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A model for inhomogeneous turbulence is constructed that provides an exact representation of
rapidly distorted homogeneous turbulence~RDT!. The fundamental quantity modeled is the joint
PDF of the velocity and wave vector which is related to the unit wavenumber vector. This joint PDF
provides a model equation for the evolution of thedirectional spectrum, the integral over the
wavenumber magnitude of the velocity spectrum. At this level the rapid pressure–rate-of-strain
correlation is closed yielding exact equations in RDT. For decaying turbulence, the
return-to-isotropy terms are modeled by stochastic diffusion equations for the velocity and wave
vector. A general model of this type is constructed along with four simplified versions. The decay
models are combined with the RDT model to give complete models for homogeneous turbulence,
which are tested for several flows. The homogeneous models are then extended in a general manner
to inhomogeneous turbulence. ©1997 American Institute of Physics.@S1070-6631~97!01404-9#
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I. INTRODUCTION

A fundamental goal in turbulence modeling is the c
ation of robust and accurate models for the Reynolds st
equation. Although the present work is in the context of P
methods, modeled Reynolds stress equations are still
rived. The background for PDF methods is then best und
stood in the context of Reynolds stress models~RSM’s!.

For a wide range of inhomogeneous and homogene
turbulent flows the rapid pressure–rate-of-strain correla
is a dominant term, which makes its modeling crucial to
RSM’s. The standard modeling approach is based on
exact integral expressions derived by Chou1 for the case of
homogeneous turbulence. The integrals are not closed
RSM’s, but are instead modeled as functions of the Reyno
stress anisotropy tensor. The slow or turbulent-turbulent
teraction term requires the modeling of a second-order
sor, B, while for the rapid term a model of a fourth-orde
tensor,M , is required. Rotta2 created the first model of thi
form by approximating the slow tensor as a linear function
the anisotropies. Other researchers have since formul
models for both tensors with varying levels of complexi
Some of the rapid models created are presented in
following references: Launder, Reece, and Rodi;3 Shih and
Lumley;4 Haworth and Pope;5 Fu, Launder, and Tsele
pidakis;6 Speziale, Sarkar, and Gatski;7 Johansson and
Hallbäck;8 and Ristorcelli, Lumley, and Abid;9 while other
slow models are presented in: Lumley and Newman10

Sarkar and Speziale;11 and Chung and Kim.12

The general results of the rapid models have been mix
For simple irrotational flows with small anisotropies, the la
est models work very well, but for arbitrarily complex inho
mogeneous flows RSM’s have not performed up to expe
tions. This is particularly true for flows that conta
rotational effects. In fact, recent analysis indicates that
RSM’s are fundamentally flawed in certain rotational flow
Reynolds13 demonstrated that the rapid rotation of anis
tropic turbulence in RSM’s has no effect on the invariants
the Reynolds stress anisotropy tensor, while the exact re
Phys. Fluids 9 (4), April 1997 1070-6631/97/9(4)/1085/21/
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from RDT ~Cambon and Jacquin14 and Mansour, Shih, and
Reynolds15! indicate that the invariants decay. Reynolds a
Kassinos16 conclude that the Reynolds stress tensor forms
insufficient basis for modeling the rapid pressure–rate-
strain correlation. In addition, Speziale, Abid, and Blaisde17

have shown that RSM’s behave poorly when compared
linear stability analysis for complex rotational cases such
in elliptical flows. For homogeneous turbulence, linear s
bility theory is equivalent to RDT, so again the Reynol
stress closures fail for rapidly distorted rotating flows.

The study of RDT has a long history dating back to t
original work of Prandtl18 and Taylor.19 Batchelor and
Proudman20 continued this work by deriving an exact expre
sion for the Reynolds stresses in axisymmetric contrac
and plane strain. Other references of note inclu
Townsend;21 Lee and Reynolds;22 Lee;23 Lee, Kim, and
Moin;24 and Hunt and Carruthers.25 Although the Reynolds
stress equation for RDT includes theunclosed rapid
pressure–rate-of-strain correlation, a closed and linear re
sentation exists in Fourier space from which the exact so
tions for the Reynolds stresses are derived. RSM’s are o
constructed to yield the correctinitial response whenisotro-
pic turbulence is subjected to a particular rapid distortio
but the results for general flows in the RDT limit are typ
cally unsatisfactory.

As a means to introduce improved modeling of the RD
limit Reynolds and Kassinos16 and Kassinos and Reynolds26

have gone beyond standard RSM approaches by inclu
structural information of the turbulence. For RDT, they ha
added evolution equations for another second-order ten
which they call thestructure dimensionality. This allows in-
creased functionality of the model forM , but introduces new
closure problems in the equation for the dimensionality t
sor. Additionally, a new model formulation for RDT base
on an eddy axis tensor is presented. The results for this R
model are very good, and an extension to non-RDT flow
presented in Kassinos and Reynolds.27 Improving the ex-
tended model is a topic of their current research.28

The contribution of the present work is the developme
1085$10.00 © 1997 American Institute of Physics
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of a general PDF model for inhomogeneous turbulence
maintains the exact solution for rapid distortions of homo
neous turbulence. Standard PDF methods for inert flows c
sist of models for the PDF of velocity~Pope29 and Haworth
and Pope5! or joint PDF of velocity and turbulent frequenc
~Pope and Chen30 and Pope31!, while in reacting flows com-
position is also included~Pope29!. PDF methods have sever
advantages over traditional moment closures~Pope29,32!. In
particular, realizability is assured by construction so tha
RSM is expressible by a PDF model only if it maintai
realizability ~Pope;33 Durbin and Speziale;34 and Wouters,
Peeters, and Roekaerts35!. Also, convection and reaction ar
treated exactly which are very important issues for inhom
geneous turbulence and reacting flows, respectively~Pope29!.
To achieve exact representation for rapid distortions,
standard velocity PDF models are extended by the inclus
of a stochastic vector,e* , called the wave vector. The adde
directional information results in a model for physical spa
variables that corresponds to thedirectional spectrumin
Fourier~wavenumber! space. Thus, the model forms a brid
between Reynolds stress modeling and spectral modelin

This work begins in Sec. II A with a brief introduction t
the issues at the RSM level. Definitions and properties
spectral variables are presented in Sec. II B. A further in
duction to the general theory of rapid distortions is presen
in Sec. III A, while a wave space PDF formulation for RD
is constructed in Sec. III B. An equivalent PDF formulatio
for RDT in physical space is described in Sec. III C with
further examination of the correspondences between the
chastic and physical systems given in Sec. III D. The
proaches utilized in Secs. III B, III C, and III D are an ada
tation of the particle representation model for RDT presen
by Kassinos and Reynolds26 and are a Monte Carlo integra
tion of the RDT governing equations. The new construct
is designed to contain the formulation used in PDF meth
which allows the extension of the method to non-RDT flow

In Sec. IV A, the approach and motivations for the e
tension to general~i.e., non-RDT! homogeneous turbulenc
are examined. The idea is to construct a model for decay
turbulence which is then combined with the RDT model
yield a model for general homogeneous turbulence. In S
IV B, a general model for decaying turbulence along w
four simplified models are derived and presented. The c
bined models are tested for several types of flows and
results discussed in Sec. IV C. The further extension of
homogeneous model to inhomogeneous turbulence is in
duced in Sec. V, while a brief summary of the results a
conclusions are given in Sec. VI.

II. BACKGROUND

A. Reynolds stress closures

The primary issues in turbulence modeling are addres
in homogeneous turbulent flows of Newtonian fluids w
constant density,r, and kinematic viscosity,n. The incom-
pressible Navier-Stokes equations govern the evolution
the Eulerian velocity,U(x,t), which is also expressed i
terms of its mean,̂U(x,t)&, and fluctuation,u(x,t):

U~x,t !5^U~x,t !&1u~x,t !. ~1!
1086 Phys. Fluids, Vol. 9, No. 4, April 1997
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For homogeneous turbulence the mean velocity is spec
by a spatially uniform mean velocity gradient. The fluctua
ing velocity is described by continuity and conservation
momentum equations which are derived from the Navi
Stokes equations:

]ui
]xi

50, ~2a!

and

]ui
]t

1ul
]ui
]xl

1ul
]^Ui&
]xl

1^Ul&
]ui
]xl

52
]P8

]xi
1n

]2ui
]xl]xl

.

~2b!

The Reynolds stresses,^uiuj&, are the primary variable
of interest in turbulence modeling. Their evolution is deriv
from Eq. ~2b! with the condition of statistical homogeneit
applied:

d^uiuj&
dt

5P i j1P i j2« i j , ~3a!

where the symbolic terms are: production,P i j ; pressure–
rate-of-strain correlation,P i j ; and dissipation,« i j . These
terms are defined by

P i j[2^uiul&
]^Uj&

]xl
2^uluj&

]^Ui&
]xl

, ~3b!

P i j[2^P8si j &, ~3c!

and

« i j[n K ]ui
]xk

]uj
]xk

L , ~3d!

where the fluctuating pressure,P8, and the fluctuating rate
of-strain,si j[

1
2(]ui /]xj1]uj /]xi), are used.

The Reynolds stresses are split into isotropic and an
tropic parts through the use of the turbulent kinetic ener
k[ 1

2^ulul&, and the anisotropy of the Reynolds stresses:

bi j[
^uiuj&
2k

2 1
3d i j . ~4!

For incompressible, homogeneous turbulence the Reyn
stress anisotropy equation is

dbi j
dt

5P i j
~b!1

1

2k
P i j2

«

k
~ei j2bi j !, ~5a!

where

P i j
~b![

1

2k
@P i j2P l l ~bi j1

1
3d i j !#, ~5b!

and

ei j[
« i j
2«

2 1
3d i j . ~5c!

In terms of a RSM, the production of anisotropy,P i j
(b) , is in

closed form, while models are required for the pressure–r
of-strain correlation and the dissipation tensor from wh
both the dissipation,«[ 1

2« l l , and the deviatoric dissipation
ei j , are derived.
P. R. Van Slooten and S. B. Pope
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Chou1 derived integral expressions for the pressur
rate-of-strain correlation in homogeneous turbulence fr
the exact solution of the Poisson equation for the fluctua
pressure:

~6!

Corresponding to the two source terms, the pressure–rat
strain correlation is split into rapid and slow parts,P i j

[P i j
(r )1P i j

(s) . The rapid correlation is expressed as a fun
tion of a fourth-order tensor,M:

P i j
~r !54k

]^Ul&
]xk

~Mik jl1M jkil !, ~7!

which is closed at the level of the two-point velocity corr
lation,Rik(r)[^ui(x)uk(x1r)&:

Mik jl[2
1

8pkE 1

ur u
]2Rik~r!

]r j]r l
dr . ~8!

The slow correlation is expressed as a function of a seco
order tensor,B:

P i j
~s!5«~Bi j1Bji !, ~9a!

which is closed at the level of the two-point triple veloci
correlation,Cikl(r)[^ui(x)uk(x1r )ul(x1r )&:

Bi j[2
1

4p«E 1

ur u
]3Cikl~r!

]r j]r k]r l
dr . ~9b!

The assumption of local isotropy at high Reynolds nu
bers yields an isotropic dissipation tensor. For lower R
nolds numbers, the slow pressure–rate-of-strain correla
and the deviatoric dissipation are combined to give
return-to-isotropy tensor,f i j :

f i j[2
1

«
P i j

~s!12ei j . ~10!

For the stress anisotropy equation, dissipation effects f
the kinetic energy equation scale in a similar manner as
return-to-isotropy tensor, and they are both labeled asslow
terms. The resulting Reynolds stress anisotropy equation

dbi j
dt

5P i j
~b!1

1

2k
P i j

~r !2
«

2k
~f i j22bi j !, ~11!

in which there are three terms that require modeling:
rapid pressure–rate-of-strain correlation; the dissipation;
the return-to-isotropy tensor.

For a rotating reference frame, the Reynolds stress e
tions are altered in two ways:

~i! the Coriolis force adds kinematic terms similar to t
production;

~ii ! the rapid pressure–rate-of-strain correlation includ
the frame rotation rate tensor.

The frame rotation is expressed through either the fra
rotation rate tensor,Vf , or the angular velocity of the frame
V̄f , which are related viaV i j

f 5V̄m
f e im j .
Phys. Fluids, Vol. 9, No. 4, April 1997
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B. Wavenumber space variables

In the later development of stochastic PDF models it
crucial to demonstrate the level of correspondence betw
the stochastic and the physical systems. This correspond
occurs in wavenumber space, and certain spectral varia
are required to relate the results to the Reynolds stresses
velocity spectrum is defined as the Fourier transform of
two-point velocity correlation:

F i j ~k![S 1

2p D 3E Ri j ~r !e
2ık•rdr . ~12!

The integral of the symmetric part of this tensor,F i j
s [ 1

2

(F i j1F j i ), over the magnitude of the wavenumber vect
k[uku, defines thedirectional spectrum:

G i j ~e![E
0

`

k2F i j
s ~ke!dk, ~13!

wheree[k/k is the unit wavenumber vector. The direction
spectrum is symmetric by definition and real due to con
gate symmetry. Related to the directional spectrum is
directional energy spectrum:

G~e![ 1
2G l l ~e!. ~14!

The spectral variables are related to the Reyno
stresses and the turbulent kinetic energy through the inv
Fourier transform:

^uiuj&5E F i j ~k!dk5E G i j ~e!dS~e!, ~15a!

and

k5E G~e!dS~e!, ~15b!

wheredS(e) is the differential element on the surface of th
unit sphere. These relationships provide valuable phys
interpretations of the spectral variables. The velocity sp
trum is the Reynolds stress density in wavenumber sp
while the directional spectrum and the directional ene
spectrum are the densities on the unit sphere in wavenum
space of the Reynolds stresses and turbulent kinetic ene
respectively.

The form of the spectral variables in isotropic turbulen
is a useful property. For the velocity spectrum the isotro
form is well known~Batchelor36!:

F i j ~k!5
E~k!

4pk2 S d i j2
k ik j

k2 D , ~16!

whereE(k) is the energy spectrum,

E~k![E 1

2
F l l ~ke!k2dS~e!. ~17!
1087P. R. Van Slooten and S. B. Pope

to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



en

he

rd

ec
in
e
c

n
lie
le
at
d

l-
E

a

tio

er
-

s a
-
ace
he

ce
ve
by
city
s,
d

the

-
ard
The isotropic form of the directional spectrum is independ
of the energy spectrum:

G i j ~e!5
k

4p
~d i j2eiej !, ~18!

while the directional energy spectrum is uniform over t
unit sphere:

G~e!5
k

4p
. ~19!

The spectral variables are also related to the fourth-o
tensor in the rapid pressure–rate-of-strain correlation:

Mik jl5
1

2kE k jk l

k2 F ik~k!dk5
1

2kE ejelG ik~e!dS~e!,

~20!

so that knowledge of either the velocity or directional sp
trum is sufficient toclose the rapid pressure–rate-of-stra
correlation forall homogeneous turbulent flows. Therefor
modeling approaches that are based on either spectrum
provide improved results over RSM’s.

III. RAPID DISTORTION THEORY

A. General theory

In turbulence modeling the quantities of interest~i.e.,
Reynolds stresses! are dominated by the large, energy co
taining scales of the flow. For these scales, RDT app
when the mean distortion imposes a time sca
S21[i“^U&i21, on the flow that is much smaller than th
of the large scales,t[k/«. This condition is expresse
through a constraint on the normalized shear-~strain- or
rotation-! rate parameter:

SSk« D@1. ~21!

The continuity equation, Eq.~2a!, is unchanged by this sca
ing, but the turbulent convection and the viscous terms in
~2b! and the slow pressure term in Eq.~6! are negligible. The
momentum and Poisson pressure equations are then line
the fluctuating velocity:

]ui
]t

1ul
]^Ui&
]xl

1^Ul&
]ui
]xl

52
]P8

]xi
, ~22a!

and

]2P8

]xl]xl
522

]^Ul&
]xm

]um
]xl

. ~22b!

The Reynolds stress equation, Eq.~3a!, and the anisotropy
equation, Eq.~5a!, are simplified by the elimination of the
slow pressure–rate-of-strain correlation and the dissipa
tensor:

d^uiuj&
dt

5P i j1P i j
~r ! , ~23a!

and

dbi j
dt

5P i j
~b!1

1

2k
P i j

~r ! . ~23b!
1088 Phys. Fluids, Vol. 9, No. 4, April 1997
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For a single Fourier mode a general solution of Eq.~22!
exists of the form:

u~x,t !5û~ t !eık̂~ t !•x, ~24!

where û(t) is the Fourier velocity mode andk̂(t) is a time
varying wavenumber. These variables evolve via

dûi
dt

52
]^Um&

]xn
ûn~d im22êi êm!, ~25a!

dk̂ i

dt
52

]^Um&
]xi

k̂m , ~25b!

and

dêi
dt

52
]^Um&

]xn
êm~d in2êi ên!, ~25c!

where the evolution of the time varying unit wavenumb
vector, ê(t)[k̂(t)/uk̂(t)u, is also given. The solution main
tains continuity through

û~ t !•k̂~ t !5û~ t !•ê~ t !50. ~26!

The time varying wavenumbers are commonly viewed a
deforming space~Rogallo37!, but interpreting them as a La
grangian system of particles evolving in a fixed wave sp
is equivalent. This viewpoint provides a clearer picture of t
modeling in this work.

The velocity spectrum is defined in a fixed wave spa
and is related to Fourier velocity modes in this fixed wa
space. These modes,â, are defined in the standard manner
a Fourier series expansion of an assumed periodic velo
field with periodL, which results in discrete wavenumber
l . The definitions of the two-point velocity correlation an
the velocity spectrum are then used to give:

F i j ~k!5 lim
L→`

S L
2p D 3(

l
^~ âi~l !!* âj~l !&d~k2l !,

~27!

where the complex conjugate operator, ()* , is used, and a
delta operator is defined to give a relationship between
discrete and continuous wavenumbers:

d~k2l !5H 1 k5l ,

0 otherwise.
~28!

From Eqs.~25! and ~27!, the RDT equation for the ve
locity spectrum is derived through the use of the stand
Lagrangian to Eulerian transformation~see also Townsend21

and Craya38 for alternative derivations!:

]F i j

]t
5km

]^Um&
]xn

]F i j

]kn
2

]^Uj&
]xm

F im2
]^Ui&
]xm

Fmj

12
]^Un&
]xm

Fk ikn

k2 Fmj1
k jkn

k2 F imG . ~29!
P. R. Van Slooten and S. B. Pope
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Integrating the symmetric part over the wavenumber mag
tude yields the RDT equation for the directional spectrum

]G i j

]t
5em~d rn2eren!

]^Um&
]xr

]G i j

]en
23emer

]^Um&
]xr

G i j

2
]^Uj&
]xm

G im2
]^Ui&
]xm

G jm

12
]^Un&
]xm

@eienG jm1ejenG im#. ~30!

Both the velocity and directional spectra evolve viaclosed
equations in the RDT limit under consideration. Also, t
directional spectrum is a compact description of the flow
that no further simplification from it maintains a closed go
erning equation for RDT.

B. PDF formulation for RDT in Fourier space

In this work, PDF methods are viewed as modeling
exact and generally unclosed one-point, one-time PDF eq
tions that are derived from the Navier-Stokes equations.
model PDF equation is constructed so that it is equivalen
the PDF equation for a simple stochastic system which
easily simulated via Monte Carlo techniques. In this sect
and the two following sections the particle representat
model by Kassinos and Reynolds26 is adapted for PDF meth
ods. From this new construction the method is extendible
non-RDT flows. In addition, the construction illustrates d
ferences between these PDF methods and standard
methods.

From the previous section the solution for a single Fo
rier mode in the RDT limit consists of ordinary differenti
equations fork̂ and û. The equations for RDT are closed
the directional spectrum level for which it is sufficient
consider the unit wavenumber vector,ê, in place of the full
vector. For general initial velocity fields, the PDF formul
tion of the problem is constructed by setting the unit wa
numbers and velocity modes to be the random variablesê*
and û* , respectively. These stochastic variables evolve
the deterministic RDT equations, Eq.~25!. The fundamental
variable is then the joint PDF of unit wavenumber and v
locity mode, f̂ (h,v), where (h,v) are the state space var
ables for (ê* ,û* ). The joint PDF equation as derived v
standard approaches:

] f̂

]t
5

]^Ur&
]xs

]

]h i
Fh r S d is2

h ihs

h2 D f̂ G
1

]^Ur&
]xs

]

]v i
FvsS d ir22

h ih r

h2 D f̂ G , ~31!

is an exact representation of the Navier-Stokes equation
the RDT limit. Therefore, a Monte Carlo simulation based
the stochastic variables,ê* and û* , is an exact Monte Carlo
integration of the RDT equations.

The PDF approach for RDT in Fourier space is co
pleted by the specification of an initial distribution ofê* and
û* , while the velocity field requires the distribution of th
Phys. Fluids, Vol. 9, No. 4, April 1997
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stochastic wavenumber vector,k̂* . The velocity field that
corresponds toN realizations ofk̂* and û* is equivalent to
the sum of 2N modes:

u~x!5 (
n52N

N

û~n!eık̂
~n!

•x, ~32a!

where conjugate symmetry is maintained by

û~2n![~ û~n!!* and k̂~2n![2k̂~n!, for n51,N.
~32b!

In Appendix A, a method is developed for specifying th
stochastic variables in a manner that results in a rand
homogeneous vector field with a prescribed spectrum.
comparison of Eqs.~32a! and~A11!, a proper initial velocity
field is generated, if

û~n!5
1

A2N
Ẑ~n!, ~33a!

and

k̂~n!5k~n!, ~33b!

whereẐ(n) is a zero-mean random vector whose covarian
matrix is determined by the spectrum, Eq.~A12!, andk(n) is
a random vector with a distribution defined in Eq.~A4!.

C. PDF formulation for RDT in physical space

The previous section constructed a PDF method for R
using Fourier space variables. To extend this method for
homogeneous turbulent flows, it is necessary to constru
method that is based on physical space variables. A stoc
tic system consisting of the velocity,u* , and a unit vector,
e* , is written:

dui*52
]^Ur&
]xs

us* ~d ir22ei* er* !dt, ~34a!

and

dei*52
]^Ur&
]xs

er* ~d is2ei* es* !dt. ~34b!

These equations are identical to the evolution equations
the Fourier amplitude of velocity and the unit wavenumb
Eq. ~25!, which is the justification for labelinge* the wave
vector. Therefore, the one-point, one-time joint PDF of v
locity and wave vector,f * (V,h), corresponds identically to
f̂ (v,h) since they evolve by the same equation:

] f *

]t
5

]^Ur&
]xs

]

]h i
Fh r S d is2

h ihs

h2 D f * G
1

]^Ur&
]xs

]

]Vi
FVsS d ir22

h ih r

h2 D f * G . ~35!

Again, the stochastic system is an exact Monte Carlo in
gration for RDT, and is called theu-e RDT Model. The
evolution of the stochastic system defined here, (u* ,e* ), is
analogous to the system from Kassinos and Reynold26

(v,n), where v is the velocity andn is the unit gradient
vector.
1089P. R. Van Slooten and S. B. Pope
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The specification of a stochastic velocity evolution
the velocity Fourier mode equation requires justificati
which is demonstrated by the correspondence between
Reynolds stresses of the stochastic and physical syst
First, correspondence is established between the spec
variables of RDT and the stochastic model through a s
chastic tensor:

L i j* ~h![E ViVj f * ~V,h!dV5^ui* uj* ue*5h& f e* ~h!,

~36!

where the marginal PDF of the wave vector,f e* (h), and the
stochastic Reynolds stresses conditional on the wave ve
~Kassinos and Reynolds26! are introduced. The evolution
equation for the new tensor is found by integrating the jo
PDF equation:

]L i j*

]t
5hmS d rn2

h rhn

h th t
D ]^Um&

]xr

]L i j*

]hn

23
hmh r

h th t

]^Um&
]xr

L i j*2
]^Uj&
]xm

L im*

2
]^Ui&
]xm

L jm* 12
]^Un&
]xm

Fh ihn

h th t
L jm* 1

h ihn

h th t
L im* G . ~37!

By comparison with Eq.~30! the new stochastic tensor
shown to evolve in the exact manner as the directional sp
trum. Thus, it is the stochastic model for the directional sp
trum ~Kassinos and Reynolds26!:

L i j* ~h!↔G i j ~e!. ~38!

The spectral correspondence is combined with the r
tionship between the Reynolds stresses and the directi
spectrum, Eq.~15a!, to demonstrate the correspondence
tween the Reynolds stresses from the physical and stoch
systems:

^uiuj&5E G i j ~e!dS~e!↔E L i j* ~h!dh5^ui* uj* &. ~39!

Therefore, the equation for the Fourier mode of the veloc
is an appropriate model for the stochastic velocity.

Both PDF methods based on this RDT approach
standard PDF methods provide a model for the rapid p
sure term in the evolution equation for the PDF of veloci
However, standard PDF methods are constructed to co
spond to the Reynolds stresses and RSM’s, while the
methods correspond to the directional spectrum.

D. Correspondence to Reynolds stress and structure
based models

With a PDF model based on the velocity and the wa
vector, the evolution of the statistical quantities such as
Reynolds stresses are specified. The model Reynolds s
equation is derived from the stochastic evolution equat
for the velocity:
1090 Phys. Fluids, Vol. 9, No. 4, April 1997
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d^ui* uj* &
dt

52^ui* ul* &
]^Uj&

]xl
2^ul* uj* &

]^Ui&
]xl

12
]^Un&
]xm

@^ei* uj* en* um* &1^ej* ui* en* um* &#.

~40!

From a comparison with the physical Reynolds stress eq
tion for RDT, Eq.~23a!, the production is of the same form
while M is represented by a fourth-order correlation of s
chastic variables~Kassinos and Reynolds26!:

2kMim jn5E ejenG im~e!dS~e!

↔E h jhn

hshs
L im* ~h!dh

5^ui* um* ej* en* &. ~41!

Reynolds13 and Reynolds and Kassinos16 have defined
other tensors which give additional structural informati
about the turbulence. The structure dimensionality ten
D, provides information on directions of dimensional ind
pendence, while the structure circulicity tensor,F, provides
information on the structure of the large-scale vorticity fie
These variables are defined through the use of a fluctua
vector stream function,C8:

ui5e i jk
]Ck8

]xj
, ~42!

wheree i jk is the alternating tensor. The structure tensors
defined by

Di j[ K ]C l

]xi

]C l

]xj
L 5E k ik j

k2 Fmm~k!dk, ~43a!

and

Fi j[ K ]C i

]xl

]C j

]xl
L 5e i lme jnpE k lkn

k2 Fmp~k!dk, ~43b!

where the integral relationships with the velocity spectru
apply for homogeneous turbulence. From the integral re
tions, the structure tensors correspond to correlations of
stochastic variables~Kassinos and Reynolds26!:

Di j↔^ul* ul* ei* ej* &, ~44a!

and

Fi j↔e i lme jnp^um* up* el* en* &. ~44b!

The trace of these tensors is twice the turbulent kinetic
ergy as is evidenced by the stochastic model.

A geometric relation exists between the structure tens
and the Reynolds stress tensor which is shown by expres
the vector product of the alternating tensors in terms of Di
delta functions:

e i lme jnp5d i j ~d lndmp2d lpdmn!1d in~d lpdmj2d l jdmp!

1d ip~d l jdmn2d lndmj!. ~45!
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The relation which applies for homogeneous turbulen
~Kassinos and Reynolds26! is

Fi j1Di j1^uiuj&52kd i j . ~46!

In summary, the inclusion of directional informatio
from the evolution equation for the wave vector results in
exact PDF model for RDT, which is expressible as a mo
for the directional spectrum. With this model the rap
pressure–rate-of-strain correlation and the structure dim
sionality and circulicity tensors are all exactly represented
the RDT limit.

IV. PDF MODEL FOR HOMOGENEOUS TURBULENCE

A. Motivation

RDT governs the behavior of turbulence in the limitin
case of very strong mean distortions and is exactly rep
sented by theu-e RDT Model. In the opposing limit, the
energy containing scales of the turbulence have time
equilibrate with the slowly changing mean flows. This
again expressed as a condition on the normalized sh
~strain- or rotation-! rate parameter:

SSk« D!1. ~47!

The most basic flow of this type is decaying turbulen
where there is no mean velocity gradient. Typical engine
ing flows are neither rapidly nor slowly distorted, but ha
turbulent time scales that are of the same order as the m
distortion time scale:

SSk« D;1. ~48!

In this section,u-e joint PDF models are first developed fo
decaying turbulence, which are combined with theu-eRDT
Model to give general models for homogeneous turbulen

The Reynolds stress anisotropy equation, Eq.~11!, is
simplified for decaying turbulence by the elimination of t
production and rapid pressure–rate-of-strain correlation:

dbi j
dt

52S «

2kD ~f i j22bi j !. ~49!

The dissipation and return-to-isotropy are new terms over
RDT case and both require modeling.

The behavior ofe* is known for RDT, while in decaying
turbulence experiments demonstrate that the return-to-
ropy tensor causes a reduction in the anisotropy of the R
nolds stresses~see Warhaft;39 Choi and Lumley;40 Chung
and Kim12!. A return to isotropy in the directional energ
spectrum is a diffusion of the kinetic energy from some
bitrary distribution back to the isotropic, uniform distribu
tion. This motivates the modeling of the stochastic variab
e* and u* , by diffusional processes. When applied to t
Reynolds stress equation, the diffusion ofe* alters the rapid
pressure–rate-of-strain correlation and may be involved
modeling the return-to-isotropy tensor.
Phys. Fluids, Vol. 9, No. 4, April 1997
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B. u-e PDF models for decaying turbulence

A general model foru* ande* in decaying turbulence is
created from which four simplified models are also co
structed. The general form for the two coupled vector-valu
diffusion processes is expressed using two independent,
tropic Wiener processes,dW anddW8, which gives a sys-
tem of Ito stochastic differential equations~SDE’s!:

dui*5ai~u* ,e* !dt1Ai j ~u* ,e* !dWj1Bi j ~u* ,e* !dWj8 ,
~50a!

and

dei*5gi~u* ,e* !dt1Gi j ~u* ,e* !dWj

1Hi j ~u* ,e* !dWj8, ~50b!

where one of the diffusion tensors (A, B, G, or H) may be
arbitrarily set to zero.

Constraints on the general diffusion process are requ
to construct a model that is physically meaningful for deca
ing turbulence. Two constraints that apply for every realiz
tion of the stochastic system are required to maintain
analogy with the unit wavenumber and Fourier mode of
locity begun in the RDT model. These deterministic co
straints are:

~1! e* remains of unit length~by definition!;
~2! e* andu* maintain orthogonality due to the continuit

equation in Fourier space.

In addition, two statistical constraints based on physical
guments for decaying turbulence are imposed as well. T
are:

~1! the PDF of velocity tends to an isotropic joint-norm
distribution;

~2! the evolution of the turbulent kinetic energy is known

dk

dt
52«. ~51!

With these constraints the stochastic system provides re
able models for the directional spectrum and the Reyno
stresses. Also, the form of the directional spectrum mo
maintains continuity.

The details of the derivation are given in Appendix
and the resulting model is summarized here:

dui*5S «

kD F ã1Akei*1ã2
~1!ui*12ã2

~2!
k

us* us*
ui*1ãi

aAkGdt
1Ai j dWj1Bi j dWj8 , ~52a!

and

dei*5S «

kD F g̃1ei*1g̃2
ui*

Ak
1~d i j2ei* ej* !g̃ j

aGdt
1Gi j dWj1Hi j dWj8 , ~52b!

where the coefficients are defined in Eqs.~B13!, ~B14!, and
~B16!, and one constraint remains on the anisotropic d
terms:
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aul*50. ~53!

This model is called the Generalu-e Decay Model, and its
main purpose is to serve as a guide for the construction
simplified models that are based on assumptions into
evolution of eitheru* or e* . The simplified models that ar
tested in this paper are given below.

1. Isotropic Diffusion of e Model (Iso)

In this model the evolution ofe* is taken to be an iso
tropic diffusion which is equivalent to a random walk
e* on the unit sphere. The model has two parameters,au and
ae , which govern the time scales of the decay foru* and
e* , respectively. The stochastic equations are

dui*52 1
2S «

kD @11 3
2au1ae#ui* dt1

1
2~au«!

ui*

us* us*
dt

2S ae«k D 1/2ei* ul* dWl1~au«!1/2@d i l2ei* el* #dWl8 ,

~54a!

and

dei*52S ae«k Dei* dt1S ae«k D 1/2@d i l2ei* el* #dWl . ~54b!

The return-to-isotropy tensor based on this model is a fu
tion of e* ,

f i j5~213au!bi j12ae~bi j2di j
a !

1auF ^ei* ej* &2K ui* uj*us* us*
L G , ~55!

where the anisotropy of the structure dimensionality tenso
defined as

di j
a[

Di j

2k
2 1

3d i j . ~56!

2. Modified Isotropic Diffusion of e Model (MIso)

In an effort to improve the Isotropic Diffusion ofe
Model, anisotropic drift terms are introduced that are prop
tional to the Reynolds stress anisotropy through a cons
parameter,g. The stochastic equations are

dui*52 1
2S «

kD @11 3
2au1ae#ui* dt

1S g«

k D @bi j2bmnbmnd i j #uj* dt

1 1
2~au«!

ui*

us* us*
dt2S ae«k D 1/2ei* ul* dWl

1~au«!1/2@d i l2ei* el* #dWl8 , ~57a!

and
1092 Phys. Fluids, Vol. 9, No. 4, April 1997
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dei*52S ae«k Dei* dt2S g«

k D @d i j2ei* ej* #bjl el* dt

1S ae«k D 1/2@d i l2ei* el* #dWl . ~57b!

The return-to-isotropy tensor based on this model is aga
function ofe* :

f i j5~213au!bi j12ae~bi j2di j
a !1auF ^ei* ej* &2K ui* uj*us* us*

L G
24g@~ 1

32bmnbmn!bi j1~bil bl j2
1
3bmnbmnd i j !#. ~58!

3. Langevin Velocity Model (Lang)

In this model the equation for the velocity is specified
the Langevin equation with an anisotropic drift term that
proportional to the Reynolds stress anisotropy. For t
model, the velocity evolution is independent ofe* . Again,
there are three parameters:au , ae , andg; which are related
to the decay time scales. The stochastic equations are

dui*52 1
2S «

kD @11 3
2au#ui* dt1S g«

k D
3@bi j2bmnbmnd i j #uj* dt1~au«!1/2dWi , ~59a!

and

dei*52 1
2S «

kD Fae1au
k

us* us*
Gei* dt2S g«

k D
3@d i j2ei* ej* #bjl el* dt2~au«!1/2Fui* el*us* us*

GdWl

1S ae«k D 1/2S d i l2ei* el*2
ui* ul*

us* us*
D dWl8 . ~59b!

The return-to-isotropy model takes the standard form fou
in Reynolds stress closures and matches any RSM with
appropriate specification of the model parameters:

f i j5~213au!bi j

24g@~ 1
32bmnbmn!bi j1~bil bl j2

1
3bmnbmnd i j !#. ~60!

The diffusion ofe* affects only the rapid pressure–rate-o
strain correlation in non-decaying turbulence.

4. Structure Langevin Velocity Model (SLang)

In this model the basic Langevin equation is kept, b
new anisotropic drift terms that are proportional to the ani
tropic part of the structure dimensionality tensor are
cluded. This model then has four parameters:au , ae , g1,
andg2; and the stochastic equations are

dui*52 1
2S «

kD @11 3
2au#ui* dt1S g1«

k D @bi j2bmnbmnd i j #uj* dt

1S g2«

k D @di j
a2bmndmn

a d i j #uj* dt1~au«!1/2dWi , ~61a!

and
P. R. Van Slooten and S. B. Pope
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dei*52 1
2S «

kD Fae1au
k

us* us*
Gei* dt2S g1«

k D
3@d i j2ei* ej* #bjl el* dt2S g2«

k D @d i j

2ei* ej* #djl
a el* dt2~au«!1/2Fui* el*us* us*

GdWl

2S ae«k D 1/2S d i l2ei* el*2
ui* ul*

us* us*
D dWl8 . ~61b!

The return-to-isotropy tensor is then modeled as

f i j5~213au!bi j

24g1@~
1
32bmnbmn!bi j1~bil bl j2

1
3bmnbmnd i j !#

24g2@
1
3di j

a2bmndmn
a ~bi j1

1
3d i j !1 1

2~dil
abl j1djl

a bli !#.

~62!

C. Model performance

The models for homogeneous turbulence consist of
of the four simplified decay models combined with the RD
model. Additional closure information is also required, and
is provided by a simple dissipation model:

d«

dt
5

«2

k SC«1

P

«
2C«2D . ~63!

The parameters,C«1 and C«2, are set to 1.5625 and 1.9
respectively, which yield an asymptotic production-to-d
sipation ratio that is representative of many flows:

~P/«!`5
C«221

C«121
51.6. ~64!

This model does not take into account the decrease in d
pation that is known to occur in rotational flows, and t
kinetic energy is expected to be underpredicted in th
cases. Further information on modeling of the dissipation
contained in: Hanjalic and Launder41 and Launder, Reece
and Rodi.3

The purpose of this work is to introduce a new metho
ology in turbulence modeling, and not to formulate theideal
model of this type. For this reason, the specification of mo
parameters is governed by convenience rather than the d
for optimal values. The parameters are set to yield accu
asymptotic values for the Reynolds stress anisotropy inv
ants for homogeneous shear flows which are importan
many common engineering applications. In fact, the se
model parameters given below is not unique in its level
accuracy.

Where possible the anisotropy budgets from the mod
and DNS data are compared. These budgets are prop
scaled and have several advantages over the unscaled
nolds stress budgets:

~i! the anisotropy budgets for flows with different initia
shear-rate parameters are directly comparable;
Phys. Fluids, Vol. 9, No. 4, April 1997
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~ii ! the asymptotic balances between terms are more
parent in the anisotropy budgets.

The anisotropy budgets also provide more rigorous tests
turbulence models than the evolution of the anisotropy,
cause the models for the slow and rapid terms are exam
separately.

1. Homogeneous shear

Homogeneous shear flows are defined by the mean
locity gradient:

]^Ui&
]xj

5SF 0 1 0

0 0 0

0 0 0
G . ~65!

In Fig. 1, the trajectories of the Reynolds stress anisotr
invariants from the four models: Lang, Slang, Iso, and MIs
are presented for homogeneous shear, and the asymp
states are compared to the DNS data from Rogerset al.42 and
the experimental data from Tavoularis and Karnik.43 The
model parameters are specified to yield good results for
comparison and are:

~i! Lang:ae50.03,au52.1,g52.0;
~ii ! SLang:ae50.2,au52.1,g152.4,g250.2;
~iii ! Iso: ae50.3,au50.3;
~iv! MIso: ae50.65,au51.7,g52.5.

The asymptotic states are further examined in Table I wh
summarizes the experimental and DNS data as well.
Lang, SLang, and MIso models are within the experimen
range given, while the Iso model does not provide the pro
distribution of energy between the 22 and 33 component

Further comparisons with the DNS data of Roge
et al.42 are made. In Fig. 2, the kinetic energy from the mo
els is shown to grow much faster than that of the DNS. T
defect is due to the dissipation modeling. The evolution
the Reynolds stress anisotropies for the Lang model

FIG. 1. Mapping of Reynolds stress anisotropy invariants in homogene
shear with (Sk/«)051.0 for models: —, Lang; - - -, SLang; -•-, Iso; •••,
MIso; compared to asymptotic states from experiments:3, Tavoularis and
Karnik ~Ref. 43!; and DNS:1, Rogerset al. ~Ref. 42!.
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given in Fig. 3, while their complete budgets are presente
Fig. 4. The transient results for the evolution of the anisot
pies are quite good, while the asymptotic values are v
good. In the anisotropy budget comparisons, the results
also quite good, especially for the asymptotic balance
terms, which are not directly forced by the selection
model parameters.

2. Homogeneous shear with frame rotation

Adding frame rotation perpendicular to the plane of t
shear is a common test of turbulence models. The ang
velocity is:

V̄i
f5@0,0,V f #. ~66!

The effects of frame rotation are compared to the large-e
simulations by Bardina, Ferziger, and Reynolds.44 From Spe-
ziale and Mac Giolla Mhuiris,45 the solution depends on th
initial shear-rate parameter and on the rotation–to–rate
strain ratio,V f /S. Linear stability analysis~i.e., RDT! shows
that the flow is unstable with exponential growths in kine
energy roughly in the range, 0<V f /S<0.5.

The evolution of the kinetic energy for the Lang mod
is representative of all four models and is shown in Fig.
The model gives the correct qualitative behavior with
three cases being unstable and the energy in theV f /S

FIG. 2. Evolution of kinetic energy in homogeneous shear flow w
(Sk/«)052.36:d, DNS of Rogerset al. ~Ref. 42!; —, Lang; - - -, SLang;
-•-, Iso; •••, MIso.

TABLE I. Asymptotic values for homogeneous shear flows from: Tavo
laris and Karnik~Ref. 43! ~TK!, Rogers, Moin, and Reynolds~Ref. 42!
~RMR!; Isotropic Diffusion ofeModel ~Iso!; Modified Isotropic Diffusion
of e Model ~MIso!; Langevin Velocity Model~Lang!; Structure Langevin
Velocity Model ~SLang!.

TK RMR Iso MIso Lang SLang

b11
` 0.1860.04 0.215 0.223 0.195 0.194 0.185
b12

` 20.1660.01 20.158 20.156 20.170 20.165 20.173
b22

` 20.1160.02 20.153 20.203 20.132 20.131 20.118
b33

` 20.0660.03 20.062 20.020 20.063 20.063 20.067
(P/«)` 1.4760.14 1.80 1.6 1.6 1.6 1.6
(Sk/«)` 4.6060.14 5.7 5.12 4.72 4.83 4.62
1094 Phys. Fluids, Vol. 9, No. 4, April 1997
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50.25 case growing the fastest. However, the quantita
comparison is poor which is a problem common with ma
second-order closures. This problem is largely attributable
the dissipation modeling.

3. Axisymmetric contraction and expansion

Axisymmetric flows are specified by

]^Ui&
]xj

5SF 1 0 0

0 2 1
2 0

0 0 2 1
2

G , ~67!

with S.0 for contraction andS,0 for expansion. From
symmetry the Reynolds stress anisotropy produced by th
flows remains in an axisymmetric form where the only no
zero components are related byb225b3352 1

2b11. In addi-
tion only one component of the fourth-order tensor,M , is
required to fully specify the rapid pressure–rate-of-str
correlation:

P11
~r !512kSM1111. ~68!

With these simplifications axisymmetric contraction and e
pansion form the two most basic irrotational flows.

The results from the models are first compared to
experimental data from Tucker46 for axisymmetric contrac-
tion. The evolution of the kinetic energy and Reynolds str
anisotropies are presented in Figs. 6 and 7. The kinetic
ergy from all of the models compares with the experimen
data quite well, while the anisotropies from the Lang, SLa
and MIso models yield better comparisons than the
model.

The case of axisymmetric contraction is also examin
through the use of DNS data. The evolution of the kine
energy from all of the models and the Reynolds str
anisotropies from the Lang and Iso models for varying init
strain-rate parameters are compared to the DNS data of
and Reynolds22 in Figs. 8 and 9. The anisotropy budgets f

FIG. 3. Evolution of Reynolds stress anisotropy for homogeneous s
flows with (Sk/«)052.36. Comparison between Langevin Velocity Mod
~lines! and DNS of Rogerset al. ~Ref. 42! ~symbols!: ~—,d), b11 ; ~- - -,
¹), b12 ; ~-•-,h), b22 ; (•••,n), b33 .

-
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el
FIG. 4. Evolution of Reynolds stress anisotropy budget for homogeneous shear flows with (Sk/«)052.36. Comparison between Langevin Velocity Mod
~lines! and DNS of Rogerset al. ~Ref. 42! ~symbols!: ~—,d), Pi j

(b)/S; ~- - -,¹), Pi j
(r )/(2kS); ~-•-,h), 2(«/Sk)

1
2(f i j22bi j ); (•••,n), dbi j /Sdt; for: ~a! 11

component;~b! 12 component;~c! 22 component;~d! 33 component.
tin
el th
FIG. 5. Evolution of kinetic energy in homogeneous shear with a rota
frame and (Sk/«)053.38. Comparison between Langevin Velocity Mod
~lines! and LES of Bardina, Ferziger, and Reynolds~Ref. 44! ~symbols!:
~—,d), V f /S50.0; ~- - -,h), V f /S50.25; ~-•-,n), V f /S50.5.
Phys. Fluids, Vol. 9, No. 4, April 1997
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FIG. 6. Evolution of kinetic energy in axisymmetric contraction wi
(Sk/«)052.1. Comparison between the experimental data of Tucker~Ref.
46!: d, k/k0; and the models: —, Lang; - - -, SLang; -•-, Iso; •••, MIso.
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the Iso model and the DNS data are also presented for
strain-rates in Fig. 10. In Fig. 11, the rapid pressure–rate
strain correlation is examined more closely by comparis
between the Lang and Iso models and the DNS data of Le23

The effects of the different decay models become ne
gible as the strain-rate increases toward the RDT limit.
this reason, all of the test results at the highest strain-r
compare with the DNS data very well. At the lower strai
rates the effects of the decay models become significant,
the models yield different results. Here, the Iso model p
vides the best comparisons with the DNS data, because
other models deviate from the RDT values of the ra
pressure–rate-of-strain correlation more rapidly than
DNS data indicate~see Fig. 11!.

The comparisons between the models and the DNS
for axisymmetric expansion show some interesting effe
The evolution of the kinetic energy from all of the mode

FIG. 7. Evolution of Reynolds stress anisotropy in axisymmetric contrac
with (Sk/«)052.1. Comparison between experimental data of Tucker~Ref.
46!: d, b11 ; h, b22 ; and models: —, Lang; - - -, SLang; -•-, Iso; •••,
MIso.

FIG. 8. Evolution of kinetic energy in axisymmetric contraction. Compa
son between DNS of Lee and Reynolds~Ref. 22!: d, (Sk/«)050.557;h,
(Sk/«)055.57; n, (Sk/«)0555.7; and models: —, Lang; - - -, SLang;
-•-, Iso; •••, MIso.
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and the Reynolds stress anisotropies from the Lang and
models for varying initial strain-rate parameters are co
pared to the DNS data of Lee and Reynolds22 in Figs. 12 and
13. In the energy comparison the models do very well
St,1.0, but deviate even for the highest strain-rate
St.1.0. This degradation of the solution is due to an ins
bility that exists for axisymmetric expansion in RDT whic
was described by Kassinos and Reynolds.27

The models give anisotropies that decrease as the in
strain-rate parameter decreases, while DNS shows the
intuitive tendency to have increased anisotropies for
creased strain-rates. To understand the evolution of
anisotropies, their budgets for the Iso model and the D
data are compared in Fig. 14. The modeled rapid pressu
rate-of-strain correlation and the closed production ter
compare very well. This point is further emphasized in F
15 by comparing the rapid pressure–rate-of-strain correla
from the Lang and Iso models to the DNS data of Lee23

Although the Iso model performs better, the Lang mode
still reasonable. It is actually the slow terms that cause
difference in the anisotropy evolutions. For the DNS da
these termsincreasethe anisotropy; i.e., drive the system
from isotropy.

The slow terms include the return-to-isotropy tensor a
the Reynolds stress anisotropy which is a scaling term du
the dissipation of the kinetic energy. In Fig. 16, the diffe
ences between the Iso model and the DNS data are appa
Since the anisotropy is a closed term, the source of
trouble is the modeling for the return-to-isotropy tensor.

These results have significant implications for the mo
eling of the return-to-isotropy tensor. In Reynolds stress c
sures, this tensor is modeled as a function of the anisotro
Some of the latest models~Chung and Kim12! include model
coefficients that depend on the Reynolds number and an
ropy invariants. However, the resulting parameters are sp
fied with comparisons to decaying turbulence and maint
slow terms that strictly reduce the anisotropy for all Re
nolds numbers. The DNS results of Lee and Reynolds22 in-

nFIG. 9. Evolution of Reynolds stress anisotropies in axisymmetric cont
tion. Comparison between DNS of Lee and Reynolds~Ref. 22! ~symbols!
and models~lines! for (Sk/«)050.557;d, b11 ; h, b22 ; —, Lang; -•-, Iso;
and (Sk/«)0555.7:n, b11 ; ¹, b22 ; - - -, Lang; •••, Iso.
P. R. Van Slooten and S. B. Pope
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FIG. 10. Evolution of Reynolds stress anisotropy budget in axisymmetric contraction. Comparison between Isotropic Diffusion ofeModel ~lines! and DNS
of Lee and Reynolds~Ref. 22! ~symbols!: ~—,d), P11

(b)/S; ~- - -,h), P11
(r )/(2kS); ~-•-,n), 2(«/Sk)

1
2(f1122b11); (•••,¹), db11 /Sdt; for: ~a!

(Sk/«)050.557; ~b! (Sk/«)0555.7.
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dicate that this is not always the case for homogeneous
bulence.

4. Elliptical flows

Flows with elliptical streamlines are generated by t
mean velocity gradient:

]^Ui&
]xj

5F 0 S1v 0

S2v 0 0

0 0 0
G , ~69!

with uvu.uSu, while uvu,uSu generates hyperbolic stream
lines. The flow is a combination of plane strain and so
body rotation and is also parameterized through the as
ratio of the elliptical streamlines,E[A(S1v)/(v2S), and
the rotation frequency,V[A(S1v)(v2S) ~Blaisdell and
Shariff47!. Stability issues for the elliptical flows were ad
dressed in the following references: Cambon, Teisse`dre, and
Phys. Fluids, Vol. 9, No. 4, April 1997
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Jeandel;48 Pierrehumbert;49 Bayly;50 Landman and Saff-
man;51 and Waleffe;52 and the results show that the flow
unstable with exponential growths in kinetic energy for
values of (v/S)5(E211)/(E221).1. However, Speziale
Abid, and Blaisdell17 have shown that current second-ord
closures predict that the flows restabilize forv/S<2 for any
initial mean rotation-rate parameter, (Vk/«)0.

The models were tested in a case with nearly circu
streamlines,E51.1, and a high initial rotation-rate param
eter, (Vk/«)05270. In this case, the rotation–to–rate-o
strain ratio is large, (v/S)510.5, for which all second-orde
closures erroneously predict decaying kinetic energy. Fig
17 does show growing kinetic energy in all four models, b
the rates are far lower than the exponential growth found
the DNS data of Blaisdell and Shariff47 for (Vk/«)054.05
~not shown!. The poor quantitative results are at least p
tially due to the dissipation model which ignores the know
decrease in dissipation due to rotation.
een
FIG. 11. Evolution of~a! normalized rapid pressure–rate-of-strain correlation;~b! Fourth-order correlation; in axisymmetric contraction. Comparison betw
DNS of Lee~Ref. 23! and models with (Sk/«)050.5:d, DNS; —, Lang; -•-, Iso; and (Sk/«)0550.0h, DNS; - - -, Lang •••, Iso.
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5. Model comparison

In summary, the four models with their specified sets
parameters provide very good results in all test flows at
highest strain-rates where the flows are nearly in the R
limit. At lower strain-rates, all the models provide quite go
results in all of the test flows except axisymmetric expa
sion. It has been shown in this case that the problems
caused by poor modeling of the return-to-isotropy tensor
that RSM’s which are based on decaying turbulence sh
these problems. Because the models directly impact the
isotropy budgets, the differences between the models
more apparent in the anisotropies than in the kinetic en
gies.

The Lang, Slang, and MIso models yield similar resu
due to the comparable parameter values for the anisotr
drift terms that are proportional to the Reynolds stress
isotropy. These models perform better in homogeneous s

FIG. 12. Evolution of kinetic energy in axisymmetric expansion. Compa
son between DNS of Lee and Reynolds~Ref. 22!: d, (Sk/«)050.408;h,
(Sk/«)054.08; n, (Sk/«)0540.8; and models: —, Lang; - - -, SLang;
-•-, Iso; •••, MIso.
1098 Phys. Fluids, Vol. 9, No. 4, April 1997

Downloaded¬16¬Jan¬2005¬to¬128.84.158.89.¬Redistribution¬subject¬
f
e
T

-
re
d
re
n-
re
r-

ic
-
ar

and axisymmetric contraction when compared to experim
tal data, while the Iso model performs better in axisymme
expansion and contraction when compared to DNS data.
Iso model is better in these cases, because it matches
DNS data in deviating from RDT more slowly than the oth
three models. It is possible that the very low Reynolds nu
bers of the DNS is a factor in this result. Because of
inferior performance for the important case of homogene
shear, the Iso model is not recommended for future use.

The modeled return-to-isotropy tensors are one way
differentiate between the four models. The modeled tens
from the Iso and MIso models contain expectations which
not have good physical interpretations, while the tensor fr
the Lang model takes the general form for RSM’s if t
parameters are allowed to be functions of the anisotropy
variants and Reynolds number. The SLang model inclu
effects of the structure dimensionality anisotropy tensor,

- FIG. 13. Evolution of Reynolds stress anisotropies in axisymmetric exp
sion. Comparison between DNS of Lee and Reynolds~Ref. 22! ~symbols!
and models~lines! for (Sk/«)050.408:d, b11 ; h, b22 ; —, Lang; -•-, Iso;
and (Sk/«)0540.8:n, b11 ; ¹, b22 ; - - -, Lang; •••, Iso.
FIG. 14. Evolution of Reynolds stress anisotropy budget in axisymmetric expansion. Comparison between Isotropic Diffusion ofeModel ~lines! and DNS of
Lee and Reynolds~Ref. 22! ~symbols!: ~—,d), P11

(b)/uSu; ~- - -,h), P11
(r )/(2kuSu); ~-•-,n), 2(«/uSuk) 12(f1122b11); (•••,¹), db11 /uSudt; for: ~a!

(Sk/«)050.408; ~b! (Sk/«)0540.8.
P. R. Van Slooten and S. B. Pope
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een
FIG. 15. Evolution of~a! normalized rapid pressure–rate-of-strain correlation;~b! Fourth-order correlation; in axisymmetric expansion. Comparison betw
DNS of Lee~Ref. 23! and models with (Sk/«)050.5:d, DNS; —, Lang; -•-, Iso; and (Sk/«)0550.0h, DNS; - - -, Lang •••, Iso.
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does not provide a general model of the form:f i j5f i j (b,
da). A general model of this form could be created and mig
provide improved modeling for the return-to-isotropy tens
However, the SLang model in its current form does not s
nificantly improve over the Lang model. For our future wo
in inhomogeneous turbulence, the Lang model will be us
because the evidence so far does not indicate an advanta
using the more complicated SLang or MIso models.

V. PDF MODEL FOR INHOMOGENEOUS
TURBULENCE

In this section theu-e PDF model for rapidly distorted
inhomogeneous turbulence is constructed based on the
model for the homogeneous case from Sec. III C. The g
eral PDF models for non-rapid inhomogeneous turbule
are not presented but follow directly by adding a dec
model from Sec. IV B.

FIG. 16. Evolution of the slow terms in axisymmetric expansion. Comp
son between DNS of Lee and Reynolds~Ref. 22! ~symbols! and Iso model
~lines! with (Sk/«)050.408: ~—,d),

1
2(f1122b11); ~- - -,h), f11/2; ~-•-,

n), b11 .
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In PDF methods of inhomogeneous turbulence it is u
ful to view the stochastic equations as models for Lagrang
fluid particles. In a Lagrangian system, the particle positi
X1(t,Y), evolves by the particle velocity,U1(t,Y)
[U(X1@ t,Y#,t):

]Xi
1

]t
5Ui

1 , ~70!

whereY is the particle position at a reference time. Also, t
local Lagrangian excess velocity is defined by

u1~ t,Y![U1~ t,Y!2^U~x,t !&x5X1~ t,Y!

5u~X1@ t,Y#,t !, ~71!

whereu(x,t) is the Eulerian fluctuating velocity.
From the Navier-Stokes equations expressed as

DUi

Dt
52

]^P&
]xi

2
]P8

]xi
1n

]2Ui

]xl]xl
[2

]^P&
]xi

1ai , ~72!

-

FIG. 17. Evolution of kinetic energy in an elliptical flow withv/S510.5:
—, Lang model; - - -, Slang model; -•-, Iso model;•••, MIso model.
1099P. R. Van Slooten and S. B. Pope
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the equation for the Lagrangian velocity is

]Ui
1

]t
5H DUi

Dt J
x5X1~ t,Y!

5H 2
]^P&
]xi

J
x5X1~ t,Y!

1ai~X
1@ t,Y#,t !. ~73!

The effects of viscosity on the mean velocity is negligible
high Reynolds numbers which results in^a&50. The equa-
tion for the Lagrangian excess velocity is then

]ui
1

]t
5H DuiDt J

x5X1~ t,Y!

5H ]^uiul&
]xl

2ul
]^Ui&
]xl

J
x5X1~ t,Y!

1ai~X
1@ t,Y#,t !, ~74!

where the first two terms account for the changing veloc
due to the particle’s movement.

The stochastic representation of (X1,U1,u1) is (X* ,
U* ,u* ) for which a model ofa is required. The evolution o
the stochastic position is simply

dXi*5Ui* dt. ~75!

The equations forU* are constructed in a manner that yiel
the RDT model foru* in homogeneous turbulence, E
~34a!. The velocity model is

dUi*52
]^P&
]xi

dt12
]^Um&

]xn
@ei* em* un*2^ei* em* un* &#dt,

~76!

where the corresponding model ofu* is

dui*52
]^Um&

]xn
un* ~d im22ei* em* !dt

22
]^Um&

]xn
^ei* em* un* &dt1

]^uiuj&
]xj

dt. ~77!

This equation reduces to the velocity RDT equation, E
~34a!, in homogeneous turbulence because the gradient
the Reynolds stress are zero and the triple correlat
^ei* em* un* &, is also zero by symmetry in the velocity distribu
tion. The triple correlation term was added to Eq.~76! to
force the exact evolution equation for the mean Eulerian
locity, which is equivalent to forcing the mean of the mo
eleda to be zero.

The evolution equation for the wave vector follows b
maintaining a unit length and orthogonality withu* :

dei*52
]^Um&

]xn
em* ~d in2ei* en* !dt2F]^uluj&

]xj

22
]^Um&

]xn
^el* em* un* &Gel* ui*us* us*

dt. ~78!

The final term in this equation corresponds to the inhomo
neous terms in Eq.~77! and has the purpose of maintainin
the wave vector in the plane orthogonal to the excess ve
ity. A direct calculation of this projection during the Mont
Carlo simulation is equally valid and preferable numerica
due to the high statistical error inherent in calculating
gradients of the Reynolds stresses.
1100 Phys. Fluids, Vol. 9, No. 4, April 1997
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VI. CONCLUSIONS

A new approach to PDF modeling of inhomogeneo
turbulence has been developed that provides exact repre
tation of rapidly distorted homogeneous turbulence. The c
struction is based on the particle representation model
Kassinos and Reynolds.26 Their approach is adapted into
PDF formulation that begins with a model for the joint PD
of a velocity Fourier mode and unit wavenumber vect
This is an exact representation of RDT at the level of
directional spectrum. To provide an initial condition for th
Monte Carlo solution of this PDF method, an algorithm
also presented that generates a stochastic system in Fo
space that corresponds to a homogeneous vector field w
prescribed spectrum.

An equivalent formulation of the RDT model usin
physical space variables is required for the extension of
method to the inhomogeneous case. The result is a mode
the joint PDF of the velocity and wave vector, theu-eRDT
Model, which is based on the integral relationship betwe
the directional spectrum and the Reynolds stresses~Kassinos
and Reynolds26!. A difference between PDF methods bas
on theu-eRDT Model and standard PDF methods is that t
model for the rapid pressure term in the PDF of veloc
equation corresponds to a model for the directional spect
and not just the Reynolds stresses. Because the direct
spectrum is a complete description for RDT, this limit is no
treated exactly.

Models for general homogeneous turbulence are c
structed by combining theu-eRDT Model with au-emodel
for decaying turbulence. The decay models maintain
analogy with the directional spectrum through two determ
istic constraints:e is of unit length andu-e are orthogonal;
and the analogy with the particle velocities through two s
tistical constraints: the joint PDF ofu tends to a joint normal
distribution in isotropic turbulence and the kinetic ener
evolves by the dissipation. By maintaining these analog
the PDF method can be viewed either as stochastic mode
fluid particles in physical space or as a realizable spec
model at the level of the directional spectrum.

Five models for decaying turbulence are construct
Generalu-e Decay Model, Isotropic Diffusion ofe Model
~Iso!, Modified Isotropic Diffusion of e Model ~MIso!,
Langevin Velocity Model~Lang!, and Structure-Langevin
Velocity Model ~SLang!. The Lang, SLang, Iso, and MIs
models perform quite well in the cases of homogeneous
bulence that are tested. The Lang, SLang, and MIso mo
provide very similar results in all cases and are better t
the Iso model in the important case of homogeneous sh
The Lang model is currently preferable, because it yields
general form for the return-to-isotropy tensor used in RSM
A future version of the SLang model may provide bet
modeling of this tensor.

The extension of the homogeneous turbulence mode
models for inhomogeneous turbulence is accomplished
adding a stochastic variable representing the particle loca
and through the use of the full particle velocity. The resulti
models maintain the exact solution for RDT of homogeneo
turbulence.

While testing the homogeneous models, several gen
P. R. Van Slooten and S. B. Pope
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observations were made about turbulence modeling. It
argued that the anisotropy budgets are important mean
comparing turbulence models to DNS data, because they
properly scaled and allow separate comparisons for the s
and rapid models. Therefore, they form a more rigorous
than the anisotropy evolutions. From the anisotropy budg
of axisymmetric expansion, it is shown that the increase
anisotropy for lower initial strain-rates is caused by the sl
terms. In particular, the scaling term from the dissipation
kinetic energy is larger than the return-to-isotropy tens
This presents a problem for all models of the return-
isotropy tensor that are based on decaying turbulence w
this effect has not been observed. Also, the need for an
proved dissipation model is apparent, especially in the ca
where rotational effects are important.
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APPENDIX A: SYNTHESIS OF HOMOGENEOUS
RANDOM VECTOR FIELDS WITH A PRESCRIBED
SPECTRUM

The purpose of this appendix is to show how to synt
size a random field as the sum ofN conjugate pairs of inde
pendent modes such that its two-point correlation conver
to a specified one asN tends to infinity.

Let u(x) be a real, zero-mean, statistically-homogene
random vector field with spectrum function,F i j (k). The
two-point correlation and the spectrum are related by
~12! or its inverse

Ri j ~r![^ui~x!uj~x1r!&5E F i j ~k!eık•rdk. ~A1!

From conjugate symmetry and an additional symmetry c
dition from homogeneity, the real and symmetric parts of
spectrum are equivalent:

Re$F i j ~k!%5F i j
s ~k![ 1

2@F i j ~k!1F j i ~k!#, ~A2a!

while the imaginary and anti-symmetric part are related b

i Im$F i j ~k!%5F i j
a ~k![ 1

2@F i j ~k!2F j i ~k!#. ~A2b!

The terms in Eq.~A2a! are called the co-spectrum, while th
terms in Eq.~A2b! are called the quadrature spectrum. The
relations show that the spectrum tensor forms a Hermi
matrix. Further, because the spectrum is a representatio
the energy at a particular location in Fourier space, the
trix is also positive semi-definite~Batchelor36!.

The energy of the random vector field is defined via

k[E 1
2F l l ~k!dk, ~A3!

with which a normalized spectrum is defined by

f ~k![ 1
2F l l ~k!/k. ~A4!
Phys. Fluids, Vol. 9, No. 4, April 1997
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The normalized spectrum is non-negative and integrate
unity; i.e., it has the properties of a joint PDF. Another no
malized spectrum is also defined by

C i j ~k![F i j ~k!/F l l ~k!. ~A5!

In terms of these the normalized spectra, Eq.~A1! is re-
written:

Ri j ~r!52kE C i j ~k!eık•r f ~k!dk. ~A6!

If k* is defined to be a random vector with a joint PDF
f (k), then the integral in Eq.~A6! is equivalent to an expec
tation:

Ri j ~r!52k^C i j ~k* !eık* •r&. ~A7!

The synthetic field,ũ(x), is defined for a givenN by

ũ~x![
1

A2N (
n52N

N

Z~n!eık
~n!

•x, ~A8!

wherek(n) are independent and identically distributed wav
number vectors with distributionf (k) and Z(n) are identi-
cally distributed zero-mean random vectors, dependent
k(n), whose covariance matrix is deduced below, Eq.~A12!.
In addition, conjugate symmetry is guaranteed by using c
jugate pairs:

Z~2n![~Z~n!!* and k~2n![2k~n!, for n51,N.
~A9!

The complex conjugate of Eq.~A8! provides an alternate
definition of the field:

ũ~x![
1

A2N (
n52N

N

~Z~n!!* e2ık~n!
•x. ~A10!

From Eqs.~A8! and ~A10!, the two-point correlation of the
synthetic field is

R̃i j ~r![^ũi~x!ũ j~x1r!&

5
1

2N (
n52N

N

^~Zi
~n!!*Zj

~n!eık
~n!

•r&. ~A11!

By comparing Eqs.~A7! and ~A11!, we observe that
R̃i j (r ,t) equalsRi j (r,t) ~for all N>1) providedZ(n) satisfies

^~Zi
~n!!*Zj

~n!uk~n!5k&52kC i j ~k!. ~A12!

The complex random vectors,Z(n), must have a covari-
ance matrix given by Eq.~A12!, but their distribution is not
determined. It is convenient to specifyZ(n) as Gaussian ran
dom vectors, because the distribution is then determi
from the covariance matrix. In practice,Z(n) can be con-
structed from real, standard, isotropic Gaussian random
tors,j(n), by

Z~n!5~L!* j~n!, ~A13!

whereL is a complex triangular matrix with a real diagon
that is uniquely defined by

^~Z~n!!*Z~n!Tuk~n!5k&5L~L!* T52kC i j ~k!. ~A14!
1101P. R. Van Slooten and S. B. Pope
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This is simply the complex version of the Cholesky facto
ization for positive, semi-definite, Hermitian matrices.

APPENDIX B: CONSTRUCTION OF GENERAL u-e
DECAY MODEL

A general model foru* ande* in decaying turbulence is
constructed based on the form for coupled stochastic di
sion processes:

dui*5ai~u* ,e* !dt1Ai j ~u* ,e* !dWj1Bi j ~u* ,e* !dWj8,

~B1a!

and

dei*5gi~u* ,e* !dt1Gi j ~u* ,e* !dWj1Hi j ~u* ,e* !dWj8,

~B1b!

and the four constraints given in Sec. IV B. In applying the
constraints to the diffusion process some simplifying
sumptions are made in order to achieve a tractable mode
a result the Generalu-e Decay Model is not in themost
general form, but maintains more than sufficient genera
for our purposes.

Before the constraints are applied to the diffusion p
cess, its coefficients are re-expressed using the isotr
functions ofu* ande* :

ai~u* ,e* !5a1ei*1a2ui*1ai
a , ~B2a!

gi~u* ,e* !5g1ei*1g2ui*1gi
a , ~B2b!

Ai j ~u* ,e* !5A1d i j1A2ei* ej*1A3

ui* uj*

us* us*
1A4ei* uj*

1A5ej* ui*1Ai j
a , ~B2c!

Bi j ~u* ,e* !5B1d i j1B2ei* ej*1B3

ui* uj*

us* us*
1B4ei* uj*

1B5ej* ui*1Bi j
a , ~B2d!

Gi j ~u* ,e* !5G 1d i j1G 2ei* ej*1G 3

ui* uj*

us* us*
1G 4ei* uj*

1G 5ej* ui*1Gi j
a , ~B2e!

Hi j ~u* ,e* !5H1d i j1H2ei* ej*1H3

ui* uj*

us* us*
1H4ei* uj*

1H5ej* ui*1Hi j
a , ~B2f!

whereag andgg for g51,2 andAg , Bg , G g , andHg for
g51,2,3,4,5 are functions ofus* us* and the time varying
statistics ofu* and e* . Also, ai

a , gi
a , Ai j

a , Bi j
a , Gi j

a , and
Hi j
a are anisotropic functions ofu* ande* . The deterministic

constraints are expressed via Ito calculus which applies
the Ito SDE’s:

d~el* el* !52el* del*1del* del*50, ~B3a!

and

d~ul* el* !5ul* del*1el* dul*1dul* del*50. ~B3b!
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The unit length ofe* constraint applied to the general diffu
sion process imposes conditions on the model:

ei*Gi j5ei*Hi j50, ~B4a!

and

giei*52 1
2@Gi jGi j1Hi jHi j #, ~B4b!

while the orthogonality constraint imposes

ei*Ai j1ui*Gi j5ei*Bi j1ui*Hi j50, ~B5a!

and

aiei*1giui*52@Ai jGi j1Bi jHi j #. ~B5b!

In the above conditions the independence of the Wiener p
cesses is used to set each of their coefficients to zero.

The conditions in Eqs.~B4a! and ~B5a! impose con-
straints on the tensorial form of the diffusion coefficien
The results for the isotropic parts are

Ai j ~u* ,e* !5A1d i j1A2ei* ej*1A3

ui* uj*

us* us*

2~G 11G 3!ei* uj*1A5ej* ui*1Ai j
a ,

~B6a!

Bi j ~u* ,e* !5B1d i j1B2ei* ej*1B3

ui* uj*

us* us*

2~H11H3!ei* uj*1B5ej* ui*1Bi j
a ,

~B6b!

Gi j ~u* ,e* !5G 1~d i j2ei* ej* !1G 3

ui* uj*

us* us*

2~A11A2!
ui* ej*

us* us*
1Gi j

a , ~B6c!

Hi j ~u* ,e* !5H1~d i j2ei* ej* !1H3

ui* uj*

us* us*

2~B11B2!
ui* ej*

us* us*
1Hi j

a . ~B6d!

For the anisotropic diffusion coefficients, the unit length co
straint is applied without assumption, while in the orthog
nality constraint each term is individually assumed to
zero. The results are conditions on the tensorial form of
anisotropic diffusion coefficients:

Ai j
a[~d i l2ei* el* !Al j

a , ~B7a!

Bi j
a[~d i l2ei* el* !B l j

a , ~B7b!

Gi j
a[t i* t l*G l j

a , ~B7c!

Hi j
a[t i* t l*H l j

a , ~B7d!

where a vector,t* , mutually orthogonal tou* ande* is used,
andAl j

a , B l j
a , G l j

a , andH l j
a are new anisotropic functions

From geometrical considerations a relationship betw
three orthogonal unit vectors exists:
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t i* t j*5d i j2ei* ej*2
ui* uj*

us* us*
. ~B8!

With the functional form of the drift coefficients subst
tuted into Eqs.~B4b! and ~B5b!, expressions and condition
on the coefficients are found. Also, it is assumed that
terms consisting of the anisotropic drift coefficients are z
independent of the isotropic terms. The results are

gi
a[~d i l2ei* el* !ḡi

a , ~B9a!

ai
aei*1ḡi

aui*50, ~B9b!

a152g2~us* us* !2$~2G 11G 3!A11~G 11G 3!A3

1~A11A2!A51t i* t l*A1G l i
a

1~2H11H3!B11~H11H3!B3

1~B11B2!B51t i* t l*B1H l i
a %, ~B9c!

and

g152G 1~G 11G 3!2H1~H11H3!2 1
2~G 3

21H3
2!

2
1

2us* us*
@~A11A2!

21~B11B2!
2#

2 1
2t i* t l* ~G 1G l i

a1H1H l i
a !. ~B9d!

The constraint of a joint normal solution in isotropi
decaying turbulence is applied by comparison with
Langevin equation whose solution for the PDF is known
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be joint normal. The actual comparison is made between
SDE’s for speed from the different equations. The Lange
equation is

dui52auidt1bdWi , ~B10!

which when expressed for the speed,u[uuu, is

du5S b2u 2auDdt1bdW. ~B11!

In isotropic turbulence the SDE for speed from the ge
eral model with the stochastic constraints applied is

du5E1dt1E2dW, ~B12a!

where

E15@A1~A11A2!1B1~B11B2!1 1
2~A2

21B2
2!#

1

u

1@a21
1
2~G 11G 3!

21 1
2~H11H3!

2#u, ~B12b!

E25@~A11A3!
21~B11B3!

21~A5
21B5

2!u2#1/2.
~B12c!

This equation must be forced into the form of Eq.~B11!. A
fully general model would consist of diffusion coefficien
which are power or Laurent series inu, but to avoid this
complexity the coefficients are assumed independent ou
where possible. Thus, by scaling with« andk all the coef-
ficients are re-expressed with non-dimensional parame
and the appropriateu dependencies where necessary:
model
ai
a[ã i

aS «

AkD , a1[ã1S «

AkD , a2[ ã 2
~1!S «

kD 1 ã 2
~2!S 2«

u2 D ,
ḡ i
a[g̃ i

aS «

kD , g1[g̃1S «

kD , g2[g̃2
«

Ak3
,

A1[Ã1A«, A2[Ã2A«, A3[Ã3A«, A5[Ã5

A2«

u
, Al j

a[Ãl j
aA«,

B1[B̃1A«, B2[B̃2A«, B3[B̃3A«, B5[B̃5

A2«

u
, B l j

a[B̃ l j
aA«,

G 1[G̃ 1A«

k
, G 3[G̃ 3A«

k
, G l j

a[G̃ l j
aA«

k
,

H1[H̃1A«

k
, H3[H̃3A«

k
, H l j

a[H̃ l j
aA«

k
,

The joint normal condition is now applied giving an expression for one of the velocity drift coefficients:

ã 2
~2!5 1

2$Ã3~2Ã11Ã3!2 1
2Ã2~2Ã11Ã2!12Ã5

21B̃3~2B̃11B̃3!2 1
2B̃2~2B̃11B̃2!12B̃5

2. ~B13!

The evolution of the kinetic energy constraint is applied by forcing the kinetic energy equation from the stochastic
into the same form as Eq.~51!, which results in an expression for the remaining velocity drift coefficient:
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ã 2
~1!52

1

2 H 11
1

Ak
^ul* ã l

a&1~G̃ 11G̃ 3!
21~H̃11H̃3!

21 3
2~Ã11Ã3!

213Ã5
21Ã1^~d j l2ej* el* !Ãl j

a &1Ã3K uj* ul*us* us*
Ãl j

a L
1A2Ã5K ej* ul*

~us* us* !1/2
Ãl j

a L 1 1
2^~d ln2el* en* !Ãl j

a
Ãn j

a &1 3
2~B̃11B̃3!

213B̃5
21B̃1^~d j l2ej* el* !B̃ l j

a &

1B̃3K uj* ul*us* us*
B̃ l j

a L 1A2B̃5K ej* ul*

~us* us* !1/2
B̃ l j

a L 1 1
2^~d ln2el* en* !B̃ l j

a
B̃n j

a &. ~B14!
q
-

rift

of

t of

in
5-3,

ur-

cts
ni-
7.
rain
’’ J.

ce
ially
The final form for the Generalu-e Model is now sum-
marized:

dui*5S «

kD F ã1Akei*1ã2
~1!ui*12ã 2

~2!
k

us* us*
ui*

1ã i
aAkGdt1Ai j dWj1Bi j dWj8 , ~B15a!

and

dei*5S «

kD F g̃1ei*1g̃2
ui*

Ak
1~d i j2ei* ej* !g̃ j

aGdt
1Gi j dWj1Hi j dWj8 , ~B15b!

where some of the coefficients were previously given in E
~B13! and ~B14!, and the following coefficients are re
expressed in non-dimensional form:

ã152g̃2
us* us*

k
2$~2G̃ 11G̃ 3!Ã11~G̃ 11G̃ 3!Ã3

1~Ã11Ã2!Ã51t i* t l* Ã1G̃ l i
a1~2H̃11H̃3!B̃1

1~H̃11H̃3!B̃31~B̃11B̃2!B̃51t i* t l* B̃1H̃ l i
a %,

~B16a!

g̃152G̃ 1~G̃ 11G̃ 3!2H̃1~H̃11H̃3!2 1
2~G̃ 3

21H̃3
2!

2
k

2us* us*
@~Ã11Ã2!

21~B̃11B̃2!
2#

2 1
2t i* t l* ~G̃ 1G̃ l i

a1H̃1B̃ l i !, ~B16b!

Ai j ~u* ,e* !5A«FÃ1d i j1Ã2ei* ej*1Ã3

ui* uj*

us* us*

2
1

Ak
~G̃ 11G̃ 3!ei* uj*1A2Ã5

ej* ui*

~us* us* !1/2

1~d i l2ei* el* !Ãl j
a G , ~B16c!
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Bi j ~u* ,e* !5A«F B̃1d i j1B̃2ei* ej*1B̃3

ui* uj*

us* us*

2
1

Ak
~H̃11H̃3!ei* uj*1A2B̃5

ej* ui*

~us* us* !1/2

1~d i l2ei* el* !B̃l j
a G , ~B16d!

Gi j ~u* ,e* !5A«

kF G̃ 1~d i j2ei* ej* !1G̃ 3

ui* uj*

us* us*

2Ak~Ã11Ã2!
ui* ej*

us* us*
1t i* t l* G̃l j

a G ,
~B16e!

Hi j ~u* ,e* !5A«

kFH̃1~d i j2ei* ej* !1H̃3

ui* uj*

us* us*

2Ak~B̃11B̃2!
ui* ej*

us* us*
1t i* t l* H̃ i j

a G . ~B16f!

In addition, one constraint remains on the anisotropic d
terms:

Akãlael*1g̃l
aul*50. ~B17!
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