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We further increase the computational performance of an operator-split projection scheme for the solu-
tion of the equations governing reacting flows with detailed chemistry. This enhancement is achieved
by using in situ adaptive tabulation (ISAT) to compute the pure reaction sub-steps; the treatment of dif-
fusion and convection is unchanged. The modified scheme is applied to an unsteady one-dimensional
laminar premixed methane–air flame problem using detailed GRIMech3.0 chemical kinetics. For
this problem we demonstrate second-order temporal convergence, investigate the impact of the ISAT
error tolerance on solution accuracy, and compare results with and without ISAT. Computational per-
formance is also examined where we observe a reaction sub-step speed-up factor due to ISAT of
approximately 13; the overall time step speed-up is approximately 7.5. Extension of the scheme to
multiple dimensions is discussed.
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1. Introduction

The direct numerical simulation (DNS) of turbulent reacting flows is a computationally chal-
lenging task which requires considerable computing power. Among the reasons for such high
demands on computing resources is the requirement that DNS resolve completely all of the
length scales in a turbulent flow. For engineering scale flows with Reynolds numbers of the
order 105, this means finely spaced grids are required to discretize the governing equations.
In addition to turbulence resolution, the presence of chemical reactions also contributes to the
computational expense. The accurate modeling of combustion processes using detailed reac-
tion mechanisms introduces stiff systems of differential equations which must be solved. Fur-
ther, the combustion chemistry can also introduce length scales smaller than the Kolmogorov
turbulence length scale: these scales must be resolved adequately. As a result, the develop-
ment of numerically efficient DNS algorithms which reduce the demands on computational
resources is necessary to allow DNS to be applied to a greater range of problems.
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The present work describes the incorporation of in situ adaptive tabulation (ISAT) [1]
into the algorithm of Najm and Knio [2] so as to reduce significantly the computational
cost of reacting flow computations. ISAT is a storage/retrieval procedure which works in
conjunction with an ordinary differential equation (ODE) integrator to solve the evolution
equations for an adiabatic, isobaric mixture: the mixture composition changes solely as a result
of chemical reactions. Therefore, to account numerically for mixture composition changes
due to convection and diffusion, an operator-splitting numerical approach which separates
species evolution due to transport from changes due to chemical reaction is most natural.
The operator-split projection scheme of [2] does just that. Developed in the context of the
low Mach number reacting flow equations, this scheme has been used for simulating one-
and two-dimensional laminar flames; the same methodologies and framework, however, can
also be applied to the fully compressible flow equations in the context of DNS of turbulent
flames. The scheme separates chemical species diffusion from species reaction while treating
convection explicitly; the scheme serves as the base algorithm into which we insert ISAT.
Due to the use of operator-splitting, the incorporation of ISAT into this scheme involves only
modification of the chemical reaction sub-steps: the remainder of the algorithm is unchanged.

In addition to ISAT, other computational methods are used to reduce the computational
cost of solving the equations governing combustion chemistry. In [3], for example, the Flame
Prolongation of ILDM (FPI) model was used to describe premixed, partially premixed, and
diffusion combustion. Alternatively, an adaptive chemistry approach was taken in [4] wherein
different chemical kinetics models were used in different regions of the computational domain.
The Piecewise Reusable Implementation of Solution Mapping (PRISM) [5, 6] method is also
used to reduce the computational cost of reacting flow computations. In [7], for example,
PRISM was applied in adaptive turbulent premixed flame calculations.

In recent years, operator-splitting schemes have been used in a variety of scientific appli-
cations including reacting flow simulations. In [8] and [9], for example, operator-splitting is
used to separate chemical reaction processes from transport processes in atmospheric mod-
eling simulations. Schwer et al. [10] also used an operator-split scheme to study an H2/O2

burner flame and three partially premixed laminar methane flames using detailed chemistry.
Their work also examined the accuracy and effectiveness of operator-split methods for com-
puting steady-state reacting flows. In [11], Najm and Wyckoff constructed a second-order
predictor-corrector projection scheme to solve the two-dimensional low Mach number react-
ing flow equations. Their scheme was then extended to an additive semi-implicit projection
scheme [12]: a stiff, operator-split construction then followed [13]. Most recently, the scheme
has seen performance enhancements and the incorporation of detailed transport models [2].
Day and Bell [14] have used operator-splitting in the context of an adaptive projection scheme
for low Mach number reacting flows. Their scheme has been applied to such areas as steady
and unsteady methane diffusion flames [14], three-dimensional premixed turbulent methane
flames [15], and Type 1a supernovae [16].

ISAT has been used beneficially in conjunction with operator-splitting schemes. Yang and
Pope [17], for example, used operator-splitting in the context of PDF calculations of turbulent
reacting flows. Their work showed that an operator-split formulation coupled with ISAT
can speed-up PDF calculations by a factor of 100–1000 over the use of direct integration.
Further, Singer and Pope [18] used ISAT with Strang splitting for unsteady one-dimensional
calculations corresponding to a constant density and constant molecular diffusivity laminar
flame: an ISAT speed-up factor around 5 was observed. ISAT has yet to be applied to the DNS
of reacting flows.

In section 2 we review briefly the low Mach number conservation equations and the as-
sumptions underlying the present formulation. Section 3 describes the numerical scheme used
to solve these governing equations. We begin by reviewing the operator-split construction
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in [2] and then describe the modifications made to the original scheme to allow ISAT to be
used; additional remarks follow. Section 4 presents computational results obtained using the
modified splitting scheme with ISAT. These results are based on a one-dimensional laminar
methane–air flame problem which includes detailed chemical kinetics. This problem serves as
a test case for demonstrating the temporal convergence and accuracy of the scheme: two- and
three-dimensional unsteady flame calculations, for which such studies are too expensive com-
putationally, are of primary interest and will be studied in subsequent work. However, because
the modifications of the algorithm discussed here pertain only to the time-stepping portion of
the scheme and are unrelated to the spatial differencing, the one-dimensional problem serves as
an adequate test. A detailed study of spatial convergence and accuracy of the original scheme
is found in [13]. Finally, in section 5 we summarize and draw final conclusions.

2. Governing equations

The transport equations used here to model reactive flow are identical to those used in [11]
for the original scheme formulation. We now briefly review the underlying assumptions and
state the governing equations.

The model assumes an ideal gas mixture with zero bulk viscosity. Soret and Dufour effects,
external body forces, and radiant heat transfer are neglected. The governing equations are
based on the zero Mach number limit of the compressible conservation equations [19, 20].
In this limit, the detailed effects of acoustic waves are ignored while still allowing for large
heat release, significant variations in density and temperature, and the interaction of combus-
tion with the hydrodynamic flow field [20]. For the problems considered in this work, the
computational domains have boundaries open to the atmosphere.

Based on the assumptions above, the non-dimensional equations governing the conservation
of mass, momentum, energy, and chemical species are:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇ p + 1

Re
Φ, (2)

∂T

∂t
+ u · ∇T = 1

Re Pr

∇ · (λ∇T )

ρcp
+ 1

Re Sc

Z · ∇T

cp
+ Da

ωT

ρcp
, (3)

∂(ρYi )

∂t
+ ∇ · (ρuYi ) = 1

Re Sc
∇ · (ρYi Vi ) + Da ωi , (4)

respectively. Here, ρ is the density, u is the velocity vector, p is the hydrodynamic pressure,Φ is
the divergence of the viscous stress tensor, T is the temperature, λ is the thermal conductivity,
ωT is the rate of heat release, Yi is the mass fraction of species i , ωi is the net chemical
production rate of species i , and

cp =
ns∑

i=1

Yi cp,i , (5)

is the mixture specific heat where ns is the number of chemical species and cp,i is the specific
heat at constant pressure of species i . The constants Re, Pr, Sc, and Da are the Reynolds,
Prandtl, Schmidt, and Damköhler numbers, respectively.

The conservation equations above are supplemented with the equation of state

P0 = ρT/W, (6)
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where P0 is the constant thermodynamic pressure and W ≡ 1/
∑ns

i=1 Yi/Wi is the local effec-
tive molar mass of the mixture; Wi is the molecular weight of species i .

As in [12, 13], we use Fick’s first law of diffusion which relates the diffusive flux of species
i to its mass fraction gradient [21]. Then, we use the approximation that the ns-th chemical
species, taken to be N2, dominates the mixture characteristics such that the binary diffusion
velocity of any other species i �= ns in the mixture is approximated by

Vi = − 1

Yi
Dins ∇Yi , i = 1, 2, . . . , ns − 1, (7)

where Dins is the binary mass diffusion coefficient of species i into N2 at the local temperature
and pressure of the mixture. Finally, we define Z ≡ − ∑ns

i=1 cp,i Yi Vi = ∑ns
i=1 cp,iDins ∇Yi

where again use is made of Fick’s law for expressing the diffusion velocity in terms of the
mass fraction gradient. For computational efficiency, the mixture transport properties µ and
λ are set to those of N2 at the local temperature [12]. All of the assumptions described above
are consistent with those used in [12, 13] to construct the original splitting scheme; they are
summarized here for completeness. Finally, we note that use of detailed transport models (e.g.
mixture-averaged) is necessary for more realistic computations.

3. Numerical scheme

In this section, we describe the numerical scheme used to discretize the low Mach number
equations. In section 3.1 we review the original operator-split scheme of [2] into which ISAT
is incorporated. Then, in section 3.2 we describe in detail how ISAT is incorporated into the
original operator-split scheme. Finally, in section 3.3 we provide some additional remarks
regarding the formulation and implementation of the scheme.

For notational convenience, the equations are expressed as follows

∂(ρYi )

∂t
= Ci + Di + Ri , (8)

∂ρ

∂t
= Cρ + Dρ + Rρ, (9)

∂(ρu)

∂t
= N(ρ, u) + F(µ, u) − ∇ p, (10)

where

Ci ≡ −∇ · (ρuYi ), Di ≡ 1

Re Sc
∇ · (ρDins ∇Yi ), Ri ≡ Da ωi , (11)

Cρ ≡ ρ

T
u · ∇T + W

ns∑
i=1

ρu · ∇Yi

Wi
, (12)

Rρ ≡ − 1

cpT
Da ωT − W

ns∑
i=1

Da
ωi

Wi
, (13)

Dρ ≡ − 1

Re Pr cpT
∇ · (λ∇T ) + ρ

T

1

cpRe Sc
Z · ∇T

− W

Re Sc

ns∑
i=1

∇ · (ρDins ∇Yi )

Wi
, (14)

and the convective and viscous terms of the momentum equation are denoted by N(ρ, u)
and F(µ, u), respectively. To obtain equation (9) for the time evolution of density, we first
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differentiate the equation of state with respect to time. Then, equations (3) and (4) are substi-
tuted for the temperature and species mass fraction time derivatives, respectively.

3.1 Existing operator-splitting scheme

The numerical algorithm summarized here follows closely the operator-split formulation of
Najm and Knio [2]. The scheme combines a predictor/corrector construction with a Strang
splitting procedure which solves the above described conservation equations by separating the
diffusion terms from the reaction terms.

For the predictor portion of the algorithm, the convection terms in the species and density
equations are evaluated explicitly using a second-order Adams-Bashforth (AB2) scheme:

Ce
i = 3

2
Cn

i − 1

2
Cn−1

i , (15)

Se
ρ = 3

2
Cn

ρ − 1

2
Cn−1

ρ . (16)

The diffusion sub-steps are integrated using a stabilized Runge–Kutta–Chebyshev (RKC)
method [22]. The equations governing the reaction sub-steps are

d(ρYi )

dt
= Ri + 1

2
Ce

i , (17)

dρ

dt
= Rρ + 1

2
Se

ρ, (18)

T = P0W

ρ
, (19)

and these equations are integrated using the ODE integration package DVODE [24].
Following the Strang-based splitting predictor stage of the scheme is a non-stiff corrector

phase which is required for the stability of the variable-density projection scheme [11] and
allows for the stable treatment of flows with large density variations [13].

3.2 Incorporation of ISAT

Starting from an intial state of the composition specified by {Y, T, P0} and a time increment
�t , ISAT computes the state of the composition after a time �t . This new state is obtained
by solving the equations governing a homogeneous, adiabatic, isobaric system of ns chemical
species

dYi

dt
= Ri

ρ
, (20)

dρ

dt
= Rρ, (21)

and the ideal gas constraint (equation (6)).
To use ISAT for the reaction sub-steps of the original scheme, we manipulate equations (17)–

(19) into a form which is solved using ISAT. This is done by first writing the reaction sub-step
equations in the following form:

d(ρYi )

dt
=

(
1

2
Ce

i − Yi Rρ

)
+ [Yi Rρ + Ri ], (22)
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dρ

dt
=

(
1

2
Se

ρ

)
+ [Rρ], (23)

T = P0W

ρ
. (24)

As in the original scheme, this system of equations is integrated over a time step �t . Here,
however, we incorporate ISAT by applying a second Strang splitting procedure as follows:

S1. The terms in parentheses ( ) in equations (22) and (23) are integrated over �t/2 by
solving

d
(
ρ(a)Y (a)

i

)
dt

= 1

2
Ce

i − Y (a)
i R(a)

ρ , (25)

dρ(a)

dt
= 1

2
Se

ρ, (26)

and the ideal gas equation of state. Here, R(a)
ρ denotes Rρ evaluated using the state of the

system determined by {ρ(a), Y(a), T (a)}. The initial condition is taken to be the final system
state from the previous diffusion sub-step. This non-stiff system of equations is integrated
over �t/2 using a standard second-order, single-stage Runge–Kutta (RK2) scheme.

S2. The remaining terms in square brackets [ ] in equations (22) and (23) are re-expressed
as

dY (b)
i

dt
= R(b)

i

ρ
, (27)

dρ(b)

dt
= R(b)

ρ , (28)

and are integrated over a full time step, �t : the equation of state is used to determine the
temperature of the system. Here again, R(b)

i denotes Ri evaluated using the state of the system
determined by {ρ(b), Y(b), T (b)}. The initial conditions correspond to the final state of the
system from the previous sub-step, {ρ(a)(�t

2 ), Y(a)(�t
2 ), T (a)(�t

2 )}. This system of equations
is exactly that given by equations (20) and (21): the equations solved by ISAT. Hence ISAT
is used to solve the equations above. The resulting mass fractions and density are used to
compute the temperature; the new state of the system is {ρ(b)(�t), Y(b)(�t), T (b)(�t)}.

S3. A sub-step identical to S1 is performed taking as the initial conditions the final state
of the system from S2, {ρ(b)(�t), Y(b)(�t), T (b)(�t)}. At the completion of this sub-step, the
final state of the system is given by {ρ(c)(�t

2 ), Y(c)(�t
2 ), T (c)(�t

2 )}. This serves as the initial
condition for the next Strang diffusion sub-step in the original scheme.

3.3 Additional remarks

3.3.1 Temporal accuracy. With DVODE used for calculation of the reaction sub-steps,
the original scheme described above is second-order accurate in time [2]. In the present work,
the incorporation of ISAT is performed in a manner designed to preserve the second-order
convergence rate of the scheme. In particular, we use second-order accurate Strang sub-splitting
and a second-order Runge–Kutta scheme. The test problem and associated results described
below demonstrate that second-order temporal accuracy is indeed preserved.

3.3.2 Strang sub-splitting. As noted above, the second splitting procedure (Strang sub-
splitting) is necessary in order to manipulate the density and species mass fraction equations
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into a form which can be solved using existing ISAT libraries. The first and last sub-steps
involve systems of non-stiff ODEs which are integrated using a second-order Runge–Kutta
scheme. The use of RK2 preserves the overall second-order temporal accuracy of the scheme
while requiring only two source term evaluations per sub-step; the source terms for the density
equation are constant and pre-computed at the beginning of each time step. Finally, we note
that the pure reaction sub-steps contain all of the stiffness due to the chemical reaction source
terms; these equations are solved using ISAT.

3.3.3 Spatial discretization. For the current implementation of the algorithm described
above, spatial gradients are approximated using second-order centered finite differences.
Near domain boundaries, these differences are evaluated using ghost cells which lie out-
side of the computational domain. These extra cells are necessary for proper implementation
of the boundary conditions and maintain the overall second-order spatial accuracy of the
scheme.

3.3.4 Scheme stability. The numerical stability of the scheme without ISAT is discussed
extensively in [2, 11–13]. Here we summarize by remarking that the corrector portion of the
algorithm enhances the coupling between the density, velocity, and hydrodynamic pressure
fields thereby contributing to the overall stability of the scheme [11]. In addition, due to
the extended stability region of the RKC scheme, integration of the diffusion sub-steps can
be performed with larger global integration time steps than usable by treating the diffusion
terms using an explicit multistep scheme. Further, as discussed in [2], RKC requires fewer
computationally expensive source term evaluations and hence exhibits a significant computa-
tional speed-up in comparison to an explicit multistep scheme.

The inclusion of ISAT for computing the reaction sub-steps does not alter the stability
characteristics of the reaction portion of the algorithm. The two RK2 sub-steps of the Strang
sub-splitting procedure do, however, impose stability restrictions on �t . These constraints on
�t are less restrictive then those due to diffusion processes and hence are not found to impact
the overall stability of the scheme.

4. Results

We examine the accuracy and performance characteristics of the predictor/corrector splitting
scheme and its use of ISAT. To do so, we consider a one-dimensional freely propagating
laminar premixed methane–air flame at atmospheric pressure. This test problem is used for
accuracy and convergence studies of the original scheme [2, 12, 13] and serves as an application
on which the scheme modifications are thoroughly tested within a reasonable amount of CPU
time: applications of greater spatial complexity (i.e. two- and three-dimensional) are expected
to exhibit similar temporal characteristic since scheme modifications are confined to the time-
stepping portion of the algorithm. For the problem considered here, the fresh unburnt gas is a
stoichiometric mixture of methane and air at 300 K and 1 atm pressure. For the combustion
chemistry we use GRImech3.0 [26] which consists of 53 species and 325 reversible chemical
reactions. The number of RKC diffusion and momentum stages are set to S = 8 and L = 4,
respectively. A more complete discussion of the impact of S and L on scheme accuracy and
convergence is found in [2].

The dynamic viscosity (µ), thermal conductivity (λ), and diffusion coefficients (Dins ) are
pre-computed using Chemkin [27, 28] and tabulated as functions of temperature; trans-
port quantities used in the calculations are then computed from table values using linear
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interpolation. As used in [12, 13], all tables have a temperature increment of �T = 0.01 K.
The tables containing µ and λ have approximately 24,000 entries while the table containing
Dins has approximately 24,000 entries per species. This approach to computing the transport
properties speeds the calculations while maintaining the spatial and temporal accuracy of the
scheme [13]. Since the primary purpose of the test problem is to demonstrate scheme conver-
gence, accuracy, and performance, the use of tabulated transport properties is sufficient for
the present study. It should be noted, however, that use of detailed transport models will affect
the overall CPU time and could impact the performance of the scheme.

To begin the calculations, a freely propagating stoichiometric premixed methane–air flame
with the above chemical mechanism is first computed using Chemkin in one spatial dimension.
The steady-state solution is then interpolated onto a uniform one-dimensional grid and used as
the initial condition for the computations. We consider the computational domain having 512
grid points in x ∈ [0, 0.8] cm with outflow boundary conditions. In a reference frame fixed on
the computational domain, the flame propagates from right to left. Initially, the flow exhibits
a period of unsteady propagation as the flame structure, position, and reactions rates adjust
to the spatial grid discretization and transport coefficients used in the present code; these are
different than those used by Chemkin to obtain the initial flame profile. Following this period
of unsteadiness, the flame propagates with a constant speed—the laminar flame speed. For
the results shown below the flame remains sufficiently far from the computational boundaries
so that boundary effects are minimal.

In section 4.1 we show steady-state flame profiles which demonstrate the qualitative nature
of the solutions. Section 4.2 examines the accuracy and convergence of the scheme and
demonstrates the consistency of the ISAT scheme with the DVODE scheme. In section 4.3
we examine the impact of the ISAT error tolerance on solution accuracy. DVODE and ISAT
results are compared thoroughly in section 4.4 and computational performance is discussed
in section 4.5. Finally, section 4.6 provides further discussion regarding the scheme and its
implementation.

4.1 Solution profiles

The qualitative nature of the solution is examined by viewing species and temperature profiles.
Figure 1 shows steady-state flame profiles at time t ≈ 3.8 × 10−5 s; all initial transients have
disappeared and the flame continues to propagate with this profile until it reaches the left-
end of the computational domain. The figure demonstrates qualitatively expected behavior as
indicated by comparing the profiles with other work [13, 30].

To quantify numerically our spatial grid resolution in relation to the flame width, we
characterize the width of the flame by

δL ≡ Tb − Tu

max(|dT/dx |) , (29)

where Tb and Tu are the burnt and unburnt mixture temperatures, respectively [11]. Using this
expression and the profile data from Figure 1 we obtain δL ≈ 4.16 × 10−2 cm. Given that the
spatial resolution is �x = 0.8 cm/512 ≈ 1.56×10−3 cm, we note that there are approximately
26 grid points in the flame; a sufficient number to resolve completely the flame structure.

4.2 Temporal convergence

In this section we examine the temporal convergence properties of the scheme. Before begin-
ning, however, we note that the originally constructed scheme which uses DVODE for the
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Figure 1. Steady-state solution profiles of major species mass fractions and temperature at time t ≈ 3.8 × 10−5 s.
Ambient temperature reactants are on the left and hot combustion products are on the right.

reaction sub-steps [2] is second-order accurate in �t . This convergence rate was demonstrated
for both self-convergence of the scheme (differences of numerically obtained field quantities
using successively higher temporal resolution) and cross-convergence of the scheme (error in
the splitting scheme in relation to a non-split formulation).

All of the results for this convergence study are obtained at time t ≈ 3.8×10−5 s. To ensure
that temporal errors are dominant over ISAT tabulation and ODE integration errors, we set the
ISAT error tolerance to εtol = 1 × 10−10 and the absolute and relative ODE integrator error
tolerances to εabs = εrel = 10−10. A more complete discussion of the ISAT error tolerance is
found in section 4.3. We present below convergence results for {T, u, ρ, YCH4 , YHCO, YCH}.
The former three quantities are selected due to their fundamental importance to the flow; the
latter three are selected as important major and minor species and are those studied in [2]. The
HCO radical, for example, is the best marker of heat release from the flame for a stoichiometric
premixed methane flame [29]. Similar convergence results are observed for other major and
minor species.

To examine the self-convergence of the scheme, we define the normalized self-convergence
RMS error as

εself
�t =

∥∥θ ISAT
�t − θ ISAT

�t/2

∥∥∥∥θ ISAT
�ts

∥∥ , (30)

where θ is any field quantity (e.g. temperature, velocity) and the subscripts denote the associ-
ated temporal resolution. The notation θ ISAT

�ts is used to denote field quantities computed using
the ISAT scheme with a small value of �t : �ts ≈ 2.13 × 10−8 s. The norm notation refers to
the standard 2-norm over space (i.e. the root mean square over the grid nodes). We use εself

�t
to measure the amount of temporal discretization error present in solutions with successively
smaller �t ; εself

�t = O(�t2) then implies second-order temporal accuracy. Figure 2 plots εself
�t

as a function of �t . The symbols denote numerically obtained quantities while the solid lines
are of slope two.
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Figure 2. Self-convergence of εself
�t as defined by equation (30) plotted against �t for the ISAT splitting scheme at

t ≈ 3.8 × 10−5 s. The ISAT error tolerance is εtol = 1 × 10−10 and the absolute and relative ODE integrator error
tolerances are εabs = εrel = 10−10. The symbols represent numerically obtained results and the solid lines shown for
reference have slope two.

Cross-convergence of the ISAT scheme in relation to an accurate DVODE solution is demon-
strated in figure 3 by defining the normalized cross-convergence RMS error as

εcross
�t =

∥∥θ ISAT
�t − θDVODE

�ts

∥∥∥∥θDVODE
�ts

∥∥ , (31)

where �ts is a small time step used to obtain an accurate DVODE solution. In this case,
�ts ≈ 1.07 × 10−8 s which is one-quarter the smallest ISAT step size shown in figure 3. For
the DVODE calculations, the absolute and relative ODE integrator error tolerances are set to
10−8 and 10−14, respectively. These values are consistent with those used for convergence
studies in [2]. In figure 3, the symbols denote numerically obtained quantities while the solid
lines are lines of slope two. We observe clearly that the results from the ISAT scheme converge
to the DVODE results second-order in �t .

We conclude from the results above that the incorporation of ISAT via the Strang sub-
splitting approach preserves the second-order temporal convergence of the scheme. We also
note that, as demonstrated in figure 3, for �t � 2 × 10−7 s there is less than one percent error
between the ISAT and DVODE solutions for the quantities shown.

Figure 3. Cross-convergence of εcross
�t as defined by equation (31) against time step for the ISAT splitting scheme

in relation to the original DVODE splitting scheme at time t ≈ 3.8 × 10−5 s.
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4.3 Impact of the ISAT error tolerance

The ISAT error tolerance, εtol, is a user-specified local error tolerance which determines
whether or not a given query composition is sufficiently close to a composition for which the
reaction mapping has been computed and tabulated. If it is, then a relatively inexpensive ISAT
table retrieve is performed to compute the reaction mapping; otherwise, DI is performed and an
EOA is grown or a new entry is added to the ISAT table. Therefore, to minimize computational
cost we wish to maximize εtol while still maintaining specified accuracy of the flame solution.
In this section we investigate the impact of εtol on solution accuracy and determine a value
appropriate for further study in the remaining sections. It should be emphasized that increasing
εtol knowingly increases the amount of error (relative to using DI) in the solution. But, as will be
demonstrated, this error can be controlled and lowered to an acceptable level by adjusting εtol.

For all of the calculations in this section, we set the absolute and relative ISAT ODE solver
tolerances to εabs = εrel = 10−10. Where DVODE calculations are performed, the DVODE
absolute and relative error tolerances are set to εabs = 10−8 and εrel = 10−14, respectively.
Therefore, at a given instant in time any given field quantity, ξ , is a function of x , �t , and εtol.
That is, ξ = ξ (x, �t, εtol).

To quantify errors due to temporal discretization and ISAT tabulation, it is necessary to
obtain numerically accurate solutions with which to compare. We define here the values
of �t and εtol used to compute these accurate solutions: �t = �ts ≡ 2.27 × 10−8 s and
εtol = εtols ≡ 1×10−12. Based on the temporal convergence studies presented earlier, solutions
computed with �t = �ts contain minimal temporal discretization error (less than 0.05%
relative to an accurate DVODE solution). When εtol = εtols , nearly all of the ISAT composition
queries are satisfied via DI; very few table retrieves are performed and the resulting ISAT table
grows in entries rapidly. It should be noted that, in addition to being highly accurate, solutions
obtained using �t = �ts and εtol = εtols are expensive computationally to obtain. Finally,
unless otherwise specified, we fix �t = 1.82 × 10−7 s.

We quantify the impact of εtol on solution accuracy in two ways. First, at a given instant in
time and for a fixed value of �t , we define the normalized RMS error

εisat
1 (εtol) ≡ ‖ξ (x, �t, εtol) − ξ (x, �t, εtols )‖

‖ξ (x, �t, εtols )‖
, (32)

where the norms are 2-norms over the spatial coordinate. Therefore, εisat
1 measures the amount

of solution error relative to a solution with a small ISAT error tolerance. Figure 4a plots εisat
1

Figure 4. Impact of the ISAT error tolerance, εtol, on solution accuracy. Results are shown at time t ≈ 8.25 ×
10−5 s using �t = 1.82 × 10−7 s. (a) The error defined by equation (32), (b) the error defined by equation (33).
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as a function of εtol at t ≈ 8.25 × 10−5 s for the temperature, velocity, and density; similar
results are also observed for species mass fractions (not shown). We note from the figure that,
as anticipated, εisat

1 → 0 as εtol → 0 indicating that, for a given �t , decreasing εtol decreases
the tabulation error introduced by ISAT; more precisely, εisat

1 varies linearly with εtol. If εtol is
made sufficiently small (corresponding to more direct integrations and fewer table retrieves),
then the tabulation error is eliminated. We also observe from figure 4a that, for εtol = 1×10−7,
the temperature, velocity, and density errors are less than 0.07%. Corresponding species errors
(not shown) are found to be less than 0.005%.

The second measure of error used to quantify the impact of εtol on solution accuracy is
defined by

εisat
2 (εtol) ≡ ‖ξ (x, �t, εtol) − ξ (x, �ts, εtols )‖

‖ξ (x, �ts, εtols )‖
. (33)

In contrast to equation (32), εisat
2 measures the error relative to a solution obtained using

small values of �t and εtol namely �t = �ts and εtol = εtols . Therefore, εisat
2 characterizes the

combination of tabulation and temporal errors. Figure 4b plots εisat
2 as a function of εtol. We

observe from the figure that εisat
2 is nearly constant for εtol ≤ 1×10−7; εtol is sufficiently small

so that temporal discretization errors dominate. Here again we observe that, for εtol = 1×10−7,
temperature, velocity, and density errors are less than 0.02%. Corresponding species errors
are found to be less than 0.005%. In addition to the results shown in figure 4b, we further
take as ‘exact’ solutions ξ obtained using DVODE and �t = �ts . These results are nearly
identical to those shown in Figure 4b and hence have been omitted.

In comparing figures 4a and b, we note that for εtol = 1×10−7 we have εisat
1 ≈ εisat

2 indicating
that the ISAT tabulation and temporal discretization errors are comparable in size. For this
reason, as well as the small percent errors noted above, we select εtol = 1 × 10−7 for further
study.

4.4 Comparison of DVODE and ISAT results

In this section we give a detailed comparison of results obtained using the DVODE and
ISAT versions of the algorithm. Throughout, based on previous discussion, we set �t =
1.82 × 10−7 s. For the case of ISAT, we set εtol = 1 × 10−7 and the ODE error tolerances to
εabs = εrel = 10−10. For the calculations involving DVODE, we set the absolute and relative
error tolerances to 10−6. This is the value used in [2] for calculations not involving convergence
testing. We compare results after approximately 50,000 time steps when t ≈ 9.1 × 10−3 s. At
this time the flame has propagated approximately 7 flame-widths yet remains well-removed
from the left-end boundary of the computational domain.

4.4.1 Laminar flame speeds. We define the absolute laminar flame speed, sa, as the speed
of the flame front relative to a fixed reference frame [31]. This locally determined quantity
is computed for the two schemes by plotting the spatial location of the 1400 K isotherm as a
function of time; the slope of the resulting line (not shown) is the absolute laminar flame speed.
We observe excellent flame front location (and consequently absolute laminar flame speed)
agreement between the DVODE and ISAT calculations. Figure 5 shows sa (computed as the
slope of the line connecting the starting flame location and the flame locations at subsequent
times) as a function of time. From figure 5 we observe that the absolute speeds of the flames
computed by the two schemes demonstrate the same qualitative behavior and are in excellent
quantitative agreement. At the final time shown in the figures, t ≈ 9.1 × 10−3 s, the DVODE
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Figure 5. Absolute laminar flame speed, sa, as a function of time computed by the DVODE and ISAT schemes.

scheme gives sa ≈ 32.72 cm/s and the ISAT scheme gives sa ≈ 32.53 cm/s; the difference is
approximately 0.58%.

To explore further the laminar flame speed, we define the consumption speed

sc = − 1

ρuY u
F

∫ ∞

−∞
ωF dx, (34)

where ρu is the density of the unburnt mixture, Y u
F is the unburnt fuel mass fraction, and ωF

is the net fuel production rate [32]. This globally determined quantity measures the speed at
which the flame burns the reactants and is based only on reaction rates. Figure 6 shows sc as a
function of time for the two schemes. We observe from the figure that the flame speeds from
both schemes start off around 36.5 cm/s and then decrease until they reach the steady-state
value. From the figure we note that in the steady-state, sc is greater for the DVODE scheme
than for the ISAT scheme. At t ≈ 9.1 × 10−3 s the consumption flame speed from DVODE is
sc ≈ 33.19 cm/s; the corresponding ISAT speed is sc ≈ 33.17 cm/s. Hence the DVODE and
ISAT speeds differ by approximately 0.06%.

Figure 6. Consumption speed, defined by equation (34), as a function of time for the DVODE and ISAT schemes.
The elapsed time between sample points (each symbol in the figure) is t ≈ 1.82 × 10−4 s (1000 time steps).
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Figure 7. Comparison of DVODE and ISAT species mass fraction profiles (Yi ) for CH4, HCO, and CH at t ≈
9.1 × 10−3 s (approximately 50, 000 time steps).

The discrepancies in the laminar flame speeds described above are due predominantly to
residual ISAT and �t errors. As demonstrated in section 4.3, the ISAT errors can be reduced
by decreasing εtol. The errors in �t can be reduced by decreasing �t .

4.4.2 Species profiles. We examine and compare species profiles (Yi ) from the DVODE
and ISAT schemes at time t ≈ 9.1 × 10−3 s. Due to the small differences in the velocity fields
described above, the profiles from the two schemes are slightly shifted in space relative to each
other; this difference in flame location is approximately 0.53% of the total distance traveled.
Qualitatively and quantatively, the DVODE and ISAT results are in excellent agreement. As
an illustration, Yi for CH4, HCO, and CH (the same species used for convergence studies in
section 4.2) are shown in figure 7: only the region of the computational domain containing the
flame front is shown. For illustration purposes, the HCO and CH mass fraction profiles are
scaled by 103 and 104, respectively. The dashed lines represent DVODE results while the solid
lines represent ISAT results. We observe from the figure that all corresponding DVODE and
ISAT profiles have similar widths and maximum peak values; the slight difference in flame
location is the most obvious discrepancy.

4.5 Computational performance

Having demonstrated the accuracy of the ISAT splitting scheme in previous sections, we
examine here its computational performance in comparison to the DVODE splitting scheme.
We use the same parameter settings as in section 4.4 and run the simulations until t ≈ 9.1 ×
10−3 s (approximately 50,000 time steps). All calculations are performed using a single R10000
processor running at 195 MHz on a SGI Origin 2000: memory constraints are not a limiting
factor.

Figures 8a and b plot the CPU time taken per time step to execute different portions of
the algorithm as a function of simulation time. In particular, the following CPU times are
shown: time to complete the overall time steps; time spent in the reaction sub-steps; and, time
spent in the diffusion sub-steps (RKC). From figure 8a we observe that the DVODE CPU
time increases with simulation time. This result is due to the fact that as the flame propagates,
species are convected and diffused thereby increasing the portion of the domain containing a
mixture of product gases; less of the domain is occupied by pure reactants. Due to the presence
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Figure 8. CPU time per time step of the DVODE and ISAT splitting schemes. (a) The DVODE splitting scheme,
(b) the ISAT splitting scheme with εtol = 1 × 10−7.

of active chemical processes in these mixtures, it takes DVODE more time steps and Jacobian
evaluations to integrate the governing equations; consequently, more CPU time is required to
compute the reaction portion of the algorithm. For the DVODE calculations, we also note that
the majority of the CPU time per time step is spent in the reaction sub-steps. Approximately
90–95% of the total step time is spent computing the combustion chemistry with the bulk of
the remaining time being spent in the RKC update.

In contrast, figure 8b shows the corresponding CPU times for the ISAT algorithm. Here
we observe that the overall CPU time decreases with simulation time. Initially, the CPU time
required per time step by the ISAT scheme is greater than the time taken by DVODE. During
this initial start-up period, most of the CPU time is spent performing computationally expensive
direct integrations and EOA grows; additional CPU time is also spent constructing and building
the ISAT table. As simulation time elapses and the number of ISAT queries increases, more
queries are satisfied by table retrieves which are less expensive computationally than DI;
this transition from primarily ISAT adds and grows to ISAT retrieves reduces significantly
the CPU time per time step. For t�7 × 10−3 s, most composition queries are satisfied by
table retrieves and the per-step CPU times level-off. At this stage of the calculations, the
reaction and diffusion sub-steps take approximately the same amount of CPU time per time
step.

Figures 9a and b show where the reaction sub-step time is spent. From figure 9a we ob-
serve that for the DVODE calculations, nearly all of the reaction sub-step CPU time is spent
performing integration of the species and density equations using DVODE. For the case of
the ISAT scheme, during the ISAT table construction phase the bulk of the CPU time is spent
in ISAT computing the reaction mapping via direct integration; the majority of the remaining
reaction sub-step time is spent in the RK2 sub-steps. After the ISAT table is constructed and
populated so that most composition queries are satisfied by table retrieves, approximately
equal time is spent in ISAT and RK2. To illustrate further the initial table build-up process,
figure 10 shows the number of ISAT table retrieves, grows, and additions as a function of
the number of ISAT queries. Initially (i.e. for the first six queries), all ISAT queries are
satisfied by direct integration as shown in the figure. After approximately 150 queries, how-
ever, the majority of events are ISAT retrieves. For the entire calculation which consists of
nearly 50,000 time steps, approximately 3 × 107 ISAT queries are made; approximately 97%
are satisfied by ISAT retrieves, 2.95% by ISAT grows, and 0.024% by ISAT adds (direct
integration).
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Figure 9. A detailed break-down of the CPU time spent in the reaction sub-steps. (a) DVODE scheme, (b) ISAT
scheme with εtol = 1 × 10−7.

To examine further the computational savings of the ISAT scheme, figures 11a and b show
the computational speed-up factor as a function of simulation time, where the speed-up factor
is defined as

speed-up factor ≡ CPU time per time step using DVODE scheme

CPU time per time step using ISAT scheme
. (35)

Figure 11a shows the speed-up factor for the overall scheme time step. Here we observe that,
initially, the speed-up is less than one indicating that the DVODE scheme consumes less CPU
time than the ISAT scheme as discussed earlier. Subsequently, the speed-up factor is greater
than one indicating that ISAT consumes less CPU time than DVODE. Therefore, following an
initial table build-up, the DVODE scheme requires approximately 7–8 times more CPU time
per time step than the ISAT scheme. Figure 11b shows the speed-up for the reaction sub-steps
of the algorithm. Here we observe similar behavior as in figure 11a with the post-ISAT table

Figure 10. The number of ISAT retrieves, grows, and additions as a function of the number of ISAT queries. The
simulation is run for approximately 50,000 time steps.
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Figure 11. Speed-up (equation (35)) achieved by ISAT. Results obtained with �t = 1.82 × 10−7 s, εtol = 10−7,
and εabs = εrel = 10−10. (a) Overall time step speed-up, (b) speed-up for the reaction sub-step.

construction speed-up factor being approximately 12–14. Note here that the speed-up factors
continue an upward trend due to the increasing CPU time required by the DVODE scheme.

Finally, in addition to the ISAT performance characteristics discussed above, it is appropriate
to consider the computer memory requirements necessary to store the ISAT table. For the
present calculations, which access a relatively small portion of reaction phase space, the
ISAT table contains approximately 6150 entries and requires approximately 310 megabytes
of storage.

4.6 Further discussion

4.6.1 Chemical mechanisms. In addition to the methane–air test problem described above,
a similar problem was run for the case of hydrogen-air using the nine species and 19 reaction
detailed chemical mechanism used in Maas and Pope [33]. For the case of the hydrogen–
air mechanism, convergence and accuracy studies demonstrate similar results. In particular,
second-order temporal convergence is observed and it is found that εtol controls tabulation error
and overall scheme accuracy. Performance characteristics are, however, notably different than
the case of methane–air. For the hydrogen–air mechanism, following the initial ISAT table
build phase, the overall speed-up factor is approximately 1.5 while the reaction sub-step speed-
up factor is approximately 2.75. The difference between these results and those presented here
for the methane–air case are attributed, in part, to the size and complexity differences of the two
mechanisms. A greater ISAT speed-up is observed for the methane case because it takes more
CPU time for DVODE to complete the reaction sub-steps; the amount of CPU time required
increases due to the increased number of species, chemical reactions, and associated system
stiffness. For ISAT, however, the table retrieve time increases as n2

s and is independent of the
number of reactions and system stiffness introduced by the kinetic mechanism. Therefore,
following the initial ISAT table build phase, table retrieves exhibit greater CPU time savings
over DVODE for large chemical mechanisms. We anticipate even greater speed-ups than those
observed here for mechanisms involving yet more species, reactions, and stiffness.

4.6.2 Random ISAT calling. During the table construction phase of the ISAT calcula-
tions, it is computationally advantageous that the binary tree which stores the table entries be
well-balanced, i.e. that it grows such that different branches of the tree have roughly equal
lengths. To facilitate this construction, the reaction sub-steps are performed in a random
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spatial order. There is minimal additional computational cost associated with incorporation of
randomness as a random order must only be generated once per time step.

4.6.3 Speed-up limitations. The incorporation of ISAT into the predictor/corrector al-
gorithm is designed to accelerate the calculation of the reaction sub-steps. Consequently,
CPU time spent outside of the reaction sub-steps is not decreased by the use of ISAT. If
a relatively large portion of the per-step CPU time is spent outside of the reaction sub-
steps (e.g. as a result of detailed transport models), then the speed-up factor may be lower
than those observed here. In future work we intend to incorporate detailed transport models
(e.g. mixture-averaged) into the calculations and report our findings. Regardless, the pres-
ence of ISAT is expected to reduce the total amount of CPU time required to perform the
calculations.

5. Conclusions

This work has focused on the inclusion of ISAT in the operator-splitting scheme of Najm
and Knio [2]. To do so, a Strang sub-splitting method is introduced which further separates
the reaction processes from transport processes. For the pure reaction sub-steps, the adaptive
tabulation scheme ISAT is used which makes use of a stiff ODE solver. The non-stiff equations
in the sub-splitting scheme are computed using a single-stage, second-order Runge–Kutta
scheme. The scheme is then applied to a one-dimensional laminar premixed methane–air
flame propagation problem with detailed chemistry. For this problem, second-order temporal
convergence is demonstrated and results are compared with those obtained using the algorithm
in [2]. The impact of the ISAT error tolerance on solution accuracy is demonstrated and it is
shown that solution error can be controlled by changing the ISAT tolerance. Finally, the CPU
time savings obtained by using ISAT rather than direct integration (DVODE) is examined. It
is found that with GRIMech3.0, after an initial ISAT table build-up, the use of ISAT speeds
the reaction sub-steps of the computations by roughly a factor of 13 and the overall scheme
achieves a speed-up of approximately 7.5. For problems involving more complex chemistry
and flow conditions, greater speed-ups are anticipated. On the other hand, less speed-up is
anticipated when portions of the algorithm not presently tabulated with ISAT, e.g. transport
property evaluation, involve more complex CPU-intensive computations. In this case, we can
pursue tabulation of these terms to regain speed-up.
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