies from the Lang, SLang,
and MlIso models yield better comparisons than the Iso
model.

The case of axisymmetric contraction is also examined
through the use of DNS data. The evolution of the kinetic
energy from all of the models and the Reynolds stress
anisotropies from the Lang and Iso models for varying initial
strain-rate parameters are compared to the DNS data of Lee
and Reynold¥ in Figs. 8 and 9. The anisotropy budgets for

P. R. Van Slooten and S. B. Pope

Downloaded-16-Jan-2005-t0-128.84.158.89.-Redistribution-subject-to-AlP-license-or-copyright,~see=http://pof.aip.org/pof/copyright.jsp



0.20‘;\‘(") -
\\ v
\\ v
010} - -
P = v XE. Y
I' 8 D D
% a R o 4
0.000H B seneine _— N
‘.A .................
0.0 f ° ]
4 ° °
-\ ° o .
._,g ~=m g —
o010} s v i .
v v i
030} .
0.20 . . | | | |
0.0 5.0 10.0 15.0 0.0 5.0 10.0 50
St -
. r — 0.20 ‘ | |
©
ot1o0}
* Q.- 0.10
a 3
REDAD Y L I 1 PERVRSY . LN L FIS, 0.00 )
.o LAY FLab X - vs-s_“ - g\ . & . “x

L [ ] [ ] [ ] P

-0.10
0.10 1
N . " 020 N s L
0.0 5.0 10.0 15.0 0.0 5.0 10.0 15.0

St St

FIG. 4. Evolution of Reynolds stress anisotropy budget for homogeneous shear flowsSWigh & 2.36. Comparison between Langevin Velocity Model
(lines) and DNS of Rogerst al. (Ref. 42 (symbols: (—®), P{)/S; (- - -V), I{/(2kS); (---,0), f(s/Sk)%(dnj —2by); (---,A), dby; /Sdt for: (a) 11
componentfb) 12 component(c) 22 component(d) 33 component.

4.0 T g T T
1.2 T T Y T
1.0 o]
o _--
k/ky ® e O
@ Tzl Tl
e
L]
08F L] g
[
00 —_ . . ;
0.0 20 4.0 6.0 8.0 10.0 0.6 4 : . .
St 0.0 0.2 0.4 0.6 0.8 1.0
St

FIG. 5. Evolution of kinetic energy in homogeneous shear with a rotating

frame and §Ke),=3.38. Comparison between Langevin Velocity Model FIG. 6. Evolution of kinetic energy in axisymmetric contraction with
(lines) and LES of Bardina, Ferziger, and Reynold@ef. 44 (symbols: (SKe)o=2.1. Comparison between the experimental data of Tu@Ref.
(—, @), 01/S=0.0; (- - -,0), Q7/S=0.25;(---,A), Q1/S=0.5. 46): @, k/ky; and the models: —, Lang - -, SLang; - -, Iso; - - -, Miso.
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FIG. 7. Evolution of Reynolds stress anisotropy in axisymmetric contractionFIG. 9. Evolution of Reynolds stress anisotropies in axisymmetric contrac-
with (Skie)o=2.1. Comparison between experimental data of Tu¢kef. tion. Comparison between DNS of Lee and Reyndsf. 22 (symbols

46): @, by;; O, by,; and models: —, Lang- - -, SLang; --, Iso; - - -, and modelglines) for (Sk¢),=0.557,;@, byy; O, by,; —, Lang; --, Iso;
Miso. and SKe)y=55.7:A, by1; V, by,; - - -, Lang; - - -, Iso.

the Iso model and the DNS data are also presented for tWo.4 the Reynolds stress anisotropies from the Lang and Iso

strain-rates in Fig. 10. In Fig. 11, the rapid pressure—rate-Ofp,qqels for varying initial strain-rate parameters are com-

strain correlation is examined more closely by comparison%ared to the DNS data of Lee and Reyndfda Figs. 12 and
between the Lang and Iso models and the DNS data oftee.13 | ihe energy comparison the models do very well for

The effects of the different decay models become neglisi1 o put deviate even for the highest strain-rate for
gible as the strain-rate increases toward the RDT limit. FOgt~1 0. This degradation of the solution is due to an insta-

this reason, all of the test results at the highest strain—rate&”ty that exists for axisymmetric expansion in RDT which
compare with the DNS data very well. At the lower strain-, < qescribed by Kassinos and Reyndids.

rates the effects of the decay models become significant, and  The models give anisotropies that decrease as the initial

the models yield different results. Here, the Iso model pro5in-rate parameter decreases, while DNS shows the non-

vides the best comparisons with the DNS data, because thgy itive tendency to have increased anisotropies for de-
other models deviate from the RDT values of the rapidoreased strain-rates. To understand the evolution of the

pressure—rate-of-strain _correlation more rapidly than the nisairopies, their budgets for the Iso model and the DNS

DNS data indicatésee Fig. 11 data are compared in Fig. 14. The modeled rapid pressure—
The comparisons between the models and the DNS dafae_of_strain correlation and the closed production terms

for axisymmetric expansion show some interesting eﬁeCtScompare very well. This point is further emphasized in Fig.

The evolution of the kinetic energy from all of the models 15y comparing the rapid pressure—rate-of-strain correlation
from the Lang and Iso models to the DNS data of E&e.
Although the Iso model performs better, the Lang model is
30 y y y still reasonable. It is actually the slow terms that cause the
difference in the anisotropy evolutions. For the DNS data
these termancreasethe anisotropy; i.e., drive the system
from isotropy.

The slow terms include the return-to-isotropy tensor and
the Reynolds stress anisotropy which is a scaling term due to
the dissipation of the kinetic energy. In Fig. 16, the differ-
ences between the Iso model and the DNS data are apparent.
Since the anisotropy is a closed term, the source of the
trouble is the modeling for the return-to-isotropy tensor.

These results have significant implications for the mod-
eling of the return-to-isotropy tensor. In Reynolds stress clo-

0.0 . . . sures, this tensor is modeled as a function of the anisotropy.
0.0 0s s 0 L5 Some of the latest mode{€hung and Kim?) include model
coefficients that depend on the Reynolds number and anisot-
FIG. 8. Evolution of kinetic energy in axisymmetric contraction. Compari- rppy Ir-lvarlants' However' the re-SUItmg parameters are _spe_c:|—
son between DNS of Lee and Reynoldef, 22: ®, (SKe)o=0.557: [ fied with comparisons to decaying turpulence and maintain
(SK&)o=5.57; A, (SKe),=565.7; and models: —, Lang - -, SLang;  Slow terms that strictly reduce the anisotropy for all Rey-
-, Is0; - - -, Mlso. nolds numbers. The DNS results of Lee and Reyrfdlis
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St

FIG. 10. Evolution of Reynolds stress anisotropy budget in axisymmetric contraction. Comparison between Isotropic Diflesimdeif(lines) and DNS
of Lee and ReynoldsRef. 22 (symbolg: (—®), P/S; (- - -0), T/(2KS); (---A), —(e/SK3(p11—2b1p); (---.V), dby,/Sdt for: (a)
(SKe)y=0.557;(b) (SK&)y="55.7.

dicate that this is not always the case for homogeneous tudeandef® Pierrehumbert? Bayly;>® Landman and Saff-
bulence. man>! and Waleffe>? and the results show that the flow is
unstable with exponential growths in kinetic energy for all
values of @/S)=(E?+1)/(E?—1)>1. However, Speziale,
. - . Abid, and Blaisdell” have shown that current second-order
Flows Wlth elllptlca}l streamlines are generated by theclosures predict that the flows restabilize afS<2 for any
mean velocity gradient: - .
initial mean rotation-rate parametef)k/¢)g.
0 Sto O The models were tested in a case with nearly circular
a(Uj) | S—w 0 0 69 streamlinesE=1.1, and a high initial rotation-rate param-
IX; B 0 0 0 ’ (69 eter, (0k/e)o=270. In this case, the rotation—to—rate-of-
strain ratio is large, ¢/S)=10.5, for which all second-order

with ||>|S], while |w|<|S| generates hyperbolic stream- closures erroneously pre.dict. decayingl kinetic energy. Figure
lines. The flow is a combination of plane strain and solid1? does show growing kinetic energy in all four models, but
body rotation and is also parameterized through the aspeéfe rates are far lower than the exponential growth found in
ratio of the elliptical streamline€= \(S+ w)/(v—9), and the DNS data of Blaisdell and Shafifffor (Qk/s)o=4.05

the rotation frequency§)=/(S+w)(w—9S) (Blaisdell and (not shown. The poor quantitative results are at least par-
Shariff*). Stability issues for the elliptical flows were ad- tially due to the dissipation model which ignores the known
dressed in the following references: Cambon, Teisseand decrease in dissipation due to rotation.

4. Elliptical flows

K28k,

FIG. 11. Evolution of(a) normalized rapid pressure—rate-of-strain correlatiphFourth-order correlation; in axisymmetric contraction. Comparison between
DNS of Lee(Ref. 23 and models with $Ke),=0.5: ®, DNS; —, Lang; --, Iso; and SK&),=50.01, DNS; - - -,Lang - - -, Iso.
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FIG. 12. Evolution of kinetic energy in axisymmetric expansion. Compari- FIG. 13. Evolution of Reynolds stress anisotropies in axisymmetric expan-
son between DNS of Lee and Reynol@Ref. 22: @, (SKe),=0.408;, sion. Comparison between DNS of Lee and ReyndRisf. 22 (symbols
(SKe)o=4.08; A, (SKe)o=40.8; and models: —, Lang - -, SLang;  and modelglines) for (Sk'e);,=0.408:@, by;; O, byy; —, Lang; - -, Iso;

---, Iso; - - -, Miso. and (SKe)o=40.8:A, by;; V, byy; - - - Lang; - - -, Iso.

5. Model comparison and axisymmetric contraction when compared to experimen-

In summary, the four models with their specified sets oftal data, while the Iso model performs better in axisymmetric
parameters provide very good results in all test flows at thexpansion and contraction when compared to DNS data. The
highest strain-rates where the flows are nearly in the RDTso model is better in these cases, because it matches the
limit. At lower strain-rates, all the models provide quite good DNS data in deviating from RDT more slowly than the other
results in all of the test flows except axisymmetric expan-three models. It is possible that the very low Reynolds num-
sion. It has been shown in this case that the problems afgers of the DNS is a factor in this result. Because of its
caused by poor modeling of the return-to-isotropy tensor andhferior performance for the important case of homogeneous
that RSM’s which are based on decaying turbulence sharshear, the Iso model is not recommended for future use.
these problems. Because the models directly impact the an- The modeled return-to-isotropy tensors are one way to
isotropy budgets, the differences between the models amifferentiate between the four models. The modeled tensors
more apparent in the anisotropies than in the kinetic enerfrom the Iso and MIso models contain expectations which do
gies. not have good physical interpretations, while the tensor from

The Lang, Slang, and MIso models yield similar resultsthe Lang model takes the general form for RSM'’s if the
due to the comparable parameter values for the anisotropjgarameters are allowed to be functions of the anisotropy in-
drift terms that are proportional to the Reynolds stress anvariants and Reynolds number. The SLang model includes
isotropy. These models perform better in homogeneous sheaffects of the structure dimensionality anisotropy tensor, but

0.8 y o :
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FIG. 14. Evolution of Reynolds stress anisotropy budget in axisymmetric expansion. Comparison between Isotropic Diféusiodedflines) and DNS of
Lee and ReynoldsRef. 22 (symboly: (—@), PR/|S); (- - -0), T/(2K|S)); (---A), —(el/|SK) 3 p1—2bsy); (---.V), dbyi/|Sdt; for: (a)
(SKe)y=0.408;(b) (SKe)y,=40.8.
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FIG. 15. Evolution of(a) normalized rapid pressure—rate-of-strain correlatibpf-ourth-order correlation; in axisymmetric expansion. Comparison between
DNS of Lee(Ref. 23 and models with $k'¢),=0.5: ®, DNS; —, Lang; --, Iso; and SK&),=50.01, DNS; - - -,Lang - - -, Iso.

does not provide a general model of the ford); = ¢;; (b, In PDF methods of inhomogeneous turbulence it is use-
d?). A general model of this form could be created and mightful to view the stochastic equations as models for Lagrangian
provide improved modeling for the return-to-isotropy tensor.fluid particles. In a Lagrangian system, the particle position,
However, the SLang model in its current form does not sigX " (t,Y), evolves by the particle velocity,U"(t,Y)
nificantly improve over the Lang model. For our future work =U(X"[t,Y],t):

in inhomogeneous turbulence, the Lang model will be used, +

because the evidence so far does not indicate an advantage in — = Ui+ , (70)
using the more complicated SLang or MIso models. Jt

whereY is the particle position at a reference time. Also, the

V. PDF MODEL FOR INHOMOGENEOUS local Lagrangian excess velocity is defined by

TURBULENCE U (EY)=UT (1Y)~ (U e ey)

In this section theu-e PDF model for rapidly distorted =u(X'[t,Y],1), (72)

inhomogeneous turbulence is constructed based on the RDT

model for the homogeneous case from Sec. Ill C. The genwhereu(x,t) 1S the_ Eulerian quctthlng velocity.
From the Navier-Stokes equations expressed as

eral PDF models for non-rapid inhomogeneous turbulence
are not presented but follow directly by adding a decay pu, Py P’ 9V, a(P)
model from Sec. IV B. D o ox Vo= o tas (72

g ox | Laxaox X

0.0 0.5 1.0 1.5
St 0.9 A A .
0.0 50 10.0 15.0 20.0
Qt
FIG. 16. Evolution of the slow terms in axisymmetric expansion. Compari-
son between DNS of Lee and Reynlo(tﬂhaf. 22 (symbolg and Iso model
(lines) with (SKe)y=0.408:(—, @), 5(P11—2by9); (- - -,00), ¢14/2; (---, FIG. 17. Evolution of kinetic energy in an elliptical flow with/S=10.5:
A), bqy. —, Lang model - - -, Slang model; --, Iso model;- - -, Mlso model.
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the equation for the Lagrangian velocity is VI. CONCLUSIONS

au;t DU, a(P) A new approach to PDF modeling qf inhomogeneous
Tzr W] =( - W} turbulence has been developed that provides exact represen-

x=X*(t,Y) b x=XT(LY) tation of rapidly distorted homogeneous turbulence. The con-

+a;(X*[t,Y],0). (73  struction is based on the particle representation model by

Kassinos and Reynold$.Their approach is adapted into a
The effects of viscosity on the mean velocity is negligible atppF formulation that begins with a model for the joint PDF
high Reynolds numbers which results{@=0. The equa- of a velocity Fourier mode and unit wavenumber vector.
tion for the Lagrangian excess velocity is then This is an exact representation of RDT at the level of the

directional spectrum. To provide an initial condition for the
" [ Du; a{uu U, ) ) L
1 _'] :[ (Ui —u { '>] Monte Carlo solution of this PDF method, an algorithm is
Jt Dt X=XF(t,Y) 9%, X x=X*(t,Y) also presented that generates a stochastic system in Fourier

space that corresponds to a homogeneous vector field with a

+
FaxX LYY, (74) prescribed spectrum.
where the first two terms account for the changing velocity =~ An equivalent formulation of the RDT model using
due to the particle’s movement. physical space variables is required for the extension of the
The stochastic representation ok (,U",u") is (X*, method to the inhomogeneous case. The result is a model for
U*,u*) for which a model ofa is required. The evolution of the joint PDF of the velocity and wave vector, thee RDT
the stochastic position is simply Model, which is based on the integral relationship between
. . the directional spectrum and the Reynolds strefisassinos
dXi =Uidt (79 and Reynold®). A difference between PDF methods based

The equations folJ* are constructed in a manner that yields ©n theu-e RDT Model and standard PDF methods is that the
the RDT model foru* in homogeneous turbulence, Eq. model for the rapid pressure term in the PDF of velocity
(343. The velocity model is equation corresponds to a model for the directional spectrum
Py 20 and not just the Relynotljds stresse?. B;;?rusr? trlle directional
J m o % % * o* % spectrum is a complete description for , this limit is now
o dt+2 IXp (&7 emun — (e et ) 1dt, treated exactly.
(76) Models for general homogeneous turbulence are con-
structed by combining the-e RDT Model with au-e model
for decaying turbulence. The decay models maintain the
. HUm) . analogy with the directional spectrum through two determin-
duf=-— 9, Un (8im— 2€] ep)dt istic constraintse is of unit length ancl-e are orthogonal;
and the analogy with the particle velocities through two sta-
tistical constraints: the joint PDF af tends to a joint normal
distribution in isotropic turbulence and the kinetic energy
. ) ) ) evolves by the dissipation. By maintaining these analogies
This equation reduces to the velocity RDT equation, Edyhe ppF method can be viewed either as stochastic model for

(343, in homogeneous turbulence because the gradients @iy particles in physical space or as a realizable spectral
the Reynolds stress are zero and the triple correlat|or}mde| at the level of the directional spectrum

(el emUyn ), is also zero by symmetry in the velocity distribu- 6 models for decaying turbulence are constructed:
tion. The triple correlation term was added to E@6) ©0  Generalu-e Decay Model, Isotropic Diffusion oé Model
force the exact evolution equation for the mean Eulerian Ve€{is0), Modified Isotropic Diffusion of e Model (Mlso)
locity, which is equivalent to forcing the mean of the mod- Langevin Velocity Model(Lang), and Structure-Langevin
eleda to be ZEro. ) Velocity Model (SLang. The Lang, SLang, Iso, and Mlso
_The evolution equation for the wave vect_or'follows bY models perform quite well in the cases of homogeneous tur-
maintaining a unit length and orthogonality witfi bulence that are tested. The Lang, SLang, and Miso models

dU* =

where the corresponding model of is

HUm) , a(u;u;)
—2T<e- erurydt+ Tdt'

(77

HU ) a(uyu;) provide very similar results in all cases and are better than
def=— P er(Sin—eler)dt— T the Iso model in the important case of homogeneous shear.
n J The Lang model is currently preferable, because it yields the

HUm) o o, Fur general form for the return-to-isotropy tensor used in RSM’s.

-2 %, (e equn mdt- (78 A future version of the SLang model may provide better

modeling of this tensor.

The final term in this equation corresponds to the inhomoge- The extension of the homogeneous turbulence models to
neous terms in Eq.77) and has the purpose of maintaining models for inhomogeneous turbulence is accomplished by
the wave vector in the plane orthogonal to the excess veloadding a stochastic variable representing the particle location
ity. A direct calculation of this projection during the Monte and through the use of the full particle velocity. The resulting
Carlo simulation is equally valid and preferable numericallymodels maintain the exact solution for RDT of homogeneous
due to the high statistical error inherent in calculating theturbulence.

gradients of the Reynolds stresses. While testing the homogeneous models, several general
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observations were made about turbulence modeling. It washe normalized spectrum is non-negative and integrates to
argued that the anisotropy budgets are important means aiity; i.e., it has the properties of a joint PDF. Another nor-
comparing turbulence models to DNS data, because they arealized spectrum is also defined by

properly scaled and allow separate comparisons for the slow _

and rapid models. Therefore, they form a more rigorous test i (K)=Pij(#)/ Py (x0). (AS)
than the anisotropy evolutions. From the anisotropy budgetf terms of these the normalized spectra, E&l) is re-

of axisymmetric expansion, it is shown that the increase inyritten:

anisotropy for lower initial strain-rates is caused by the slow

tgrmg In partiCL_JIar, the scaling term from th_e dissipation of Rij(r):2kf W (r0)e" " (s . (AB)
kinetic energy is larger than the return-to-isotropy tensor.

This presents a problem for all models of the returmn-to-t . is defined to be a random vector with a joint PDF of

isotropy tensor that are based on decaying turbulence wheﬁk), then the integral in EQA6) is equivalent to an expec-
this effect has not been observed. Also, the need for an in4ion-

proved dissipation model is apparent, especially in the cases
where rotational effects are important. Rij(r)=2k(\lfij(:c*)e”‘* . (A7)

The synthetic fieldu(x), is defined for a givemN by
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cally distributed zero-mean random vectors, dependent on
«™, whose covariance matrix is deduced below, &d4.2).

APPENDIX A: SYNTHESIS OF HOMOGENEOUS In addition, conjugate symmetry is guaranteed by using con-
RANDOM VECTOR FIELDS WITH A PRESCRIBED jugate pairs:
SPECTRUM

Z0W=(zM)* and K "M=—4x", for n=1N.
The purpose of this appendix is to show how to synthe- (A9)

size a random field as the sum Nfconjugate pairs of inde- The complex conjugate of EqA8) provides an alternate
pendent modes such that its two-point correlation CONVergegasinition of the field:

to a specified one as tends to infinity.

Let u(x) be a real, zero-mean, statistically-nomogeneous N .
random vector field with spectrum functiod®;;(«). The U(X)E\/ﬁ n;N (ZMy*e X, (A10)
two-point correlation and the spectrum are related by Eq.
(12) or its inverse From Eqgs.(A8) and (A10), the two-point correlation of the
synthetic field is
Ri: (N={u(x)u;(x+r))= | ®;i(k)e" 'dk. Al ~
i (N =(U;(X)u;(X+1)) f ij (%) (A1) R (1)=(T (0T (x+)
From conjugate symmetry and an additional symmetry con- 1 N
dition from homogeneity, the real and symmetric parts of the = > ((Z(My* z(me"«“‘)-f)_ (Al11)
spectrum are equivalent: 2Nn==N .
Re{(l)ij(K)}:(I)iSj(K)E%[(I)ij(’()—i-q)ji(l()], (A2a) By comparing Egs.(A7) and (All), we observe that
R;;(r ,t) equalsR;;(r,t) (for all N=1) providedz(™ satisfies

while the imaginary and anti-symmetric part are related by
v IM{®;; (1)} = DF (1) =3[ jj(#) — Dji ()] (A2b)
The terms in Eq(A2a) are called the co-spectrum, while the ~ The complex random vectorg", must have a covari-
terms in Eq(A2b) are called the quadrature spectrum. ThesgC€ matrix given by EqA12), but thelr)dlstrlbutlon I not
relations show that the spectrum tensor forms a Hermitiafl€termined. Itis convenient to speci#”) as Gaussian ran-

matrix. Further, because the spectrum is a representation gpm vectors, because the distribution is then determined

the energy at a particular location in Fourier space, the malfom the covariance matrix. In practic&™ can be con-
trix is also positive semi-definitéBatchelo?®). structed from real, standard, isotropic Gaussian random vec-

The energy of the random vector field is defined via tors, &", by

(ZM)* Zi" | K" = ) = 2k W (k). (A12)

ZM=(L)* g, (A13)
= [ 10, e A3 , , - |
whereL is a complex triangular matrix with a real diagonal
with which a normalized spectrum is defined by that is uniquely defined by
f(r)=3P,(r)/Kk. (A4) ((ZM* 2T M= ) = L(L)* T=2k W (k). (A14)
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This is simply the complex version of the Cholesky factor- The unit length ofe* constraint applied to the general diffu-

ization for positive, semi-definite, Hermitian matrices. sion process imposes conditions on the model:

e Gij=¢eH;;=0, (B4a)
APPENDIX B: CONSTRUCTION OF GENERAL u-e and
DECAY MODEL gief = —3[G;;Gj; + HijHi;1, (B4b)

A general model fou* ande* in decaying turbulence is \while the orthogonality constraint imposes

constructed based on the form for coupled stochastic diffu- . . . .
sion processes: e Ajj+ui Gjj=e/ B +uiH;; =0, (B5a)

duf =ay(u*,e*)dt+A;(u*,e)dW, + B;;(u* ,e*)dw/,  and

(B1a aief +giuf = —[A;Gj;+BjjHjj1. (B5b)
and In the above conditions the independence of the Wiener pro-
def =g;(u*,e*)dt+Gj(u* e )dW,+ Hj;(u*,e*)dW,, cesses is used to set each of their coefficients to zero.

(B1b) The conditions in Eqs(B4a) and (B5a) impose con-

. . . . straints on the tensorial form of the diffusion coefficients.
and the four constraints given in Sec. IV B. In applying theser. asults for the isotropic parts are

constraints to the diffusion process some simplifying as-
sumptions are made in order to achieve a tractable model. As
a result the General-e Decay Model is not in themost
general form, but maintains more than sufficient generality
for our purposes. — (1t Ty)eful + Zeefuf +AT,

Before the constraints are applied to the diffusion pro- (B6a)
cess, its coefficients are re-expressed using the isotropic

, uuf
Aj(U* €)= 2,8+ 7,6 e ﬂ@ﬁ
S ¥s

functions ofu* ande*: . ) ufuf
N . a Bij(u*,e*)z.%lb‘ij+.,ﬁ2e;ker+.ﬁ3ﬁ
a;(u*,e*)=a,e’ +a,u’ +a, (B2a) Us Ug
g;(u* ue*):glei* _,_gzu;k +g?! (B2b) —(k}7//1+,7/3)ei* U}k +.%’5e}* Ur + Bié} ,
- (B6b)
Aij(u*,e*)=<,/%§15ij+‘f{62ei*e}¥+[,%3#+.,/%4ei* ut -
(o2 (o | l
ss Gij(U*,e*):-fl(fSij_ei*eJ*)Jrv%W
+. Zs€f Ul + AT (B20) sTs
. ) poter e WU NP | +Gfj, (B60)
Bij(u*,€") =716, +.71,€] € +./;’3m+.ﬁ4ei uj ug ug
D_a¥* 1 1* a urut
+.7s€; ui +Bjj, (B2d) Hij(u*,e*):%l(éij—ei*ej*)+,,%/3#
. % S vs
u. M
Gii(U*, %)= 715+ Lper e + Cy—— + G ek ur ure*
! o sug Y —(Ar+ )5 HH (B6d)
s s
+ 756 uf +Gfj, (B2¢) _ o - _
For the anisotropic diffusion coefficients, the unit length con-
. ‘ e uruy . straint is applied without assumption, while in the orthogo-
Hij(u* €)= 716+ 7€ € +’%3W + 467 U nality constraint each term is individually assumed to be
ss zero. The results are conditions on the tensorial form of the
+.7sef uf +H, (B2f)  anisotropic diffusion coefficients:
wherea, andg, for y=12and 7,,.7,, ., and.7, for Ai=(&—efel). 7, (B7a
y=1,2,3,4,5 are functions ofifu} and the time varying . e
statistics ofu* and e*. Also, a7, g, A}, Bf}, Gii, and Bi=(5i—e€€ef).7, (B7b)
a ) . . . o
H{j are anisotropic functions af* ande*. The deterministic GA=trtf 53, (B79)

constraints are expressed via Ito calculus which applies for

the Ito SDE'’s: Hﬁztrtr%ﬂ ) (B7d)
d(ef'ef')=2efde +defdef =0, (B38)  \yhere a vectort*, mutually orthogonal t@* ande* is used,
and and. 7}, .7y, <}, and.7; are new anisotropic functions.
. e e - From geometrical considerations a relationship between
d(uief)=uide’ +efduf +dufdef =0. (B3b)  three orthogonal unit vectors exists:
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uru’ be joint normal. The actual comparison is made between the
thtf=5;—efef - ﬁ (B8  SDE's for speed from the different equations. The Langevin
sUs equation is
With the functional form of the drift coefficients substi-
tuted into Eqs(B4b) and (B5b), expressions and conditions du=—audt+bdWw, (B10)
on the coefficients are found. Also, it is assumed that the
terms consisting of the anisotropic drift coefficients are zerd”

independent of the isotropic terms. The results are

hich when expressed for the speeds|u|, is

2
du=<——au dt+bdWw. (B11)
gi=(5—efef)g7, (B9a) u
. . In isotropic turbulence the SDE for speed from the gen-
a‘e +giuf =0, (B9b)  eral model with the stochastic constraints applied is
a]_:_gz(ug u;)—{(fol-i-(fs)///1+(!§”1+f§3)/43 du= Eldt+ Ede, (BlZa)
F (At A) AU A 57 where

+(2I1+ Hg) D+ ( Ty + Hg) D 1
Ev=[A( At Ag) + BB+ )+ H A+ H) I

+ ( By + Do) B+ Ut 275 (B9c)
and +[ap+ X G+ C3)%+ X+ 3)%]u,  (B12b
_ 7 \2 y 7\2 21 g 211/2
01= — 11+ Ta) — T T+ Ta) — 555+ 7) Ep=[( At 79)*+( A1+ 7)*+( 25+ Fg)u ](B-m
- %[(%ﬁ%z)u(-/3’14-.,%’2)2] This equation must be forced into the form of EBll)_. A
2ug ug fully general model would consist of diffusion coefficients
— W (R T, (B9d) which are power or Laurent series i) but to avoid this

complexity the coefficients are assumed independent of
The constraint of a joint normal solution in isotropic, where possible. Thus, by scaling withandk all the coef-

decaying turbulence is applied by comparison with theficients are re-expressed with non-dimensional parameters

Langevin equation whose solution for the PDF is known toand the appropriate dependencies where necessary:

€ ~| & el _ 2¢
=572 ale 5
'_g'(k)’ 91—91(k), 92_92\/E§!
~ ~ _~ o~ V2e ~
A=TNe,  Ag=Tl\e,  ta=TVg\e, ,/455,457, A= wg
~ 2e

=TBNe,  B=Tpe,  He=Ta\e, SHe=Ts u =T e,
§ ~ € - ~ e a = e
(5/15(51 J%! 51635 ,363 \/;, ;ﬁ:frﬁ \/%’
o e ~ € ~ >
TL=T0 \[E T5=T 3 \/; Hy=T0 \[E

The joint normal condition is now applied giving an expression for one of the velocity drift coefficients:
AR =Y 75(2. 71+ 73) — 3750270+ 2p) + 202+ Da(2. 71+ B3) — 3. 15(2. 51+ T,) + 2 752, (B13)

The evolution of the kinetic energy constraint is applied by forcing the kinetic energy equation from the stochastic model
into the same form as E@51), which results in an expression for the remaining velocity drift coefficient:
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1 *uy
=) _ =a T L TN2, (5 =/ \24 30 ~\2 2. ~a ~ j l A
S 7S
* %
\/"‘7 eJ | R A 2 * gk ) 78
+V2.75 (ur )1/2 +¥(on—e en). 7. ~—7nj>+ (Dr+ 73)2+375% +ﬂ1<(51| e ef).)
uruy eruf
T J 7 | 7 ~a
+ D3\ < Ay )+ V2 %5 *u*) — =1 | +H(Sn—eF &) TR T5). (B14)
S ¥'s s s
[
The final form for the General-e Model is now sum- u* ut
. |
marized: Bij(u* €)= \e| 718+ el e + 7, *ui*
S S
duf =| —||a;vke* +aPu* +2a? k u* 1 (Tt Tro)er ur + 2.7 e uf
i i 2 Y 2 % i — —(H1+ H3)e U +\2 05—
1 3 5 172
Uz 3 Wk " (uFuf)
+adVk|dt+A; dW,+B;;dW , B15 ~
i \/— ij YV Bij VY ( 3 +(5H—ei*e|*)B|a} (B16d
and
* k) — € [ * A% 72 Ur uj*
. F Gij (U™, €)=\ i | “1(d— el e)+ T3 5=
~ s vs
def=| || 0.6 +0,—=+(5;— € €)g}
| I
k Vk uef
, _\/—(7?1+7/2)**+ttl |J’
+GidW, +H;;dw! (B15b) Us Us
. . o (B168
where some of the coefficients were previously given in Egs.
(B13) and (B14), and the following coefficients are re- - * |k
expressed in non-dimensional form: Hij(u*,e*)= \[E{%l( sj—ef e*)+]53 I*uJ*
S
* * *
~_~ s 2 /{/ (()"’/ IeJ Kk ga
a;=—g —{(2%1+ Zy) 0+ (214 D9). 2 ~K( B+ Tyt Eu +tFHY | (B16f)
S
F (At ) A Ut 2 TR+ (2700 + T ) In addition, one constraint remains on the anisotropic drift
B L _ . o terms:
+( Ty T3) B+ ( Do+ T) Bs+ Uit LI, @ . ®17
(B163
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