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Abstract
We develop and demonstrate a computationally efficient numerical splitting
technique for solving the reaction–diffusion equation. The scheme is based
on the Strang splitting technique wherein the portions of the governing
equations containing stiff chemical reaction terms are separated from those parts
containing the less-stiff transport terms. As demonstrated, the scheme achieves
second-order accuracy in space through the use of centred finite differences;
second-order accuracy in time is achieved through Strang splitting. To improve
greatly the computational efficiency, the pure reaction sub-steps use in situ
adaptive tabulation (ISAT) to compute efficiently the reaction mapping while
the pure diffusion sub-steps use an implicit Crank–Nicolson finite-difference
method. The scheme is applied to an unsteady one-dimensional reaction–
diffusion model equation with detailed chemical kinetics. For this test problem,
we show spatial and temporal convergence results, the impacts of ISAT and ODE
solver error tolerances, and demonstrate computational speed-ups achieved by
using ISAT over direct integration.

1. Introduction

Turbulent combustion is an important and timely subject in engineering science. Many
problems from a wide variety of engineering disciplines are centred around complex
combustion processes that occur in a turbulent flow environment. Applications to such
areas as aerospace propulsion systems, internal combustion engines and industrial combustion
design are but a few of the growing number of domains in which scientists and engineers
strive to model, predict and control combustion processes. The use of direct numerical
simulation (DNS) techniques has the potential to play an important role in these difficult
tasks, which frequently involve turbulent reacting flows. At present, however, even with
large-scale computations, DNS of turbulent combustion are restricted to length-scale ratios
(largest to smallest) that are much less than those found in many practical engineering
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applications. Nonetheless, DNS provides useful insights into how turbulence and combustion
evolve (Mizobuchi et al 2002). With further improvements to numerical algorithms, greater
length-scale ratios will be allowed within a given amount of CPU time thereby making DNS
a viable option for a wider range of problems.

To solve the systems of stiff ordinary differential equations (ODEs) which arise in reacting
flow simulations, a variety of computational approaches have been used. Among the most
popular methods are those which use backward difference formulae (BDFs). ODE solver
packages such as DDASAC (Caracotsios and Stewart 1985), LSODE (Hindmarsh 1983), and
VODE (Brown et al 1989) make use of BDFs and have been used in such areas as atmospheric
modelling (Saylor and Ford 1995) and reacting flows (Najm et al 1998). Among the alternatives
to BDFs include semi-implicit Runge–Kutta schemes (Zhong 1996) as well as specialized
solvers which separate variables into fast and slow groups (Sun et al 1994).

In addition to the different ODE solvers from which to choose, there are a variety of
techniques available to integrate the equations governing reacting flows. For many reacting
flow simulations, detailed chemical kinetics mechanisms are used which involve large numbers
of species and reactions. Therefore, the numerical scheme chosen must compute solutions
efficiently in light of this complexity. In particular, the evaluation of chemical source terms is
computationally expensive and hence should be minimized. Further, schemes able to take large
time steps while remaining stable are also desirable. But a computationally efficient numerical
scheme must consider more than just the reaction term. The coupling of reaction terms with
convection and diffusion transport terms is also an important consideration. As pointed out
by Najm et al (1999), the presence of the convective term is generally not problematic since
the selection of convective CFL numbers well below unity is desirable in order to maintain
small phase errors. Consequently, an explicit treatment of convective terms is suitable in most
cases. Regarding the treatment of the diffusion terms, however, it is appropriate to consider
both explicit and implicit approaches. Explicit approaches that make use of divided difference
formulae offer the advantage of being computationally less expensive as compared to implicit
schemes and are frequently straightforward to implement. At the same time, however, explicit
schemes have severe stability restrictions which require that the maximum integration time step
size be of the order of the fastest (smallest) timescale (Valorani and Goussis 2001). Therefore,
explicit schemes are exceedingly slow for stiff problems. Implicit schemes, on the other
hand, overcome many of the stability restrictions of explicit schemes and provide solutions
that are accurate at slow scales and stable at fast scales (Oran and Boris 1987). But, since
significant computational time is spent in solving the resulting systems of nonlinear algebraic
equations, implicit schemes are frequently computationally expensive especially when non-
constant diffusion coefficients are used (Najm et al 1999).

A variety of non-split numerical schemes has been developed to integrate directly the
reacting flow equations. One approach to combining the benefits of both explicit and implicit
schemes are implicit–explicit (IMEX) schemes. In these schemes, the individual terms in
the governing equations are integrated using solvers appropriate for each term. In Knoth
and Wolke (1998), for example, an explicit Runge–Kutta scheme is used for the integration
of horizontal advection terms while stiff chemistry and all vertical transport processes are
integrated implicitly by a backward difference method. An alternative to IMEX schemes is
a predictor–corrector methodology. Najm et al (1998) developed a semi-implicit, additive,
stiff scheme for the simulation of two-dimensional flow with detailed chemical kinetics. Their
scheme uses an explicit linear multi-step method in the predictor step and a stiff ODE method
for the chemical source terms in the corrector step. Because their scheme handles diffusion
explicitly, however, the maximum allowable time step size is governed by the diffusion stability
limit. Alternatively, Chen et al (1998) use an explicit finite-difference algorithm for the direct
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numerical simulation (DNS) of reacting flow with detailed chemistry. Their scheme uses a five-
stage fourth-order low storage Runge–Kutta scheme for time advancement and an eighth-order
explicit spatial difference scheme. Finally, Kennedy and Carpenter (2003) have examined the
use of an additive Runge–Kutta scheme for convection–diffusion–reaction equations. This
scheme allows the stiff terms to be integrated by a L-stable, stiffly accurate explicit, singly
diagonal implicit Runge–Kutta method while the non-stiff terms are integrated with a traditional
Runge–Kutta method.

An alternative to the non-split schemes described above are numerical schemes based on
an operator-splitting approach. These schemes consist of a series of sub-steps that involve the
sequential solution of simplified equations that capture only a portion of the physics present.
In the case of atmospheric modelling, for example, chemical reaction processes have been
separated from transport processes (Kim and Cho 1997). The results from the sub-steps are
then combined in such a way that the final solution accurately approximates the solution to
the original equation. Among the most frequently used splitting scheme is the Strang splitting
approach (1968), which is known to be second-order accurate for sufficiently small time steps.
Higher order schemes have been proposed and used for a variety of problems but all require
the use of a negative time step (Goldman and Kaper 1996), which is clearly a non-physical
phenomenon in engineering applications. Operator splitting schemes have been applied in the
context of flame calculations. Yang and Pope (1998) examined the use of an operator-splitting
method for the efficient treatment of combustion chemistry in PDF calculations. In addition,
Najm et al (1999) constructed a stiff, operator-split projection scheme which is used for the
simulation of an unsteady two-dimensional reacting flow with detailed kinetics. Their scheme
involves the use of a Strang-type operator-split integration step which combines several explicit
diffusion sub-steps with a single stiff reaction step. When used on a methane–air flame with
a detailed C1C2 mechanism, their scheme is found to be second-order accurate in time.

To help alleviate the problem of large demands on computer time currently required
by reacting flow simulations, we have focused on the development of a splitting algorithm
which can be used to solve the partial differential equations governing turbulent reacting
flows. Our methodology is centred around Strang splitting (Strang 1968) coupled with
a novel information storage/retrieval procedure that takes explicit advantage of the unique
characteristics of the underlying governing equations. This storage/retrieval procedure, know
as in situ adaptive tabulation (ISAT) (Pope 1997), exploits features of the equations such as their
intrinsic ‘sparseness’ in phase space. When applied to PDF based computational methods, the
ISAT technique has been shown to give speed-up factors of about 1000 when compared to a
direct integration approach which numerically integrates the reaction equations (Pope 1997).
As a result, ISAT has made the use of detailed kinetic mechanisms in calculations of turbulent
combustion feasible on modern computing hardware.

Motivated by the success of ISAT in the context of PDF methods, we describe an ISAT-
based numerical scheme that can be used for the DNS of turbulent reacting flows. Such
a scheme has been designed to reduce CPU time by leveraging ISAT’s ability to compute
efficiently, tabulate, and retrieve the reaction mapping, which is the integral of the reaction
equation for the time �t . It is this task, which ISAT is able to execute efficiently, that is
frequently the CPU time bottle-neck in modern reacting flow codes. With ISAT computing
and tabulating the chemistry, the mixing and flow dynamics are then computed in another
sub-step through the use of an implicit second-order accurate finite-difference scheme. By
taking the approach of separating the chemistry from the flow dynamics, we are able to use
ISAT while maintaining the desired second-order accuracy in both space and time. At the
same time, due to the implicit nature of our scheme, we obtain numerically accurate results
with time steps larger than those required by comparable explicit methods.
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In section 2, we provide a brief review of ISAT and the algorithm used to compute the
reaction mapping. This section is intended to be an overview for completeness of presentation
and further details may be found in other resources (e.g. Pope (1997); applications of ISAT
to reacting flow problems may be found in Xu and Pope (2000), Tang et al (2000), and
Masri et al (2004)). Section 3.1 presents a formulation of our Strang-based splitting scheme
and describes how it is implemented using a second-order implicit finite-difference method.
Section 3.2 discusses motivating considerations behind the development of the splitting scheme
and section 3.3 considers scheme accuracy and stability characteristics. Section 4 presents
computational results using our splitting scheme. These results are based on a model problem
that is an idealization of a hydrogen–air laminar flame with detailed chemical kinetics. In
particular, we examine spatial and temporal convergence results, the impact of ISAT and ODE
solver parameters on solution accuracy, and the CPU time required by ISAT compared to direct
integration. In section 5, we present conclusions and final observations.

2. In situ adaptive tabulation (ISAT)—an overview

In this section, we consider the equations governing a homogeneous, adiabatic, isobaric
system of ns chemical species; coupling with other physical processes, such as convective and
diffusive species transport, is considered in the next section. Let φ denote the thermochemical
composition vector of length ns + 1 which contains the specific mole numbers (mass fraction
over molecular weight), Zi , of each of the ns chemical species and the sensible enthalpy of the
mixture. That is,

φ ≡ {Z1, Z2, Z3, . . . , Zns
, hs}, (1)

where each Zi and hs may be a function of time but is spatially invariant. Then, starting from
an initial composition φ0 = φ(0) at time t = 0, the composition evolves as a function of time
according to the ordinary differential equation

dφ

dt
= S(φ). (2)

Here, S represents a nonlinear function which is the rate of change of φ due to chemical
reactions. Because S models the chemical kinetics of the combustion process under
consideration, its complexity and evaluation cost is related to the underlying chemical kinetics
reaction mechanism. Therefore, when the modelled reactions progress over a broad range of
chemical timescales, S introduces considerable stiffness into the equations and consequently
increases the computational cost of solving equation (2).

Integrating both sides of equation (2) from t ′ = 0 to t ′ = t gives

φ(t) = φ0 +
∫ t

0
S(φ(t ′)) dt ′, (3)

and we define the reaction mapping

R(t, φ0) ≡ φ(t), (4)

as the solution to equation (2) after time t starting from the initial composition φ0. Note that
R is a vector of length ns + 1.

One technique for computing the reaction mapping is direct integration (DI). This approach
involves the use of a numerical integration technique to perform the integration specified in
equation (3). Because of the inherent mathematical complexities of S, DI is a computationally
intensive process since a large number of function evaluations are required and small time
steps are necessary to obtain an accurate solution. Further, when the reaction mapping has
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to be computed for many different initial conditions (i.e. different values of φ0), significant
computational resources are required.

An alternative to DI for computing the reaction mapping is ISAT. ISAT is a storage/retrieval
methodology that was introduced by Pope (1997) to solve equation (2) by computing the
reaction mapping. The essential elements of ISAT are embedded in its full name: in situ,
unstructured, adaptive tabulation of the accessed region, with control of retrieval errors.
ISAT involves the following processes: tabulation of the composition–space reaction mapping
on-the-fly as needed (in situ), accommodation for the a priori unknown topology of the accessed
region (the intrinsic low-dimensional manifold) in composition space (unstructured, adaptive),
and the explicit manipulation of retrieval/interpolation errors (control). Hence, ISAT uses a DI
technique to compute the reaction mapping and then stores the result in a table (implemented
as a binary tree) for possible later use. In addition, at each termination node in the binary
tree (called a leaf node) a hyper-ellipsoidal approximation to the region in composition space
for which the tabulated reaction mapping satisfies the user-defined accuracy tolerance (εtol) is
also stored; this region is called the ellipsoid of accuracy (EOA). When a reaction mapping
must be computed again, the tree is traversed until a leaf is reached. ISAT then determines
whether or not the query composition is within the EOA of the leaf node. If it is, then a linear
approximation to the reaction mapping is returned; this outcome is called an ISAT retrieve.
If the query composition is outside the EOA, then DI is performed to determine the reaction
mapping and the error is measured. If the computed error is within the user-defined tolerance,
then the EOA of the leaf node is grown; this outcome is called an ISAT grow. If, however,
the computed error is greater than the user-defined tolerance, then a new table (tree) entry is
created based on the given query composition; this outcome is called an ISAT addition.

3. An ISAT-based Strang splitting scheme

3.1. Formation of the splitting algorithm

The ISAT splitting scheme developed here is based on Strang splitting (Strang 1968). In
formulating this approach, we consider a one-dimensional time-dependent ideal gas mixture
consisting of ns chemical species: extension to higher spatial dimensions follows the framework
discussed here. Without loss of generality, we consider the physical domain x ∈ [0, L], where
L > 0 is the length of the computational domain; different one-dimensional domains are
obtained by translation and scaling. The pressure is constant and uniform so the state of the
mixture at spatial position x and time t � 0 is then completely specified by the thermochemical
composition vector φ(x, t) as defined by equation (1); here, however, Zi and hs are functions
of both space and time.

We then consider the simplified species evolution equation

∂φ

∂t
= S(φ(x, t)) + Dφ(x, t), (5)

where S(φ(x, t)) represents the reaction source term and D is the molecular diffusion operator
(which operates on the thermochemical composition, φ). The reaction term, given by
S(φ(x, t)), is defined in equation (2) and contains no explicit x dependence.

For the one-dimensional problem under consideration, we take D to be the standard second
spatial derivative and, therefore, have

Dφ = �
∂2φ

∂x2
, (6)



366 M A Singer and S B Pope

where � is the molecular diffusivity. Consequently, the evolution equation for φ becomes

∂φ

∂t
= S(φ) + �

∂2φ

∂x2
. (7)

For simplicity, the molecular diffusion coefficient (�) is taken to be the same for each
composition variable, and it is also taken to be constant and uniform. Clearly, this is not
a realistic approximation to the diffusive transport in a laminar flame. Instead, we regard
equation (7) as a model equation that contains the essential ingredients of complex chemistry
combined with spatial diffusion.

Initially, at t = t0, the thermochemical composition is given by φ(x, t0) = φ0(x).
Boundary conditions are given by φ(0, t) = φL(t) and φ(L, t) = φR(t) at the left and
right end-points of the domain, respectively.

To solve equation (7) numerically, we first consider the semi-discrete case in which time
is discretized in increments �t ≡ (tf − t0)/nt , where tf is the final simulation time and nt is
the total number of time steps. Extension to non-constant �t follows in the same manner but
is not discussed here. For now, spatial variations remain continuous. Then, time is discretely
represented by tn = t0 + n�t , where n = 0, 1, 2, . . . , nt and we introduce the notationally
convenient abbreviation φn = φn(x) = φ(x, tn). The integration of equation (7) forward in
time is then performed as follows: starting from n = 0, the scheme marches in time steps �t

from tn to tn+1. The vector φn serves as the initial condition for computing the vector φn+1,
which is the numerical solution to equation (7) after the time step �t and is obtained by solving
numerically the following systems of equations:

∂φ(1)

∂t
= S(φ(1)), φ(1)(x, 0) = φn on [0, �t/2] (8)

∂φ(2)

∂t
= �

∂2φ(2)

∂x2
, φ(2)(x, 0) = φ(1)(x, �t/2) on [0, �t], (9)

φ(2)(0, t) = φL(t), φ(2)(L, t) = φR(t) (10)

∂φ(3)

∂t
= S(φ(3)), φ(3)(x, 0) = φ(2)(x, �t) on [0, �t/2]. (11)

The final solution after time �t is then φn+1 = φ(3)(x, �t/2). In this sequence of sub-steps,
equation (8) is a pure reaction sub-step over the time interval �t/2 starting from the initial
condition vector φn, which is the thermochemical composition vector at time tn. Equation (9)
is a pure diffusion sub-step over the full time interval, �t , using as an initial condition the
final composition vector obtained from the previous sub-step. Boundary conditions are also
needed and are specified in equation (10). Finally, equation (11) is a pure reaction sub-step
over the time interval �t/2 starting from the final composition of the previous diffusion sub-
step. Hence, the only difference between the first and final reaction sub-steps (equations (8)
and (11)) is the initial condition from which the solution is computed. It should be noted
that for each point x, equation (8) is an ODE that can be integrated to obtain φ(1)(x, �t/2)

independent of φn and φ(1) at other values of x. Similarly for equation (11).
Now that the different physical processes are separated mathematically, we focus on

solving the different reaction and diffusion sub-problems. Since, as described above,
equations (8) and (11) are systems of ODEs at each x location, we may use a direct integration
ODE solver to compute φ(1)(x, �t/2) and φ(3)(x, �t/2) starting from the specified initial
conditions. Alternatively, we may use ISAT to solve equations (8) and (11) by recognizing
that the desired solutions are the reaction mappings:

φ(1)(x, �t/2) = R(�t/2, φn(x)) (12)

φ(3)(x, �t/2) = R(�t/2, φ(2)(x, �t)). (13)
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To solve the pure diffusion equation (9), we apply a second-order implicit Crank–Nicolson
scheme to obtain the semi-discrete equation

φ(2)(x, �t) − φ(2)(x, 0)

�t
= �

2

{
∂2φ(2)(x, �t)

∂x2
+

∂2φ(2)(x, 0)

∂x2

}
. (14)

For the spatial discretization, we consider the grid spacing �x ≡ L/nx , where nx is the total
number of spatial grid points. Then, the locations of the grid points in the computational
domain are xi = i�x, where i = 0, 1, 2, . . . , (nx − 1) and we abbreviate the fully discrete
thermochemical composition vector φ

(2)
i (t) ≡ φ(2)(xi, t). Using second-order centred finite

differences to approximate the second-order spatial derivatives in equation (14) we obtain

φ
(2)
i (�t) − φ

(2)
i (0)

�t
= �

2

{(
φ

(2)
i+1(�t) − 2φ

(2)
i (�t) + φ

(2)
i−1(�t)

�x2

)

+

(
φ

(2)
i+1(0) − 2φ

(2)
i (0) + φ

(2)
i−1(0)

�x2

)}
, (15)

with initial and boundary conditions specified in equations (9) and (10), respectively. When
considered for all nx grid points, the resulting system of algebraic equations is solved using a
LAPACK (Anderson et al 1999) routine optimized to handle tridiagonal systems.

3.2. Motivating considerations

An alternative to the reaction–diffusion–reaction splitting scheme described above is a
diffusion–reaction–diffusion splitting approach. In the former method, the stiff physical
process of chemical reaction occurs as the first and last sub-steps while in the latter method
there is a single reaction sub-step, which is placed between the two diffusion processes. It
has been suggested by Sportisse (2000) that starting and ending the time step with the stiff
physical process leads to a more accurate numerical scheme than the alternative approach of
starting and ending with the non-stiff process. This result is due, in part, to the fact that a
reaction–diffusion–reacting ordering preserves the nature of the attracting manifold to which
the solution tends after the small timescale physical processes have subsided. That is, the
reaction sub-steps tend to pull the solution towards the reduced manifold while the diffusion
sub-steps tend to push the solution away from the manifold. By ensuring that reaction is the first
sub-step, we ensure that the solution is drawn towards the reduced manifold prior to making
corrections for diffusion processes. Further, since reaction is the final sub-step, it is certain
that the solution is again drawn toward the manifold on the final sub-step thereby making it as
accurate as possible. If the solution is not needed at time level n + 1, e.g. for output, then the
final reaction sub-step on the nth step and the first reaction sub-step on the following step can
be combined into a single reaction step of duration �t .

To solve the pure diffusion equation which results from the diffusion sub-step, there
are a variety of finite difference, spectral, finite element, and finite volume numerical
methods available. We have chosen to use the Crank–Nicolson scheme for three primary
reasons: ease of implementation, second-order temporal and spatial accuracies, and favourable
stability characteristics. With regard to the first point, the Crank–Nicolson scheme with
constant diffusivity and the initial and boundary conditions given above is straightforward
to implement and is relatively cheap computationally. Further, extension of the method to
higher spatial dimensions is a direct extension of the one-dimensional case and requires very
little modifications to the code.

With regard to the latter two points, it is well known that the Crank–Nicolson method is
second-order accurate in time and space as �t → 0 and �x → 0 (Strikwerda 1989). This
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level of temporal accuracy is achieved by the use of trapezoidal differencing in time, which
uses two Taylor-series expansions of the solutions φ

(2)
i (0) and φ

(2)
i (�t) (Tennehill et al 1997).

The expansions are then subtracted to yield the second-order implicit scheme. Spatial accuracy
is obtained through the use of second-order centred differences.

When applied to the diffusion equation with constant diffusivity, the Crank–Nicolson
scheme is unconditionally stable (Tennehill et al 1997). As a result, there are no restrictions
on the sizes of �t and �x with regard to stability. Since our calculations seek to use the
largest possible values of �t (in particular, large in comparison to the smallest chemical
timescales) which produce acceptably accurate numerical results, unconditional stability of
Crank–Nicolson is particularly advantageous and a primary motivation behind its selection.

3.3. Accuracy and stability considerations

When considering the spatial and temporal order of accuracy of a numerical scheme, one
usually evaluates the ability of the numerical solution to a discrete approximation equation to
approximate the corresponding exact solution of the original exact equation. This comparison
process is frequently done as the numerical discretization parameters �x and �t approach
zero in the traditional mathematical sense (Strikwerda 1989). In this context, for example, we
may consider the simple finite-difference approximation

∂u(x, t)

∂t
= lim

�t→0

u(x, t + �t) − u(x, t)

�t
, (16)

which relates the derivative of u(x, t) to the values of u. When viewed within this traditional
framework of �t → 0, our Strang splitting scheme is second-order accurate in time regardless
of the stiffness of the underlying system of equations. In the context of stiff systems of
equations that model combustion phenomena, however, considering the numerical accuracy
of a scheme in the limit as �t → 0 is not always the most useful perspective. For these
stiff problems, it is desirable to use a numerical scheme which maintains the desired level of
accuracy for �t > �tchem, where �tchem is the smallest characteristic chemical timescale. By
doing so, the computational speed at which the simulation advances in time is not limited by
the rate at which the fastest chemical reactions progress (smallest �t). Under these time step
conditions, however, traditional mathematical analysis techniques for studying the accuracy of
numerical schemes are not strictly applicable because �t is not small relative to the smallest
chemical timescales.

In light of the remarks above, we investigate numerically the accuracy and convergence
rate of the splitting scheme in section 4. In particular, in the sections to follow we examine the
range of �t over which the time-splitting scheme exhibits second-order temporal accuracy.

4. Results

To examine the accuracy and performance characteristics of the splitting scheme and its use
of ISAT, we consider an idealized one-dimensional freely propagating laminar flame with
constant and uniform density (ρ = 1 g cm−3) and molecular diffusivity (� = 0.77 cm−2 s−1).
For the combustion chemistry we use the 9 species and 19 reaction detailed chemical
kinetics mechanism used in Maas and Pope (1992). We consider the computational domain
x ∈ [0, 1] cm, and the initial condition specific mole number species profiles are specified as

Zinit
i (x) ≡ W(x)Z

(2)
i + (1 − W(x))Z

(1)
i . (17)

Here, Z
(1)
i is the specific mole number of species i in a 300 K and 1 atm stoichiometric

hydrogen–air mixture (taken to be H2, O2, N2 in the volume ratio 42 : 21 : 79). Likewise,
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Figure 1. The function W(x) which is used to specify the initial species and temperature profiles.

Z
(2)
i is the equilibrium specific mole number of species i under the same conditions. The

function W(x) is defined by

W(x) ≡ 1
2 (1 − erf(60(x − 0.15))), (18)

and gives the initial condition profiles their front-like forms centred around x = 0.15 cm and
having a flame thickness of approximately 0.06 cm; W(x) is shown in figure 1.

The initial temperature profile is similarly given by

T (x) = W(x)T (2) + (1 − W(x))T (1), (19)

where T (1) = 300 K and T (2) = 2390 K are the mixture temperatures under the same two
conditions described above. The flame propagates from the left to the right in an otherwise
stationary surrounding (i.e. no convection) and hence the left-end boundary condition is
consistent with that of fully burnt gas while the right-end boundary condition is consistent with
that of a fresh hydrogen–air mixture. As discussed below, a variety of spatial and temporal
resolutions are considered along with different ISAT and ODE solver tolerances.

4.1. Solution profiles

To verify the qualitative behaviour of our results, the species mass fraction and temperature
profiles are examined in detail. Figure 2 shows steady-state flame profiles obtained after a
time of t = 7.32 × 10−4 s; all initial transients have disappeared and the flame continues to
propagate with this profile until it reaches the right-end of the computational domain. Note
that only a tenth of the entire solution domain is shown in the figure. The figure on the
left shows appropriately scaled major species mass fractions and temperature as a function
of position while the figure on the right shows minor species mass fractions. The figures
demonstrate qualitatively correct behaviour as indicated by the profiles and an examination of
the flame width.
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Figure 2. Steady-state solution profiles at time t = 7.32×10−4(s). (a) shows scaled major species
mass fractions as well as temperature of the flame as a function of position. (b) shows minor species
mass fractions as a function of position.

4.2. Scheme convergence

For the spatial and temporal convergence studies presented in this subsection, we consider
temperature differences incurred by the steady-state flame temperature profile for successively
higher resolution spatial and temporal grids. In particular, for the case of spatial convergence,
differences defined as the absolute value of the difference between the temperature using
spatial resolution �x1 = �x and spatial resolution �x2 = �x/2, are examined at four
different spatial locations well within the steady-state laminar flame; the same procedure is
performed for temporal convergence.

To understand the significance of these temperature differences for studying spatial
convergence, consider the exact mixture temperature, T0, at a fixed time and discrete location
in the computational domain. We take �t , εtol, and εabs (the error tolerance used in the ODE
solver discussed in more detail in section 4.4) to be small enough so that spatial errors are
dominant. Then, using a spatial grid resolution �x with a numerical scheme which is O(�xp)

we obtain the approximation

T (�x) = T0 + a�xp, (20)

where a is a constant and T (�x) is the numerically obtained temperature using grid spacing
�x; the numerical temperature, as indicated, is only a function of grid spacing since we are
considering a fixed spatial location at a fixed time. Similarly, when the grid spacing is cut in
half to �x/2 we obtain

T
(

1
2�x

) = T0 + a
(

1
2�x

)p
. (21)

Taking the difference of these two numerically obtained temperatures we obtain

T (�x) − T ( 1
2�x) = a�xp − a( 1

2�x)p (22)

= a′�xp, (23)

where a′ ≡ a(1 − (1/2)p) is a constant. Therefore, when we plot |T (�x)− T (�x/2)| versus
�x on a log–log scale, the slope of the resulting line determines p and hence the order of
spatial convergence. The same reasoning holds for temporal convergence.

For the spatial and temporal convergence studies presented below, we consider exclusively
differences in the temperature as described above. Alternatively, we can consider differences
in the species specific mole numbers or mass fractions. We have examined these quantities
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Figure 3. Temperature of the steady-state flame profile as a function of position at t =
7.32 × 10−4(s). The four different vertical lines show the spatial positions within the flame front
at which spatial convergence is examined (in figure 4).

and each such investigation led us to the same conclusions as stated below. As a result, we do
not present these results but rather focus on temperature differences.

4.2.1. Spatial convergence. To examine the spatial convergence of the splitting scheme, �t

is fixed at �t = 0.1/655 36 ≈ 1.53 × 10−6 s, the ISAT error tolerance (discussed in detail
in section 4.3) is εtol = 1 × 10−7, and the absolute error tolerance used in the ODE solver
(discussed in detail in section 4.4) is εabs = 1 × 10−6; �x is then varied by changing the
number of grid points and we examine temperature differences at fixed spatial locations.
The four locations at which spatial convergence is examined are depicted in figure 3. The
temperature differences are plotted against �x of the coarser of the two grids in figure 4;
the solid lines are lines of slope two. We clearly see from all four sub-figures that the scheme
exhibits second-order accuracy in space as indicated by the numerically obtained points lying
on the line of slope two. For the one or two largest values of �xn shown in the figure, the
spatial resolution is too coarse to accurately predict the flame front location. Consequently,
the resulting data points are not within the asymptotic range of the scheme.

4.2.2. Temporal convergence. Temporal convergence is examined by setting �x = 1/512 ≈
1.95 × 10−3 cm, εtol = 1 × 10−7, εabs = 1 × 10−6, and varying �t , similar to the method used
above for studying the spatial convergence characteristics. The temperatures at four different
spatial locations within the flame front are then used to analyse the temporal convergence rate
of the scheme. Note that, due to spatial resolution differences, the locations at which spatial
convergence (section 4.2.1) and temporal convergence are tested are slightly different.

The plot in figure 5 shows the temperature profile near the flame front as a function of
position. The four vertical lines indicate the positions within the front at which temporal
convergence is examined in figure 6. Figure 6 shows the absolute value of the temperature
differences as functions of temporal resolution, �tn; the solid lines are lines of slope two.
From all four plots, we clearly observe that the scheme exhibits second-order accuracy in time
as anticipated. As seen above for the spatial convergence tests, the data point obtained using
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Figure 4. Demonstration of second-order spatial convergence of the ISAT splitting scheme at
t = 7.32×10−4(s). The temperature differences between successive grids are plotted as a function
of the spatial resolution, �xn, of the coarser grid. The locations at which convergence is examined
are those shown in figure 3.
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Figure 5. Temperature of the steady-state flame profile as a function of position at t =
7.32 × 10−4(s). The four different vertical lines show the spatial positions within the flame front
at which temporal convergence is examined (in figure 6).
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Figure 6. Demonstration of second-order temporal convergence of the ISAT splitting scheme at
t = 7.32×10−4(s). The temperature differences between successive grids are plotted as a function
of temporal resolution, �tn, of the coarser grid. The locations at which convergence is examined
are those shown in figure 5.

the largest value of �tn lacks accuracy due to �t being so large that the correct flame front
location is grossly unpredicted.

4.3. Impact of ISAT error tolerance

The key parameter that controls the accuracy of ISAT is εtol, the user specified local error
tolerance which determines whether or not a given composition is sufficiently close to one that
exists in the table. In combustion calculations we wish to maximize εtol (so as to minimize
computational cost) while still maintaining the desired accuracy requirements. Hence, in this
section we investigate changes in solution accuracy as εtol is changed.

Figures 7 and 8 examine the impact of the ISAT error tolerance on the flame front
temperature and H2O mass fraction profiles, respectively. The results in each figure use
�x = 1/512 ≈ 1.95 × 10−3 cm, �t = 0.1/655 36 ≈ 1.53 × 10−6 s, and εabs = 1 × 10−6

to ensure that spatial, temporal, and ODE solver errors are sufficiently small; based on the
convergence results of sections 4.2.1 and 4.2.2, these values of �x and �t ensure that, with
εtol = 1 × 10−7 (as used for the spatial and temporal convergence studies presented earlier),
the scheme exhibits second-order accuracy in space and time. In figure 7, the normalized (by
the ‘exact’ solution) difference between the ‘exact’ temperature profile (which is computed
using εtol = 1×10−7) and the temperature profiles computed using εtol > 1×10−7 are plotted
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Figure 7. Impact of ISAT error tolerance parameter, εtol, on the steady-state temperature profile.
For reference, the appropriately scaled steady-state flame profile has been represented by a solid
line. The figure plots the percentage difference between the ‘exact’ temperature profile (obtained
with εtol = 1 × 10−7) and the profiles obtained using the various ISAT error tolerances listed.
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Figure 8. Impact of ISAT error tolerance parameter, εtol, on the steady-state H2O profile.
Conditions are the same as shown in figure 7. The figure plots the absolute value of the difference
between the ‘exact’ profile and that obtained using the various ISAT error tolerances.

as functions of distance in the computational domain; all results are shown after the flame has
reached its steady-state profile at a time t = 7.32 × 10−4 s. Figure 8 shows similar results
for the H2O mass fraction profiles. In figure 8, however, note that the differences are not
normalized by the ‘exact’ solution since the mass fraction of H2O ahead of the flame is zero.
For reference, an appropriately scaled laminar flame profile has also been included in each
of the plots. From the figures we observe that ahead of the flame there is no error incurred



Exploiting ISAT to solve the reaction–diffusion equation 375

Figure 9. Impact of ISAT error tolerance parameter, εtol, on temporal convergence. Convergence
is examined at the same spatial locations in the flame as those used in figure 6. The figure
demonstrates convergence of the temperature profile by examining temperature differences as
described in section 4.2. The solid line has slope two and each of the symbols indicates results
obtained using a different value of εtol.

by ISAT while the maximum error occurs within the laminar flame front. Behind the flame,
irregularly oscillating errors are observed which generally decrease with a reduction in εtol.

Due to the solution dependence on εtol, it is informative to examine how the convergence
characteristics of the splitting scheme depend on εtol. If εtol is set to a sufficiently small value,
table retrieves rarely occur and direct integration is done for each time step at each of the
two reaction sub-steps (to solve equations (8) and (11)); the solution accuracy of the reaction
sub-steps is then controlled by the ODE solver tolerances that are discussed in the next section.
As εtol is increased, fewer direct integrations are performed (after an initial table build-up)
and more computationally inexpensive ‘retrieve’ operations are done. Hence, we characterize
both the value of εtol required to maintain the second-order temporal convergence rate and the
associated temporal resolutions, �t , over which this convergence rate is exhibited.

Figures 9 and 10 examine the impact of εtol on the temporal convergence of the splitting
scheme. To ensure that spatial resolution is sufficiently high and thus not a factor influencing
the accuracy of the scheme, we set �x = 1.95 × 10−3 cm. Based on the spatial convergence
results presented earlier, this choice of �x provides adequate resolution (this is the same �x

that is used for the temporal convergence tests presented in section 4.2.2). From the figures, we
observe that second-order convergence is exhibited for all values of �t considered provided
εtol � 1 × 10−6. When values εtol � 1 × 10−6 are used, the scheme does not maintain
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Figure 10. Impact of ISAT error tolerance parameter, εtol, on temporal convergence. Convergence
is examined at the same spatial locations in the flame as those used in figure 6. The figure
demonstrates convergence of the major species H2O mass fraction profile. The solid line has
slope two and each of the symbols indicates results obtained using a different value of εtol. Other
major and minor species show similar convergence results.

its second-order convergence rate for small values of �t (see figures 9 and 10 for a more
precise characterization of ‘small’ since the critical value of �t at which order reduction is
observed is dependent on εtol). For larger values of �t , however, a second-order convergence
rate is observed for εtol � 1 × 10−4. From the figures, we therefore conclude that a value of
εtol � 1 × 10−6 ensures that the scheme will exhibit second-order temporal accuracy when
7.63 × 10−7 ≈ 0.1/131 072 � �t � 0.1/8192 ≈ 1.22 × 10−5 provided spatial and ODE
solver tolerances (discussed in section 4.4) are not an accuracy limiting factor. In addition,
as εtol increases, the scheme exhibits second-order accuracy over a smaller range of �t ; the
smallest value of �t in the second-order region increases as εtol increases. When �t becomes
sufficiently large, however, numerically obtained solutions contain large amounts of error and
the scheme fails to produce accurate results. Therefore, εtol must be small enough such that
second-order accuracy is achieved over an appropriately sized range of �t .

Finally, recall that one of the motivations behind the use of a splitting scheme is to develop
an algorithm that allows the use of large values of �t . In particular, the scheme is to remain
numerically stable and produce accurate results for values of �t that are large in comparison to
the relatively fast chemical timescales. To this end, ISAT uses an implicit stiff ODE solver and
we use the implicit Crank–Nicolson method to compute the diffusion sub-step. Consequently,
when examining the results found in figures 9 and 10, the convergence rates for relatively large
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Figure 11. Impact of the error tolerance used in the ODE solver on temperature differences of the
steady-state temperature profile. For reference, the scaled steady-state flame profile is represented
by a solid line. The figure shows the percentage difference between the ‘exact’ temperature profile
(obtained with εabs = 1 × 10−7) and the profiles obtained using the various ODE solver error
tolerances listed.

values of �t , which enhance scheme efficiency while still producing a sufficiently accurate
solution, are of particular interest. As a result, the use of εtol � 1 × 10−5 is likely to be
adequate for most computations of the simplified laminar flame considered here, especially if
large values of �t are used.

4.4. Impact of ODE solver error tolerance

In addition to the ISAT error tolerance parameter discussed above, the solution accuracy of
the scheme is dependent on the underlying ODE solver error tolerance. For the case of ISAT,
the ODE solver DDASAC (double precision differential/algebraic sensitivity analysis code)
(Caracotsios and Stewart 1985) is used to integrate equation (2). DDASAC, a library of
Fortran routines which solves nonlinear initial-value problems involving stiff implicit systems
of ordinary differential and algebraic equations, contains two error tolerance parameters:
εabs which controls the absolute error in the solution and εrel which controls the maximum
allowable relative error in the solution. In this section we investigate the impact of εabs

on the temporal accuracy of the splitting scheme and, in particular, determine the range of
εabs and corresponding �t over which the scheme exhibits temporal second-order accuracy.
Characterization of how the scheme accuracy changes as a function of εabs is also investigated.

To ensure that spatial and ISAT error tolerance errors are not a factor influencing overall
scheme accuracy, we set the spatial grid resolution to �x = 1/512 ≈ 1.95 × 10−3 cm and
the ISAT error tolerance to εtol = 1 × 10−7. Based on the results shown earlier for the spatial
convergence tests and ISAT error tolerance investigation, these settings ensure that temporal
errors resulting from changes in �t are the dominant source of numerical error. The ODE
relative error tolerance parameter is εrel = 1 × 10−9 and is held constant throughout.

Figures 11 and 12 examine the impact of changes in εabs on the temperature and H2O
mass fraction profiles. In figure 11, the percentage difference between the ‘exact’ temperature
profile (obtained using �x = 1/512 ≈ 1.95 × 10−3 cm, �t = 0.1/655 36 ≈ 1.53 × 10−6 s,
εtol = 1 × 10−7, and εabs = 1 × 10−7) and the temperature profile obtained using different
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Figure 12. Impact of the error tolerance used in the ODE solver on differences in the steady-state
H2O mass fraction profile. Conditions are the same as those in figure 11. The figure plots the
absolute value of the difference between the ‘exact’ profile and that obtained using the various
ODE error tolerances.

ODE absolute error tolerances is shown. As anticipated, the error in the temperature profile
is reduced as the ODE error tolerance is reduced, thereby forcing the solver to compute more
accurate solutions to the systems of differential equations. Further, it is noted that the largest
percent difference occurs well within the flame-front and has a peak value of approximately
15.25% for εabs = 1 × 10−3 and approximately 0.03% for εabs = 1 × 10−6. Behind the flame,
non-zero errors are observed while ahead of the flame there is zero error in the temperature
profile for all the ODE error tolerances considered. Figure 12 shows a similar plot for the major
species H2O. As discussed in section 4.3, the H2O mass fraction differences shown in figure 12
have not been normalized by the ‘exact’ solution (and therefore do not represent a percentage)
since the mass fraction of H2O is zero ahead of the flame. Qualitatively similar results to those
obtained for the temperature and H2O profiles are observed for other species profiles.

With the accuracy of the scheme being dependent on the ODE solver parameter εabs, it
is informative to examine the sensitivity of the scheme convergence rate to changes in εabs.
In figures 13 and 14, convergence studies of the splitting scheme are shown for a variety
of different ODE solver tolerances. From the figures we observe a weak dependence of the
convergence rate on εabs. That is, the scheme maintains its second-order convergence rate for
nearly all the tested values of �t for ODE solver tolerances εabs = 1×10−3 to εabs = 1×10−7.
For the case when εabs = 1 × 10−3, however, the accuracy of the scheme is compromised as
indicated by temperature and H2O mass fraction differences being slightly different from those
obtained using εabs < 1×10−3. Further, by comparison, the sensitivity of the scheme accuracy
and convergence rate to changes in εabs are less than the corresponding changes in the ISAT
error tolerance εtol.

4.5. CPU timings

One of the primary motivations behind the use of ISAT lies in the potential for considerable
savings in CPU time as compared with direct numerical integration. As the number of chemical
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Figure 13. Impact of the error tolerance used in the ODE solver on temporal convergence of the
steady-state temperature. Convergence is examined at the same locations in the flame as those used
in figure 6. The figure demonstrates convergence of the temperature at selected spatial locations
by examining temperature differences as described in section 4.2. The solid line has slope two and
each of the symbols indicates results obtained using a different value of εtol.

species and the complexity of the chemical reaction mechanism increase, the CPU time required
to integrate equation (2) increases and an even greater potential computational time savings can
be offered by a tabulation approach. In this section, we quantitatively measure the CPU time
savings associated with the use of ISAT over direct integration for the model flame problem.
All tests are performed on a single processor Sun Blade 100 workstation with a 502 MHz
processor and 1 GB of memory. The spatial resolution is �x = 1/512 ≈ 1.95 × 10−3 cm,
the temporal resolution is �t = 0.1/327 68 ≈ 3.05 × 10−6 s, the ODE error tolerance is
εabs = 1 × 10−6, and the ISAT error tolerance is εtol = 1 × 10−7. To obtain results for an
extended period of simulation time without the flame propagating out of the computational
domain, a flame front shifting procedure is used to keep the flame centred in the computational
domain. That is, at the completion of each time step the temperature at the centre grid point of
the computational domain is examined. If the temperature is greater than the mean of the fully
burnt mixture temperature (left end-point) and the fresh mixture temperature (right end-point),
then all flame points are shifted to the left by one grid spacing; the ‘new’ grid point at the
right-end of the domain is given the composition of fresh gas. This procedure does not affect
the numerical accuracy of the scheme and does not require knowledge of the laminar flame
speed. The computational time to perform such calculations is excluded from the CPU time
results presented below.
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Figure 14. Impact of the error tolerance used in the ODE solver on temporal convergence of
the steady-state H2O mass fraction. Convergence is examined at the same locations in the flame
as those used in figure 6. The figure demonstrates convergence of the H2O mass fraction at
selected spatial locations. The solid line has slope two and each of the symbols indicates results
obtained using a different value of εtol. Other major and minor species show similar convergence
results.

Figure 15 shows the cumulative CPU time as a function of simulation time using both
direct integration and ISAT; the x-axis in figure 15(a) is scaled to illustrate the initial start-up
process. From figure 15(b) we observe that, initially, ISAT is slower than DI and consumes
more CPU time for t � 5 × 10−5. During this initial start-up period, ISAT is satisfying
composition queries by performing direct integrations using DDASAC and then tabulating the
results; the overhead incurred as the table is built and stored results in increased CPU time in
comparison to DI. For t � 8×10−5, however, ISAT is able to satisfy a significant portion of the
composition queries by retrieve operations and thereby consumes less CPU time than DI. To
illustrate this initial table build-up process more clearly, figure 16 shows the number of ISAT
table retrieves, grows, and additions as a function of the number of ISAT queries. Initially, all
ISAT queries are satisfied by direct integrations as shown in the figure. After approximately
102 queries, however, the majority of events are ISAT retrieves.

To examine further the computational savings of ISAT over DI, figures 17(a) and 17(b)
show the computational speed-up factor as a function of time, where the speed-up factor is
defined as

speed-up factor = CPU time using DI

CPU time using ISAT
. (24)
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Figure 15. CPU time comparison for direct integration and ISAT. Both figures show CPU time
as a function of simulation time with �x ≈ 1.95 × 10−3, �t ≈ 3.05 × 10−6, εabs = 1 × 10−6,
and εtol = 1 × 10−7; (a) highlights the CPU time comparison of ISAT and DI during the initial
simulation time during which ISAT is building the table; (b) shows the long-time cumulative CPU
time comparison characteristics.
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Figure 16. Number of ISAT retrieves, grows and additions as a function of the number of ISAT
queries.

From figure 17(a) we observe that, initially, the speed-up is around 0.75 indicating that DI
consumes less CPU time than ISAT, as discussed earlier. Subsequently, the speed-up factor is
greater than one, indicating that ISAT demands less CPU time than DI. Therefore, following
an initial table build-up, DI requires approximately 4.5–5 times more CPU time than ISAT
for this model problem which is an idealization of a hydrogen–air laminar flame. Greater
speed-ups can be expected when more complicated chemical kinetics are used.

In addition to the ISAT performance characteristics discussed above, it is appropriate to
consider the computer memory requirements necessary to store the ISAT table. For a given
flame calculation, the amount of computer memory needed to store a given table entry scales
as n2

s . The total memory required to store the entire table depends on the size of the ISAT table;
table size is influenced by such factors as the ISAT error tolerance and the size of the reaction
phase space that is accessed during a calculation. For the laminar flame problem considered,
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Figure 17. Speed-up achieved by ISAT where speed-up is defined by equation (24). Results
obtained with �x ≈ 1.95 × 10−3, �t ≈ 3.05 × 10−6, εabs = 1 × 10−6, and εtol = 1 × 10−7;
(a) shows detailed results during the initial start-up phase of the simulation (i.e. as ISAT is building
the table) as indicated by the relatively fine x-axis scaling; (b) shows the long-time behaviour of
the speed-up.

for example, the accessed region of phase space is presumably smaller than for a turbulent
flame or auto-ignition problem. Consequently, table size and storage requirements for the test
problem are relatively small. In particular, for the calculations described above, with εtol =
1 × 10−6, the ISAT table contains approximately 27 000 entries and requires approximately
64.5 megabytes of storage; the ISAT table is queried approximately 1.2 × 107 times.

5. Conclusions

This work has focused on the development and implementation of a Strang-based operator
splitting numerical scheme, which can be used for modelling flames in unsteady flows with
detailed stiff chemical kinetics. To compute the pure diffusion sub-step, the Crank–Nicolson
implicit scheme is used. This scheme is chosen due to its favourable accuracy and stability
characteristics as well as its relative ease of implementation. For the pure reaction sub-steps,
the adaptive tabulation scheme ISAT is used which makes use of a stiff ODE solver. These two
methodologies are combined in such a way that second-order spatial and temporal accuracy
are achieved as demonstrated by a premixed one-dimensional flame model problem. The
impact of both ISAT and ODE error tolerance parameters on solution accuracy and scheme
convergence rates is examined for the hydrogen–air problem; changes in the ISAT error
tolerance are found to have a greater impact on scheme convergence than changes in the ODE
error tolerance parameter. Finally, the CPU time savings obtained by the use of ISAT rather
than direct integration is explored; ISAT is found to be approximately 4.5–5 times faster than
direct integration (after an initial table build-up) for the idealized hydrogen/air model problem
considered here. Greater speed-ups are likely in the case of more complex (e.g. hydrocarbon)
chemistry and realistic reacting flow conditions.
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