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A methodology termed the “velocity-scalar filtered density functigt’SFDF is developed and
implemented for large eddy simulatidhES) of turbulent flows. In this methodology, the effects of

the unresolved subgrid scaléSGS are taken into account by considering the joint probability
density function(PDF) of the velocity and scalar fields. An exact transport equation is derived for
the VSFDF in which the effects of the SGS convection and chemical reaction are closed. The
unclosed terms in this equation are modeled in a fashion similar to that typically used in
Reynolds-averaged simulation procedures. A system of stochastic differential equ&inBs

which yields statistically equivalent results to the modeled VSFDF transport equation is constructed.
These SDEs are solved numerically by a Lagrangian Monte Carlo procedure in which the Ito
Gikhman character of the SDEs is preserved. The consistency of the proposed SDEs and the
convergence of the Monte Carlo solution are assessed by comparison with results obtained by a
finite difference LES procedure in which the corresponding transport equations for the first two SGS
moments are solved. The VSFDF results are compared with those obtained by the Smagorinsky
model, and all the results are assessed via comparison with data obtained by direct numerical
simulation of a temporally developing mixing layer involving transport of a passive scalar. It is
shown that the values of both the SGS and the resolved components of all second order moments
including the scalar fluxes are predicted well by VSFDF. The sensitivity of the calculations to the
model’'s(empirica) constants are assessed and it is shown that the magnitudes of these constants are
in the same range as those employed in PDF methods20@3 American Institute of Physics.
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I. INTRODUCTION grangian Monte Carlo procedure is developed and imple-
mented for numerical simulation of the modeled VSFDF
The probability density functio(PDF) approach has transport equation. The consistency of this procedure is as-
proven useful for large eddy simulatidthES) of turbulent  sessed by comparing the first two moments of the VSFDF
reacting flows. The formal means of conducting such LES is with those obtained by the Eulerian finite difference solu-
by considering the “filtered density functiotFDF)* which  tions of the same moments’ transport equations. The results
is essentially the filtered fine-grained PDF of the transporpf the VSFDF simulations are compared with those predicted
quantities. In all previous contributions, the “marginal” FDF by the Smagorinsky closure. All the results are assessed via
of the scalars;™ or the marginal FDF of the velocity comparisons with direct numerical simulati€BNS) data of
vectort® are considered; see GNifor a recent review. a three-dimensional3D) temporally developing mixing
The objective of the present work is to extend the FDFjayer involving transport of a passive scalar variable. The
methodology to account for the “joint” subgrid scal8GS  sensitivity of VSFDF predictions to the values of the model's
velocity and scalar fields. This is accomplished by consider{empirica) constants is assessed.
ing the joint “velocity-scalar filtered density function”
(VSFDP). With the definition of the VSFDF, the mathemati-
cal framework for its implementation in LES is established.!! FORMULATION
A transport equation is developed for the VSFDF in which  For the general formulation, we consider an incompress-
the effects of SGS convection and SGS chemical readiion  iple (unit density, isothermal, turbulent reacting flow involv-
a reacting flow are closed. The unclosed terms in this equaing N, species. The primary transport variables describing
tion are modeled in a fashion similar to those in thesuch a flow are the three components of the velocity vector
Reynolds-averaged simulatiofRAS) procedures. A La- u(x,t) (i=1,2,3), the pressung(x,t), and the species’ mass
fractions ¢ ,(x,t) (@=1,2,...Ng). The equations which gov-
3Author to whom correspondence should be addressed. Telephei: €N the transport of these variables in spacg and time(t)
624-9605; fax: 716-624-4846; electronic mail: givi@engr.pitt.edu are
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where Sazéa(d)(x,t)) denotes the chemical reaction term
#n ] denotes the scalar gr(u, , ¢,
variable array. For an incompressible, Newtonian fluid, with™ 5

for speciesa, and ¢p=[ 1, d5,...

Fick's law of diffusion, the viscous stress tensgg and the
scalar fluxJy are represented by

[ on
Tik=V L;'Xk &Xi ’

o P,

Jy=-T % (2b)

where v is the fluid kinematic viscosity anfi=v/Sc is the

diffusion coefficient of all species with Sc denoting the mo-
lecular Schmidt number. We assume a constant value for
v=I; i.e., Sc=1. In reactive flows, molecular processes are =

much more complicated than portrayed by E). Since the

molecular diffusion is typically less important than that of
SGS, this simple model is adopted with justifications and

caveats given in Refs. 19-21.

Large eddy simulation involves the spatial filtering

operatiory?>~%°

(f(x,t))= J_jf(x’,t)G(x’,x)dx’, 3

whereG(x’,x) denotes a filter function, and (x,t)) is the
filtered value of the transport variabfé¢x,t). We consider a

filter function that is spatially and temporally invariant and

localized, thus: G(x',x)=G(x'—x) with the properties
G(x)=0, [ T2G(x)dx=1. Applying the filtering operation to
Egs.(1) yields

a(uy)
Xy =0, (48
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P v vl o v v
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where the second-order SGS correlations
7(a,b)=(ab)—(a)(b) 5)

are governed by
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In this equation, the third-order correlations
=(abc)—(a)7(b,c)—(b)7(a,c)
—(c)7(a,b)—(a)(b)(c)

7(a,b,c)

(7)

are unclosed along with the other terms within square brack-

ets.

IIl. VELOCITY-SCALAR FILTERED DENSITY
FUNCTION (VSFDF)

A. Definitions

The “velocity-scalar filtered density functioVSFDP),
denoted byP, is formally defined &s

P(v,¥;x,t)= fng(v, Fu(x' 1), dp(x",1))G(x" —x)dx’,

(8
eV, u(x,t), d(x,1))
3 Ng
=11 owi—uxt) 1T 8y datx0)), )
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where § denotes the delta function, andys are the velocity
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the condition of a positive filter kernél, P has all of the

vector and the scalar array in the sample space. Thegdsm properties of the PD¥ For further developments it is useful

the “fine-grained” density’*°hence Eq(8) defines VSFDF

to define the “conditional filtered value” of the variable

as the spatially filtered value of the fine-grained density. WithQ(x,t) as

JI2Q(X o (v, gru(x' 1), (X, 1)) G(X —x)dx’

(QX,D)u(x,H)=Vv,d(x,t) = h)=(Q|v, ) =

Equation(10) implies the following:

(i) for Q(x,t)=c, (QXx\v,¥=c, (113
(i) for Q(x,t)=Q(u(x,t), d(x.1)),
(QXDIV, ) =Q(v, ). (11b)

(i)  Integral properties,

(Qx,))= J7:(Q(x,t)|v, PPV rx,tydvdy. (110

From Egs.(11) it follows that the filtered value of any

. . . . . +
function of the velocity and/or scalar variables is obtained by vy
its integration over the velocity and scalar sample spaces

P(v,¥;x,t) (19

This is an exact transport equation for the VSFDF. It is ob-
served that the effects of convectipsecond term on left-
hand sidgLHS)] and chemical reactiofthe second term on
right-hand sidéRHS) ] appear in closed forms. The unclosed
terms denote convective effects in the velocity-scalar sample
space. Alternatively, the VSFDF equation can be expressed
as

P v, P 3P +o7<p> P 9

Tt e axaxe T o dvp oy, Loe(¥IP]

ll (3l -5

&? Au; U,
oo - v——1lv, )P
(Q(x,t))zf Q(V, ) P(v,;x,t)dvdp. (12 Jv;idv; IXy IX
92 A I,
B. VSFDF transport equations ~2 Avid, Va_xk X Vi) P
To develop the VSFDF transport equation, we consider g2 Ibaddy
the time derivative of the fine-grained density functdy. - [< v——"|V, 1/r> P} (16
(9)]' a(//aﬁl//lg OXy Xy
(?_Q:_(%a_g IPa 00 _ (13  This is also an exact equation, but the unclosed terms are
at at duy It Iy, exhibited by the conditional filtered values of the dissipation

Substituting Eqs(1b) and (1c), and Eqgs{(2a) and(2b) into
Eq. (13) we obtain

9o . o _( ap Ju; ) Jo

T axe  \ X OxedXy) dv;
P hq Je
- + .
o sa<¢>> o a9

Integration of this according to E¢g), while employing Eq.

(10) results in

dP v P ap)y dP 4
E+—————&—%[Sa(t/f)P]

IX OXy vy
ap)
v l'l’> X, ) P}

2
oo

J ( Ju;
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d
+ —
Jug

d P,
I\ \ 7 XXy

fields as shown by the last three terms on the RHS.

C. Modeled VSFDF transport equation
For closure of the VSFDF transport equation, we con-
sider the general diffusion proce¥sgiven by the system of
stochastic differential equatioSDES:
dX"(t)=D}(X*,U",¢";t)dt
Xy + +.
+Bl(X*,UT, " ) dW(1)
+FIY(XT,UT, ¢ HdWH (1)

+FY(XTUT, " HdWi (1), (179
dU" ()=D(X",U",¢";t)dt

+BI(XT, U™, "ty dW (1)

+RF(XT,UT, T HdWH(1)

+FFAXT, U " HdW(Y), (170
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dé)(1)=DI(X*,U", ¢";t)dt
+BS(XT,UT,¢" ) dW(t)
+REIN(XTUT, " ) dWH (1)
+F¢U(x+ U*,o"H)dW (1), (170

whereX;", U;", ¢ are probabilistic representations of po-
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+ (92<¢a> +
Ay =| s 3 ax.~ Coo(da—(ba)) +S,|dt
(7 [e3
+V$;—%%2dw¢, (180

where the variables,, v,,... are all difusion coefficients

(to be specified and

sition, veIOC|ty vector and scalar variables, respectively. The

D terms denote drift in the composition space, Biéerms
denote diffusion, th& terms denote diffusion couplings, and
the W terms denote the Wiener-\e processe$>3° Follow-

ing Haworth and Pop# Dreeben and Pop¥, Colucci
etal,” and Gicqueletall® we consider the generalized
Langevin modelGLM) and the linear mean square estima-
tion (LMSE) modef®

dX" =U dt+ rdWX,

Ap), )
(9Xi Z&Xkaxk
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1 3 €
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k3/2 1 (19)
E:CEA—L, kZET(Uk,Uk).

Herew is the SGS mixing frequency,is the SGS dissipation
rate,k is the SGS kinetic energy, antd, is the LES filter
size. The parameteiS,, C,, andC, are model constants
and need to be specified. The limi{=rv3=vs =vs,=0 is
the standard high Reynolds number GLM—LMSE closire.

The Fokker—Planck equatidhfor f(v,,x;t), the joint
PDF of X", U*, ¢, evolving by the diffusion process as
given by Eq.(18) is

P ¢pa)
o'kaﬁxk &l//a
9°f
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The transport equations for the filtered variables are obtained by integration 2®a@ccording to Eq(12):
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The transport equations for the second-order SGS moments are
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A term-by-term comparison of the exact moment transport equalttens (4) and(6)], with the modeled equatiori&gs.
(21) and (22)], suggestsy;=v,=v3=vs =vs,=2v. However, this violates the realizability of the scalar field. A set of

coefficients yielding a realizable stochastic model requirgs: v,= v3=2v and vs, =vs,=0. That is,

dX" =U;" dt+2r dW-, (23a
a(p) F*(u;) a(u;)

du=| - i +2yaxkaxk+eij(uj+—<uj>) dt+@a—xkdw§+¢c_oedw?, (23b)
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The Fokker—Planck equation for this system is

af ap) o 5°f
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and the corresponding equations for the moments are
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(260

which may be compared to Eqg) and(6). Therefore, the stochastic diffusion process described by the SIBEBnplies the
following closure for the VSFDF:

d ap a(p) 5 9? du; du; o5 52 i 9| 5
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which yields the closures at the second-order levels:
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——w(l+ 3C Cu)— 2k 1- 2es 28 where D|(_tk) Di(X*™(ty), ( k) (VRLIFEREE _
@(1t 2 Coll 7, u) = 5kdy] — 5 €9y (283 £(t,)’s are independent standardized Gaussian random vari-
ables. This scheme preserves thedlaracter of the SDES.
— ,,T(ﬁ,‘w“ +T(¢ &_p) The computational domain is discretized on equally
Xy IXy “Tax; spaced finite difference grid points. These points are used for

two purposes(l) to identify the regions where the statistical
=Gjkm(Uyx,d,) —Cuo7(Ui,b,)

T(ui’¢a)a (28b) O‘ 5 &

A ba) A by)
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IV. NUMERICAL SOLUTION PROCEDURE

Numerical solution of the modeled VSFDF transport
equation is obtained by a hybrid finite difference-Monte
Carlo procedure. The basis is similar to those in RA®
and in previous FDF simulatiors:®with some differences
which are described here. For simulations, the FDF is repre-
sented by an ensemble &f, statistically identical Monte
Carlo (MC) particles. Each particle carries information per-
taining to its position X(M(t), velocity, U(t), and scalar
value, " (t), n=1,...N,. This information is updated via o _
temporal integration of the SDEs. The simplest way of per-zﬁ('e ;hlgodnocriztmosfz i‘éj?g%?ﬁgﬁ’jng (L”Ei%,sziﬁgfrg (LhEriezZ"ﬁerem

forming this . integration is via Euler—Maruyamma Ng~160). Solid squares denote the finite-difference grid points, and the
approximatiort’ For example, for Eq(17a), circles denote the MC particles.
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TABLE I. Attributes of the computational methods.

VSFDF quantities LES-FD quantities
LES-FD VSFDF used by the used by the Redundant
variables  variables LES-FD system VSFDF system quantities
VSFDF  (p).(u) i (Ui, u)) ui),  Hp)lax; (us)
(Do) U’ (Ui, ba) N Xy, XU XX (da)
b (Su(®)) (ba)
VSFDF-C  (p),{u;) i (Ui ,uy) (ui),  a(p)lax; (Ui (ba)
(o) U’ (Ui ) AU X, (Ui XXy 7(ui ,uj)
7(U; ,uj) b (Ui, Uy, Uy () Kk 7(Ui, ba)
7'(ui 1¢a) T(ui vuj 7¢(1) T(¢a !¢B)
T((]Sa !¢ﬁ) T(ui ‘¢E¥ !¢ﬁ)

information from the MC simulations are obtaine@ to  shown in previous worR®34-3¢To establish consistency
perform LES primarily by the finite difference methodology and convergence of the MC solver, the modeled transport
which is coupled to the MC solver. The LES procedure viaequations for the generalized second-order SGS moments
the finite difference discretization is referred to as LES—FD[Eg. (26)] are also solved via LES—FD. In doing so, the
and will be further discussed below. unclosed third-order correlations are taken from the MC
Statistical information is obtained by considering an en-solver. The comparison of the first and second-order mo-
semble ofNg computational particles residing within an en- ments as obtained by LES—FD with those obtained by the
semble domain of characteristic lenghly centered around MC solver is useful to establish the accuracy of the MC
each of the finite-difference grid points. This is illustrated solver. These simulations are referred to as VSFDF-C. At-
schematically in Fig. 1. For reliable statistics with minimal tributes of all the simulation procedures are summarized in
numerical dispersion, it is desired to minimize the size ofTable I. In this table and hereinafter, VSFDF simulations
ensemble domain and maximize the number of the MGQefer to the hybrid MC/LES—FD procedure in which the
particles?® In this way, the ensemble statistics would tend toLES—FD is used for only the first-order filtered variables. In

the desired filtered values, VSFDF-C, the LES—FD procedure is used for both first- and
1 second-order filtered values. Further discussions about the
(a)g=— 2 am (a), simulation methods are available in Refs. 7, 16, 34—36.
NE nelAg Ng—o
R0 V. RESULTS
L 30 |
re(a,b)= - > (a™—(a)g) (b —(b)e) A. Flows simulated
Enele Simulations are conducted of a two-dimensioK2D)
—— 7(a,b), and a 3D incompressible, temporally developing mixing lay-
EEH:; ers involving transport of a passive scalar variable. Since the
N

performance of the model in capturing the velocity-scalar
wherea(™ denotes the information carried lgh MC par-  correlations is of primary interest, only nonreacting flow
ticle pertaining to transport variabbe simulations are conducted. Inclusion of chemical reaction via
The LES—FD solver is based on the compact parametehe joint FDF formulation is straightforward and is similar to
finite difference schem&:“°This is a variant of the MacCor- that in the marginal scalar FDF methb8:*2The 2D simu-
mack scheme in which fourth-order compact differencinglations are performed to establish and demonstrate the con-
schemes are used to approximate the spatial derivatives, asgtency of the MC solver. The 3D simulations are used to
second-order symmetric predictor—corrector sequence is enassess the overall predictive capabilities of the VSFDF meth-
ployed for time discretization. All of the finite difference odology. These predictions are compared with data obtained
operations are conducted on fixed grid points. The transfer dy direct numerical simulatiofDNS) of the same layer.
information from the grid points to the MC particles is ac- The temporal mixing layer consists of two parallel
complished via a second-order interpolation. The transfer o§treams travelling in opposite directions with the same
information from the particles to the grid points is accom-speed!~*3In the representation below, y (andz) denote
plished via ensemble averaging as described above. the streamwise, the cross-stredaamnd the spanwigedirec-
The LES-FD procedure determines the pressure fieltions (in 3D), respectively. The velocity components along
which is used in the MC solver. The LES—FD also deter-these directions are denoted byv (andw) in thex, y (and
mines the filtered velocity and scalar fields. That is, there is @) directions, respectively. Both the filtered streamwise ve-
“redundancy” in the determination of the first filtered mo- locity and the scalar fields are initialized with a hyperbolic
ments as both the LES—FD and the MC procedures provideangent profiles withu)=1, (¢)=1 on the top stream and
the solution of this field. This redundancy is actually very{u)=—1, (¢)=0 on the bottom stream. The length is
useful in monitoring the accuracy of the simulated results aspecified such thdt=2Nr\,, whereNp is the desired num-
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(a)
A—/\  LES-FD,A_=p2
1.3
/N/\ VSFDF,A_=A/2 12
[H1 LES-FD,A=A
"]  VSFDF,A_=A =
V—V/ LES-FD,A=2A
0.8
\/\/  VSFDF,A_=2A
0—'%0 -10 0 10 20
Y FIG. 2. Cross-stream variation of the Reynolds-
averaged values dp) att=34.3: (a) Ng=40, (b) Ag
(b) =A/2.
A\ LES-FD,N_-20 b
1.2
/\—/\" VSFDF, N.=20
1 LES-FD, NE=40 o~
=
{1 VSFDF, NE=40
V—V  LES-FD,N_=80 0.8 J
VN VEFDR; N80 %% 1o 0 10 20
Y

ber of successive vortex pairings angis the wavelength of |ES, respectively. The Reynolds number is =RéL, /v
the most unstable mode corresponding to the mean stream-50. To filter the DNS data, a top-hat function of the form
wise velocity profile imposed at the initial time. The flow below is used
variables are normalized with respect to the half initial vor- 3
ticity thickness,L,=[6,(t=0)/2] (8,=AU/[d(u) /Y| max: Gix' —x) =[] é(xi’—x),
where (u), is the Reynolds averaged value of the filtered i=1
streamwise velocity and U is the velocity difference across A (32)
the layej. The reference velocity i§,=AU/2. —, _L,
All 2D simulations are conducted for<Ox<L, and G(x —x;)= A 2
—2L/3<y=<2L/3. The formation of large scale structures is b , L
facilitated by introducing small harmonic, phase-shifted, dis- 0, Ix _Xi|>7'
turbances containing subharmonics of the most unstable ] ] ) o
mode into the streamwise and cross-stream velocity profiled\0 attempt is made to investigate the sens_|t|V|t9y of the re-
ForN,=1, this results in formation of two large vortices and sults to the filter .funct|o?f or the size of the filte:
one subsequent pairing of these vortices. The 3D simulations The MC particles are initially distributed throughout the

are conducted for a cubic box=x<L, —L/2<y=<L/2 (0 computational region. All simulations are performed with a

<z=<L). The 3D field is parametrized in a procedure some-,uniform “weight” ** of the particles. Due to flow periodicity

what similar to that by Vremaet al** The formation of the in the streamwisdand spanwise in 3Ddirectior(s), if the

large scale structures are expedited through eigenfunctio‘l-)f"‘rt!Cle Ieave_s the domain at one of these bou_ndanes new

based initial perturbatiorf€*®  This includes particles are introduced at the other boundary with the same

two-dimensiond?447 and three-dimension”él“s perturba- velocity and compositional values. In the cross-stream direc-
tions, the free-slip boundary condition is satisfied by the

tions with a random phase shift between the 3D modes. Th'ﬁ]irror—reﬂection of the particles leaving through these

;?rsourlltgs tlrr:rteh: ;?r:]rzalg%nnglfi:;vo successive vortex pairings an%oundaries. The density of the MC particles is determined by
' the average number of particldg within the ensemble do-

main of size A X Ag(XAg). The effects of both of these
parameters are assessed to ensure the consistency and the

Simulations are conducted on equally spaced grid pointstatistical accuracy of the VSFDF simulations. All results are
with grid spacingsAx=Ay=Az (for 3D)=A. All 2D simu-  analyzed both “instantaneously” and “statistically.” In the
lations are performed on 321 grid points. The 3D simula- former, the instantaneous contousap-shotsand scatter
tions are conducted on 192ind 33 points for DNS and plots of the variables of interest are analyzed. In the latter,

!

x| —xi|=

B. Numerical specifications
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(a) t=13.98 (b) t=23.94 (c) t=33.90

i B

05 -04 o a8 -04 02 O

FIG. 3. (Color) Temporal evolution of the scal@wvith superimposed vorticity iso-ling$top) and the vorticity(bottor fields for LES—FD, withAg=A/2 and
Ng=40 at several times.

the “Reynolds-averaged” statistics constructed from the in-attempt is made to determine the appropriate values of the
stantaneous data are considered. These are constructed rhgdel constants; the values suggested in the literature are
spatial averaging ovex (and z in 3D). All Reynolds- adopteao Co=2.1, C.=1, andC,=1. The influence of

averaged results are denoted by an overbar. these parameters is assessed in Sec. VD.
The uniformity of the MC particles is checked by moni-
C. Consistency and convergence assessments toring their distributions at all times, as the particle number

The objective of this section is to demonstrate the condensity must be proportional to fluid density. The Reynolds
sistency of the VSFDF formulation and the convergence ofveraged density fields as obtained by both LES—FD and by
its MC simulation procedure. For this purpose, the results vid/C are shown in Fig. 2. Close to unity values for the density
MC and LES—FD are compared against each other irt all times is the first measure of the accuracy of simula-
VSFDF-C simulations. Since the accuracy of the FD procetions. Figures 3 and 4 show the instantaneous contour plots
dure is well-establishedat least for the first-order filtered of the filtered scalar and vorticity fields at several times.
guantities, such a comparative assessment provides a gootihese figures provide a visual demonstration of the consis-
means of assessing the performance of the MC solution. Ntency of the VSFDF. This consistency is observed for all first
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(a) t=13.98 (b) t=23.94

-06 -04 02 O 08 -04 -02 0 o4 02 0

FIG. 4. (Color) Temporal evolution of the scaléwith superimposed vorticity iso-ling$top) and the vorticity(botton fields for VSFDF withAg=A/2 and
Ng=40 at several times.

order moments without any statistical variability. Also, all of FD. Ideally, the LES—FD results should become independent
these moments show very little dependence on the values of the MC results, as the latter become more reliable, i.e.,
Ag andNg consistent with previous FDF simulatioh$2®In when Ng—%, Ag—0). It is observed that best match is
the presentation below we only focus on second-order moachieved withAg<A/2 andNg=40. This conclusion is con-
ments. Specifically, the scalar-velocity correlations aresistent with previous assessment studies on the scalaf"EDF,
shown since all other second-order SGS moments behawnd the velocity FDE® All the subsequent simulations are
similarly. conducted withAg=A/2 andNg=40.

Figures 5 and 6 show the statistical variability of the
results for simulations wititNg=40. It is observed that these .
moments exhibit spreads with variances decreasing as tHg Comparative assessments of the VSFDF
size of the ensemble domain is reduced. Figures 7—10 show The objective of this section is to analyze some of the
the sensitivity taNg andAg . All these results clearly display characteristics of the VSFDF via comparative assessments
convergence suggested by E80). As the ensemble domain against DNS data. In addition, comparisons are also made
size decreases, the VSFDF results converge to those of LESwith LES via the “conventional” Smagorinsk§>* model:
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-3

x 10 . 5 : x10

B — : SRR
-20 -10 0 10 20

FIG. 5. Statistical variability of LES—FD and VSFDF-C simulations with
Ng=40 for Reynolds-averaged values efu,¢) at t=34.4. Solid lines,
LES—FD; dashed lines, VSFDF-C.

FIG. 6. Statistical variability of LES—FD and VSFDF-C simulations with
Ng=40 for Reynolds-averaged values ofv,®) at t=34.4. Solid lines,
LES—FD; dashed lines, VSFDF-C.

(U, u) - 5k =—21S;,
Hp)L C,=0.04, Sqr—_ 1, S=_\/S,]-S”- and A,__ is the cha_lracteri_stic
length of the filter. This model considers the anisotropic part
of the SGS stress tensay; = 7 (u;,u;) —2/3kdé;; . The iso-
_}(r%um N (7<Uj>|_) (32 tropic components are absorbed in the pressure field.

7-L(ui 1¢):_Ft o

2 IX; IX; For comparison, the DNS data are transposed from the
original high resolution 198points to the coarse 33oints.
»,=C AES thi_ In the comparisons, we also consider the “resolved” and the
: Sq “total” components of the Reynolds-averaged moments. The
(a)

7
6
=\ 5|
-~ 4
S 4
A\ LES-FD,N_=20 &
/\—/\ VSFDF, N=20 !
5 FIG. 7. Cross-stream variations of the
L0 LES-FD,N.=40 Reynolds-averaged values afu,¢)
51 VSFDF, N.~40 (c) @ Ag=A72, (b) A=A, (0 Ae
=2A.
VYV LES-FD,N_=80
/—\/  VSFDF,N.=80

20  -10 0 10 20
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(a)

S
=
A—/\  LES-FD,N_=20 &
/\—/\" VSFDF, N=20
FIG. 8. Cross-stream variations of the
[ LES-FD, N=40 Reynolds-averaged values afv,¢)
(@ Ag=A/2, (b A=A, (c) Ag
[ VSFDF, N.=40
" =2A.
Y/ LES-FD,N_=80
/—\/  VSFDF, N.=80
S
=
[

former are denoted byR(a,b) with R(a,b):(<a)—@) Smagorinsky model is significant. Thus, the predicted results
X((b)—(b)); and the latter isr(a,b) with r(a,b)=(a  are overly smooth. The Reynolds-averaged values of the fil-
—a)(b—b). In DNS, the “total” SGS components are di- tered scalar field at=80 are shown in Fig. 12, and the
rectly available, while in LES they are approximated bytemporal variation of the “scalar thickness,”
r(a,b)~R(a,b)+ 7(a,b).* Unless indicated otherwise, the T T
values of the model constants aBg=2.1,C,=1, C,=1; (0 =ly(#)=0.9]+]y(¢)=0.D) 33
but the effects of these parameters on the predicted resulis shown in Fig. 13. The filtered and unfiltered DNS data
are assessed. yield virtually indistinguishable results. The dissipative na-
Figure 11 shows the instantaneous iso-surface of¢he ture of the Smagorinsky model at initial times resulting in a
field t=80. By this time, the flow has gone through pairingsslow growth of the layer is shown. All VSFDF predictions
and exhibits strong 3D effects. This is evident by the forma-compare well with DNS data in predicting the spread of the
tion of large scale spanwise rollers with presence of mushlayer.
room like structures in streamwise plarffésSimilar to pre- Several components of the planar averaged values of the
vious results? the amount of SGS diffusion with the second-order SGS moments are compared with DNS data in

IN/\  LES-FD,A_=A2
/N—/\" VSFDF,A_=/2
[H1  LES-FD,A=A FIG. 9. Cross-stream variations of the
Reynolds-averaged values afu,¢)
L0 VSFDF,Az=A (@) Ng=20, (b) Ng=40, (c) Nz=80.
V-V LES-FD,A_=2A xw0®
E "X ]
X/ VSFDF,A;=2A 7l
S \
5,
ks
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I\ LES-FD,A_=AR

/N—/\  VSFDF, A=A2

CH1  LES-FD,A=A

[+ VSFDF,A_=A

V-V  LES-FD,A_=2A

/- VSFDF,A_=2A
<
=2

b

FIG. 10. Cross-stream variations of the Reynolds-averaged valug® pp) (a) Ne= 20, (b) Ng=40, (c) Ng=80.

Figs. 14 and 15 for several values of the model constants. Iperformance of the Smagorinsky model is not very good as it
general, the VSFDF results are in better agreement with DN8oes not predict the spread and the peak value accurately.
data than those predicted by the Smagorinsky model. In thi$he VSFDF yields reasonable predictions except for small
regard, therefore, the VSFDF is expected to be more effedc, values. However, the total values of these moments are
tive than the Smagorinsky type closures for LES of reactindairly independent of the model constants and yield very
flows since the extent of SGS mixing is heavily influencedgood agreement with DNS data as shown in Figs. 18 and 19.
by these SGS moment$>® However, it is not possible to It is also noted that while the SGS moments and/or the re-
suggest “optimum” values for the model constants, exceptsolved moments may be overestimated and/or underesti-
that at smallC, andC,, values, the SGS energy is very large. mated depending on the values of the model coefficients, the
Several components of the resolved second-order mdetal values of the moments are fairly independent of these
ments are presented in Figs. 16 and 17. As expected, themefficients, at least in the range of values as considered. But

00 01 063 05 07 0§ 10

FIG. 11. (Color) Contours surface of thép) field in the 3D mixing layer at=80 as obtained bya) DNS, (b) Smagorinsky(c) VSFDF.
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® Filtered DNS =60.
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the normalized Smagorinsky—VSFDF-DNS run times are
FIG. 12. Cross-stream variations of the Reynolds-averaged values of thé—((30)—(200).
filtered scalar field at=280.

VI. SUMMARY AND CONCLUDING REMARKS

The filtered density functioFDF) methodology has
roven effective for LES of turbulent reactive flows. In pre-
ious investigations, either the marginal FDF of the scalar, or
that of the velocity were considered. The objective of present
work is to develop the joint velocity-scalar FDF methodol-
%gy. For this purpose, the exact transport equation governing
the evolution of VSFDF is derived. It is shown that effects of
the SGS convection and chemical reaction appear in a closed
form. The unclosed terms are modeled in a fashion similar to

low values ofC,, C, are not recommended as they would
result in too much SGS energy in comparison to the resolves
energy.

The computational cost of VSFDF simulations relative
to those required by DNS and by the Smagorinsky model i
the same as that reported previodSifThe typical ratios of

40 z : those typically followed in PDF methods. The modeled
: : VSFDF transport equation is solved numerically via a La-
v ® grangian Monte CarldMC) scheme via consideration of a
30 : §‘ ® 7 ] system of equivalent stochastic differential equations
- (a)
o 20 T ] 005
-=~0.02
©
= 0.01
0 : : % To o 16 20
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t
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FIG. 15. Cross-stream variations of some of the components af t
FIG. 13. Temporal variations of the scalar thickness. =80.
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FIG. 16. Cross-stream variations of some of the component® af t FIG. 18. Cross-stream variations ofat t=60.

=60.

(SDES. These SDEs are discretized via the Euler—Itis shown that the VSFDF performs well in predicting some
Maruyamma approximation. The consistency of the VSFDFof the phenomena pertaining to the SGS transport. Most of
method and the convergence of its MC solutions are assesséte overall flow features, including the mean field, the re-
in LES of a two-dimensional2D) temporally developing solved and total stresses as predicted by VSFDF are in good
mixing layer. This assessment is done by comparing the reagreement with DNS data. However, the model does require
sults obtained by the MC procedure with those of the finitethe input of three empirical constants. Also, the numerical
difference schem&LES—FD for the solution of the trans- implementation of VSFDF is more expensive than the tradi-
port equations of the first two moments of VSFDF. By tional models. It may be possible to improve the predictive
including the third moments from the VSFDF into the LES— capabilities of the VSFDF by two way$1) development of
FD, the consistency and convergence of the MC solution are dynamic procedure to determine the model coefficients,
demonstrated by good agreements of the first two SGS mand/or (2) implementation of higher order closures for the
ments with those obtained by LES—FD. generalized Langevin model parame®y .*° Future work is
The VSFDF predictions are compared with LES resultsrecommended for development and application of the joint
with the Smagorinski¥ SGS model. All of these results are filtered velocity-scalar mass density functio’SFMDF) to
also compared with direct numerical simulatiddNS) data  allow for LES of variable density flows with/or without the
of a three-dimensional, temporally developing mixing layer.presence of chemical reaction.
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FIG. 17. Cross-stream variations of some of the componenéatt .
=80. FIG. 19. Cross-stream variations iofat t=80.
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