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Abstract. The turbulence modeling in probability density function (PDF) methods is studied through
applications to turbulent swirling and nonswirling co-axial jets and to the temporal shear layer. The
PDF models are formulated at the level of either the joint PDF of velocity and turbulent frequency
or the joint PDF of velocity, wave vector, and turbulent frequency. The methodology of wave vector
models (WVMs) is based on an exact representation of rapidly distorted homogeneous turbulence,
and several models are constructed in a previous paper [1]. A revision to a previously presented
conditional-mean turbulent frequency model [2] is constructed to improve the numerical implementa-
tion of the model for inhomogeneous turbulent flows. A pressure transport model is also implemented
in conjunction with several velocity models. The complete model yields good comparisons with
available experimental data for a low swirl case. The individual models are also assessed in terms of
their significance to an accurate solution of the co-axial jets, and a comparison is made to a similar
assessment for the temporal shear layer. The crucial factor in determining the quality of the co-axial
jet simulations is demonstrated to be the proper specification of a parameter ratio in the modeled
source of turbulent frequency. The parameter specification is also shown to be significant in the
temporal shear layer.
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1. Introduction

The modeling of turbulence is required for all computationally tractable meth-
ods of simulating complex turbulent flows. In probability density function (PDF)
methods, the turbulence modeling achieves closure at the level of one-point, one-
time joint PDFs. The approach proves advantageous for turbulent reacting flows,
because the crucial processes of convection and reaction are treated without mod-
eling assumption [3, 4]. In contrast, standard moment closure methods such ask–ε

models and Reynolds stress models (RSMs) do not supply sufficient information to
treat finite-rate, nonlinear reactions and must apply a gradient transport hypothesis
to model some convective processes.
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The exact equations for the joint PDFs, as derived from the Navier–Stokes equa-
tion, contain unclosed terms that require modeling. For example, in the equation for
the joint PDF of velocity and composition, the effects of the fluctuating pressure
gradient, the dissipation of the velocity fluctuations by molecular viscosity, and
the mixing of species by molecular diffusion are not closed. Closure is achieved
in the standard implementation of PDF methods through stochastic models for the
behavior of fluid particles which are simulated numerically through Monte Carlo
techniques [3, 4].

The modeled PDFs contain a vast amount of statistical information, but the
turbulence modeling is most usefully examined at the level of the Reynolds stress
equation. The unclosed terms in the velocity-composition joint PDF equation cor-
respond to the rapid and slow pressure–rate-of-strain correlations, the pressure
transport, and the dissipation tensor in the Reynolds stress equations. The pressure–
rate-of-strain correlation is modeled through a stochastic equation for the fluid
particle’s velocity. The simplified Langevin model (SLM) by Pope [5] and various
forms of the generalized Langevin model (GLM) by Haworth and Pope [6]; Pope
[7]; and Wouters et al. [8] are velocity models that can be directly related to RSMs.
These models are applied to numerous inhomogeneous flows in [2, 9–18].

Reynolds stress models have difficulty in reliably predicting inhomogeneous
turbulent flows with rotation [19–21], which is typically traced to the modeling
of the rapid pressure–rate-of-strain correlation. The wave vector model (WVM)
class of PDF methods for inhomogeneous turbulent flows has been developed by
Van Slooten and Pope [1] and Van Slooten et al. [2] to address this issue. The
WVM represents without modeling assumption homogeneous turbulence in the
limit of rapid distortions (RDT) and is based on the particle representation model
for RDT of Kassinos and Reynolds [22]. Since the only “unclosed” term in the
RDT limit at the level of Reynolds stress closures is the rapid pressure–rate-of-
strain correlation, the model provides an exact expression for this correlation in the
RDT limit. Additional modeling is necessary for non-RDT homogeneous turbulent
flows and for inhomogeneous turbulent flows, and several models are constructed
in [1].

In RSMs, the pressure transport is typically considered negligible, while the
turbulent convective transport is modeled through a gradient transport hypothesis.
However, the direct numerical simulation (DNS) data of Rogers and Moser [23] for
a temporal shear layer illustrate that the pressure transport and turbulent convective
transport of the Reynolds stresses nearly balance across the layer and are the dom-
inant terms at the edge of the layer. The combined pressure and turbulent convective
transport is thereby of minor significance, and RSMs perform quite well in this
respect. In PDF methods, the turbulent convective transport is treated exactly, and
neglecting the pressure transport yields an imbalance that alters the growth of the
layer. In [2], a PDF model is developed for the pressure transport in general free
shear flows that is based on Lumley’s [24] model for the pressure-velocity city
correlation.
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Time or length scale information on a turbulent flow is required to close turbu-
lence models. For example, the modeled mean dissipation is often used in moment
closure methods. A particle turbulent frequency model for PDF methods is an
alternative approach that provides more information for modeling the complex
behavior of internal and external (turbulent-nonturbulent) intermittency. In [25, 26]
a stochastic dissipation model is developed that specifies the turbulent time scale
as the inverse of the particle turbulent frequency. The model produces a lognormal
PDF of dissipation and directly addresses the issue of internal intermittency, but it
requiresad hocmodels for the important physical phenomena of entrainment and
external intermittency. In [2, 27], an alternative method is developed that specifies
the inverse of the turbulent time scale through a conditional-mean of the turbulent
frequency. The conditional-mean represents the mean of only the turbulent particles
which provides a natural treatment of external intermittency. The conditional-mean
method also yields simple stochastic equations that are subject to smaller statistical
fluctuations than the lognormal dissipation model in the Monte Carlo simulation.
Particle turbulent frequency models have been applied to various inhomogeneous
flows in [2, 10, 14, 15, 17, 18, 28].

A revised form of the particle turbulent frequency model is introduced here
primarily to facilitate the numerical implementation of the conditional-mean model.
In the previous model, the production of turbulent frequency is modeled in terms of
the mean rate of strain squared, which results in poor numerical convergence [29].
Specifically, the term leads to bias? that increases as the spatial grid is refined, and
therefore a large number of computational particles is required to reduce the bias
to acceptable levels. In the revised model, the production of turbulent frequency
is directly related to the production of turbulent kinetic energy – a formulation
that circumvents the problem of bias. An investigation is also performed on a
new definition of the conditional-mean that takes into account the inhomogeneous
production and transport of the normalized variance of turbulence frequency. In the
flows considered, the effects of the new definition are not found to be significant,
and it is presented only to illustrate the robust nature of the conditional mean
model.

The purpose of this paper is to continue the development and validation of
the WVM and the conditional-mean turbulent frequency model for inhomogen-
eous turbulent flows. The primary cases studied are the swirling and nonswirling
co-axial jets from the experiments by Takahashi and co-workers [30, 31]. Previ-
ous velocity/turbulent-frequency PDF calculations of these flows are reported by
Anand et al. [10] who used the SLM, the stochastic dissipation model, and the
boundary layer approximation. In these calculations, the model parameters were
altered from the standard values specified by Pope [26] for free shear flows. In the
current work, the WVM and the revised form of the conditional-mean turbulent
frequency model are used, and the full recirculating-flow PDF equations are solved.

? Bias is a deterministic error that arises in the Monte Carlo implementation of stochastic
equations with a finite number of particles,N . It decreases as 1/N .
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The new form of the turbulent frequency model is also demonstrated in a temporal
shear layer through comparisons with the DNS data for a temporal shear layer [23]
and the experimental data of a plane mixing layer [32]. Identical model parameters
are used in both the temporal shear layer and the co-axial jets to demonstrate the
increased robustness of the current models.

The turbulence modeling performed in this work is discussed in Section 2 which
contains: a brief introduction to PDF methods in Section 2.1; a summary of the
particle velocity models including a description of the pressure transport model
in Section 2.2; and the revised form of the conditional-mean turbulent frequency
model in Section 2.3. The discussion of the numerical results for both the temporal
shear layer and swirling and nonswirling co-axial jets is contained in Section 3,
and finally the conclusions are presented in Section 4.

2. Turbulence Modeling

2.1. PDFFORMULATION

Only an overview of PDF methods for incompressible, inhomogeneous turbulent
flows is provided here as detailed presentations of PDF methods are available in
[3, 4]. The PDFs of interest in this work are the joint PDF of velocity and turbulent
frequency and the joint PDF of velocity, wave vector, and turbulent frequency.
In the standard approach to PDF modeling and simulation, a model for the evol-
ution equation of the joint PDF is developed whose solution is obtained via a
particle/Monte Carlo simulation. This method requires the derivation of a set of
stochastic equations that represent the behavior of the particles.

For inhomogeneous flows, a model for the particle position,X∗(t), is required,

dX∗i
dt
= U ∗i (t), (1)

where the particle velocity,U∗(t), evolves by an additional stochastic differen-
tial equation. The particle velocity models are discussed in Section 2.2. One
particle velocity model, the wave vector model (WVM), also requires an additional
particle property, the wave vectore∗(t), which adds a state-space wave vector to
the independent variables in the joint PDF. The turbulent frequencyω∗(t) also
evolves by a stochastic differential equation, and effects the particle velocity model
through the specification of the turbulent time scale. Section 2.3 contains a detailed
presentation of the particle turbulent frequency model.

The stochastic system of equations is solved using PDF2DV [33] which imple-
ments a Monte Carlo technique via a particle/mesh method. The mesh is used to
estimate the local Eulerian mean values (e.g.,〈U〉, k, andτ ) which are required
as coefficients in the stochastic equations. The velocity statistics are calculated
by a cloud-in-cell kernel estimation with bilinear basis functions [34], while a
velocity/pressure correction algorithm [35] is implemented to impose the consist-
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ency condition, mean mass conservation, and the Poisson equation for the mean
pressure.

2.2. VELOCITY MODELS

The particle velocity models implemented in this work are the simplified Langevin
model (SLM), the Lagrangian isotropization of production model (LIPM), and
the WVM. These models are presented here with further details provided in the
references.

The SLM is a basic particle velocity model that is commonly implemented. The
particle velocity evolves by the stochastic differential equation

dU ∗i = −
∂〈P 〉
∂xi

dt −
[

1

2
+ 3

4
C0

]
[U ∗i − 〈Ui〉]dt

τ
+
√

C0k

τ
dWi, (2)

whereC0 = 2.1 is a model parameter,W(t) is an isotropic, vector-valued Wiener
process, and the Eulerian mean modified pressure〈P 〉, the Eulerian mean velocity
〈Ui〉, the turbulent time scaleτ , and the turbulent kinetic energyk are evaluated
at (x, t) = (X∗[t], t). At the Reynolds stress level, the SLM models the return-
to-isotropy tensor via Rotta’s model and neglects the rapid pressure–rate-of-strain
tensor.

In many turbulent flows, the rapid pressure–rate-of-strain is a dominant term,
and numerous models have been developed at the Reynolds stress level of closure
[6, 36–42]. A Lagrangian version of the first Launder, Reece, and Rodi model,
which is a combination of the isotropization of production model (IP model) of
Naot et al. [36] and Rotta’s model, is implemented here. From the generalized
Langevin model [6], the LIPM developed in [7] is

dU ∗i = −
∂〈P 〉
∂xi

dt +Gij [U ∗j − 〈Uj 〉] dt +
√

C0k

τ
dWi, (3)

where

Gij ≡ 1

τ
[α1δij + α2(bij − 3b2

ij )] + C2 Sij +Wij − 3(1− C2)bikWjk (4)

and?

α1 = −
(

1

2
+ 3

4
C0

)
+ 3α2b

3
ll +

1

2
C2

P

ε
. (5)

The mean velocity gradients enter this model through the mean rate of strain
tensor Sij ≡ [∂〈Ui〉/∂xj + ∂〈Uj 〉/∂xi]/2, the mean rate of rotation tensor
Wij ≡ [∂〈Ui〉/∂xj − ∂〈Uj 〉/∂xi]/2, and the production of turbulent kinetic energy
P ≡ −〈uiuj 〉∂〈Ui〉/∂xj . The model parameters are defined byα2 = 3.5 and

? b2
ij

is defined asbikbkj , andb3
ll

asblkbkj bjl .
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C2 = 0.6. The LIPM exactly represents the IP model for the rapid pressure–rate-
of-strain correlation, but differs slightly from the standard version of Rotta’s model
by implementing a functional form for its model coefficient.

The wave vector models from Van Slooten and Pope [1] provide an exact
representation of rapidly distorted homogeneous turbulence and are based on the
particle representation model for RDT by Kassinos and Reynolds [22]. The model
for RDT is extended to homogeneous turbulence away from the RDT limit and to
inhomogeneous turbulence through models for the dissipation and the return-to-
isotropy tensor and through the addition of a particle position and mean velocity
[1]. A particular WVM, the Langevin velocity model, is selected for this work and
is expressed as

dU ∗i = −
∂〈P 〉
∂xi

dt + 2
∂〈Um〉
∂xn

[e∗i e∗mu∗n − 〈e∗i e∗mu∗n〉] dt −
[

1

2
+ 3

4
au

]
u∗i

dt

τ

+ γ [bij − b2
llδij ]u∗j

dt

τ
+
√

auk

τ
dWi (6)

and

de∗i = −
∂〈Um〉
∂xn

e∗m[δin − e∗i e
∗
n] dt − 1

2

[
ae + au

k

u∗s u∗s

]
e∗i

dt

τ

− γ [δij − e∗i e
∗
j ]bjle

∗
l

dt

τ
−
√

auk

τ

u∗i e
∗
l

u∗s u∗s
dWl

+
√

ae

τ

[
δil − e∗i e∗l −

u∗i u
∗
l

u∗s u∗s

]
dW ′l +Qi, (7)

whereW(t) andW ′(t) are independent, vector-valued Wiener processes, andau =
2.1, ae = 0.03, andγ = 2.0 are model parameters. The vectorQ is uniquely
defined as the projection that maintains the orthogonality between the particle wave
vector and the particle velocity. It represents the effects of the flow’s inhomogeneity
on the wave vector.

In PDF methods the turbulent convective transport is treated without modeling
assumption, while the pressure transport has been traditionally neglected. However,
the DNS data of Rogers and Moser [23] demonstrate that the pressure and turbulent
convective transport nearly balance each other across a temporal shear layer and
are the dominant terms at the edge of the layer. In [2] a model for the pressure
transport is developed based on Lumley’s model [24] for the velocity–pressure
correlation. The model is implemented through an additional term in the particle
velocity equation,

dU ∗i = Cpt

[
u∗s u∗s
2k
− 1

]
∂k

∂xi

dt + · · · , (8)

whereCpt = 0.12 for the WVM andCpt = 0.2 for the LIPM. The results from Van
Slooten et al. [2] demonstrate the vital importance of such a model in the case of a
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temporal shear layer. It should be noted that this model for pressure transport does
not behave exactly like a transport term (i.e., the divergence of a flux), but is better
estimated as a sink of kinetic energy.

2.3. TURBULENT FREQUENCY MODEL

Modeled evolution equations for the turbulent kinetic energy, the Reynolds stress
tensor, and the velocity PDF require turbulent scale information for closure. One
approach is to model a turbulent time scale information in the PDF formulation
through a particle turbulent frequencyω∗. The joint PDF of velocity and turbulent
frequency contains more statistical information than modeled mean equations (i.e.,
the standard dissipation model), and this information is then available for more
sophisticated modeling of complex turbulent flows.

Two types of velocity/turbulent-frequency models from previous works are
differentiated by their interaction with the particle velocity equation. Pope and
co-workers [25, 26] construct turbulent frequency models for homogeneous and in-
homogeneous turbulence, respectively, where the time scale of a particle is defined
as the inverse of the particle turbulent frequency. The motivation of the approach
is to represent internal intermittency through a model that yields a lognormal dis-
tribution for a modeled instantaneous dissipation. The entrainment of nonturbulent
fluid and external intermittency are treated viaad hocmodels [26]. These models
are tested in free shear flows [15, 26] and in swirling flows [10]. Despite provid-
ing fairly good results, the turbulent frequency and refined Langevin models are
complicated and computationally expensive. The long tails of the lognormal distri-
bution hamper the convergence of the Monte Carlo solution of the modeled PDF
equations, because of the large statistical fluctuations that they cause. In addition,
thead hocmodels represent phenomena that are typically of greater importance to
turbulence modeling than internal intermittency.

2.3.1. Basic construction of frequency model

The model applied here is based on the work of Jayesh and Pope [27] which is
also presented in [2]. In this method, a conditional-mean turbulent frequency,�,
represents the inverse of the turbulence time scale in the particle velocity model,
� = τ−1 ≡ ε/k. The conditional-mean models the mean of theturbulentparticles
and differs from the mean of all particles〈ω〉 in a turbulent-nonturbulent region.
The result is a simple and efficient model that treats turbulent entrainment and
external intermittency in a natural manner. The model is applied to various free
shear flows in [2, 16–18, 28]. A refinement of the approach is developed here to
provide a better representation of inhomogeneous turbulent flows and to improve
the numerical implementation of particle turbulent frequency models.

The stochastic model of Van Slooten et al. [2] for the turbulent frequencyω∗ is

dω∗ = −C3[ω∗ − 〈ω〉]� dt − ω∗Sω〈ω〉 dt +√2C3C4ω∗〈ω〉� dW ′′, (9)
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whereC3 and C4 are constant model parameters,Sω is the source of turbulent
frequency, andW ′′(t) is an independent Wiener process. In statistically-stationary,
homogeneous turbulence (i.e., whereSω = 0), the model provides a gamma distri-
bution for the PDF of turbulent frequency with mean〈ω∗〉 = 〈ω〉 and with variance
var(ω∗) = C4〈ω〉2. The DNS data of Yeung and Pope [43] suggest thatC4 is Reyn-
olds number dependent withC4 ∼ 1 for a range of Taylor-scale Reynolds numbers,
Reλ ∼ 38–93. The parameter is here set to a constant valueC4 = 0.25 to improve
the numerical implementation of the model by forcing a gamma distribution with
relatively small variance and short tails. The other parameter is also set to a constant
valueC3 = 1.0 [2].

The mean turbulent frequency〈ω〉multiplying the source of turbulent frequency
Sω, in the particle equation, Equation (9), acts as a time scale to the model. In
the other modeled terms of the particle equation, the conditional-mean turbulent
frequency is used as the time scale. To provide consistency the first modification
of the original model of Jayesh and Pope [27] is to set the conditional-mean as the
time scale throughout the model,

dω∗ = −C3[ω∗ − 〈ω〉]� dt − ω∗Sω � dt +√2C3 C4ω
∗〈ω〉� dW ′′. (10)

The effects of this modification are minor for all flows tested and are not discussed
further in this work.

2.3.2. Definition of conditional frequency�

The conditional-mean turbulent frequency� is constructed to model the mean
turbulent frequency of just the turbulent fluid and is defined to be proportional
to the above-average mean [27]

� ≡ C�〈ω∗ | ω∗ ≥ 〈ω〉〉. (11)

The coefficientC� is chosen with the goal of forcing� = 〈ω〉 in fully turbulent
regions, while allowing� > 〈ω〉 in turbulent-nonturbulent intermittent regions. If
ω∗ has a gamma distribution with a normalized varianceσ 2 ≡ var(ω∗)/〈ω〉2, then
the requirement� = 〈ω〉 determines the coefficientC� to be

C� = q
0(q, q)

0(q + 1, q)
, (12)

whereq ≡ 1/σ 2 and0(q, q) is the incomplete gamma function. The coefficient
is shown as a function of the normalized variance in Figure 1. In previous work, it
was set to the value ofC� = 0.6893 corresponding to the stationary homogeneous
value of the normalized variance,σ 2 = C4 = 0.25.

In homogeneous turbulence, the normalized variance of turbulent frequency
evolves by

dσ 2

dt
= −2�C3(σ

2− C4), (13)
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Figure 1. The coefficientC� as a function of the normalized varianceσ2: —, defined by
Equation (12); and -·-, modeled by Equation (15).

so thatσ 2 relaxes to the specified valueC4. For inhomogeneous turbulence the
modeled evolution equation contains additional transport and production terms that
alter the stationary solution,

∂σ 2

∂t
+ 〈Uk〉∂σ 2

∂xk

= − 1

〈ω〉2
∂〈ukω

′2〉
∂xk

+ 2σ 2

〈ω〉
∂〈ukω

′〉
∂xk︸ ︷︷ ︸

turbulent transport

− 2〈ukω
′〉

〈ω〉2
∂〈ω〉
∂xk︸ ︷︷ ︸

production

−2�C3(σ
2− C4)︸ ︷︷ ︸

source

, (14)

whereω′ is the fluctuating turbulent frequency. Consequently, for inhomogeneous
flows, the varianceσ 2 does not in general relax toC4, and is often found to be
much larger.

Calculations of a temporal shear layer (described below) are used to illustrate
this point. Figure 2 shows the profile of the normalized variance as a function of
ξ , whereξ ≡ y/δm is the cross-stream position,y, normalized by the momentum
thickness,δm. The normalized varianceσ 2 is larger than 0.25 across the entire
layer and is very large at the edge of the layer where a bimodal distribution exists
between the turbulent and nonturbulent particles. Figure 3 shows that the turbulent
frequency maintains a gamma distribution even towards the edge of the layer up
to ξ ≈ 2 whereσ 2 ≈ 0.7. They = x line in Figure 3 corresponds to a gamma
distribution with the local value of the normalized variance. The variations from
this line are not significant until the tail of the distribution,ω∗ ∼ 4〈ω〉, where the
measured statistics are poor.
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Figure 2. Profile of the normalized variance of turbulence frequency across the temporal shear
layer from TSa in Table IV.

Figure 3. Q–Q plot for the distributions of normalized particle turbulent frequency from
TSa in Table IV. Givenx, y is defined implicitly by Prob[φ < x] = Prob[G < y], where
φ ≡ ω∗/〈ω〉 is the normalized turbulent frequency andG is a gamma random variable with the
same variance asφ. The distributions are for particles in the following ranges of cross-stream
position: —,ξ = (0.00, 0.07); - - -, ξ = (1.31, 1.37); -·-, ξ = (1.89, 1.96).

An alternative specification of the coefficientC� is devised to account for
the inhomogeneous distribution of the normalized variance within the fully tur-
bulent region, while maintaining a representation for the turbulent mean in
turbulent-nonturbulent intermittent region. A variable form is constructed to match
Equation (12) over a range of aσ 2 with an asymptote to a nonzero constant

C� = 0.5+ 0.3537 exp(−2.5σ 2). (15)
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As may be seen from Figure 1, the model in Equation (15) asymptotes to 0.5 and
provides good agreement with Equation (12) over the rangeσ 2 ∈ (0.1, 0.6) which
corresponds to the central part of the temporal shear layer (|ξ | ≤ 1.8 in Figure 2).

In summary, a variable form ofC� is required to maintain� = 〈ω〉 within fully
turbulent regions of inhomogeneous flows due to the variations inσ 2. Equation (12)
is derived from� = 〈ω〉 and an assumed gamma distribution of particle turbulent
frequency. However, the conditional mean turbulent frequency is designed to model
the mean of the turbulent particles in turbulent-nonturbulent intermittent regions
(i.e.,� > 〈ω〉), where Equation (12) is not appropriate. Equation (15) is construc-
ted to model Equation (12) over a limited range in values ofσ 2, and to assymptote
with increasingσ 2 to a nonzero constant, 0.5.

2.3.3. Mean source of turbulent frequency

The source of the turbulent frequency is defined from the standard dissipation
model [44] for homogeneous turbulence

Sω = Cω2− Cω1
P

ε
= Cω2 − Cω1

P

k�
, (16)

whereCω1 ≡ Cε1−1 andCω2 ≡ Cε2−1 are model constants. Thek–ε model form
of the production was used in the previous references as an alternate model for the
source

Sω = Cω2− C1
SijSij

〈ω〉2 , (17)

whereC1 is a model parameter. The production-to-dissipation model parameter
Cω1 is related toC1 through the definition of the coefficientCµ in the gradient
transport assumption,C1 = 2CµCω1. The standard value for the coefficient,Cµ =
0.09, is used to compare the parameters from the different models in the work that
follows.

In the modeled turbulent kinetic energy equation from PDF methods, the pro-
duction is treated explicitly. The model based on the true production-to-dissipation
ratio, Equation (16), provides a stronger relationship between the production of
turbulent kinetic energy and turbulent frequency than one that uses thek–ε surrog-
ate, Equation (17). The square of the strain rateSijSij has also been demonstrated
to be a strong source of grid dependency in the bias [29]. The variance of the
statistical fluctuations in the production-to-dissipation ratio is smaller than in the
square of the strain rate, which decreases the bias. Numerical studies of the model
are currently being implemented.

The turbulent kinetic energy is sensitive to the values selected for the para-
meters in the modeled source of turbulent frequency. In homogeneous turbulence,
production and dissipation completely control the evolution of the turbulent kinetic
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Table I. Suggested model parameters for the original and
revised conditional-mean turbulent frequency models.

ω∗ Model1 u∗ Model Cω1
2 Cω2 Cω2/Cω1

Sω − P WVM 0.5625 0.9 1.6

Sω − P LIPM 0.5625 0.9 1.6

Sω − S WVM 0.3333 0.9 2.7

Sω − S LIPM 0.4444 0.9 2.0

1The notationSω−P refers to the Model Of Equation (16),
while Sω − S refers to that of Equation (17).
2AssumesCµ = 0.09 in the original model.

energy, and their ratio in the revised model has a well-known stationary state that
is fully determined by the model parameters(

P

ε

)
∞
= Cω2

Cω1
. (18)

For inhomogeneous turbulence, the transport terms alter the stationary state of the
production-to-dissipation ratio and affect the ratio’s impact on the kinetic energy.
However, the ratio ofCω2 to Cω1 remains an important parameter.

The standard values of the parameters were specified by Launder et al. [37]
for RSMs, where the turbulent transport of turbulent frequency is modeled via
a gradient transport hypothesis. The parameterCω1 was optimized to 0.44 (i.e.,
Cω1 = 1.44) through numerical experimentation using a RSM, while the parameter
Cω2 was set to 0.9 (i.e,Cω2 = 1.9) through analytical comparisons with exper-
imental data in decaying grid turbulence. The resulting production-to-dissipation
ratio in homogeneous turbulence,(P/ε)∞ ≈ 2.0, is higher than experimental and
DNS data for homogeneous flows where values of(P/ε)∞ ≈ 1.4–1.8 are more
typical. In PDF methods, all convective terms including the turbulent transport of
turbulent frequency are treated explicitly, and the standard specification ofCω1

is no longer optimal. Suggested parameter values that produce reasonable results
for the temporal shear layer and co-axial jets considered, are provided in Table I
for both the original and revised conditional mean-turbulent frequency models.
The valueCω2 = 0.9 is used throughout, and the effects of the ratioCω2/Cω1 are
examined in Section 3 by altering the value ofCω1.

In summary, the turbulent frequency model employed here consists of the
stochastic differential equation, Equation (10), with the conditional mean turbulent
frequency� defined by Equation (11). The performance of the model is studied for
different specifications of the coefficientC� and for different forms of the source
termSω. The specifications of the coefficientC� areC�-fixed (i.e.,C� = 0.6893)
andC�-variable (i.e., Equation (15)), while the forms of the source termSω, are
Sω − S (i.e., Equation (17)) andSω − P (i.e., Equation (16)).
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Figure 4. Representative profiles for conditional statistics in the nonswirling co-axial jet at
x/D = 5.29 from case L0a (lines) and experimental data (symbols) of Takahashi and Vang-
sness [30] with: —, unconditional statistics; and statistics conditional on:(- - -,∇), jet flow;
(-·-,4), annular flow; and(· · ·,�), co-flow.

3. Results and Discussions

3.1. CONFINED SWIRLING AND NONSWIRLING CO-AXIAL TURBULENT JETS

Simulations are performed on the co-axial jets studied experimentally by Takahashi
and co-workers [30, 31]. The flow consists of a central air jet of diameterD =
9.45 mm, an annular air jet of diameterDa = 26.92 mm, and an external co-flow
of air in a square duct of sides = 150 mm with rounded corners. Swirl is imparted
to the annular jet by a helical vane swirler of varying angles which is located 96 mm
upstream of the inlet. The swirl number is a measure of the strength of the swirl
and is defined as the ratio of the axial flux of angular momentum to the product of
the axial flux of axial momentum and the radius,

S ≡ 2
∫ Da/2

0 ρ〈U 〉〈W 〉r2 dr

Da

∫ Da/2
0 ρ〈U 〉2r dr

, (19)

where 〈U 〉 and 〈W 〉 are the Eulerian mean axial and tangential velocities. The
experimental cases are summarized in Table II with the swirl number calculated
near the inlet.
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Figure 5. Predicted mean axial velocity profiles in the nonswirling co-axial jet for cases: —,
W0a; - - -, L0a; and -·-, S0a; compared to experimental data of Takahashi and Vangsness [30]
with conditioning on:�, co-flow;4, annular flow; and∇, jet flow.

Table II. Experimental cases from Takahashi and
co-workers [30, 31].

Swirl Bulk Velocity (m/s)

Angle Jet Annulus External U0
1 S

0◦ 100 20 4 127.2 0.00

30◦ 100 20 4 131.6 0.09

1Inlet mean axial velocity measured at centerline in m/s.

The measurements were taken by a LDV technique at axial locations from
x = 1.5 mm(x/D = 0.159) to x = 250 mm(x/D = 26.5) and at radial locations
to r ∼ 28 mm(r/D ∼ 3) on either side of the centerline. The measurements across
the centerline provide an indication of the experimental scatter and level of sym-
metry in the flow. The jet, annulus, and co-flow are seeded individually in separate
experimental runs to eliminate velocity bias. The measured statistics are therefore
conditioned on the origin of the fluid from which the unconditional statistics cannot
be derived without additional unmeasured information. The unconditional mean
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Figure 6. Predicted turbulent kinetic energy profiles in the nonswirling co-axial jet for cases:
—, W0a; - - -, L0; -·-, S0a; compared to experimental data of Takahashi and Vangsness [30]
with conditioning on:�, co-flow;4, annular flow; and∇, jet flow.

velocity lies within the range of the conditional means, but this is not true of the
general unconditional moments (e.g., Reynolds stresses).

The conditional means can be directly evaluated in PDF methods by tagging
the source of the entering particles, while in standard moment closures additional
modeling assumptions are required. Representative conditional and unconditional
statistics are compared in Figure 4 for the nonswirling co-axial jet atx/D = 5.29,
and several observations are made. The conditional and unconditional mean axial
velocities are quite similar although, as might be expected, the jet velocities are
higher than the annular velocities, which in turn are higher than the co-flow ve-
locities. In contrast, the means of the radial velocity are qualitatively different and
illustrate the mixing between the streams. At further downstream locations, the jets
are better mixed, and the unconditional moments tend to the moments conditioned
on the co-flow due to its large mass flow rate. The unconditional Reynolds stresses
are larger than the conditional Reynolds stresses across the entire layer and espe-
cially through the annular jet where fluid initiating from all three streams exists.
For clarity in comparing the different models, the remaining results in this section
are shown for the unconditional moments.
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Table III. Simulations performed for comparisons with the experimental data
of Takahashi and co-workers [30, 31].

Case Swirl U∗
Name Angle Model Cpt Sω

1 C�
2 Cω2/Cω1

W0a 0◦ WVM 0.12 Sω − P C�-variable 1.6

L0a 0◦ LIPM 0.2 Sω − P C�-variable 1.6

S0a 0◦ SLM 0.0 Sω − P C�-variable 1.6

W30a 30◦ WVM 0.12 Sω − P C�-variable 1.6

W30b 30◦ WVM 0.12 Sω − P C�-variable 1.8

W30c 30◦ WVM 0.12 Sω − P C�-fixed 1.6

W30d 30◦ WVM 0.0 Sω − P C�-variable 1.6

W30e 30◦ WVM 0.12 Sω − S C�-fixed 1.63

W30f 30◦ WVM 0.12 Sω − S C�-fixed 2.73

L30a 30◦ LIPM 0.2 Sω − P C�-variable 1.6

L30b 30◦ LIPM 0.2 Sω − P C�-variable 1.8

L30c 30◦ LIPM 0.2 Sω − P C�-variable 1.3

L30d 30◦ LIPM 0.2 Sω − S C�-fixed 2.03

S30a 30◦ SLM 0.0 Sω − P C�-variable 1.6

1The notationSω − P refers to the model of Equation (16), whileSω − S

refers to that of Equation (17).
2The notationC�-variable refers to the variable form of the coefficient in
Equation (15), whileC�-fixed refers toC� = 0.6893.
3AssumesCµ = 0.09.

In the PDF calculations, the geometry is assumed to be axisymmetric with an
outer radius,Rc = 75 mm. Inlet conditions for the mean velocity and Reynolds
stresses are specified from the experimental data at the initial axial location,x/D =
0.159. An equilibrium assumption (i.e.,Sω = 0.0 orP/ε = Cω2/Cω1) is made for
the inlet mean turbulent frequency,〈ω〉I , which gives

〈ω〉I = −2Cω1

Cω2
bij Sij . (20)

The simulations are performed on a 36× 36 nonuniform grid with an initial 400
particles per cell and are run to a statistically stationary state where time averaging
is then performed.

The specifics of the cases studied are provided in Table III. Each bold-faced case
name represents a base set of models for each type of particle velocity model. The
base set of models includes the pressure transport model for the LIPM and WVM
(not SLM) and the turbulent frequency model with the production-to-dissipation
form of Sω (Sω−P), and the variable form ofC� (C�-variable). Finally, the model
parameters for the base models are provided in Table I.
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Figure 7. Predicted Reynolds stress profiles in the nonswirling co-axial jet: (a)〈u2〉; (b) 〈v2〉;
(c) 〈w2〉; and (d)〈uv〉; at x/D = 2.12 for cases: —, W0a; - - -, L0a; and -·-, S0a; compared
to experimental data of Takahashi and Vangsness [30] with conditioning on:�, co-flow;4,
annular flow; and∇, jet flow.

3.1.1. Calculation of nonswirling jet

The performance of the velocity models is examined through comparisons with
the experimental data for the nonswirling co-axial jet. Mean axial velocity profiles
are illustrated at several axial locations in Figure 5. The models all agree with
the experimental data quite well, but the LIPM (- - - lines) matches the centerline
velocity at large axial distances better than the SLM (-·- lines) and the WVM (—
lines). The unconditional kinetic energy profile from the WVM compares very well
with the conditional experimental data in Figure 6 for all axial locations, but the
WVM slightly under-predicts the conditional kinetic energy (not shown) atx/D =
5.29. The LIPM and SLM predict the conditional kinetic energy atx/D = 5.29
very well, but over-predict it atx/D = 7.94. The SLM tends to spread the energy
quicker than the other models, which is related to the decay of the centerline mean
axial velocity. Similar conclusions are reached for the individual Reynolds normal
stresses in Figures 7–9.

With respect to the evolution of the nonswirling flow, the Reynolds shear stress
〈uv〉 dominates the effects of the other Reynolds stresses and is chiefly responsible
for the spreading of the jets. The profiles of the shear stress are also shown in
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Figure 8. Predicted Reynolds stress profiles in the nonswirling co-axial jet: (a)〈u2〉; (b) 〈v2〉;
(c) 〈w2〉; and (d)〈uv〉; at x/D = 5.29 for cases: —, W0a; - - -, L0a; and -·-, S0a; compared
to experimental data of Takahashi and Vangsness [30] with conditioning on:�, co-flow; A,
annular flow; and∇, jet flow.

Figures 7–9. Atx/D = 5.29, the LIPM matches the shear stress very well. The
WVM predicts slightly low values at this location, while the SLM predicts slightly
high values. The differences in the shear stresses are observable in the axial mean
velocity profiles at locations further downstream (i.e., the centerline mean axial
velocity decays too slowly in the WVM and too quickly in the SLM).

The evolution of the mean velocity profiles for the nonswirling co-axial jets
simulated are fairly insensitive to the velocity model, but are sensitive to the para-
meters in the turbulent frequency model. The turbulent frequency model has a large
impact on the kinetic energy through its control of the dissipation. The Reynolds
stress anisotropies are normalized by the kinetic energy and form a better test of
the velocity models. The Reynolds stress anisotropy profiles atx/D = 5.29 are
presented in Figure 10. The figure illustrates that the WVM performs better than
the SLM and LIPM, despite the better predictions of the mean velocity profiles
from the LIPM. This issue is addressed further with regards to the swirling co-axial
jets.
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Figure 9. Predicted Reynolds stress profiles in the nonswirling co-axial jet: (a)〈u2〉; (b) 〈v2〉;
(c) 〈w2〉; and (d)〈uv〉; at x/D = 7.94 for cases: —, W0a; - - -, L0a; and -·-, S0a; compared
to experimental data of Takahashi and Vangsness [30] with conditioning on:�, co-flow;4,
annular flow; and∇, jet flow.

3.1.2. Calculation of swirling jet

The performance of the velocity models is examined through comparisons with
the experimental data for the swirling co-axial jet. The base models in cases W30a,
L30a, and S30a are examined first. The mean axial and tangential velocity profiles
are presented at several axial locations in Figures 11 and 12, while the kinetic
energy and Reynolds stresses are presented in Figures 13–16.

The conclusions for the mean axial velocity are similar to those from the
nonswirling case. In Figure 11, the LIPM (- - - lines) matches the decay of the
centerline velocity slightly better than both the WVM (— lines) which decays too
slowly and the SLM (-·- lines) which decays too rapidly. The LIPM and WVM
predict the spreading of the mean tangential velocity very well in Figure 12, while
the peak value decays too rapidly in the SLM.

The swirl number is quite low in this flow, and the axial-radial Reynolds shear
stress,〈uv〉, dominates the effects of the swirl in the evolution of the mean axial
velocity. The radial-tangential Reynolds shear stress,〈vw〉, plays a similar role
in the evolution of the mean tangential velocity as does〈uv〉 in the evolution of
the mean axial velocity. In Figure 14, the SLM over-predicts the peaks of〈uv〉 and
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Figure 10. Predicted Reynolds stress anisotropy profiles in the nonswirling co-axial jet:
(a) b11; (b) b22: (c) b33; and (d)b12; at x/D = 5.29 for cases: —, W0a; - - -, L0a; and
-·-, S0a; compared to experimental data of Takahashi and Vangsness [30] with conditioning
on:�, co-flow;4, annular flow; and∇, jet flow.

〈vw〉 atx/D = 2.65 producing the too rapid decay in the mean axial and tangential
velocities. The WVM and LIPM provide lower peaks for these shear stresses and
match the experimental data better. As in the nonswirling case, the LIPM predicts
larger kinetic energies and Reynolds normal stresses than does the WVM, but
smaller values than the SLM. All three models still match the experimental data
quite well for these quantities given the scatter in the data. The axial-tangential
shear stress,〈uw〉, is of minor importance to the evolution of the mean velocities,
and the experimental data for this statistic contains significant scatter.

The Reynolds stress anisotropies are shown in Figures 17–19. Again, the WVM
predicts the experimental data for the anisotropies slightly better than the LIPM
and SLM, although the differences between the velocity models is smaller for the
anisotropies than for the kinetic energies. The effects of the velocity models appear
quite minor and are illustrated to be secondary to the specification of turbulent
frequency model parameters in the following section.
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Figure 11. Predicted mean axial velocity profiles in the swirling co-axial jet for cases: —,
W30a; - - -, L30a; and -·-, S30a; compared to experimental data of Takahashi et al. [31] with
conditioning on:�, co-flow;4, annular flow; and∇, jet flow.

3.1.3. Sensitivity to frequency model

The WVM and LIPM base models which include the revised turbulent frequency
model give good agreement in both the nonswirling co-axial jet (cases W0a
and L0a) and the swirling co-axial jet (cases W30a and L30a). The turbulent,
frequency plays a crucial role in the evolution of the jets through its description
of the dissipation. A closer examination of the turbulent frequency model is
achieved by individually studying the effects of the revisions to the original model.
Simulations with the LIPM and WVM are performed in the swirling co-axial jet,
as detailed in Table III, with the production-to-dissipation(Sω − P) and mean
strain-rate-squared(Sω − S) source of turbulent frequency models and with the
constant and variable form ofC� models. The centerline mean axial velocity is a
sensitive measure of a jet’s spreading, and in Figure 20 this velocity is shown for
the WVM and LIPM cases. The important conclusions from this figure are listed
below.

1. The base models (W30a and L30a) give reasonable agreement (less than 20%
error for the WVM and 13% error for the LIPM) with the experimental data
for the centerline mean axial velocity.
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Figure 12. Predicted mean tangential velocity profiles in the swirling co-axial jet for cases:
—, W30a; - - -, L30a; and -·-, S30a; compared to experimental data of Takahashi et al. [31]
with conditioning on:�, co-flow;4, annular flow; and∇, jet flow.

2. The variable form ofC� (Equation (15)), which is part of the revised turbulent
frequency model in the base model (case W30a, — lines), has a very small
effect relative toC� = 0.6893 from case W30c (-··- lines) for this flow.

3. Increasing the ratioCω2/Cω1 by decreasingCω1 for a fixedCω2 = 0.9 (i.e.,
increasing(P/ε)∞) increases the spreading rate of the jets, which increases
the decay of the centerline mean axial velocity. The simulations are sensitive
to this parameter ratio.

4. Comparable results can be obtained with the original source of turbulent
frequency model, but with larger values of the ratioCω2/Cω1. The case W30f
(-·- line in Figure 20a) withCω2/Cω1 = 2.7 and the case L30c (-·- line in
Figure 20b) withCω2/Cω1 = 2.0 are comparable to the WVM and LIPM base
models, respectively.

The profiles for the axial-radial Reynolds shear stress〈uv〉, the production-to-
dissipation of turbulent kinetic energy ratioP/ε, the turbulent kinetic energyk, and
the conditional-mean turbulent frequency� from the WVM cases are presented at
x/D = 7.94 in Figure 21, and the corresponding plots for the LIPM cases are
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Figure 13. Predicted turbulent kinetic energy profiles in swirling the co-axial jet for cases: —,
W30a; - - -, L30a; and -·-, S30a; compared to experimental data of Takahashi et al. [31] with
conditioning on:�, co-flow;4, annular flow; and∇, jet flow.

contained in Figure 22. These figures further illustrate the conclusions expressed
for the decay of the centerline mean axial velocity.

The ratioCω2/Cω1 maintains a strong influence on the evolution of the flow.
An increasedCω2/Cω1 provides a largerP/ε ratio (Figures 21b and 22b) through-
out the flow, which yields an increased turbulent kinetic energy (Figures 21c and
22c) and a decreased dissipation. The conditional-mean turbulent frequency (Fig-
ures 21d and 22d) is thereby decreased. The velocity models chiefly influence the
Reynolds stress anisotropy, so an increased kinetic energy with a fixed anisotropy
yields an increases Reynolds shear stress (Figures 21a and 22a). The increased
shear stress results in a faster spreading rate in the jets, which is the crucial factor
in correctly modeling the mean velocity profiles. The sensitivity of the spreading
rate to the parameters in the modeled source of turbulent frequency makes detailed
comparisons between velocity models very difficult.

For the model parameters selected, the original turbulent frequency model
provides comparable results to the revised model in Figures 21 and 22. The
parameter ratioCω2/Cω1 does not fully describe theP/ε ratio due to turbulent
transport, but in the revised model the parameter ratio does provide an estimate for
the peak values in theP/ε ratio profiles. In the original turbulent frequency model,
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Figure 14. Predicted Reynolds stress profiles in the swirling co-axial jet: (a)〈u2〉; (b) 〈v2〉;
(c) 〈w2〉; (d) 〈uv〉; (e) 〈uw〉; and (f) 〈vw〉; at x/D = 2.65 for cases: —, W30a; - - -, L30a;
and -·-, S30a; compared to experimental data of Takahashi et al. [31] with conditioning on:�,
co-flow;4„ annular flow; and∇, jet flow.

the gradient transport parameterCµ must be specified to calculate the parameter
ratio. With the standardk–ε specification ofCµ = 0.09, the parameter ratios are
much larger than the calculatedP/ε ratio. This indicates that the value ofCµ may
be too large for this flow and shows that direct comparisons of the parameter ratio
between the original and revised models are not appropriate.
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Figure 15. Predicted Reynolds stress profiles in the swirling co-axial jet: (a)〈u2〉; (b) 〈v2〉;
(C) 〈w2〉; (d) 〈uv〉); (e) 〈uw〉; and (f) 〈vw〉; at x/D = 5.29 for cases: —, W30a; - - -, L30a;
and -·-, S30a, compared to experimental data of Takahashi et al. [31] with conditioning on:�,
co-flow;4, annular flow; and∇, jet flow.

Finally, the normalized variance of turbulent frequency (not shown) is typically
larger than 0.25 and the conditional-mean turbulent frequency is lower using the
variable form ofC�. However, the impact of the change inC� is relatively minor
for the evolution of the flow, as is illustrated in Figures 21 and 22 by comparing
case W30a (— lines) to case W30c (-··- lines).
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Figure 16. Predicted Reynolds stress profiles in the swirling co-axial jet: (a)〈u2〉; (b) 〈v2〉;
(c) 〈w2〉; (d) 〈uv〉; (e) 〈uw〉; and (f) 〈vw〉; at x/D = 7.94 for cases: —, W30a; - - -, L30a;
and -·-, S30a; compared to experimental data of Takahashi et al. [31] with conditioning on:�,
co-flow;4, annular flow; and∇, jet flow.

3.1.4. Sensitivity to pressure transport model

The effects of the pressure transport model are also secondary to the turbulence
frequency modeling in the evolution of the swirling co-axial jet. The pressure trans-
port model acts to push energetic particles up the kinetic energy gradient. Since the
radial gradients are much larger than axial gradients, the model has the greatest
impact on the radial-radial and axial-radial Reynolds stresses,〈v2〉 and〈uv〉. The
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Figure 17. Predicted Reynolds stress anisotropy profiles in the swirling co-axial jet: (a)b11;
(b) b22; (c) b33; (d) b12; (e)b13; and (f)b23; atx/D = 2.65 for cases: —, W30a; - - -, L30a;
and -·-, S30a; compared to experimental data of Takahashi et al. [31] with conditioning on:�,
co-flow;4, annular flow; and∇, jet flow.

kinetic energy, conditional-mean turbulent frequency, and these Reynolds stress
profiles are provided atx/D = 7.94 in Figure 23. It may be seen that the main
effect of the pressure transport model is to reduce the Reynolds stresses at the edge
of the jet. The pressure transport model acts as an added anisotropic dissipation in
regions of large kinetic energy gradients. From the anisotropy profiles, the model
tends to improve the results for largerr/D. The mean velocities, however, show
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Figure 18. Predicted Reynolds stress anisotropy profiles in the swirling co-axial jet: (a)b11;
(b) b22; (c) b33; (d) b12; (e)b13; and (f)b23; atx/D = 5.29 for cases: —, W30a; - - -, L30a;
and -·-, S30a; compared to experimental data of Takahashi et al. [31] with conditioning on:�,
co-flow;4, annular flow; and∇, jet flow.

little effect of the pressure transport modeling in contrast to the results previously
demonstrated for the temporal shear layer [2].

3.2. TEMPORAL SHEAR LAYER

The temporal shear layer is a statistically one-dimensional, turbulent layer that
grows between two semi-infinite nonturbulent streams of equal and opposite velo-
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Figure 19. Predicted Reynolds stress anisotropy profiles in the swirling co-axial jet: (a)b11;
(b) b22; (c) b33; (d) b12; (e)b13; and (f)b23; atx/D = 7.94 for cases: —, W30a; - - -, L30a;
and -·-, S30a; compared to experimental data of Takahashi et al. [31] with conditioning on:�,
co-flow;4, annular flow; and∇, jet flow.

city. It is the limiting case of the plane (spatial) mixing layer as the velocity ratio
approaches one. The velocity difference between the two streams,1U , and the
momentum thickness of the layer,δm, are the characteristic velocity and length
scales which are used to construct a self-similar solution. The layer growth rate,

r ≡ 1

1U

dδm

dt
, (21)
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Figure 20. Predicted center line mean velocity in the swirling co-axial jet for (a) WVM cases:
—, W30a; - - -, W30b; -··- W30c; · · ·, W30e; and -·-, W30f; and (b) LIPM cases: –, L30a; -
- -, L30b; · · ·, L30c; -·-, L30d; and compared to experimental data of Takahashi et al. [31]∇
with conditioning on the jet flow.

is a constant in the similarity equations.
The revised form of the turbulent frequency model from Section 2.3 and the

original model from Jayesh and Pope [27] are combined with the WVM and the
pressure transport model and applied to the temporal shear layer. The results are
compared to the DNS data of Rogers and Moser [23] in a temporal shear layer and
the experimental data of Bell and Mehta [32] in a plane mixing layer. A detailed
study of the different velocity models is performed in [2], and temporal shear layer
results are included here to illustrate the robust nature of the turbulent frequency
model. The cases studied are given in Table IV.

The calculated values of the growth rate compare well with the DNS and exper-
imental data in cases TSa, TSb, TSc and TSe (see Table IV), but the growth rate
is a relatively weak measure of the turbulence model’s performance. In Figure 24,
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Figure 21. Predictions of the WVM in the swirling co-axial jet atx/D = 7.94 for: (a)〈uv〉;
(b) P/ε; (c) k; and (d)�; in cases: —, W30a; - - -, W30b; -··-, W30c;···, W30e; and -·-, W30f;
compared to experimental data of Takahashi et al. [31] with conditioning on:�, co-flow;4,
annular flow; and∇, jet flow.

Table IV. Directory of test cases run for the temporal shear layer with their growth rates.

Case Sω C� Cω2/Cω1 (P/ε)c
1 r

TSa Sω − P C�-variable 1.6 1.63 0.014

TSb Sω − P C�-variable 1.5 1.57 0.014

TSc Sω − P C�-fixed 1.6 1.65 0.014

TSd Sω − S C�-fixed 1.62 1.21 0.008

TSe3 Sω − S C�-fixed 2.762 1.49 0.013

DNS4 – – – 1.47 0.014

Experimental Range5 – – – – 0.014–0.022

1Calculated production-to-dissipation ratio averaged over central region,|ξ | ≤ 2.0.
2AssumesCµ = 0.09.
3Case studied in Van Slooten et al. [2].
4Direct numerical simulation of Rogers and Moser [23].
5Taken from calculations by Rogers and Moser [23] of data in Dimotakis [45].



326 P.R. VAN SLOOTEN AND S.B. POPE

Figure 22. Predictions of the LIPM in the swirling co-axial jet atx/D = 7.94 for: (a)〈uv〉;
(b) P/ε; (c) k; and (d)�; in cases: —, L30a; - - -, L30b;· · ·, L30c; -·-, L30d; and compared to
experimental data of Takahashi et al. [31] with conditioning on:�, co-flow;4, annular flow;
and∇, jet flow.

the DNS and experimental data for the mean velocity profiles are predicted very
well in all cases, but also show little influence of the different turbulent frequency
models. This is in direct contrast to the co-axial jets in Section 3.1 where the ratio
Cω2/Cω1 has a very strong influence on the spatial evolution of the flow. From [2],
the pressure transport model greatly affects the mean velocity by increasing the
gradient of the Reynolds shear stress near the edge of the layer. This is another
difference from the conclusions of the co-axial jets, where the pressure transport
has a negligible effect on the mean velocities.

The turbulent kinetic energy and dissipation profiles in Figure 25 and the
conditional-mean turbulent frequency profiles in Figure 26 are good tests of the tur-
bulent frequency model. Both the revised and original conditional-mean turbulent
frequency models are found to give good results with a proper specification of the
model parameters. The variable form forC� has the effect of forcing〈ω〉 to equal
� across the central region of the flow, while hardly altering the conditional-mean.
Therefore, the model has little effect on the evolution of the flow. The change in
Cω2/Cω1, however has a large impact on the peak of the conditional-mean turbulent
frequency, which effects the kinetic energy and dissipation profiles.
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Figure 23. Predicted profiles with and without pressure transport modeling in the swirling
co-axial jet: (a)k; (b) �; (c) 〈v2〉; (d) b22; (e) 〈uv〉; and (f) b12; at x/D = 7.94 for cases:
—, W30a (with pressure transport), and - - -, W30d (without pressure transport); compared to
experimental data of Takahashi et al. [31] with conditioning on:�, co-flow;4, annular flow;
and∇, jet flow.

4. Conclusions

The velocity/turbulent-frequency and the velocity/wave-vector/turbulent-
frequency PDF methods are successfully applied to swirling and nonswirling
co-axial jets and the temporal shear layer. The particular velocity models
implemented include the simplified Langevin model (SLM), the Lagrangian
isotropization of production model (LIPM), and the Langevin velocity wave vector
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Figure 24. Self-similar mean velocity profile in the temporal shear layer for cases: —, TSa;
-·-, TSb; – – –, TSc;· · ·, TSd; and -··-, TSe; with: —, DNS data of Rogers and Moser [23];
and4, experimental data of Bell and Mehta [32].

model (WVM). Revisions to the conditional-mean turbulent frequency model
of Jayesh and Pope [27] are also implemented for the purpose of improving on
both the numerical and the modeling performance in inhomogeneous flows. In the
revised model, the production-to-dissipation ratio replaces the square of the strain
rate in the modeled source of turbulent frequency to reduce the grid dependency
of the bias [29], and the coefficient in the definition of the conditional-mean is
defined as a function of the normalized variance of the particle turbulent frequency.
A purpose of this paper is to test the implementation of the revised turbulence
frequency model and not to provide a detailed numerical analysis on the bias. The
pressure transport model in [2] is also tested in the co-axial jets.

The original and revised turbulent frequency models are demonstrated to per-
form comparably provided that the model parameters are appropriately specified.
The specification of the ratioCω2/Cω1 is shown to be crucial in accurately mod-
eling the co-axial jets and to be important in predicting the kinetic energy and
dissipation for the temporal shear layer. This ratio represents the relative import-
ance of destruction and production of the turbulent frequency in the modeled
source of turbulent frequency, and controls the modeled production-to-dissipation
of turbulent kinetic energy ratio. The suggested values for the model parameters
that yield good results in both the temporal shear layer and the co-axial jets are
provided in Table I. For a particular flow, an optimal specification of the parameter
ratio could be determined for each of the velocity and turbulent frequency models.
The results are anticipated to improve on those presented here, but the value of
this ratio would be case dependent. A fundamental idea of turbulence modeling
is the creation of robust models, and case dependent parameter specifications are
undesirable. The optimal parameter ratio also does not imply an optimal model
for the dissipation, but rather a model that minimizes the combined errors of all



APPLICATION OF PDF MODELING TO TURBULENT JETS 329

Figure 25. Self-similar profiles of: (a) turbulent kinetic energy; and (b) dissipation; in the
temporal shear layer for cases: - - -, TSa; -·-, TSb; – – –, TSc;· · ·, TSd; and -··-, TSe; with —,
DNS data of Rogers and Moser [23]; and4, experimental data of Bell and Mehta [32].

other models. To correctly test the performance of turbulence modeling at the
Reynolds stress level, the modeled Reynolds stress budget should be compared
to experimental and/or DNS data. The profiles of the dissipation alone would be of
tremendous use to modeling efforts.

The specification ofC� as a function of the normalized variance is shown to
have little impact on the evolution of the co-axial jets and the temporal shear layer.
In the temporal shear layer, the model mean turbulent frequency is altered, while
the conditional-mean is little changed. Therefore, the model has little impact on the
evolution of the flow. The model is presented here to illustrate that the definition of
the conditional-mean is rather robust.

The WVM is demonstrated in [2] to predict the experimental and DNS data for
the temporal shear layer slightly better than the LIPM and much better than the
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Figure 26. Self-similar profiles of the conditional-mean turbulent frequency for cases: (a) - - -,
TSa and – – –, TSc, and (b)· · ·, TSd and -··-, TSe; with —, DNS data of Rogers and Moser
[23].

SLM. In the case of the co-axial jets presented here, the effects of the different
velocity models are secondary to the proper specification of the model parameters
in turbulent frequency model. The SLM, LIPM, and WVM data shown here and
SLM data from Anand et al. [10] illustrate that the mean axial velocity profiles
are predicted quite well for all velocity models, while the peak mean tangential
velocity decays too quickly in the SLM. A better test of the velocity models is a
comparison of the Reynolds stress anisotropies. For the nonswirling jet, the WVM
predicts the anisotropies better than the LIPM and SLM, but for the swirling jet all
of the models are comparable. The pressure transport model is also demonstrated
to be of secondary importance in these cases.

Previous studies demonstrated that standard RSMs have difficulty in predicting
strongly swirling flows due to the modeling of the rapid pressure-rate-of-strain
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correlation. The WVM provides an exact representation of this correlation for
rapdly distorted homogeneous turbulence. However, the swirling jet cases studied
here have relatively weak swirl with no vortex breakdown, and there is no clear
distinction between the LIPM and the WVM. It is anticipated that the predictive
capability of the SLM and LIPM will degrade in more strongly swirling flows, and
additional comparisons are required to test the behavior of the WVM.
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