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A methodology termed the “velocity-scalar filtered mass density function” (VSFMDF) is developed
and implemented for large eddy simulation (LES) of variable-density turbulent reacting flows. This
methodology is based on the extension of the previously developed “velocity-scalar filtered density
function” method for constant-density flows. In the VSFMDF, the effects of the unresolved subgrid
scales (SGS) are taken into account by considering the joint probability density function of the
velocity and scalar fields. An exact transport equation is derived for the VSFMDF in which the
effects of SGS convection and chemical reaction are in closed forms. The unclosed terms in this
equation are modeled in a fashion similar to that in Reynolds-averaged simulation procedures. A set
of stochastic differential equations (SDEs) are considered which yield statistically equivalent results
to the modeled VSFMDF transport equation. The SDEs are solved numerically by a Lagrangian
Monte Carlo procedure in which the It6-Gikhman character of the SDEs is preserved. The
consistency of the proposed SDEs and the convergence of the Monte Carlo solution are assessed. In
nonreacting flows, it is shown that the VSFMDF results agree well with those obtained by a
“conventional” finite-difference LES procedure in which the transport equations corresponding to
the filtered quantities are solved directly. The VSFMDF results are also compared with those
obtained by the Smagorinsky closure, and all the results are assessed via comparison with data
obtained by direct numerical simulation of a temporally developing mixing layer involving transport
of a passive scalar. It is shown that all of the first two moments including the scalar fluxes are
predicted well by the VSFMDEF. Moreover, the VSFMDF methodology is shown to be able to
represent the variable density effects very well. The predictive capabilities of the VSFMDF in
reacting flows are further demonstrated by LES of a reacting shear flow. The predictions show
favorable agreement with laboratory data, and demonstrate several of the features as observed

experimentally. © 2007 American Institute of Physics. [DOI: 10.1063/1.2768953]

I. INTRODUCTION

The probability density function (PDF) approach has
proven to be useful for large eddy simulation (LES) of tur-
bulent reacting flows."? The formal means of conducting
such LES is by considering the “filtered density function”
(FDF).** The fundamental property of the FDF is to account
for the effects of subgrid-scale (SGS) fluctuations in a proba-
bilistic manner. Since its original conception,3’4 the FDF has
become very popular in the combustion research.” Most con-
tributions thus far are based on the marginal scalar FDF
(SFDF).®'" This popularity is due to the capacity of this
formulation to provide a closed form for the chemical reac-
tion effect. However, in the SFDF the effect of convection
needs to be modeled similar to that in “conventional” LES.
Gicquel et al"! developed the marginal FDF of the velocity
vector (VFDF) in which the effect of SGS convection is in a
closed form. However since the information about scalars is
not embedded in the VFDF, this method is only suitable for
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constant-density, nonreacting flows. Following the develop-
ments as cited above, the FDF methodology has experienced
widespread usage. Examples are contributions in its basic
implementation,12’23 fine-tuning of its subclosurc:s,24’25 and
its validation via laboratory experiments.26_30 The FDF is
finding its way into commercial codes®*? and has been the
subject of detailed discussions in several books.'*** Givi®
provides a comprehensive review of the state of progress in
LES/FDF.

The objective of the present work is to extend the FDF
methodology to account for the “joint” SGS velocity and
scalar fields in variable-density flows. This is accomplished
by considering the joint “velocity-scalar filtered mass density
function” (VSFMDF). This is the most comprehensive form
of the FDF formulation to date. With the definition of the
VSFEMDEF, the mathematical framework for its implementa-
tion in LES is established. A transport equation is developed
for the VSFMDF in which the effects of SGS convection and
chemical reaction (in a reacting flow) are in closed forms.
The unclosed terms in this equation are modeled in a fashion
similar to those in the Reynolds-averaged simulation (RAS)

© 2007 American Institute of Physics

Downloaded 25 Jan 2008 to 128.84.5.24. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp


http://dx.doi.org/10.1063/1.2768953
http://dx.doi.org/10.1063/1.2768953
http://dx.doi.org/10.1063/1.2768953

095106-2 Sheikhi, Givi, and Pope

procedures. A Lagrangian Monte Carlo procedure is devel-
oped and implemented for numerical solution of the modeled
VSFMDF transport equation. The consistency of this proce-
dure is assessed by comparing the moments of the VSFMDF
with those obtained by the Eulerian finite-difference of the
same moments’ transport equations. The results of the
VSFMDF simulations are compared with those predicted by
the Smagorinsky36 closure. All the results are assessed via
comparisons with direct numerical simulation (DNS) data of
a three-dimensional (3D) temporally developing mixing
layer involving transport of a passive scalar variable. The
predictive capability of the VSFMDF methodology in react-
ing flows is assessed by comparison with experimental data
of Mungal and Dimotakis®’ for a 3D reacting spatially devel-
oping mixing layer.

There have been significant previous investigations on
the effect of density on turbulent flow™** characteristics.
These studies show how density changes modify the turbu-
lent structures in both low-speed and high-speed flows. A
significant effect is reduction of the shear layer growth rate
which is due to modification of Reynolds stresses by density
variations. Now that LES is becoming a viable tool for the
simulation of turbulent reactive flows, it is useful to evaluate
the ability of SGS models in accounting for variable density
effects. In this study, such an evaluation is performed on the
VSEMDF methodology. The shear layers considered in this
study have low Mach number and hence, negligible com-
pressibility effects. The spatial mixing layer simulations have
moderate amounts of heat release with the density ratios of
1.3-1.5 for the range of concentration ratios considered. In
the temporal mixing layer simulations, much higher free-
stream density ratios (up to 8) are considered. These results
are validated by comparing with DNS data of the same layer.

Il. FORMULATION

In a turbulent flow undergoing chemical reactions in-
volving N, species, the primary transport variables are the
density p(x,7), the velocity vector u,(x,t) (i=1,2,3), the
pressure p(x,f), the enthalpy h(x,7) and the species’ mass
fractions Y (x,7) (@=1,2,...,N,). The equations which gov-
ern the transport of these variables in space (x;) (i=1,2,3)
and time (¢) are the continuity, momentum, enthalpy (en-
ergy), and species’ mass fraction equations, along with an
equation of state

J opu;
p , dpu;

=0, la
dpu; Jdpuiu; d JT;;
P L pu; 1=__p+_ﬂ’ (lb)
ot ox; ox; o0x;

J ! J

ap¢a + apuf¢a —_ a‘]a

+pS,
ot 0x; 0x; Poa

a=1,2,...,0=N,+1,

(Ic)
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NS
p=pRT>, Y /M= pRT, (1d)

a=1

where R? and R are the universal and mixture gas constants
and M, denotes the molecular weight of species a. The
chemical reaction source terms S, =S,(¢p(x, 1)) are functions
of compositional scalars (¢p=[ed;,d,, ..., d)NSH]). Equation
(Ic) represents the transport of species’ mass fraction and
enthalpy in a common form with

N.Y
be=h=2 hoto (2)
a=1

¢,=Y, a=12,...,N,
and
T
ho=h" + f ¢, (T')dT'. (3)
Ty

Here T and T|, denote the temperature field and the reference
temperature, respectively. In this equation, hg and ¢, denote
the enthalpy of formation at T}y and the specific heat at con-
stant pressure for species a. For a Newtonian fluid, with
Fick’s law of diffusion, the viscous stress tensor 7ij and the
scalar flux Jj‘?‘ are represented by

du; Jdu; 2du

dx;  dx; 3 9x

d
Ji=—y—=, 4b
J Y Ox: ( )

7

where w is the fluid dynamic viscosity and y=pl" denotes the
thermal and mass molecular diffusivity coefficients for all
the scalars. We assume u=1v, i.e., unity Schmidt (Sc) and
Prandtl (Pr) numbers. The viscosity and molecular diffusivity
coefficients can, in general, be temperature dependent but in
this study, they are assumed to be constants. In reactive
flows, molecular processes are much more complicated than
portrayed by Eq. (4). Since the molecular diffusion is typi-
cally less important than that of SGS, this simple model is
adopted with justifications and caveats given in Refs. 43—45.

Large eddy simulation involves the spatial filtering

- 1,46-49
operation

(fx,0))¢= j S DG x)dx’, (5)

where G(x’,x) denotes a filter function, and (f(x,?)), is the
filtered value of the transport variable f(x,f). In variable-
density flows it is convenient to use the Favre-filtered quan-
tity (f(x,1)).={pf)¢/{p)¢. We consider a filter function that is
spatially and temporally invariant and localized, thus
G(x',x)=G(x'-x) with the properties G(x)=0,
J12G(x)dx=1. Applying the filtering operation to Egs. (1)
and using the conventional LES approximation for the diffu-
sion terms, we obtain
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In this equation, the third order correlations +o ) , )
7(a,b,0) = (abe), — (@), 7 (b,c) = (), 7 (asc) Pl = | P 0Hw g0, ox.0)
— ey m(a,b) —{ay (by{c) 9 XG(x' —x)dx’, (10)
along with the other terms within square brackets are un- where

closed. Equations (6) and (8) provide an “exact” form of the

transport equations. 3
(. prux,0), d(x,0) =[] 80— ui(x,1)

lll. VELOCITY-SCALAR FILTERED MASS DENSITY i=1

FUNCTION (VSFMDF)

A. Definitions X 1 8, - do(x.0)).  (11)
a=1
The “velocity-scalar filtered mass density function”
(VSFMDF), denoted by P;, is formally defined as’ In this equation, & denotes the Dirac delta function, and v, ¢
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are the velocity vector and the scalar array in the sample
space. The term ¢ is the “fine-grained” density.44’50 Equation
(10) defines the VSFMDF as the spatially filtered value of
the fine-grained density. With the condition of a positive fil-
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ter kernel,”' P; has all of the properties of a mass density
function (rndf).44 For further developments it is useful to
define the “conditional filtered value” of the variable Q(x,¢)
as

© O, 0)p(x', 0, dru(x’,1), p(x',1)G(x’ - x)dx’ (12)
P, (v, .x;1) '
[
Equation (12) implies the following: aL <¢9”k al a¢a a ) 15)
(i) for Q(x,1) =c, (13a) ot =\t o, " ot o,
- R Substituting Egs. (1b) and (Ic), and Egs. (4a) and (4b) into
(i) for Q(x,7) = Q(u(x,1), b(x,1)), Eq. (15) we obtain
(13b)
A apl  dpu;l (0p %) 14 ((9]“ )
); = N
(0 Qv.4) ot Ix; dx;  dxy /) dv; 0 PSal &) N,
(iii) integral properties: (16)
1 i f thi i i Eq. (1 hil -
(.1 O(x, 1)), = (p(x, ) O(x,1)), ntegration of this equation according to Eq. (10), while em
ploying Eq. (12) results in
+00
= oP dvP Jd
f_w —E == (S, ()P,)
at - ax; .,
XP; (v, ¥, x;t)dvdis. 13
L(v"b'x)vl// (C) +i( 1 a_pvl/, P)
From Egs. (13) it follows that the filtered value of any func- aw\\p(d) ox;| "/, L

tion of the velocity and/or scalar variables is obtained by its
integration over the velocity and scalar sample spaces

(p(x,0)(0(x,0)), = J f O, PP, (v,,x;1)dvdip.

(14)

B. VSFMDF transport equations

To develop the VSFMDF transport equation, we con-
sider the time derivative of the fine-grained density function

[Eq. (11)]

P, P, 9 0(PL/p(t/f))) J K2
gt ox _axl(”” ox; a%(s ('l')PL)Jr K
& M (9u (9u
_1”7Uif90j[< (¢)(7xk IXy ’¢>6PL}_
L2 a{ Li( au> }
3(91), p() x; ox: )|V -
7 IR > }
9o O P < o) ax, x| M

d

_K p(l¢) ai(

(7Ui

d

_(< 1 (3’7’
p(dh) dx;

— v, P
(9U[ ¢>( L)
J aJ?
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This is an exact transport equation and indicates that the
effects of convection, the second term on the left-hand side
(LHS), and chemical reaction, the first term on the right-hand
side (RHS), appear in closed forms. The unclosed terms de-
note convective effects in the velocity-scalar sample space.
Alternatively, the VSFMDF equation can be expressed as

p(e) ox;

v, 1/1> P;
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ox;
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p(eh) dx; 0x;
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0vial/la
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This is also an exact equation. The unclosed terms are exhib-
ited by the conditional filtered values as shown by the last six
terms on the RHS.

C. Modeled VSFMDF transport equation

For closure of the VSFMDF transport equation, we con-
sider the general diffusion process,52 given by the system of
stochastic differential equations (SDEs):

dX; (1) = DX(X*,U*, ¢*;0)dt + BE(X*, U, *:1)dW(1)
+ FEU(XH U, @0 dWH (1)
+ F2(X*, U, *:0)dWi(e), (19a)
dU (1) = DY (X*,U*, ¢*;0)dt + B{(X*, U, " :1)dW; (1)

+ F (XU ¢ 0)d Wi (1)

+ FIY(X* U, " 30)dW(1), (19b)
dgi(1) = DUXT, U, p*;0)dt + BL(X, U, ") dW(1)

+ FOX(X*U*, ¢p*50)dW (1)

+ FO (XU, 65 0)d W (1), (19¢)

where X], U/, ¢ are probabilistic representations of posi-
tion, velocity vector, and scalar variables, respectively. The
D terms denote drift coefficient, the B terms denote diffu-
sion, the F terms denote diffusion couplings, and the W

terms denote the Wiener-Lévy processes.53’54 To model these
coefficients, following Refs. 9, 11, and 55-57 we utilize the
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simplified Langevin model (SLM) and the linear mean

square estimation (LMSE) model>

dX = Utdt + \| —=aw, (20a)
V< o
L dp)e 2 3( 59<Mi>L>
Ur=|- 2Pk, 2 9 S
U { P ax o\ P ax,

10 a<uz~>L> 21 i( amm)}
+<P>ef9xj<'u dx; ] 3{p)eox; # ox; a

Gij(U}L = () )dt + \“'Fofdwil

+
2m u;
R
(P ox;

(20b)
d(ﬁ; = Cqﬁw((b; - <¢a>L)dt + Sa(¢+)dt’ (20C)
where

1 3 €

Gijz—(l) E+ZC() 5”, w=£,
(21)

k3/2
€= CGA—L, k= ETL(M,-,M,-).

Here w is the SGS mixing frequency, € is the dissipation rate,
k is the SGS kinetic energy, and A; is the LES filter size. The
parameters Cy, Cy, and C, are model constants and need to
be specified. The Fokker-Planck equation®® for F; (v, ,x;1),
the joint PDF of X*,U*, ¢*, evolving by the diffusion pro-
cess as given by Eq. (20) is

Oy dviFy _ 1 poFy Li( u)&F RN ( (9<“>L><9FL+ZL1< m)&
ot ax;  (p)y dx; v, (p)e Ix; H dx; ) dv;  (p)e dx; H dx; ] dv;  3{p)edx; H ax; /) dv;
e [(UI ;) )FL] ( I(F/p)e) _(2_#07<M,>L(9_FL) o Hug) )y FFy
v; &j H x; ax;\{p)¢ dx; dv;) {p)¢ Ix, Ix; I, dv;
1 &#F (g, — Fr| (S (pF
+_C0€ L +C¢(1) [(lpa <¢a>L) L]_ ( a(lp) L). (22)
2 7 v, dv; a, ay,

Equation (20) governs the evolution of N, notional particles,
as explained in the subsequent section, which constitute a
“stochastic particle system.” This system has inherent differ-
ent characteristics from the “fluid system” governed by Eq.
(1).! Providing a perfect model, the stochastic particle sys-
tem can, at most, give a statistical description of turbulence.
In view of this limitation, we aim to make a correspondence
between the two systems at the level of one-point, one-time

statistics. This is done by equating the joint PDF of the par-
ticle system with the VSFMDF, i.e.,

F,(v,,x;1) =P, (v, ,x;1). (23)
The stochastic processes X*(7), U*(r), and ¢*(¢) are con-
structed in such a way that Eq. (23) is satisfied. This results
in similarity of the statistics obtained from the two systems.
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Because of this similarity, no distinction is made between
these two statistics hereafter. The transport equations for the
filtered variables are obtained by integration of Eq. (22) ac-
cording to Eq. (14):

Kp)e N Kp) el —0, (242)
ot IX;
Kpyuay N 3 p)up) ()
ot dx;
- Hp)e + i(ﬂ( Huy)y N ﬁ(“f)L))
ox; dx; dx; ox;
29[ Hu »>L) _ Kp)eri(usuy)
3 ax,»(“ axjj ax; - (24b)
Hp){ba)L . ) ) (Pt
ot dx;
_ i( a<¢a>L) _ a<p>€TL(¢wuj)
- Ix; K Ix; Ix;
+(P){Sa(P))r.- (24¢)

To have corresponding systems, the transport equations gov-
erning the systems should also correspond. From Egs. (24), it
is clear that the particle first order statistics satisfy the mass
conservation as well as momentum and scalar transport
equations. The transport equations for the second order SGS
moments are

HKpYer(u;u)) . K w7 (wio )

ot é’xk
3 3<P>€TL(uk,ui,ug) N i( aTL(uiauf))
o"xk 0xk ﬁxk
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e 0) 2 g0 P
Ixy

514 071/!

i[< 1 ap
;[\ p(d) dx;

kil
YT doll \ e ax;

P} P [ e du; du
V¥ ¢ L ; dv;| \ p() dx; dx;
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+(P) Gt () + )G (ws i) +{p)Co€y,
(25a)
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The implied closure for the SDEs (20) is obtained by com-
paring the Fokker-Planck equation [Eq. (22)] to the
VSEMDEF transport equation [Eq. (18)]

v, 1/1> PL]
¢

(7xi

R P AR (P
30, \ p() ax; A A
P [ n 0de 39 ]
_awaa¢ﬁ[<p(¢) ax;  ox; V"/'>(PL
L apydF, 2 4 ( a<u,~>L>a_FL 19 ( a<u!->L>a_FL 21 9 ( a<uf>L)a_FL
T ox o preax\Fax; ), (oo \F ax ) au 3 ph ax\ iy ) ou;
-G, 8[(1}1 <MZ>L)FL] (2,“« <9<U>L‘7FL>+L(7<“5>L5<M,'>L FFy +l FFy
v; (p¢ dx; dv;) {p)¢ dIxp Ix; dv;dv; 2 O dv; v,
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The set of equations (24) and (25) may be compared with
Egs. (6) and (8). The closure at the second order level is

du; du; J u

ox dxy, ox\ dx;
+rl\u,—\pu— | |-z lu;,—\p—
L " ox, 'ur?xj 3 A\ x; 'ur?xk
3 Ix;\" dxy Tox; [ ¢ L x;
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(9Xj ¢ (7XJ
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(27a)
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3 TL<¢Q’ ﬁx,(ﬂo"xj))

p 0"<P>€)
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(27b)

d, 0
MTL(%%) = (P)Cyo71( 0 Pp)

_ é]< ¢a>L (9( ¢§>L
K ox; ax;

l

(27¢)
It is clear that the transport equations implied by the model
are consistent with the original LES equations [Egs. (6) and
(8)]. As indicated in Eq. (27¢), in the scalar covariance equa-
tion, there is a spurious source term which is negligible at
high Reynolds number flows.

IV. NUMERICAL SOLUTION PROCEDURE

Numerical solution of the modeled VSFMDF transport
equation is obtained by a hybrid finite-difference/Monte
Carlo procedure. The basis is similar to those in RAS (Refs.
59 and 60) and in previous FDF simulations,g_“’57 with some
differences which are described here. For simulations, the
FDF is represented by an ensemble of N, statistically iden-
tical Monte Carlo (MC) particles. Each particle carries infor-
mation pertaining to its position, X (z), velocity, U"(r), and
scalar value, ¢"(1), n=1,... ,N,. This information is up-
dated via temporal integration of the SDEs. The simplest
way of performing this integration is via Euler-Maruyamma
discretization.®' For example, for Eq. (19a),

X (tg41) = X[ (1) + (D (1)) At + (B(1))"(AD) XL (1)
+ (FEY () (A0 2 (1)
+ (FEA1))" (A" (L))", (28)

where D;(1;) =Dy(X"(1,) .U (1), ¢™(1,):1,), ..., and {(1,)’s
are independent standardized Gaussian random variables.
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This scheme preserves the Itd character of the SDEs.%

The computational domain is discretized on equally
spaced finite-difference grid points. These points are used for
three purposes: (1) to compute the pressure field, (2) to iden-
tify the regions where the statistical information from the
MC simulations are obtained, and (3) to perform a set of
complementary LES primarily by the finite-difference meth-
odology for assessing the consistency and convergence of the
MC results. The LES procedure via the finite-difference dis-
cretization is referred to as LES-FD and will be further dis-
cussed below. Statistical information is obtained by consid-
ering an ensemble of Ny computational particles residing
within an ensemble domain of characteristic length Ay cen-
tered around each of the finite-difference grid points. For
reliable statistics with minimal numerical dispersion, it is
desired to minimize the size of an ensemble domain and
maximize the number of the MC particles.44 In this way, the
ensemble statistics would tend to the desired filtered values,

<Cl>EENL E a" — (@),

EnelAgp IZE‘”(:
E—>
(29)
1
m(a,b) = ]7 E (a(n) - <‘1>E)(b(n) - <b>E)N—> 7(a,b),
Enelpg E—®

Ap—0

where a denotes the information carried by the nth MC
particle pertaining to transport variable a.

To reduce the computational cost, a procedure involving
the use of nonuniform Weightslo is also considered. This pro-
cedure allows a smaller number of particles in regions where
a low degree of variability is expected. Conversely, in re-
gions of high variability, a large number of particles is al-
lowed. It has been shown'*** that the sum of weights within
the ensemble domain is related to filtered fluid density as

(p)e= am w, (30)

E nelp

where Vi is the volume of ensemble domain and Am is the
mass of particle with unit weight. The Favre-filtered value of
a transport quantity Q(v,¢) is constructed from the
weighted average as

Sea w(”)Q(v(”), ¢(n))
- w . (31)

(O, =

EnEAEW

With uniform Weights,44 the particle number density de-
creases in regions of low density such as the reaction zone.
The implementation of variable weights allows the increase
in particle density without increasing the particle number
density in these regions. The LES-FD solver is based on the
compact parameter finite-difference scheme.®*® This is a
variant of the MacCormack scheme in which fourth-order
compact differencing schemes are used to approximate the
spatial derivatives, and second-order symmetric predictor-
corrector sequence is employed for time discretization. All of
the finite-difference operations are conducted on fixed grid
points. The transfer of information from the grid points to the
MC particles is accomplished via a linear interpolation. The
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transfer of information from the particles to the grid points is
accomplished via ensemble averaging as described above.
The LES-FD procedure determines the pressure field
which is further used in the MC solver. The transport equa-
tions to be solved by LES-FD solver include unclosed sec-
ond order moments which are obtained from the MC solver.
The LES-FD also determines the filtered velocity and scalar
fields. That is, there is a “redundancy” in the determination
of the first filtered moments as both the LES-FD and the MC
procedures provide the solution of this field. This redun-
dancy is actually very useful in monitoring the accuracy of
the simulated results as shown in previous works, '0:1157:39:60

V. RESULTS

A. Flows simulated
The following flow configurations are considered:

(i) A three-dimensional temporally developing mixing
layer involving transport of a passive scalar variable.

(i) A three-dimensional spatially developing mixing layer
involving chemical reaction with nonpremixed
reactants.

Simulation (i) is used to assess the consistency and the over-
all capabilities of the VSFMDF methodology. This predic-
tion is compared with data obtained by direct numerical
simulation (DNS) of the same layer. Simulation (ii) is per-
formed to demonstrate the predictive capabilities of the
VSEMDF in reacting flows. The appraisal of these simula-
tions is made by comparing to laboratory data.

In the representation below, x, y, and z denote the
streamwise, the cross-stream, and the spanwise directions,
respectively. The velocity components along these directions
are denoted by u, v, and w in the x, y, and z directions,
respectively. The temporal mixing layer consists of two par-
allel streams traveling in opposite directions with the same
d.%° The filtered streamwise velocity, scalar and tem-
perature fields are initialized with hyperbolic tangent profiles
with free-stream conditions as (u); =1, (¢);=1 on the top
and (u);=—1, (¢); =0 on the bottom. These simulations are
performed with several density ratios defined as s=p;/p,
where p, and p, denote the {p), on the top and bottom free-
streams, respectively. The density ratios of s=1,2,4,8 are
considered. With the uniform initial pressure field, the initial
(T), field is set equal to the inverse of {p), field based on
ideal-gas equation of state. The length L, is specified such
that L,=2"?\,,, where Np is the desired number of successive
vortex pairings and A, is the wavelength of the most unstable
mode corresponding to the mean streamwise velocity profile
imposed at the initial time. The flow variables are normalized
with respect to the half initial vorticity thickness, L,=[4,(t
=0)]/2 (8,=AU/|Ku);/ y|max» Where (u), is the Reynolds-
averaged value of the filtered streamwise velocity and AU is
the velocity difference across the layer). The reference veloc-
ity is U,=AU/2.

Simulation (i) is conducted for a cubic box, 0=x=L,
-L/2=y=L/2, 0=z=L where L=L,/L,. The 3D field is
parameterized in a procedure somewhat similar to that by

Phys. Fluids 19, 095106 (2007)

Vreman ef al.®® The formation of the large scale structures
are expedited through eigenfunction based initial
peﬂurbations.69’70 This includes two-dimensional®®®*”! and
three-dimensional®*"* perturbations with a random phase
shift between the 3D modes. This results in the formation of
two successive vortex pairings and strong three-
dimensionality. The flow configuration in simulation (ii) is
similar to the one considered in the laboratory experiments
of Mungal and Dimotakis.”” In these experiments, a heat-
releasing reacting planar mixing layer consists of a low con-
centration of hydrogen (H,) in one stream and a low concen-
tration of fluorine (F,) in the other stream. Both reactants are
diluted in nitrogen (N,) with the level of dilution determin-
ing the extent of heat release. The computational domain
extends 54.8 cm X 36.6 cm X 4.6 cm in x, y, and z directions,
respectively, which covers the whole region considered ex-
perimentally including x=45.7 cm where the measured data
are reported. This flow is dominated by large scale two-
dimensional structures.”® Jaberi ef al.'’ demonstrated the suf-
ficiency of their two-dimensional simulations to capture hy-
drodynamic features of this flow and obtained good
agreement with laboratory data. Therefore, to reduce the
computational costs, the domain size in the z direction is
considered to be minimal. It is shown that this size is suffi-
ciently large to let three-dimensional large-scale structures
develop. In order to simulate a “naturally” developing shear
layer, a modified variant of the forcing procedure suggested
in Ref. 73 is utilized. The cross-stream velocity component
at the inlet is forced at the most unstable mode as well as
four (sub- and super-) harmonics of this mode with a random
phase shift. In these simulations, the variables are normal-
ized by the values in the high-speed stream. The reference
length L,=45.7 cm which is the location in the experiment
where the visual width of the layer is 7.4 cm.

Reaction mechanism

The chemical reaction considered in simulation (ii) in-
volves the reaction of hydrogen (H,) and fluorine (F,) as
represented by Dimotakis”’

H,+F, —2HF, AQ=-130 kcal™! mol™, (32)

where AQ is the heat of reaction. This reaction is sufficiently
energetic that 1% of F, and 1% of H, in nitrogen will pro-
duce an adiabatic flame temperature of 93 K above ambient.
Thus, dilute concentrations produce significant temperature
rise. The reaction actually consists of two second-order chain
reactions with chemical times that are fast compared to the
fluid mechanical time scales. Mungal and Dimotakis®’ indi-
cate that for the conditions of the experiment, the H,—F,
mixture is in a stable region. Thus, for the chain reactions to
proceed rapidly, it becomes crucial to provide some means to
ensure the presence of F atoms. The technique used in the
experiment consists of introducing a small amount of nitric
oxide in the hydrogen reactant vessel. While it is necessary
to add nitric oxide to initiate the reaction, the addition of
excessive amounts would deplete the available F atoms. It
was determined experimentally that by keeping the product
of nitric oxide and fluorine concentrations at 0.03% the re-
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FIG. 1. Comparison of Reynolds-averaged values of different density esti-
mates obtained from MC with LES-FD density ({p),) in temporal mixing
layer simulations with s=2 at r=80. The thick solid line denote LES-FD
prediction. The symbols denote: (triangle) particle weight density [Eq. (30)]
and (circle) MC density [Eq. (34)].

actions proceed rapidly. In this regard, it is important to note
that the addition of 50% more nitric oxide showed no sig-
nificant changes in the mean temperature profile. Thus, the
chemistry can be considered to be relatively fast. This is also
shown in Ref. 10 where they considered both finite-rate and
fast chemistry models and observed negligible differences.
Therefore, the fast chemistry model is considered here.

B. Numerical specifications

Simulations are conducted on equally spaced grid points.
Simulation (i) has grid spacings Ax=Ay=Az=A with the
number of grid points 193* and 33* for DNS and LES, re-
spectively. In this simulation the Reynolds number is Re
=U,L,/v=50. To filter the DNS data, a tophat function of
the form below is used with A;=2 A,

3
G(x' —x) =1 6! - x),

i=1

(33)
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x| =

A
5
0, |x/—x|> ﬁ
2
No attempt is made to investigate the sensitivity of the re-
sults to the filter function®' or the size of the filter.”*

Simulation (ii) is conducted on 81 X 81 X 12 grid points
in x, y, and z directions, respectively. The number of grid
points in the z direction is sufficient and provides the same
grid resolution as in y direction. The LES filter size in this
simulation is A;=2A where A=(AxAyAz)'3. Hyperbolic
tangent functions are utilized to assign the velocity, scalar,
and temperature profiles for simulation (i), and at the inlet
for simulation (ii). The same profiles are also used to initial-
ize the particle values in both simulations and to assign the
incoming particle values in simulation (ii). In simulation (ii),
the characteristic boundary condition” is used at the inlet
boundary. The pressure boundary condition” is used at the
outflow boundary and a zero-derivative boundary condition
is implemented at cross-stream boundaries.

All simulations are performed with variable particle
weights.'” In simulation (i), the MC particles are initially
distributed throughout the computational region uniformly in
a random fashion. The particle weights are set according to
filtered fluid density at the initial time. In simulation (ii), the
MC particles are initially distributed randomly within region
—0.15L,=y=0.15L, with a uniform distribution. In simula-
tion (ii), the composition and velocity components of the
incoming particles are the same as those in the experiment
and consistent with those on LES grid points. The initial
number of particles per grid point is NPG=320 (Nz=40) and
the ensemble domain size (Aj) is set equal to half the grid
spacing in each (x, y or z) direction. The effects of both of
these parameters are assessed in the previous studies.” "’
All results are analyzed both “instantaneously” and “statisti-
cally.” In the former, the instantaneous contours (snapshots)
and scatter plots of the variables of interest are analyzed. In
the latter, the “Reynolds-averaged” statistics constructed
from the instantaneous data are considered. These are con-
structed by spatial averaging over homogeneous directions

FIG. 2. Cross-stream variation of the
Reynolds-averaged values of (a) (¢),,
and (b) 7,(¢h,¢) in temporal mixing
layer simulations at r=80 with s=2.
The thick solid lines and circles denote
LES-FD and MC  predictions,
respectively.

" : ;
-20 -10 0 10 20
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(x and z) in simulation (i) and by time averaging in simula-
tion (ii). All Reynolds-averaged results are denoted by an
overbar.

No attempt is made to determine the appropriate values
of the model constants; the values suggested in the literature
are adopted77 Cy=2.1, C.=1, and Cy=1. The influences of
these parameters are assessed in Ref. 57. The value of Sc
(=Pr) is 1 for all the simulations.

C. Consistency assessments

The objective of this section is to demonstrate the con-
sistency of the VSFMDF formulation. Since the accuracy of
the LES-FD procedure is well-established (at least for the
first order filtered quantities), such a comparative assessment
provides a good means of assessing the performance of the
MC solution.

The uniformity of the MC particles is checked by moni-
toring their distributions at all times. The particle number
density inside the ensemble domain (Ng) normalized by the
initial N (here, initial Ny=40) varies around unity (as it
should) while the particle weight density should be close to
the filtered fluid density. The Reynolds-averaged density
fields as obtained by both LES-FD and MC are shown in Fig.
1. As depicted, the particle weight density [see Eq. (30)] and
the MC density, defined as

EnEAEW(n)(R’T(n)Kp)f) -l
<p>EE s A W(n) B

neE

(34)

are in very good agreement with the filtered density obtained
from LES-FD.

lines denote the linear regression and
45° lines, respectively. r denotes the
correlation coefficient.

The consistency is checked for the first two moments. As
Fig. 2(a) shows, the cross-stream variation of filtered scalar
is consistently predicted by LES-FD and MC. The same con-
sistency is also observed for all other first moments. These

0.0 0.1

03 05 07 09 10

FIG. 4. (Color) Contour surfaces of the instantaneous (¢), field in temporal
mixing layer simulations with s=2 obtained from VSFMDF at 1=80.
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(b)
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FIG. 5. (Color online) Contour plots of the (¢); field on a spanwise plane at z=0.75L, t=80 in 3D temporal mixing layer simulations with s=2 as obtained

by: (a) DNS (filtered), (b) VSFMDEF, and (c) Smagorinsky.

moments show very little dependence on the values of Ag
and Nj consistent with previous FDF simulations.”""*” The
consistency of the second order scalar correlation is also
shown in Fig. 2(b). The predictions via MC show close
agreement with LES-FD (the differences are due to statistical
errors). With N and Ay chosen, this demonstration is con-

. . . . 9,10
sistent with previous assessment studies on the scalar,” "~ the

velocity,11 and the velocity-scalar FDFs.”” All other second
order SGS moments behave similarly.

Complementary consistency assessment is obtained by
presenting the scatter plots of instantaneous results obtained
from LES-FD and MC. Figures 3(a) and 3(b) show the scat-
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FIG. 6. (Color online) Contour plots of the (¢), field on a streamwise plane at x=0.25L, t=80 in 3D temporal mixing layer simulations with s=2 as obtained

by: (a) DNS (filtered), (b) VSFMDEF, and (c) Smagorinsky.

ter plots of the velocity components in streamwise and cross-
stream directions. For all the velocity components, there is a
high level of correlation between LES-FD and MC results. In
Fig. 3(c), the consistency of the filtered passive scalar field is
demonstrated. For all the first order moments the linear re-
gression line almost coincides with the 45° line. The scatter
plot of scalar correlation is shown in Fig. 3(d). As shown, the
scalar correlation shows increased statistical variations and

hence, decreased correlation coefficient. The high level of
correlations for all these quantities further establishes the
consistency of the VSFMDF methodology.

D. Validation via DNS data

The objective of this section is to analyze some of the
characteristics of the VSFMDF via comparative assessments
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against DNS of a three-dimensional temporal mixing layer.
In addition, comparisons are also made with LES via the
“conventional” Smagorinsky%’78 model
1 2
TL(”i»”j) =—- 2Vt(Sij - ;Snnél]) + gké

2

71(u;, ) = - anf;f?L )
(35)
_ l( Huy)y, + 3<M!'>L>

v 2 ﬁxj o”x,»

2 Yy
v=CALS, TI'i=_",
Sc,
C,=0.04, Sc,=1, S= \e“'S,-jS,-j and A; is the characteristic
length of the filter. The isotropic part of SGS stress is ex-
pressed using Yoshizawa’s” expression

k=C/A7S>. (36)

Yoshizawa’s constant of C;=0.18 is adopted from the dy-
namic simulations of Moin et al.*’

For comparison, the DNS data are filtered from the origi-
nal high resolution 193° points to the coarse 33° points. In
the comparisons, we also consider the “resolved” and the
“total” components of the Reynolds-averaged moments. The
former are denoted by R(a,b) with R(a,b)=(a),~(a))
X ({b),—(b);); and the latter is r(a,b) with r(a,b)=(a—a)
X (b—b). In DNS, the “total” components are directly avail-
able, while in LES they are approximated by r(a,b)
~R(a,b)+7,(a,b).®

Figure 4 shows the instantaneous isosurface of the (&),
field at +=80. By this time, the flow is going through pairings
and exhibits strong 3D effects. This is evident by the forma-
tion of large scale spanwise rollers with the presence of sec-
ondary structures in streamwise planes,69 as also illustrated
in Figs. 5 and 6. These figures show the scalar fields obtained
from DNS, VSFMDF, and the Smagorinsky model on planes
in the spanwise and streamwise directions. As Fig. 5 shows,
the two neighboring rollers are being paired and in Fig. 6, the
formation of secondary structures is evident. As illustrated in
these figures and consistent with the previous works,'" the
results obtained from the Smagorinsky closure are overly
smooth. This is due to the excessive amount of SGS diffu-

FIG. 7. Cross-stream variation of
Reynolds-averaged (a) density, and (b)
streamwise velocity at t=80 in tempo-
ral mixing layer simulations. The solid
lines with white symbols denote
VSFMDF predictions. The black sym-
bols denote DNS predictions. The
symbols denote: (diamond) s=1;
(circle) s=2; (triangle) s=4; and
(square) s=8.

sion with the Smagorinsky model. As shown, there is more
resemblance in structures predicted by VSFMDF and DNS.

The effect of density variations on turbulence is studied
in simulation (i). Free-stream density ratios of s=1,2,4,8
are considered in both VSFMDF and DNS. Figure 7(a)
shows the filtered fluid density field as predicted by
VSFMDF and DNS. The level of agreement between
VSFMDF and DNS is satisfactory. The streamwise velocity
fields predicted by VSFMDF and DNS are shown in Fig.
7(b) for selected density ratios. This figure exhibits the gen-
erally good agreement between VSFMDF and DNS results.
In addition, it is also indicative of the accurate prediction of
shear layer center location by VSFMDEF. As the density ratio
increases, the shear layer center, defined as the dividing
streamline position (the position where (u); is equal to the
average of the free stream velocities), is shifted further to the
low-density side. As a result, the peak values of the Reynolds
stresses and scalar fluxes also show a shift to the low-density
side. This shift is known to be responsible for the decreased
correlation between density and velocity components39 and
hence, reduction in turbulent production terms. The growth
rate of a temporally developing mixing layer is proportional
to the integrated turbulent production terms.®' Therefore, de-
crease in turbulent production results in reduction of shear
layer growth rate. This is evidenced in Fig. 8 which shows
the temporal evolution of the momentum thickness defined
as®!

1 i
Pl(AM)Z —

1) = P)eluy = W)y, —u)dy, — (37)

where Au=u;—u,, u; and u, are top and bottom free-stream
streamwise velocity components, respectively. As shown, the

FIG. 8. Temporal variation of the momentum thickness in temporal mixing
layer simulations. The solid lines with white symbols denote the VSFMDF
predictions. The black symbols denote DNS predictions. The symbols de-
note: (diamond) s=1; (circle) s=2; (triangle) s=4; and (square) s=8.
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FIG. 9. (a) Cross-stream variation of
the Reynolds-averaged values of the
filtered temperature field at =80, and
(b) temporal variation of scalar thick-
ness in temporal mixing layer simula-
tions with s=2. The thick solid and
thin dashed lines denote LES predic-
tions using VSFMDF and Smagorin-
sky closures, respectively. The white
and black circles show the filtered and
unfiltered DNS data, respectively.
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shear layer growth rate reduction with density ratio is repre-
sented well by VSFMDEF.

The following comparative assessments of VSFMDF are
shown for the density ratio of s=2. Similar agreement is
observed for cases with other density ratios (but are not
shown). The Reynolds-averaged values of the filtered tem-
perature field at t=80 are shown in Fig. 9(a). The filtered and
unfiltered DNS data yield virtually indistinguishable results.
The Smagorinsky model underpredicts the spread of the
layer due to dissipative nature of this model. All VSFMDF
predictions compare well with DNS data in predicting the
spread of the layer. This is also evident in Fig. 9(b) which
shows the temporal variation of the “scalar thickness,”

8,(1) = [y((#), = 0.9)| + [y((¢), = 0.1)]. (38)

Several components of the Reynolds-averaged values of the
second order SGS moments are compared with DNS data in
Figs. 10 and 11. In general, the VSFMDF results are in better

agreement with DNS data than those predicted by the Sma-
gorinsky model. In this configuration, there are no strong
velocity and scalar gradients in the streamwise and spanwise
directions and hence, a gradient-diffusion type model such as
Smagorinsky is not capable of providing the correct predic-
tion of scalar flux values in these directions. Consequently,
the VSFMDF is expected to be more effective for LES of
reacting flows provided that the extent of SGS mixing is
heavily influenced by these SGS moments.?*®

Several components of the resolved second order mo-
ments are presented in Figs. 12 and 13. As expected, the
performance of the Smagorinsky model is not satisfactory as
it does not predict the spread and peak values accurately. The
VSEMDF provides more reasonable predictions. The “total”
components also yield very good agreement with DNS data
as shown in Figs. 14 and 15. The effects of model parameters
are assessed in Refs. 11 and 57. It is important to note that
the first and the “total” second order moments predicted by

FIG. 10. Cross-stream variation of
some of the Reynolds-averaged com-
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ponents of 7; at =60 in temporal mix-
Yy ing layer simulations with s=2. The
thick solid and thin dashed lines de-
note LES predictions using VSFMDF
and Smagorinsky closures, respec-
tively. The circles show the filtered
DNS data.
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VSFMDF are almost insensitive to these parameters. This is
pleasing because these are the quantities we are primarily
interested in when comparing with experimental data, etc.
Obviously, the values cannot be set in such a way that the
contribution of the SGS components to the total components
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FIG. 11. Cross-stream variation of
some of the Reynolds-averaged com-
ponents of 7; at t=80 in temporal mix-
ing layer simulations with s=2. The
thick solid and thin dashed lines de-
note LES predictions using VSFMDF
and Smagorinsky closures, respec-
tively. The circles show the filtered
DNS data.

becomes too large. With the constant values chosen for
VSFMDF, while the SGS scalar flux in cross-stream direc-
tion predicted by Smagorinsky is in closer agreement with
DNS data, VSFMDF yields much more accurate predictions
of the resolved and consequently, the total fields.

FIG.

some of the components of R at =60
in temporal mixing layer simulations
with s=2. The thick solid and thin
dashed lines denote LES predictions
using VSFMDF and Smagorinsky clo-
sures, respectively. The circles show
the filtered DNS data.

12. Cross-stream variation of
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E. Validation via laboratory data

Simulation (ii) is consistent with the experimental stud-
ies of Mungal and Dimotakis.”” These experiments are con-
ducted with several concentration ratios, defined as ¢
=c(y/co; where ¢y, and ¢y, denote the high- and low-speed
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FIG.

some of the components of R at t=80
in temporal mixing layer simulations
with s=2. The thick solid and thin
dashed lines denote LES predictions
using VSFMDF and Smagorinsky clo-
sures, respectively. The circles show
the filtered DNS data.

13. Cross-stream variation of

stream mole fractions, respectively. In the current simula-

-20

tions, the concentration ratios of ¢=1,2,4 are considered by
keeping F, concentration at 1% and varying the H, concen-
tration from 1% to 2% and 4%. In addition, the flip experi-
ments are also considered in which the low- and high-speed

FIG. 14. Cross-stream variation of 7 at
t=60 in temporal mixing layer simula-
tions with s=2. The thick solid and
thin dashed lines denote LES predic-
tions using VSFMDF and Smagorin-
sky closures, respectively. The white
and black circles show the filtered and
unfiltered DNS data, respectively.
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compositions are simply switched to attain the inverse con-
centration ratios (¢p=1,1/2,1/4). These simulations are con-
ducted only via VSEMDF, as implementation of DNS and
LES-FD is not possible for this flow.

The three-dimensionality of the flow is evident by the
presence of primary and secondary structures, as shown in
Fig. 16(a). This figure shows the contour surfaces of the
instantaneous filtered scalar field. Figures 16(b) and 16(c)
show the instantaneous temperature field as obtained by
LES-FD and VSFMDE. The resemblance of structures in
these figures, is an indication of the consistency of these
simulations. The time series of the filtered temperature field
recorded by 15 probes across the layer, are shown in Fig.
17(a). These probes are located at x=45.7 cm downstream
and are symmetrically distributed in cross-stream direction
about the centerline with the vertical distance of 0.457 cm
between each two. The high-speed stream located on top and
carries 1% H, and the low-speed stream is in the bottom
with 1% F, composition. In this figure, the horizontal axis
corresponds to the nondimensional time starting at one flow-
through time. The vertical axis for each section represents
the temperature ranging from the ambient to the maximum
temperature recorded by each probe (denoted as T,,,,). Sev-
eral features observed experimentally37 are also present in
these time series, namely, the presence of large, hot struc-
tures; the cold regions extending deep into the layer and the
near-uniformity of temperature within the structure. The non-
uniformity of temperatures in previous simulations'® was at-
tributed to the lack of proper small-scale mixing due to two-
dimensionality of their simulations. The present simulations
substantiate this, as the more effective small-scale mixing in
three-dimensional simulations tends to make the temperature

more uniform inside the structures. Figure 17(b) shows a
comparison of VSFEMDF predictions with experimental data.
The time-averaged filtered temperature profile corresponding
to the case with concentration ratio ¢=1 is considered. The
peak value of the temperature profile and the spread of layer
are both predicted well.

(a)

(b) LES-FD () MC

FIG. 16. (Color) Contour plots of the instantaneous filtered (a) passive
scalar, and (b), (c) temperature (K) fields on a spanwise plane as obtained
from LES-FD and VSFMDF, respectively, in 3D spatial mixing layer
simulations.
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FIG. 17. (a) Time series of filtered temperature field at x=45.7 cm and
different cross-stream locations across the shear layer, and (b) cross-stream
variation of time-averaged filtered temperature field in spatial mixing layer
simulations as predicted by VSFMDF. T, ., and Tp,, denote the maximum
recorded by each probe and the adiabatic flame temperatures, respectively.
The circles represent the experimental data.

The flip experiment predictions also demonstrate the
same features as the laboratory observations. The time-
averaged filtered temperature profiles in these predictions are
integrated along the cross-stream direction to obtain the
product thicknesses, as defined in the experiment,37

D), D),
Opy = —L—=dy, Spy= —L—=gy, (39)
P1 . coAQ y P2 . A0 y

where C), is the molar heat capacity of the carrier gas and AQ
is the amount of heat release per mole of the reactant. Figure

Phys. Fluids 19, 095106 (2007)

TABLE I. Computational times for the three-dimensional temporal mixing
layer simulations.

Grid Normalized CPU time
Simulation resolution per unit simulation time
Smagorinsky 333 1
VSFMDF 33 15.6
DNS 1933 1655.2

18 shows the comparison of product thicknesses obtained
from VSFMDF with the experimental data. Consistent with
the experiment, the 1% thickness &) is used to normalize the
product thicknesses. The 1% thickness is defined as the dis-
tance at which the mean temperature rise is equal to 1% of
the maximum mean temperature. In the experiment, a mean
value of 8,/(x—xy)=0.165 (where x—xy,=45.7 cm) is used to
normalize all the product thicknesses. As shown in this fig-
ure, at low concentration ratios, the product thicknesses vary
almost linearly with the concentration ratio, as the low-speed
reactant reacts with an excessive amount of high-speed reac-
tant. At high concentration ratios, the product thicknesses
reach asymptotic limits. These limits correspond to the reac-
tion of the high-speed reactant with an excessive amount of
low-speed reactant. As a result, the amount of product shows
little increase with the concentration ratio. As shown in this
figure, the VSFMDF predictions compare reasonably well
with the experimental data.

F. Computational times

To evaluate the computational requirements of
VSFMDF, the computational times are measured for simula-
tion (i). Table I lists the CPU times corresponding to LES via
the Smagorinsky36 SGS closure, VSFMDF, and DNS. The
simulations are performed on a SGI Altix 3300 computer
with twelve 1.3 GHz Intel Itanium processors. In VSFMDE,
320 particles per grid point (N;=40) are used. It is observed
that the computational time for VSFMDF is significantly less
than that for DNS. Considering the close agreement between
VSFMDF and DNS results, this suggests that
VSFMDF can be employed for simulations of reacting flows
for which DNS is not feasible.

v FIG. 18. Product thickness based on
(a) high-speed stream, and (b) low-
speed stream concentrations as ob-
tained by VSFMDF in spatial mixing
layer simulations.
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VI. SUMMARY AND CONCLUDING REMARKS

The filtered density function (FDF) methodology has
proven to be very effective for large eddy simulation (LES)
of turbulent reactive flows. In previous investigations, the
marginal FDF of the scalar, that of the velocity, and that of
the joint velocity-scalar with constant-density were consid-
ered. The objective of the present work is to develop the joint
velocity-scalar filtered mass density function (VSFMDF)
methodology for variable-density turbulent reacting flows.
For this purpose, the exact transport equation governing the
evolution of the FDF is derived. It is shown that effects of
SGS convection and chemical reaction appear in closed
forms. The unclosed terms are modeled in a fashion similar
to those typically followed in probability density function
(PDF) methods in Reynolds-averaged simulations (RAS).
The modeled FDF transport equation is solved numerically
by a Lagrangian Monte Carlo (MC) scheme via consider-
ation of a system of equivalent stochastic differential equa-
tions (SDEs). These SDEs are discretized via the Euler-
Maruyamma discretization.

The consistency and accuracy of the VSFMDF are as-
sessed in LES of a temporally developing mixing layer in-
volving the transport of a passive scalar. This assessment is
made by comparing the moments obtained from the MC
solver with those obtained by solving the corresponding
transport equations directly by the finite-difference method
(LES-FD). The LES-FD equations are closed by including
the moments from the MC solver. The consistency of the MC
solution are demonstrated by good agreement of the first two
SGS moments with those obtained by LES-FD. The
VSFMDF predictions are compared with those obtained us-
ing the Smagorinsky36 SGS closure. All of the results are
also compared with direct numerical simulation (DNS) data
of the same flow. It is shown that the VSFMDF performs
well in predicting some of the phenomena pertaining to the
SGS transport. Most of the overall flow statistics, including
the mean field, the resolved and total stresses are in good
agreement with DNS data. The temporal simulations are per-
formed with several free-stream density ratios. The objective
of these simulations is to evaluate the capability of the
VSEMDF methodology to predict the variable density effects
in turbulence. It is shown that the features pertaining to vari-
able density shear layers, such as shift in centerline position
and reduction in growth rate compare quite well with DNS
data. The VSFMDF methodology is also applied to a three-
dimensional spatially developing shear layer. This flow in-
volves a fast chemical reaction with nonpremixed reactants.
The predictions are appraised by comparison with laboratory
data. The agreement is reasonably good and the VSFMDF
predictions capture many of the features of this flow as ob-
served in the experiment.
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