
Combustion and Flame 147 (2006) 150–162
www.elsevier.com/locate/combustflame

Modeling unsteady reacting flow with
operator splitting and ISAT

Michael A. Singer a,∗, Stephen B. Pope b, Habib N. Najm c

a Center for Applied Mathematics, Cornell University, Ithaca, NY 14853, USA
b Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA

c Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA

Received 14 November 2005; received in revised form 6 June 2006; accepted 17 June 2006

Available online 1 September 2006

Abstract

We examine the utility of in situ adaptive tabulation (ISAT) for the simulation of two-dimensional unsteady
laminar reacting flow. The numerical scheme used to solve the low-Mach-number reacting flow equations is an
operator-split projection scheme which incorporates ISAT by a Strang subsplitting procedure. The scheme is paral-
lelized using a combination of OpenMP and MPI. ISAT is used for the pure reaction substeps, while convection and
diffusion are treated explicitly by a stabilized Runge–Kutta method. We apply the scheme to a two-dimensional
problem involving a laminar premixed methane–air flame interacting with a counterrotating vortex pair using de-
tailed GRIMech3.0 chemical kinetics. Computational performance is examined; we observe an overall speed-up
factor due to ISAT of approximately 2.5–3.
© 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Keywords: Flame/vortex interaction; ISAT; Premixed flame; Runge–Kutta; Strang splitting
1. Introduction

Numerical simulations of reacting flow with de-
tailed chemical kinetics are expensive computation-
ally. Much of the computational cost is associated
with the evaluation of detailed transport models and
solving the equations that govern the combustion
chemistry. At the same time, reacting flow simula-
tions with detailed chemical kinetic modeling are be-
coming increasingly valuable components in the de-
sign and development of engines, combustors, and

* Corresponding author. Present address: Department of
Chemical Engineering, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139, USA.

E-mail address: msinger@mit.edu (M.A. Singer).
0010-2180/$ – see front matter © 2006 The Combustion Institute.
doi:10.1016/j.combustflame.2006.06.007
reactors. Further, simulation results are widely used
as input in regulatory and business decisions [1]. As
a result, the development and application of compu-
tationally efficient numerical approaches for reacting
flows has broad application.

In [2], Singer et al. introduced the coupling of in
situ adaptive tabulation (ISAT) [3] with the operator-
split projection scheme of Najm and Knio [4]. This
coupling is done via a Strang subsplitting procedure
that further separates reaction from convection and
diffusion. Singer et al. applied the scheme, in the
context of a low-Mach-number reacting flow code
(dflame), to a one-dimensional laminar premixed
methane–air flame using GRIMech3.0 [5]. Second-
order temporal convergence was demonstrated, as
well as the impact of the ISAT error tolerance, εtol, on
Published by Elsevier Inc. All rights reserved.

http://www.elsevier.com/locate/combustflame
mailto:msinger@mit.edu
http://dx.doi.org/10.1016/j.combustflame.2006.06.007

M.A. Singer et al. / Combustion and Flame 147 (2006) 150–162 151
the accuracy of the solution. The use of ISAT to com-
pute the reaction substeps resulted in a reaction sub-
step speed-up of approximately 13; the overall CPU
time speed-up was approximately 7.5.

The work described here further develops and ex-
tends the numerical scheme introduced in [2] and
represents the first application of ISAT to the compu-
tation of multidimensional unsteady laminar flames.
In particular, dflame and ISAT are used in paral-
lel and applied to two-dimensional unsteady vortical
flow involving a counterrotating vortex pair interact-
ing with a premixed methane–air flame. This configu-
ration has been studied extensively [6–8]; here we fo-
cus on computational performance issues rather than
the revelation of new physics. In Section 2 we provide
a brief review of the numerical algorithm described in
[2,4]. We then discuss the parallel strategies used in
dflame and ISAT and comment on the coupling of
the two codes. Section 3 begins with a specification
of the flame/vortex interaction problem. This intro-
duction is followed by a qualitative demonstration of
results and a discussion of the performance of the
scheme and its use of ISAT. Section 4 provides addi-
tional discussion and comments on various aspects of
the performance of the scheme. Finally, conclusions
and final observations are made in Section 5.

2. Numerical algorithm

2.1. Overview

The numerical algorithm used here is the operator-
split projection scheme of Najm and Knio [4] with the
performance enhancements of Singer et al. [2]. The
scheme is implemented in the Fortran code dflame,
which uses a temporally second-order Strang splitting
procedure to separate reaction from diffusion; convec-
tion is treated explicitly and accounted for in both the
reaction and diffusion substeps. The reaction substeps
are computed using ISAT and second-order Runge–
Kutta (RK2) using a Strang subsplitting procedure
detailed in Singer et al. [2]. The diffusion substeps are
treated explicitly using a second-order Runge–Kutta–
Chebyshev (RKC) [9] scheme detailed in Najm and
Knio [4].

Second-order temporal convergence of the scheme
has been demonstrated in the context of a one-
dimensional laminar premixed flame [2]. In addition,
the impact of the ISAT error tolerance, εtol, on the
accuracy of the solution has been studied [2].

2.2. Serial ISAT

The ISAT algorithm is an information storage/re-
trieval procedure that is implemented as a binary tree;
the binary tree is traversed based on cutting planes [3].
Given the state of a system (defined, for example, by
species mass fractions, enthalpy, and pressure) at time
t0, φ(t0), and a time increment, �t , ISAT determines
φ(t0 + �t), the state of the system at time t0 + �t .
This new state is determined by approximating the
solution to the equations governing a homogeneous,
adiabatic, isobaric system of chemical species [3]. To
determine φ(t0 + �t), which is accurate to within a
user-specified error tolerance εtol, ISAT uses one of
four approaches:

• primary retrieve: the query composition,
φ(t0), lies within the ellipsoid of accuracy (EOA)
[3] of a termination node in the ISAT table. A lin-
ear approximation to the solution, φ(t0 + �t), is
returned;

• secondary retrieve: a primary re-
trievewas unsuccessful. The EOA of a nearby
termination node contains the query composition
and a solution is returned based on this nearby
node;

• grow: a secondary retrieve was unsuc-
cessful. ISAT is able to grow the EOA of a pri-
mary or nearby node to contain the query point.
A solution is then returned;

• add: a grow was unsuccessful. The governing
equations are integrated and a new entry is added
to the ISAT table.

2.3. Parallelism

To minimize the wall clock time consumed by a
reacting flow simulation, it is beneficial to use paral-
lelism to accelerate the calculation. To this end, the al-
gorithm is parallelized using both OpenMP and MPI.
The parallel strategy that minimizes wall clock time,
however, is dependent on a variety of factors includ-
ing the problem at hand (e.g., steady, unsteady), the
chemical mechanism, and the numerical scheme. As
a result, there are many ways to parallelize ISAT, with
each approach having strengths and weaknesses de-
pending on the regime in which it is applied.

For the work considered here, we use the ISAT
message passing library x2f_mpi [11]. x2f_mpi is
a library built on top of ISAT that implements differ-
ent message-passing strategies by using the message-
passing interface (MPI). The x2f_mpi library was
constructed for use with PDF methods for simulat-
ing turbulent reacting flow. As a result, the message-
passing strategies implemented in x2f_mpi may not
be optimal for laminar flame computations. In the
present context, x2f_mpi randomly distributes grid
node compositions among all the MPI nodes at the
beginning of each reaction substep. Each MPI node
then calls ISAT where composition queries are satis-

152 M.A. Singer et al. / Combustion and Flame 147 (2006) 150–162
fied by retrieving, growing, or adding to the
local ISAT table (each MPI node has its own ISAT
table). The updated grid node compositions are then
passed back to the appropriate MPI node. Note that,
since each MPI node uses only its local ISAT table
(which is independent of the ISAT tables residing on
other MPI nodes), this random distribution approach
avoids the O(n2

s) (where ns is the number of chemical
species) computational expense of searching ISAT ta-
bles residing on other MPI nodes for a sufficiently ac-
curate solution (searching an ISAT table is an O(n2

s)

operation because it involves matrix–vector multipli-
cations). As a consequence, however, table replication
across the MPI nodes is likely to occur.

2.4. Coupling parallel dflame and x2f_mpi

Using parallel dflame and the parallel x2f_mpi
and ISAT libraries involves combining software based
on two fundamentally different parallel paradigms:
shared memory parallelism implemented using Open-
MP (dflame) and distributed memory parallelism
implemented with MPI. Since the primary objective
of the present work is to focus on dflame per-
formance enhancements provided by x2f_mpi and
ISAT, a hybrid programming approach is used to com-
bine the codes. This approach emphasizes minimiz-
ing code rewriting and further algorithm development
while leveraging the performance gains of running
parallel code. Alternatively, dflame could have been
rewritten using MPI or ISAT rewritten using OpenMP.
Either of these approaches involves considerable re-
sources and is outside the scope of the present work.

The hybrid strategy runs the nonreacting portion
of dflame on a single master MPI node, which
also serves as the master OpenMP processor. There-
fore, following MPI and ISAT initializations, the
dflame code runs unaltered on the master MPI node,
which spawns OpenMP processes until the reaction
substep. That is, the following tasks are executed:
dflame is initialized, input files are read, time ad-
vancement is started, and the first nonreacting RKC
substep and Strang subsplitting substep are executed
in parallel using OpenMP (the OpenMP processes
are spawned from the master MPI node/OpenMP
processor). Meanwhile, the remaining nonmaster
MPI nodes rest at idle. To execute the reaction sub-
step, x2f_mpi is called by all MPI nodes. However,
only the master node has nontrivial compositions:
the remaining MPI nodes have no compositions to
process because dflame runs only on the master
MPI node (in addition to the OpenMP processor). All
compositions on the master node are then randomly
distributed among all MPI nodes for processing. Once
processed using the local ISAT table, all composi-
tions are returned to the master MPI node and the
reaction substep is complete. Following the reaction
substep, the dflame code resumes running on the
single master MPI node (which, again, is also the
master OpenMP processor) using OpenMP: the sec-
ond nonreacting substep is performed, the momentum
equations are solved, the corrector phase of the algo-
rithm is executed, and the time step is completed. This
process is repeated until the user-specified number of
time steps has been executed and the simulation is
complete.

The numbers of OpenMP and MPI processors do
not have to be equal and the optimal combination to
minimize wall clock time may change as the simu-
lation progresses (e.g., after the ISAT table is con-
structed and populated). The present work does not
address the issue of dynamic processor allocation and
instead relies on fixed and equal numbers of OpenMP
processors and MPI nodes.

3. Results

To evaluate the computational performance of the
scheme in the context of an unsteady flow, we con-
sider a two-dimensional laminar flame strained and
distorted by a counterrotating vortex pair. The pre-
mixed methane–air flame burns at atmospheric pres-
sure into a rich (Φ = 1.2) 25% N2-diluted mixture
at room temperature. The vorticity field correspond-
ing to the initial vortex is a second-order Gaussian
as in [12]. Therefore, the initial condition is a super-
position of the velocity field induced by a periodic
row of vortex pairs and the temperature, density, and
mass fraction distributions corresponding to a pre-
mixed flame (see Fig. 1). This flame-flow configura-
tion has been studied extensively in [6–8]: here we
focus on performance enhancements due to ISAT.

The simulations are performed on a 0.4 × 1.6 cm
rectangular domain discretized using 256 × 1024
equally spaced mesh points. To decrease CPU time,
only one vortex is simulated and periodic and sym-
metric boundary conditions are applied in the hor-
izontal direction. In the vertical direction, outflow
boundary conditions are imposed. As time elapses,
the premixed flame propagates downward while the
counterrotating vortex pair moves upward.

Chemical kinetics are modeled using GRIMech3.0
[5] with 53 species and 325 reactions. As in [2], the
dynamic viscosity, thermal conductivity, and diffu-
sion coefficients are precomputed using Chemkin [13,
14] and tabulated as functions of temperature. Then,
transport quantities used in the calculations are com-
puted from table entries using linear interpolation.
This approach reduces the amount of CPU time spent
computing transport properties (in comparison to, for
example, mixture averaged transport) while maintain-

M.A. Singer et al. / Combustion and Flame 147 (2006) 150–162 153
Fig. 1. Two-dimensional flame–flow interaction showing contours of vorticity superimposed on a gray-scale representation of
temperature.
ing the spatial and temporal convergence rates of
the scheme [12]. As a result, the largest fraction of
the overall CPU time is spent computing the reac-
tion substep. It should be noted that use of transport
models that are more expensive computationally (e.g.,
mixture-averaged transport) will reduce the fraction
of the overall CPU time spent in the reaction sub-
step. Consequently, less computational speed-up is
expected.

To start the calculations, a freely propagating pre-
mixed methane–air flame with Φ = 1.2 and the above
indicated chemical mechanism is first computed in
one spatial dimension using Chemkin. The steady-
state solution is then interpolated onto a uniform
one-dimensional grid and used as the initial condi-
tion for a one-dimensional dflame calculation. One-
dimensional dflame is then run to relax the flame
onto the dflame mesh (which is different from the
Chemkin mesh) and to propagate the flame within the
computational domain to the desired location. The
flame is then replicated in the horizontal direction.
The resulting configuration corresponds to a down-
ward propagating flame in two spatial dimensions.
We then specify the strength and location of the vor-
tex and combine the resulting velocity field with the
existing temperature, density, and species mass frac-
tion data from the premixed flame. The result is the
two-dimensional configuration in the left-most plot in
Fig. 1. This configuration is used to initialize the cal-
culations.

As in [4], we set S = 8 and L = 4, correspond-
ing to the number of RKC stages in the convection–
diffusion substep and momentum equation update, re-
spectively. We use a fixed time step of �t ≈ 700 ns.
Due to the computational expense of running the two-
dimensional simulations, a parametric study of the
impact of the ISAT error tolerance on the accuracy
of the solution is not possible. Instead, we apply the
results from the detailed error analysis that were per-
formed in the one-dimensional case [2] and set εtol =
1 × 10−7. As demonstrated in [2], this value of εtol
limits ISAT errors (in reference to DVODE solutions
obtained from the original scheme) to less than 1%
for the one-dimensional premixed flame test case. The
ISAT ODE absolute and relative error tolerances are
εabs = εrel = 10−10, as in [2]. The parameters used to
specify the strength, location, and size of the counter-
rotating vortex are identical to those used in [4].

All calculations are performed on an SGI Origin
2000 with R10000 processors running at 195 MHz.
In all cases involving ISAT, the number of OpenMP
processors specified is 15 and the number of MPI
nodes is 15. For comparison purposes, dflame is
run using DVODE [15] to compute the reaction sub-
step as done in the original algorithm [4]. In these
cases, 15 OpenMP processors are specified along with
1 MPI node.

3.1. Qualitative results

Evolution of the two-dimensional flame-flow con-
figuration is demonstrated by examining vorticity
contours of the counterrotating vortex and tempera-
ture contours of the flame. Fig. 1 shows the time evo-
lution of the flame/vortex interaction. The solid lines
indicate vorticity contours. The gray-scale shading in-
dicates the temperature field: dark/light shading cor-
responds to high/low temperature. As can be seen, the
flame propagates downward into the reactants while

154 M.A. Singer et al. / Combustion and Flame 147 (2006) 150–162
the vortex propagates upward by its self-induced ve-
locity. The results observed here are consistent with
those obtained in [4].

3.2. Original dflame performance

To evaluate the performance gain of the ISAT
scheme in relation to the original dflame algorithm,
it is necessary to run dflame without ISAT for the
flame/vortex problem and obtain representative CPU
timings. When this is done, the chemistry substeps
are computed using DVODE [15] and Strang sub-
splitting is not required. To compute the solutions to
the systems of stiff, nonlinear equations in the reac-
tion substeps, DVODE must compute Jacobians. In
the present dflame implementation, these Jacobians
are computed in one of two ways: by finite differences
(FD) or via a hard-coded subroutine that computes the
Jacobian analytically. The latter method is dependent
on the chemical mechanism. Both methods preserve
the scheme’s second-order temporal accuracy, but the
computational expenses are different. Here we focus
on DVODE calculations made using FD Jacobians.
Although more expensive computationally than com-
puting Jacobians analytically using the hard-coded
subroutine (as demonstrated below), use of FD Ja-
cobians represents a more appropriate performance
comparison for the ISAT scheme: ISAT must also
compute Jacobians and we do not have such an an-
alytical Jacobian subroutine to use. Further discus-
sion of the performance of the DVODE scheme using
analytical Jacobians is reserved for Section 4.4. All
DVODE calculations are performed with absolute and
relative error tolerances εabs = εrel = 10−6. These
are the same tolerances used in [4].

The amount of CPU time that is required to ex-
ecute one dflame time step is dependent, in part,
on the fraction of the computational domain occupied
by the flame. That is, as time evolves and a larger
fraction of the computational domain is occupied by
the flame and combustion products, the CPU time re-
quired by DVODE to integrate the reaction substep
increases. In fact, the implicit chemistry integration
step implemented in DVODE takes the most time for
mesh cells in the primary flame reaction zone, an
intermediate time for those in the products region,
and the least time for those in the reactants. This
phenomenon was observed in the context of a one-
dimensional premixed methane–air flame in [2] due to
the increasing size of the products region as the flame
propagates into the reactants, but is more acute in two-
dimensions because of the increased area covered by
the contorted primary flame reaction zone. Therefore,
computations performed near t = 0.0 ms (the leftmost
plot in Fig. 1) consume less CPU time per time step
than computations performed near t = 5.0 ms (the
rightmost plot in Fig. 1).

One method of quantifying the performance en-
hancement due to ISAT is by measuring the speed-up
factor,

speed-up factor

(1)

≡ wall clock time per time step using DVODE scheme
wall clock time per time step using ISAT scheme ,

as done in [10]. To measure the speed-up due to ISAT,
therefore, it is necessary to run dflame using the
DVODE algorithm for the same number of time steps
as executed for the ISAT version of dflame. This
process is expensive computationally and is not fea-
sible with the present computational resources. In-
stead, we quantify the speed-up in two ways. First,
the original dflame code is run for approximately
1150 time steps (t ≈ 0.82 ms) and then stopped. Dur-
ing this time, there is minimal interaction between
the flame front and the counterrotating vortex. The
dflame wall clock times per step obtained from this
run (approximately 2100 µs per grid point on aver-
age) are then used to estimate the speed-up due to
ISAT. Note, however, that this approach to measur-
ing speed-up results in speed-up factors lower than
those obtained had the original dflame code been
run for the same length of simulation time as ISAT-
dflame. Therefore, we also quantify the speed-up
due to ISAT at longer simulation time by using CPU
timing results from a previous flame/vortex calcula-
tion by Najm [16]. Here it was found that the overall
time step consumes approximately 1.6 times more
CPU time at t ≈ 5 ms than at t ≈ 0.82 ms. Conse-
quently, we report also the estimated speed-up with
this correction factor.

3.3. ISAT-dflame performance

Here we explore the performance enhancement
due to ISAT. We examine the wall clock time per step
for different portions of the algorithm, the speed-up
of the reaction substep due to ISAT, the overall code
speed-up due to ISAT, and ISAT performance char-
acteristics (e.g., table size, percentage retrieves,
CPU time distribution within ISAT).

When using ISAT and x2f_mpi on multiple MPI
nodes, ISAT performance data are generated for each
node. For the present tests, which use 15 MPI nodes, it
is neither feasible nor useful to present all data from
all nodes. Therefore, we present representative data
from one MPI node with the understanding that differ-
ent nodes likely have slightly different performance
characteristics. The extent to which the performance
among the MPI nodes running x2f_mpi differs is

M.A. Singer et al. / Combustion and Flame 147 (2006) 150–162 155
(a) (b)

Fig. 2. Wall clock time per grid point per time step of the ISAT scheme: (a) total time step; (b) reaction substep.
determined by the ISAT load balancing. This issue is
discussed further in Section 4.3.

The computational performance of the ISAT-
dflame scheme is evaluated by starting from the
same initial conditions as used above (seen pictori-
ally in the leftmost plot in Fig. 1). The simulation is
run until t = 5 ms, at which time the counterrotat-
ing vortex has significantly strained and distorted the
premixed flame front.

Fig. 2a plots the wall clock time per grid node
per time step for the total time step, the reaction sub-
step, and the RKC diffusion substeps. From the figure
we observe that the step-total starts around 1100 µs
and decreases rapidly to approximately 725 µs at
t ≈ 0.2 ms. During this time ISAT is constructing
and building tables (as discussed below) and there
is minimal flame/vortex interaction, as demonstrated
in Fig. 1. The time per step then continues to de-
crease for 0.2 < t � 1 ms, but at a slower rate. The
flame and vortex are in close proximity during this
time. For 1.1 � t � 3.5 ms, the reaction and step-total
wall clock times increase steadily. During this time,
there is appreciable interaction between the flame
front and the vortex as demonstrated in Fig. 1. This
interaction is accompanied by access to regions of
composition space not previously accessed in the cal-
culations. Consequently, as discussed below, ISAT
must perform computationally expensive table adds
and grows leading to an increase in the total wall
clock time per step. In particular, from t ≈ 1.1 to
t ≈ 3.5 ms, the number of ISAT adds and grows
increases by approximately 800% and 325%, respec-
tively. In addition, the time required to perform each
add and grow increases by approximately 70% and
50%, respectively. These increases in CPU times are
due to the increased area occupied by the flame.
Hence, the large increase in the number of ISAT
adds and grows combined with the increased CPU
time required per ISAT add and grow are the dom-
inant reasons behind the rise in wall clock time from
t ≈ 1.1 to t ≈ 3.5 ms. For 3.5 � t � 4.25 ms, the
wall clock time spent in the reaction substep remains
nearly constant. For t � 4.25 ms, there is a steady de-
crease in the reaction and wall clock times per step.
As discussed below, this result is due to an increase
in the fraction of ISAT queries satisfied by primary
and secondary retrieves.

Fig. 2a also shows that the largest fraction of the
wall clock time per step is consumed in the reaction
substep: the RKC diffusion substeps consume the ma-
jority of the remaining time. Further, the trends in the
total step CPU time discussed above follow closely
those of the reaction substep. Changes in the overall
CPU time per step are due to changes in the CPU time
required to compute the reaction substep. The rest of
the scheme is explicit and therefore its performance is
insensitive to the motion of the flame in the computa-
tional domain and the fraction of the domain occupied
by the flame. Throughout the calculations performed
here, the RKC time per step remains nearly constant.

Fig. 2b shows the wall clock time distribution of
the reaction substep: the reaction substep curve is
identical to that shown in Fig. 2a and represents the
wall clock time per grid node per time step spent in
the reaction substep. Also shown is the time spent in
ISAT and the time spent performing the RK2 sub-
splitting steps. From the figure we observe that the
majority of the reaction substep time is spent in ISAT:
the remaining time is spent in the RK2 substeps. The
trends in the wall clock time variations of the reaction
substep closely follow those of the ISAT wall clock
time, while the RK2 time remains constant through-
out, as expected from an explicit scheme. Variations
in the reaction substep wall clock time are due to
variations in the time required by ISAT to compute
all necessary species compositions. That is, the wall

156 M.A. Singer et al. / Combustion and Flame 147 (2006) 150–162
(a) (b)

Fig. 3. The number of ISAT primary retrieves, secondary retrieves, grows, and adds as functions of (a) the
number of ISAT queries and (b) simulation time.
clock time is impacted greatly by the number of com-
positions satisfied by ISAT primary retrieves,
secondary retrieves, grows, and adds.

Figs. 3a and 3b show the number of ISAT events
versus ISAT queries (q) and simulation time, respec-
tively. We note that the majority (e.g., queries < 107)
of Fig. 3a shows data for ISAT events that occur dur-
ing the initial start-up time of the simulation (e.g.,
t < 0.4 ms). During this time, ISAT queries are sat-
isfied by a combination of retrieves, grows, and
adds: primary retrieves clearly satisfy most
ISAT queries. We also note that there are no table
adds for 1.7 × 104 � q � 1 × 105. Hence, the ISAT
table is populated during the first time step and these
table entries are reused (without further table addi-
tions) for the first six time steps. Another range
of no table adds is observed for 8 × 105 � q �
8 × 106 corresponding to 0.03 � t � 0.3 ms. Dur-
ing this time we also note an increase in the fraction
of secondary retrieves as indicated by an in-
creased slope of the secondary retrieves line.
For q � 8 × 106 there is an increase in the number
of table additions suggesting an increase in CPU
time. From Fig. 3a we note that the ISAT table contin-
ues to increase in entries for q � 2×107 and contains
over 20,000 entries by the time t ≈ 5 ms. The size of
each ISAT table (one per MPI node) is approximately
1.1 GB.

In Fig. 3b, the number of ISAT events is plotted
as a function of the simulation time. For t � 0.75 ms
there is a rise in the number of ISAT table adds. As
the simulation time elapses, the increase in the num-
ber of table grows and adds begins to impact the
performance of the scheme as demonstrated in Fig. 2.
In addition, there is an increase in the number of
secondary retrieves, which are more compu-
tationally expensive than primary retrieves.
This also contributes to an increase in the wall clock
time per step.

To examine the performance of ISAT on a normal-
ized scale, Fig. 4a plots the fraction of ISAT queries
that are satisfied by each ISAT operation as a func-
tion of ISAT queries. We observe from the figure
that, for the entire simulation, most ISAT queries are
satisfied by computationally inexpensive primary
retrieves. For q � 3 × 105, however, the frac-
tion of secondary retrieves increases while
the fraction of primary retrieves decreases.
Meanwhile, the fraction of ISAT grows decreases
steadily. For 2 × 102 � q � 1.5 × 107, the fraction
of ISAT adds decreases steadily. Consistent with
the findings described above, this behavior suggests
that existing table entries are being reused and further
growth of the table is minimal. For q � 1.5 × 107,
there is an increase in the fraction of ISAT adds,
indicating table growth. Nonetheless, at q ≈ 5 ×
107, approximately 95% of ISAT queries are satisfied
by either primary or secondary retrieves.
When q ≈ 1.1 × 108, approximately 42% of queries
are satisfied by secondary retrieves and 44%
are satisfied by primary retrieves: less than
1.4% are satisfied by grows. For q � 1 × 108, the
fraction of ISAT grows and adds remains nearly
constant: the fraction of ISAT primary and sec-
ondary retrieves decreases and increases, re-
spectively.

Complementary to Fig. 4a, Fig. 4b shows the frac-
tion of CPU time spent performing different ISAT op-
erations as a function of the number of ISAT queries.
Clearly, throughout the simulation, the bulk of the
ISAT CPU time is spent evaluating f (x) which is
the reaction mapping (see [3] for a detailed discus-
sion of the reaction mapping). For q � 80, ISAT
grows consume the most CPU time among pri-

M.A. Singer et al. / Combustion and Flame 147 (2006) 150–162 157
(a) (b)

Fig. 4. ISAT performance: (a) fraction of ISAT queries satisfied by each ISAT operation versus number of queries; (b) fraction
of CPU time spent performing different operations versus number of queries.
mary retrieves, secondary retrieves,
grows, and adds. For q � 1.5 × 107, primary
retrieves consume a greater fraction of the CPU
time than secondary retrieves. When q ≈
1.5 × 107, the CPU time of primary and sec-
ondary retrieves are approximately equal. For
q � 1.5 × 107, secondary retrieves consume
a greater fraction of the CPU time than primary
retrieves. This explains, in part, the overall rise
in the CPU time that is spent in ISAT for t � 1 ms and
observed in Fig. 2b. The fraction of CPU time spent
performing ISAT table adds decreases or remains
constant for q � 1.5 × 107. For q � 1.5 × 107, there
is a rise in the fraction of CPU time spent adding:
this corresponds to an increase in the number of table
adds (as demonstrated in Fig. 4a). The fraction of
CPU time spent evaluating the reaction mapping de-
creases steadily: at q ≈ 1 × 107 and q ≈ 1.1 × 108,
f (x) consumes approximately 80% and 65% of the
ISAT CPU time, respectively. During this same pe-
riod of time, the fraction of CPU time spent per-
forming secondary retrieves increases from
approximately 1.75% to 12%. Among the ISAT op-
erations, ISAT grows consume the largest fraction
of CPU time: at q ≈ 1.1 × 108, the fraction of
time spent growing and performing secondary
retrieves is comparable. We also note from
Fig. 4b that the fraction of CPU time spent com-
puting df/dx, the gradient of the reaction mapping,
is qualitatively similar to the time spent performing
ISAT table adds: df/dx is computed only for table
adds.

To characterize the computational savings due to
ISAT, Fig. 5 shows the speed-up (defined by Eq. (1))
as a function of simulation time. We note that the
speed-up of the reaction substep is greater than the
speed-up of the total time step. As discussed above,
Fig. 5. Speed-up of the total time step and the reaction sub-
step for the ISAT-dflame scheme. The corrected step total
speed-up (see Section 3.2) is also shown.

this is because the performance enhancement pro-
vided by ISAT only affects the reaction substep: CPU
time per step spent outside the reaction substep is
not reduced by ISAT. Toward the end of the simula-
tion (i.e., t � 4 ms), the overall time step speed-up
factor is approximately 1.75. Fig. 5 also shows the
corrected step total speed-up factor (see Section 3.2)
as a function of the simulation time. Here again we
note the initial rise in speed-up factor for t � 1 ms.
Following a peak speed-up of approximately 3, the
corrected speed-up factor declines but less so than
the step total speed-up that is not corrected. This dif-
ference is due to the fact that the corrected speed-
up accounts for the average dflame reaction sub-
step slow-down during the interaction of the flame
and the vortex. Consequently, a realistic estimation
of the speed-up factor due to ISAT is approximately
2.5–3.

158 M.A. Singer et al. / Combustion and Flame 147 (2006) 150–162
4. Discussion

4.1. Evaluating trade-offs: accuracy, efficiency, and
memory

The use of ISAT introduces error into reacting flow
calculations: there is error due to the use of ISAT ta-
ble entries via linear approximation. This error can,
however, be controlled by adjusting the user-specified
ISAT error tolerance, εtol, as demonstrated in [2].
In addition to changing the level of solution accu-
racy, εtol also changes the ISAT table size required
to obtain the specified level of solution accuracy. That
is, as εtol decreases, the size of the ISAT table that
is required increases. Consequently, more computer
memory is required to store the ISAT table. The quan-
titative relationship between εtol and ISAT table size
depends on a number of factors including: number of
species, number of reactions, and region of composi-
tion space accessed.

Adjustments to εtol also affect the performance of
ISAT. As εtol increases, ISAT performance improves
due to the relaxed error criterion, which allows for
more computationally inexpensive ISAT table re-
trieves. Further, relatively large values of εtol lead
to ISAT tables which are relatively small and require
few time steps to build and populate. Consequently,
the performance benefit of a tabulation approach is
realized with relatively few time steps. The extent to
which the performance is enhanced by the use of large
εtol is problem dependent.

As described, there are three primary trade-offs to
consider when using ISAT: accuracy, efficiency, and
memory. The present work demonstrates that, while
introducing an acceptable level of error and requiring
a modest amount of computer memory, using ISAT
can reduce significantly the wall clock time required
by multidimensional unsteady reacting flow simula-
tions with detailed chemistry. Further performance
enhancement can be achieved by, for example, relax-
ing ISAT accuracy requirements.

4.2. ISAT message-passing strategies

ISAT performance is examined in the context of
one message-passing strategy: grid node composi-
tions are randomly distributed among all of the MPI
nodes. The results above, which indicate that most of
the reaction substep CPU time is spent in ISAT, sug-
gest that improved ISAT message-passing strategies
could impact the overall performance of the scheme.
It should be remembered, however, that x2f_mpi
was developed in the context of PDF methods, which
are implemented using a distributed memory ap-
proach to parallelism. In this regime, each processor
has its own set of particle compositions which must
be processed by ISAT: only those compositions which
cannot be processed locally are message passed. This
regime is quite different than the present where, es-
sentially, all particle compositions reside on a single
processor and are message passed for ISAT process-
ing (i.e., all compositions except those processed by
the master MPI node are message-passed).

To enhance ISAT performance gains by reducing
message passing, the dflame code could be paral-
lelized using MPI rather than OpenMP. In this case,
each MPI node has a particular region of the com-
putational domain (i.e., a fixed set of grid points) for
which it is responsible. During the reaction substep,
each node would then use the local ISAT table to
process only those grid points which reside on the
local MPI node. Grid points which contain chemical
compositions for which a sufficiently accurate ISAT
table entry does not exist are then message-passed
using the x2f_mpi library as done in PDF calcula-
tions. Those compositions processed locally are, un-
like the present use of x2f_mpi, not message passed
to another MPI node. Hence, the amount of message
passing required to perform one time step is reduced
significantly, which could lead to a significant reduc-
tion in wall clock time.

4.3. Load balancing

As time evolves and the flame is strained and dis-
torted by the counterrotating vortex, a larger fraction
of the computational domain becomes occupied by
the flame front. When this occurs, it is necessary to
distribute evenly among all MPI nodes the computa-
tional load of computing the reaction substeps; oth-
erwise, load imbalance may occur which increases
the wall clock time. To help achieve load balancing,
we randomly distribute compositions among all MPI
nodes. In this section we examine the resulting load
balance that is achieved by this message-passing strat-
egy.

To examine quantitatively the balance of load, we
introduce the expression

(2)Pi = 100 × Ti

max(Ti)
, i = 0, . . . ,14,

where Ti is the cumulative CPU time that node i

spends in ISAT. Hence, good load balancing is in-
dicated by Pi ≈ 100 for all MPI nodes. Conversely,
load imbalance is indicated by different Pi for each
MPI node.

Fig. 6 shows Pi for each MPI node and indi-
cates that all MPI nodes spend within 97.5% of
the same amount of time in ISAT. This result indi-
cates excellent ISAT load balancing and contributes
to the computational performance enhancement pro-
vided by ISAT.

M.A. Singer et al. / Combustion and Flame 147 (2006) 150–162 159
Fig. 6. Pi (defined Eq. (2)) for each MPI node.

4.4. Analytical Jacobians

As described above, a subroutine is available to
compute analytically the Jacobians required by the
DVODE integrator. Use of this routine eliminates the
need to compute Jacobians using finite differences
and reduces the wall clock time of the DVODE re-
action substep by approximately 45%. Consequently,
the speed-up of the reaction substep due to ISAT is
reduced.

Fig. 7 plots the speed-up of the ISAT scheme as a
function of simulation time. Here, the ISAT speed-up
is in comparison with the original DVODE scheme
using the hard-coded subroutine to compute analyt-
ically the Jacobians required by DVODE. The cor-
rected speed-up factor is also shown, which indicates
a speed-up due to ISAT of approximately 1.5–1.75.

4.5. Maximum ISAT speed-up

Periodically throughout the calculations, the ISAT
tables are written to disk. In the event of a dflame
restart, the resulting ISAT files may then be read in
to avoid having to reconstruct the ISAT tables from
scratch. To investigate further the computational cost
of creating and filling the ISAT tables, we rerun the
calculations performed in Section 3.3 for 0 < t �
5 ms. Rather than starting with empty ISAT tables,
however, we use the ISAT tables from the previ-
ous calculations. Consequently, nearly all ISAT table
queries are satisfied by computationally inexpensive
ISAT table retrieves and we are able to esti-
mate the maximum speed-up that is achievable by
ISAT (maximum speed-up is achieved when all ISAT
queries are satisfied by primary retrieves).

Shown in Fig. 8a is the wall clock time per grid
point per time step for the total time step, the reaction
substep, and the RKC diffusion substep. From the fig-
ure we observe that for t � 2.25 ms the reaction time
is less than the RKC time. For 2.25 � t � 3.75 ms,
Fig. 7. Speed-up of the total time step and the reaction sub-
step using analytical Jacobian calculation for DVODE. The
corrected step total speed-up (see Section 3.2) is also shown.

the reaction time increases nearly linearly as does the
total step time. For 3.75 � t � 5 ms, the reaction and
total step times are nearly constant. The reason for
these results is discussed below.

The wall clock time distribution for the reaction
substep is shown in Fig. 8b as a function of sim-
ulation time. As evident, for t � 1.75 ms the time
spent in ISAT is less than the time spent perform-
ing the RK2 substeps. In this regime, use of a nu-
merical scheme that is more efficient than RK2 to
compute the substeps would appreciably decrease
the overall CPU time. For 1.75 � t � 3.75 ms, the
time spent in ISAT increases steadily. This is due
to an increase in the fraction of ISAT queries that
are satisfied by secondary retrieves (no ad-
ditional adds or grows are performed) and a corre-
sponding decrease in the fraction of ISAT primary
retrieves. ISAT secondary retrieves are
performed due to tabulation error (and the propaga-
tion thereof) and the parallel implementation. That
is, because compositions are distributed randomly
among the processors, satisfaction of all queries to
the ISAT table via primary retrieves does not
occur. For 3.75 � t � 5 ms, the time spent in ISAT
remains nearly constant. During this time the fraction
of ISAT queries satisfied by primary and sec-
ondary retrieves remains nearly constant. Per-
forming additional runs using the same ISAT tables
will further develop the tables and likely lead to addi-
tional reduction in CPU time.

Fig. 9 shows the reaction substep and overall time
step speed-up due to ISAT; the corrected step total
speed-up factor is also shown. From the figure we
note that the use of existing ISAT tables increases sig-
nificantly the reaction substep speed-up. In particular,
the reaction speed-up factor is approximately 10–15
over the original DVODE scheme. Similarly, the un-

160 M.A. Singer et al. / Combustion and Flame 147 (2006) 150–162
(a) (b)

Fig. 8. Wall clock time per grid point per time step of the ISAT scheme. ISAT tables from previous calculations are read in.
(a) Total time step; (b) reaction substep.
Fig. 9. Speed-up of the total time step and the reaction sub-
step using prebuilt ISAT tables. The corrected step total
speed-up (see Section 3.2) is also shown.

corrected total time step speed-up factor observed
here is appreciably greater than in previous calcu-
lations which required construction of the ISAT ta-
ble. The uncorrected speed-up factor of the total time
step for the present calculations is approximately 5–6.
The corrected speed-up factor results indicate a quali-
tatively different result than the uncorrected results.
When we account for the increased CPU time re-
quired by dflame when the flame and the vortex
interact, the ISAT speed-up factor increases with sim-
ulation time. This result is due to the fact that, for
t � 1 ms, the DVODE slow-down is greater than the
ISAT slow-down. Hence there is a net increase in the
speed-up due to ISAT. In this case, the speed-up due
to ISAT is approximately 6–8.

The reuse of ISAT tables discussed here is de-
signed to assess the maximum potential speed-up due
to ISAT for the flame/vortex problem being consid-
ered. The results above further demonstrate that sig-
nificant computational resources are required to con-
struct and build the ISAT table. As a result, table reuse
is a valuable feature that ISAT allows and can facili-
tate the study of complex unsteady reacting flows. If,
for example, one were to study the impact of initial
or boundary conditions on the present flow configu-
ration, then ISAT tables could be reused potentially
saving a significant amount of CPU time. Further, cal-
culations performed with different transport models
(e.g., mixture averaged diffusion), which do not af-
fect the reaction substep could also benefit from ISAT
table reuse. But, modifications to the problem may
change the portion of composition space which is ac-
cessed during the computation. Consequently, further
expansion and modification of the ISAT table (via
grows and adds) will likely be required, thereby
reducing the speed-up. Nonetheless, the potential for
speed-up is great due to the reuse of existing ISAT
tables, especially for flows that exhibit a large initial
transient followed by more stationary behavior.

4.6. Comparison of one- and two-dimensional
results

In [2], a one-dimensional premixed methane–air
flame was computed using a serial version of the
ISAT-dflame algorithm. The version of ISAT which
was used in that work only performed primary
retrieves: no secondary retrieves were
used. In both the one- and two-dimensional problems,
the majority of ISAT queries are satisfied by re-
trieves, followed by grows, followed by adds.
In the case of the one-dimensional flame, the number
of ISAT adds and grows levels off after the table
is constructed and populated. This result is due to the
relatively small portion of composition space that is
accessed in the one-dimensional computation. In a
reference frame that moves with the flame, the com-

M.A. Singer et al. / Combustion and Flame 147 (2006) 150–162 161
putation is a steady-state problem; therefore, reuse
of entries in the ISAT table is large once the en-
tries of the ISAT table cover the low-dimensional
manifold in composition space. In contrast, the two-
dimensional flame/vortex problem is unsteady. Con-
sequently, the ISAT table continues to expand (via
adds and grows) as the computation proceeds.

The speed-ups due to ISAT that are observed for
the one- and two-dimensional computations are sig-
nificantly different. For the one-dimensional case,
the overall speed-up factor increases steadily and
then levels off at approximately 7–8. For the two-
dimensional problem, there is greater variation in the
speed-up due to the unsteadiness of the problem. The
overall speed-up that is observed for the flame/vortex
problem is, however, appreciably lower than that ob-
served in the one-dimensional flame computations.
The reasons for these differences are primarily two-
fold. First, because the flame/vortex problem is un-
steady, ISAT must tabulate a larger portion of the
composition space than for the one-dimensional flame
problem. Consequently, there are more table adds
and grows (as discussed above) that are expensive
computationally. Second, because of the parallel im-
plementation of the ISAT algorithm (as discussed
above), each processor has its own ISAT table. Conse-
quently, different processors may compute and tabu-
late the same regions of composition space thereby
increasing the simulation time that is required be-
fore table retrieves dominate the number of ISAT
events. In contrast, the one-dimensional computation
was a serial calculation so that no issues with ta-
ble overlap were present. In addition, there are com-
munication costs associated with the parallel imple-
mentation of ISAT that were not present in the one-
dimensional implementation of the algorithm.

4.7. Implications for turbulent flames

The speed-up results observed here for the two-
dimensional computations demonstrate the poten-
tial to accelerate the computation of turbulent re-
acting flows. In particular, when performing three-
dimensional direct numerical simulation, there are
frequently large regions of the computational domain
with little flame activity. In these regions, queries to
the ISAT table are likely to be satisfied by table re-
trieves thereby reducing CPU time significantly.
In addition, there are more grid points in a three-
dimensional domain than in a two-dimensional do-
main that stand to benefit from using ISAT.

In the simulation of a turbulent reacting flow, the
region of composition space that is accessed is likely
to be larger than the portion accessed in the present
work. Consequently, the ISAT tables will be larger,
require more memory to store, and will take longer
to construct. During the start-up time when the ma-
jority of the queries to the ISAT table are satisfied by
grows and adds, little or no speed-up is anticipated;
in fact, the use of ISAT may slow the computation (as
seen in the present work). Nonetheless, if the simula-
tion proceeds to the point where table retrieves
dominate, the potential speed-up is appreciable and
may be greater than that observed in the present work.

5. Conclusions

We have demonstrated the use of ISAT and the
Strang-based subsplitting scheme of Singer et al. [2]
in the context of a two-dimensional unsteady reacting
flow with detailed chemistry. To accelerate compu-
tations and thereby decrease CPU time, parallel ver-
sions of dflame and ISAT were outlined and used:
a hybrid programming approach was used to cou-
ple the two codes. The scheme was applied to the
case of a laminar flame front interacting with a coun-
terrotating vortex pair: this configuration has been
studied extensively both experimentally and numer-
ically [6–8] and the results obtained here are con-
sistent with those found in [8]. ISAT performance
was examined and compared to that of the original
DVODE-based scheme. Here it was found that the
ISAT scheme provides an overall code speed-up of
approximately 2.5–3.

Further discussion also addressed alternative ISAT
message-passing strategies. Here it was noted that
the number of ISAT compositions requiring mes-
sage passing could be reduced by parallelizing the
dflame algorithm using MPI. This reduction in mes-
sage passing could lead to further performance gains.
In addition, ISAT performance can also be enhanced
by using a message-passing scheme tailored for lam-
inar flames (rather than the random distribution ap-
proach used here which was designed for PDF meth-
ods). Such an approach can reduce both communi-
cation and ISAT table-building times. Load balanc-
ing among the MPI nodes was also examined for
the ISAT scheme. For the present computations, we
found that each MPI node spends within 97.5% of
the same amount of time in ISAT; this result sug-
gests excellent ISAT load balancing with the present
message-passing strategy. The speed-up due to ISAT
in comparison to the original dflame algorithm with
a subroutine to compute analytically the Jacobians re-
quired by the DVODE integrator was also examined.
Here we found that ISAT provided an overall time
speed-up of approximately 1.5–1.75. Finally, ISAT
calculations were performed using existing ISAT ta-
bles (constructed from previous runs). In this case, the
overall time-step speed-up factor due to ISAT was ap-
proximately 6–8.

162 M.A. Singer et al. / Combustion and Flame 147 (2006) 150–162
Acknowledgments

M.A.S. acknowledges support from a NASA
Graduate Student Researchers Program Fellowship
and the Langley Research Center. S.B.P. acknowl-
edges support from U.S. Department of Energy Grant
DE-FG02-90ER14128. H.N.N. has been supported
by the U.S. Department of Energy (DOE) and by
the DOE Office of Basic Energy Sciences (BES),
Division of Chemical Sciences, Geosciences and Bio-
sciences. Computations were performed at Sandia
National Laboratories. Sandia National Laboratories
is a multiprogram laboratory operated by Sandia Cor-
poration, a Lockheed Martin Company, for the United
States Department of Energy under Contract DE-
AC04-94-AL85000.

References

[1] D.A. Schwer, P. Lu, W.H. Green Jr., Combust.
Flame 133 (4) (2003) 451–465.

[2] M.A. Singer, S.B. Pope, H.N. Najm, Combust. Theory
Modelling 10 (2006) 199–217.

[3] S.B. Pope, Combust. Theory Modelling 1 (1997) 41–
63.

[4] H.N. Najm, O.M. Knio, J. Sci. Comput. 25 (2005) 263–
287.
[5] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Mori-
arty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K
Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissian-
ski, Z. Qin, available at: http://www.me.berkeley.edu/
gri_mech/.

[6] H.N. Najm, P.S. Wyckoff, Combust. Flame 110 (1–2)
(1997) 92–112.

[7] H.N. Najm, P.H. Paul, C.J. Mueller, P.S. Wyckoff,
Combust. Flame 113 (3) (1998) 312–332.

[8] H.N. Najm, O.M. Knio, P.H. Paul, P.S. Wyckoff, Com-
bust. Theory Modelling 3 (1999) 709–726.

[9] J.G. Verwer, Appl. Numer. Math. 22 (1–3) (1996) 359–
379.

[10] M.A. Singer, S.B. Pope, Combust. Theory Modelling 8
(2004) 361–383.

[11] S.B. Pope, S.R. Lantz, x2f_mpi: Software for the
efficient load distribution of function evaluations in a
multi-processor MPI environment, in preparation.

[12] O.M. Knio, H.N. Najm, P.S. Wyckoff, J. Comput.
Phys. 154 (2) (1999) 428–467.

[13] R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, Sandia
Report SAND85-8240, Sandia National Laboratories,
1985.

[14] R.J. Kee, F.M. Rupley, J.A. Miller, Sandia Re-
port SAND89-8009, Sandia National Laboratories,
1989.

[15] P.N. Brown, G.D. Byrne, A.C. Hindmarsh, SIAM J.
Sci. Stat. Comput. 10 (5) (1989) 1038–1051.

[16] H.N. Najm, personal communication, 2005.

http://www.me.berkeley.edu/gri_mech/
http://www.me.berkeley.edu/gri_mech/

	Modeling unsteady reacting flow with operator splitting and ISAT
	Introduction
	Numerical algorithm
	Overview
	Serial ISAT
	Parallelism
	Coupling parallel dflame and x2f_mpi

	Results
	Qualitative results
	Original dflame performance
	ISAT-dflame performance

	Discussion
	Evaluating trade-offs: accuracy, efficiency, and memory
	ISAT message-passing strategies
	Load balancing
	Analytical Jacobians
	Maximum ISAT speed-up
	Comparison of one- and two-dimensional results
	Implications for turbulent flames

	Conclusions
	Acknowledgments
	References

