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Velocity-scalar filtered density function for large eddy simulation
of turbulent flows
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A methodology termed the ‘‘velocity-scalar filtered density function’’~VSFDF! is developed and
implemented for large eddy simulation~LES! of turbulent flows. In this methodology, the effects of
the unresolved subgrid scales~SGS! are taken into account by considering the joint probability
density function~PDF! of the velocity and scalar fields. An exact transport equation is derived for
the VSFDF in which the effects of the SGS convection and chemical reaction are closed. The
unclosed terms in this equation are modeled in a fashion similar to that typically used in
Reynolds-averaged simulation procedures. A system of stochastic differential equations~SDEs!
which yields statistically equivalent results to the modeled VSFDF transport equation is constructed.
These SDEs are solved numerically by a Lagrangian Monte Carlo procedure in which the Itoˆ –
Gikhman character of the SDEs is preserved. The consistency of the proposed SDEs and the
convergence of the Monte Carlo solution are assessed by comparison with results obtained by a
finite difference LES procedure in which the corresponding transport equations for the first two SGS
moments are solved. The VSFDF results are compared with those obtained by the Smagorinsky
model, and all the results are assessed via comparison with data obtained by direct numerical
simulation of a temporally developing mixing layer involving transport of a passive scalar. It is
shown that the values of both the SGS and the resolved components of all second order moments
including the scalar fluxes are predicted well by VSFDF. The sensitivity of the calculations to the
model’s~empirical! constants are assessed and it is shown that the magnitudes of these constants are
in the same range as those employed in PDF methods. ©2003 American Institute of Physics.
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I. INTRODUCTION

The probability density function~PDF! approach has
proven useful for large eddy simulation~LES! of turbulent
reacting flows.1 The formal means of conducting such LES
by considering the ‘‘filtered density function’’~FDF!2 which
is essentially the filtered fine-grained PDF of the transp
quantities. In all previous contributions, the ‘‘marginal’’ FD
of the scalars,3–15 or the marginal FDF of the velocity
vector16 are considered; see Givi17 for a recent review.

The objective of the present work is to extend the F
methodology to account for the ‘‘joint’’ subgrid scale~SGS!
velocity and scalar fields. This is accomplished by consid
ing the joint ‘‘velocity-scalar filtered density function’
~VSFDF!. With the definition of the VSFDF, the mathema
cal framework for its implementation in LES is establishe
A transport equation is developed for the VSFDF in whi
the effects of SGS convection and SGS chemical reaction~in
a reacting flow! are closed. The unclosed terms in this equ
tion are modeled in a fashion similar to those in t
Reynolds-averaged simulation~RAS! procedures. A La-
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grangian Monte Carlo procedure is developed and imp
mented for numerical simulation of the modeled VSFD
transport equation. The consistency of this procedure is
sessed by comparing the first two moments of the VSF
with those obtained by the Eulerian finite difference so
tions of the same moments’ transport equations. The res
of the VSFDF simulations are compared with those predic
by the Smagorinsky18 closure. All the results are assessed v
comparisons with direct numerical simulation~DNS! data of
a three-dimensional~3D! temporally developing mixing
layer involving transport of a passive scalar variable. T
sensitivity of VSFDF predictions to the values of the mode
~empirical! constants is assessed.

II. FORMULATION

For the general formulation, we consider an incompre
ible ~unit density!, isothermal, turbulent reacting flow involv
ing Ns species. The primary transport variables describ
such a flow are the three components of the velocity vec
ui(x,t) ( i 51,2,3), the pressurep(x,t), and the species’ mas
fractionsfa(x,t) (a51,2,...,Ns). The equations which gov
ern the transport of these variables in space (xi) and time~t!
are
1 © 2003 American Institute of Physics
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]uk

]xk
50, ~1a!

]ui

]t
1

]ukui

]xk
52

]p

]xi
1

]s ik

]xk
, ~1b!

]fa

]t
1

]ukfa

]xk
52

]Jk
a

]xk
1Sa , ~1c!

where Sa[Ŝa(f(x,t)) denotes the chemical reaction ter
for speciesa, and f[@f1 ,f2 ,...,fNs

# denotes the scala
variable array. For an incompressible, Newtonian fluid, w
Fick’s law of diffusion, the viscous stress tensors ik and the
scalar fluxJk

a are represented by

s ik5nS ]ui

]xk
1

]uk

]xi
D , ~2a!

Jk
a52G

]fa

]xk
, ~2b!

wheren is the fluid kinematic viscosity andG5n/Sc is the
diffusion coefficient of all species with Sc denoting the m
lecular Schmidt number. We assume a constant value
n5G; i.e., Sc51. In reactive flows, molecular processes a
much more complicated than portrayed by Eq.~2!. Since the
molecular diffusion is typically less important than that
SGS, this simple model is adopted with justifications a
caveats given in Refs. 19–21.

Large eddy simulation involves the spatial filterin
operation1,22–25

^ f ~x,t !&5E
2`

1`

f ~x8,t !G~x8,x!dx8, ~3!

whereG(x8,x) denotes a filter function, and̂f (x,t)& is the
filtered value of the transport variablef (x,t). We consider a
filter function that is spatially and temporally invariant an
localized, thus: G(x8,x)[G(x82x) with the properties
G(x)>0, *2`

1`G(x)dx51. Applying the filtering operation to
Eqs.~1! yields

]^uk&
]xk

50, ~4a!

]^ui&
]t

1
]^uk&^ui&

]xk
52

]^p&
]xi

1n
]2^ui&
]xk]xk

2
]t~uk ,ui !

]xk
, ~4b!

]^fa&
]t

1
]^uk&^fa&

]xk
5n

]2^fa&
]xk]xk

2
]t~uk ,fa!

]xk
1^Sa&, ~4c!

where the second-order SGS correlations

t~a,b!5^ab&2^a&^b& ~5!

are governed by
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]t~ui ,uj !

]t
1

]^uk&t~ui ,uj !

]xk

5n
]2t~ui ,uj !

]xk]xk
2t~uk ,ui !

]^uj&
]xk

2t~uk ,uj !
]^ui&
]xk

2F2ntS ]ui

]xk
,
]uj

]xk
D1tS ui ,

]p

]xj
D1tS uj ,

]p

]xi
D G

2
]t~uk ,ui ,uj !

]xk
, ~6a!

]t~ui ,fa!

]t
1

]^uk&t~ui ,fa!

]xk

5n
]2t~ui ,fa!

]xk]xk
2t~uk ,ui !

]^fa&
]xk

2t~uk ,fa!
]^ui&
]xk

2F2ntS ]ui

]xk
,
]fa

]xk
D1tS fa ,

]p

]xi
D1t~ui ,Sa!G

2
]t~uk ,ui ,fa!

]xk
, ~6b!

]t~fa ,fb!

]t
1

]^uk&t~fa ,fb!

]xk

5n
]2t~fa ,fb!

]xk]xk
2t~uk ,fa!

]^fb&
]xk

2t~uk ,fb!
]^fa&

]xk

2F2ntS ]fa

]xk
,
]fb

]xk
D1t~fa ,Sb!1t~fb ,Sa!G

2
]t~uk ,fa ,fb!

]xk
. ~6c!

In this equation, the third-order correlations

t~a,b,c!5^abc&2^a&t~b,c!2^b&t~a,c!

2^c&t~a,b!2^a&^b&^c& ~7!

are unclosed along with the other terms within square bra
ets.

III. VELOCITY-SCALAR FILTERED DENSITY
FUNCTION „VSFDF…

A. Definitions

The ‘‘velocity-scalar filtered density function’’~VSFDF!,
denoted byP, is formally defined as2

P~v,c;x,t !5E
2`

1`

%~v,c;u~x8,t !,f~x8,t !!G~x82x!dx8,

~8!

%~v,c;u~x,t !,f~x,t !!

5)
i 51

3

d~v i2ui~x,t !! )
a51

Ns

d~ca2fa~x,t !!, ~9!
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whered denotes the delta function, andv, c are the velocity
vector and the scalar array in the sample space. The term% is
the ‘‘fine-grained’’ density,20,26hence Eq.~8! defines VSFDF
as the spatially filtered value of the fine-grained density. W
b
s

de
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the condition of a positive filter kernel,27 P has all of the
properties of the PDF.20 For further developments it is usefu
to define the ‘‘conditional filtered value’’ of the variabl
Q(x,t) as
^Q~x,t !uu~x,t !5v,f~x,t !5c&[^Quv,c&5
*2`

1`Q~x8,t !%~v,c;u~x8,t !,f~x8,t !!G~x82x!dx8

P~v,c;x,t !
. ~10!
b-

d
ple
sed

are
on

n-
Equation~10! implies the following:

~i! for Q~x,t!5c, ^Q~x,t!uv,c&5c, ~11a!

~ii ! for Q(x,t)[Q̂(u(x,t),f(x,t)),

^Q~x,t !uv,c&5Q̂~v,c!. ~11b!

~iii ! Integral properties,

^Q~x,t !&5E
2`

1`

^Q~x,t !uv,c&P~v,c;x,t !dv dc. ~11c!

From Eqs.~11! it follows that the filtered value of any
function of the velocity and/or scalar variables is obtained
its integration over the velocity and scalar sample space

^Q~x,t !&5E
2`

1`

Q̂~v,c!P~v,c;x,t !dv dc. ~12!

B. VSFDF transport equations

To develop the VSFDF transport equation, we consi
the time derivative of the fine-grained density function@Eq.
~9!#,

]%

]t
52S ]uk

]t

]%

]vk
1

]fa

]t

]%

]ca
D . ~13!

Substituting Eqs.~1b! and ~1c!, and Eqs.~2a! and ~2b! into
Eq. ~13! we obtain

]%

]t
1

]uk%

]xk
5S ]p

]xi
2n

]2ui

]xk]xk
D ]%

]v i

2S n
]2fa

]xk]xk
1Sa~f! D ]%

]ca
. ~14!

Integration of this according to Eq.~8!, while employing Eq.
~10! results in

]P

]t
1

]vkP

]xk
5

]^p&
]xk

]P

]vk
2

]

]ca
@Sa~c!P#

1
]

]vk
F S K ]p

]xk
Uv,cL 2

]^p&
]xk

D PG
2

]

]v i
S K n

]2ui

]xk]xk
Uv,cL PD

2
]

]ca
S K n

]2fa

]xk]xk
Uv,cL PD . ~15!
y

r

This is an exact transport equation for the VSFDF. It is o
served that the effects of convection@second term on left-
hand side~LHS!# and chemical reaction@the second term on
right-hand side~RHS!# appear in closed forms. The unclose
terms denote convective effects in the velocity-scalar sam
space. Alternatively, the VSFDF equation can be expres
as

]P

]t
1

]vkP

]xk
5n

]2P

]xk]xk
1

]^p&
]xk

]P

]vk
2

]

]ca
@Sa~c!P#

1
]

]vk
F S K ]p

]xk
Uv,cL 2

]^p&
]xk

D PG
2

]2

]v i]v j
F K n

]ui

]xk

]uj

]xk
Uv,cL PG

22
]2

]v i]ca
F K n

]ui

]xk

]fa

]xk
Uv,cL PG

2
]2

]ca]cb
F K n

]fa

]xk

]fb

]xk
Uv,cL PG . ~16!

This is also an exact equation, but the unclosed terms
exhibited by the conditional filtered values of the dissipati
fields as shown by the last three terms on the RHS.

C. Modeled VSFDF transport equation

For closure of the VSFDF transport equation, we co
sider the general diffusion process,28 given by the system of
stochastic differential equations~SDEs!:

dXi
1~ t !5Di

X~X1,U1,f1;t !dt

1Bi j
X~X1,U1,f1;t !dWj

X~ t !

1Fi j
XU~X1,U1,f1;t !dWj

U~ t !

1Fi j
Xf~X1,U1,f1;t !dWj

f~ t !, ~17a!

dUi
1~ t !5Di

U~X1,U1,f1;t !dt

1Bi j
U~X1,U1,f1;t !dWj

U~ t !

1Fi j
UX~X1,U1,f1;t !dWj

X~ t !

1Fi j
Uf~X1,U1,f1;t !dWj

f~ t !, ~17b!
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dfa
1~ t !5Da

f~X1,U1,f1;t !dt

1Ba j
f ~X1,U1,f1;t !dWj

f~ t !

1Fa j
fX~X1,U1,f1;t !dWj

X~ t !

1Fa j
fU~X1,U1,f1;t !dWj

U~ t !, ~17c!

whereXi
1 , Ui

1 , fa
1 are probabilistic representations of p

sition, velocity vector, and scalar variables, respectively. T
D terms denote drift in the composition space, theB terms
denote diffusion, theF terms denote diffusion couplings, an
theW terms denote the Wiener–Le´vy processes.29,30Follow-
ing Haworth and Pope,31 Dreeben and Pope,32 Colucci
et al.,7 and Gicquel et al.16 we consider the generalize
Langevin model~GLM! and the linear mean square estim
tion ~LMSE! model26

dXi
15Ui

1dt1An1dWi
X , ~18a!

dUi
15F2

]^p&
]xi

1n2

]2^ui&
]xk]xk

1Gi j ~U j
12^uj&!Gdt

1An3

]^ui&
]xk

dWk
X1AC0e dWi

U , ~18b!
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dfa
15FnS1

]2^fa&
]xk]xk

2Cfv~fa
12^fa&!1SaGdt

1AnS2

]^fa&
]xk

dWk
X , ~18c!

where the variablesn1 , n2 ,... are all diffusion coefficients
~to be specified!, and

Gi j 52vS 1

2
1

3

4
C0D d i j , v5

e

k
,

~19!

e5Ce

k3/2

DL
, k5

1

2
t~uk ,uk!.

Herev is the SGS mixing frequency,e is the SGS dissipation
rate, k is the SGS kinetic energy, andDL is the LES filter
size. The parametersC0 , Cf , and Ce are model constants
and need to be specified. The limitn15n35nS1

5nS2
50 is

the standard high Reynolds number GLM–LMSE closure20

The Fokker–Planck equation33 for f (v,c,x;t), the joint
PDF of X1, U1, f1, evolving by the diffusion process a
given by Eq.~18! is
] f

]t
1

]

]xk
~vkf !5F]^p&

]xi
2~n22An1n3!

]2^ui&
]xk]xk

G ] f

]v i
2

]

]v i
@Gi j ~v j2^uj&! f #2@nS1

2An1nS2
#

]2^fa&
]xk]xk

] f

]ca

1
]

]ca
@Cfv~ca2^fa&! f #2

]

]ca
@Sa~c! f #1

n1

2

]2f

]xk]xk
1An1n3

]^uj&
]xi

]2f

]xi]v j

1An1nS2

]^fa&
]xi

]2f

]xi]ca
1

n3

2

]^ui&
]xk

]^uj&
]xk

]2f

]v i]v j
1

1

2
C0e

]2f

]vk]vk
1An3nS2

]^ui&
]xk

]^fa&
]xk

]2f

]v i]ca

1
nS2

2

]^fa&
]xk

]^fb&
]xk

]2f

]ca]cb
. ~20!

The transport equations for the filtered variables are obtained by integration of Eq.~20! according to Eq.~12!:

]^uk&
]xk

50, ~21a!

]^ui&
]t

1
]^uk&^ui&

]xk
52

]^p&
]xi

1S n1

2
1n22An1n3D ]2^ui&

]xk]xk
2

]t~uk ,ui !

]xk
, ~21b!

]^fa&
]t

1
]^uk&^fa&

]xk
5S nS1

2An1nS2
1

n1

2 D ]2^fa&
]xk]xk

1^Sa~f!&2
]t~uk ,fa!

]xk
. ~21c!

The transport equations for the second-order SGS moments are

]t~ui ,uj !

]t
1

]^uk&t~ui ,uj !

]xk
5

n1

2

]2t~ui ,uj !

]xk]xk
2t~uk ,ui !

]^uj&
]xk

2t~uk ,uj !
]^ui&
]xk

1~n122An1n31n3!
]^ui&
]xk

]^uj&
]xk

1@Gikt~uk ,uj !1Gjkt~uk ,ui !1C0ed i j #2
]t~uk ,ui ,uj !

]xk
, ~22a!
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]t~ui ,fa!

]t
1

]^uk&t~ui ,fa!

]xk
5

n1

2

]2t~ui ,fa!

]xk]xk
2t~uk ,ui !

]^fa&
]xk

2t~uk ,fa!
]^ui&
]xk

1~n12An1n32An1nS2
1An3nS2

!
]^ui&
]xk

]^fa&
]xk

1@Gikt~uk ,fa!2Cfvt~ui ,fa!#

1t~ui ,Sa!2
]t~uk ,ui ,fa!

]xk
, ~22b!

]t~fa ,fb!

]t
1

]^uk&t~fa ,fb!

]xk
5

n1

2

]2t~fa ,fb!

]xk]xk
2t~uk ,fa!

]^fb&
]xk

2t~uk ,fb!
]^fa&

]xk

1~n122An1nS2
1nS2

!
]^fa&

]xk

]^fb&
]xk

2@2Cfvt~fa ,fb!#1t~fa ,Sb!

1t~fb ,Sa!2
]t~uk ,fa ,fb!

]xk
. ~22c!

A term-by-term comparison of the exact moment transport equations@Eqs.~4! and~6!#, with the modeled equations@Eqs.
~21! and ~22!#, suggestsn15n25n35nS1

5nS2
52n. However, this violates the realizability of the scalar field. A set

coefficients yielding a realizable stochastic model requires:n15n25n352n andnS1
5nS2

50. That is,

dXi
15Ui

1 dt1A2n dWi
X , ~23a!

dUi
15F2

]^p&
]xi

12n
]2^ui&
]xk]xk

1Gi j ~U j
12^uj&!Gdt1A2n

]^ui&
]xk

dWk
X1AC0e dWi

U , ~23b!

dfa
15@2Cfv~fa

12^fa&!1Sa#dt. ~23c!

The Fokker–Planck equation for this system is

] f

]t
1

]

]xk
~vkf !5

]^p&
]xi

] f

]v i
2

]

]v i
@Gi j ~v j2^uj&! f #1

]

]ca
@Cfv~ca2^fa&! f #2

]

]ca
@Sa~c! f #1n

]2f

]xk]xk

12n
]^uj&
]xi

]2f

]xi]v j
1n

]^ui&
]xk

]^uj&
]xk

]2f

]v i]v j
1

1

2
C0e

]2f

]vk]vk
~24!

and the corresponding equations for the moments are

]^uk&
]xk

50, ~25a!

]^ui&
]t

1
]^uk&^ui&

]xk
52

]^p&
]xi

1n
]2^ui&
]xk]xk

2
]t~uk ,ui !

]xk
, ~25b!

]^fa&
]t

1
]^uk&^fa&

]xk
5n

]2^fa&
]xk]xk

1^Sa~f!&2
]t~uk ,fa!

]xk
, ~25c!

]t~ui ,uj !

]t
1

]^uk&t~ui ,uj !

]xk
5n

]2t~ui ,uj !

]xk]xk
2t~uk ,ui !

]^uj&
]xk

2t~uk ,uj !
]^ui&
]xk

1@Gikt~uk ,uj !1Gjkt~uk ,ui !1C0ed i j #

2
]t~uk ,ui ,uj !

]xk
, ~26a!

]t~ui ,fa!

]t
1

]^uk&t~ui ,fa!

]xk
5n

]2t~ui ,fa!

]xk]xk
2t~uk ,ui !

]^fa&
]xk

2t~uk ,fa!
]^ui&
]xk

1@Gikt~uk ,fa!2Cfvt~ui ,fa!#

1t~ui ,Sa!2
]t~uk ,ui ,fa!

]xk
, ~26b!
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]t~fa ,fb!

]t
1

]^uk&t~fa ,fb!

]xk
5n

]2t~fa ,fb!

]xk]xk
2t~uk ,fa!

]^fb&
]xk

2t~uk ,fb!
]^fa&

]xk

1F2n
]^fa&

]xk

]^fb&
]xk

22Cfvt~fa ,fb!G1t~fa ,Sb!1t~fb ,Sa!2
]t~uk ,fa ,fb!

]xk

~26c!

which may be compared to Eqs.~4! and~6!. Therefore, the stochastic diffusion process described by the SDEs~23! implies the
following closure for the VSFDF:

]

]vk
F S K ]p

]xk
Uv,cL 2

]^p&
]xk

D PG2n
]2

]v i]v j
F K ]ui

]xk

]uj

]xk
Uv,cL PG22n

]2

]v i]ca
F K ]ui

]xk

]fa

]xk
Uv,cL PG

2n
]2

]ca]cb
F K ]fa

]xk

]fb

]xk
Uv,cL PG

'n
]^ui&
]xk

]^uj&
]xk

]2P

]v i]v j
1

1

2
C0e

]2P

]vk]vk
12n

]^ui&
]xk

]2P

]xk]v i
2

]

]v i
@Gi j ~v j2^uj&!P#1

]

]ca
@Cfv~ca2^fa&!P# ~27!
r
te

pr

r-

er
a

ari-

lly
for

al

rent

the
which yields the closures at the second-order levels:

2F2ntS ]ui

]xk
,
]uj

]xk
D1tS ui ,

]p

]xj
D1tS uj ,

]p

]xi
D G

5Gikt~uk ,uj !1Gjkt~uk ,ui !1C0ed i j

52v~11 3
2 C0![ t~ui ,uj !2 2

3 kd i j ] 2 2
3 ed i j , ~28a!

2F2ntS ]ui

]xk
,
]fa

]xk
D1tS fa ,

]p

]xi
D G

5Gikt~uk ,fa!2Cfvt~ui ,fa!

52vS 1

2
1

3

4
C01CfD t~ui ,fa!, ~28b!

22ntS ]fa

]xk
,
]fb

]xk
D

522Cfvt~fa ,fb!12n
]^fa&

]xk

]^fb&
]xk

. ~28c!

IV. NUMERICAL SOLUTION PROCEDURE

Numerical solution of the modeled VSFDF transpo
equation is obtained by a hybrid finite difference-Mon
Carlo procedure. The basis is similar to those in RAS34–36

and in previous FDF simulations,7,9,16with some differences
which are described here. For simulations, the FDF is re
sented by an ensemble ofNp statistically identical Monte
Carlo ~MC! particles. Each particle carries information pe
taining to its position,X(n)(t), velocity, U(n)(t), and scalar
value,f(n)(t), n51,...,Np . This information is updated via
temporal integration of the SDEs. The simplest way of p
forming this integration is via Euler–Maruyamm
approximation.37 For example, for Eq.~17a!,
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
t
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Xi
n~ tk11!5Xi

n~ tk!1~Di
X~ tk!!nDt

1~Bi j
X~ tk!!n~Dt !1/2~z j

X~ tk!!n

1~Fi j
XU~ tk!!n~Dt !1/2~z j

U~ tk!!n

1~Fi j
Xf~ tk!!n~Dt !1/2~z j

f~ tk!!n, ~29!

where Di(tk)5Di(X
(n)(tk),U

(n)(tk),f
(n)(tk);tk),..., and

z(tk)’s are independent standardized Gaussian random v
ables. This scheme preserves the Itoˆ character of the SDEs.38

The computational domain is discretized on equa
spaced finite difference grid points. These points are used
two purposes:~1! to identify the regions where the statistic

FIG. 1. Concept of ensemble averaging in 2D. Shown are three diffe
ensemble domains: 1(DE5D/2,NE'10), 2(DE5D,NE'40), 3(DE52D,
NE'160). Solid squares denote the finite-difference grid points, and
circles denote the MC particles.
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TABLE I. Attributes of the computational methods.

LES-FD
variables

VSFDF
variables

VSFDF quantities
used by the

LES-FD system

LES-FD quantities
used by the

VSFDF system
Redundant
quantities

VSFDF ^p&,^ui& Xi
1 t(ui ,uj ) ^ui&, ]^p&/]xi ^ui&

^fa& Ui
1 t(ui ,fa) ]^ui&/]xk , ]2^ui&/]xk]xk ^fa&

fa
1 ^Sa(f)& ^fa&

VSFDF-C ^p&,^ui& Xi
1 t(ui ,uj ) ^ui&, ]^p&/]xi ^ui&,^fa&

^fa& Ui
1 t(ui ,fa) ]^ui&/]xk , ]2^ui&/]xk]xk t(ui ,uj )

t(ui ,uj ) fa
1 t(ui ,uj ,uk) ^fa&, k t(ui ,fa)

t(ui ,fa) t(ui ,uj ,fa) t(fa ,fb)
t(fa ,fb) t(ui ,fa ,fb)
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information from the MC simulations are obtained;~2! to
perform LES primarily by the finite difference methodolog
which is coupled to the MC solver. The LES procedure
the finite difference discretization is referred to as LES–
and will be further discussed below.

Statistical information is obtained by considering an e
semble ofNE computational particles residing within an e
semble domain of characteristic lengthDE centered around
each of the finite-difference grid points. This is illustrat
schematically in Fig. 1. For reliable statistics with minim
numerical dispersion, it is desired to minimize the size
ensemble domain and maximize the number of the M
particles.20 In this way, the ensemble statistics would tend
the desired filtered values,

^a&E[
1

NE
(

nPDE

a~n! ——→
NE→`
DE→0

^a&,

~30!

tE~a,b![
1

NE
(

nPDE

~a~n!2^a&E!~b~n!2^b&E!

——→
NE→`
DE→0

t~a,b!,

wherea(n) denotes the information carried bynth MC par-
ticle pertaining to transport variablea.

The LES–FD solver is based on the compact param
finite difference scheme.39,40This is a variant of the MacCor
mack scheme in which fourth-order compact differenc
schemes are used to approximate the spatial derivatives
second-order symmetric predictor–corrector sequence is
ployed for time discretization. All of the finite differenc
operations are conducted on fixed grid points. The transfe
information from the grid points to the MC particles is a
complished via a second-order interpolation. The transfe
information from the particles to the grid points is acco
plished via ensemble averaging as described above.

The LES–FD procedure determines the pressure fi
which is used in the MC solver. The LES–FD also det
mines the filtered velocity and scalar fields. That is, there
‘‘redundancy’’ in the determination of the first filtered mo
ments as both the LES–FD and the MC procedures pro
the solution of this field. This redundancy is actually ve
useful in monitoring the accuracy of the simulated results
 2004 to 140.121.120.39. Redistribution subject to AI
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shown in previous work.9,16,34–36 To establish consistenc
and convergence of the MC solver, the modeled transp
equations for the generalized second-order SGS mom
@Eq. ~26!# are also solved via LES–FD. In doing so, th
unclosed third-order correlations are taken from the M
solver. The comparison of the first and second-order m
ments as obtained by LES–FD with those obtained by
MC solver is useful to establish the accuracy of the M
solver. These simulations are referred to as VSFDF–C.
tributes of all the simulation procedures are summarized
Table I. In this table and hereinafter, VSFDF simulatio
refer to the hybrid MC/LES–FD procedure in which th
LES–FD is used for only the first-order filtered variables.
VSFDF–C, the LES–FD procedure is used for both first- a
second-order filtered values. Further discussions about
simulation methods are available in Refs. 7, 16, 34–36.

V. RESULTS

A. Flows simulated

Simulations are conducted of a two-dimensional~2D!
and a 3D incompressible, temporally developing mixing la
ers involving transport of a passive scalar variable. Since
performance of the model in capturing the velocity-sca
correlations is of primary interest, only nonreacting flo
simulations are conducted. Inclusion of chemical reaction
the joint FDF formulation is straightforward and is similar
that in the marginal scalar FDF method.7,9–12The 2D simu-
lations are performed to establish and demonstrate the
sistency of the MC solver. The 3D simulations are used
assess the overall predictive capabilities of the VSFDF me
odology. These predictions are compared with data obtai
by direct numerical simulation~DNS! of the same layer.

The temporal mixing layer consists of two parall
streams travelling in opposite directions with the sa
speed.41–43 In the representation below,x, y ~and z! denote
the streamwise, the cross-stream~and the spanwise! direc-
tions ~in 3D!, respectively. The velocity components alon
these directions are denoted byu, v ~andw! in the x, y ~and
z! directions, respectively. Both the filtered streamwise
locity and the scalar fields are initialized with a hyperbo
tangent profiles witĥ u&51, ^f&51 on the top stream and
^u&521, ^f&50 on the bottom stream. The lengthL is
specified such thatL52NPlu , whereNP is the desired num-
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Cross-stream variation of the Reynold
averaged values of̂r& at t534.3: ~a! NE540, ~b! DE
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ber of successive vortex pairings andlu is the wavelength of
the most unstable mode corresponding to the mean stre
wise velocity profile imposed at the initial time. The flo
variables are normalized with respect to the half initial v
ticity thickness,Lr5@dv(t50)/2# (dv5DU/u]^u&L/]yumax,
where ^u&L is the Reynolds averaged value of the filter
streamwise velocity andDU is the velocity difference acros
the layer!. The reference velocity isUr5DU/2.

All 2D simulations are conducted for 0<x<L, and
22L/3<y<2L/3. The formation of large scale structures
facilitated by introducing small harmonic, phase-shifted, d
turbances containing subharmonics of the most unst
mode into the streamwise and cross-stream velocity profi
For Np51, this results in formation of two large vortices an
one subsequent pairing of these vortices. The 3D simulat
are conducted for a cubic box, 0<x<L, 2L/2<y<L/2 (0
<z<L). The 3D field is parametrized in a procedure som
what similar to that by Vremanet al.44 The formation of the
large scale structures are expedited through eigenfunc
based initial perturbations.45,46 This includes
two-dimensional42,44,47 and three-dimensional42,48 perturba-
tions with a random phase shift between the 3D modes. T
results in the formation of two successive vortex pairings a
strong three dimensionality.

B. Numerical specifications

Simulations are conducted on equally spaced grid po
with grid spacingsDx5Dy5Dz ~for 3D!5D. All 2D simu-
lations are performed on 32341 grid points. The 3D simula
tions are conducted on 1933 and 333 points for DNS and
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
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LES, respectively. The Reynolds number is Re5UrLr /n
550. To filter the DNS data, a top-hat function of the for
below is used

G~x82x!5)
i 51

3

G̃~xi82xi !,

~31!

G̃~xi82xi !5H 1

DL
, uxi82xi u<

DL

2
,

0, uxi82xi u.
DL

2
.

No attempt is made to investigate the sensitivity of the
sults to the filter function27 or the size of the filter.49

The MC particles are initially distributed throughout th
computational region. All simulations are performed with
uniform ‘‘weight’’ 20 of the particles. Due to flow periodicity
in the streamwise~and spanwise in 3D! direction~s!, if the
particle leaves the domain at one of these boundaries
particles are introduced at the other boundary with the sa
velocity and compositional values. In the cross-stream dir
tions, the free-slip boundary condition is satisfied by t
mirror-reflection of the particles leaving through the
boundaries. The density of the MC particles is determined
the average number of particlesNE within the ensemble do-
main of sizeDE3DE(3DE). The effects of both of these
parameters are assessed to ensure the consistency an
statistical accuracy of the VSFDF simulations. All results a
analyzed both ‘‘instantaneously’’ and ‘‘statistically.’’ In th
former, the instantaneous contours~snap-shots! and scatter
plots of the variables of interest are analyzed. In the lat
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. ~Color! Temporal evolution of the scalar~with superimposed vorticity iso-lines! ~top! and the vorticity~bottom! fields for LES–FD, withDE5D/2 and
NE540 at several times.
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the ‘‘Reynolds-averaged’’ statistics constructed from the
stantaneous data are considered. These are constructe
spatial averaging overx ~and z in 3D!. All Reynolds-
averaged results are denoted by an overbar.

C. Consistency and convergence assessments

The objective of this section is to demonstrate the c
sistency of the VSFDF formulation and the convergence
its MC simulation procedure. For this purpose, the results
MC and LES–FD are compared against each other
VSFDF–C simulations. Since the accuracy of the FD pro
dure is well-established~at least for the first-order filtered
quantities!, such a comparative assessment provides a g
means of assessing the performance of the MC solution
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
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attempt is made to determine the appropriate values of
model constants; the values suggested in the literature
adopted50 C052.1, C«51, and Cf51. The influence of
these parameters is assessed in Sec. V D.

The uniformity of the MC particles is checked by mon
toring their distributions at all times, as the particle numb
density must be proportional to fluid density. The Reyno
averaged density fields as obtained by both LES–FD and
MC are shown in Fig. 2. Close to unity values for the dens
at all times is the first measure of the accuracy of simu
tions. Figures 3 and 4 show the instantaneous contour p
of the filtered scalar and vorticity fields at several time
These figures provide a visual demonstration of the con
tency of the VSFDF. This consistency is observed for all fi
P license or copyright, see http://pof.aip.org/pof/copyright.jsp



2330 Phys. Fluids, Vol. 15, No. 8, August 2003 Sheikhi et al.
FIG. 4. ~Color! Temporal evolution of the scalar~with superimposed vorticity iso-lines! ~top! and the vorticity~bottom! fields for VSFDF withDE5D/2 and
NE540 at several times.
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order moments without any statistical variability. Also, all
these moments show very little dependence on the value
DE andNE consistent with previous FDF simulations.7,9,16In
the presentation below we only focus on second-order
ments. Specifically, the scalar-velocity correlations
shown since all other second-order SGS moments beh
similarly.

Figures 5 and 6 show the statistical variability of t
results for simulations withNE540. It is observed that thes
moments exhibit spreads with variances decreasing as
size of the ensemble domain is reduced. Figures 7–10 s
the sensitivity toNE andDE . All these results clearly display
convergence suggested by Eq.~30!. As the ensemble domai
size decreases, the VSFDF results converge to those of L
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
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FD. Ideally, the LES–FD results should become independ
of the MC results, as the latter become more reliable, i
when (NE→`, DE→0). It is observed that best match
achieved withDE<D/2 andNE>40. This conclusion is con-
sistent with previous assessment studies on the scalar FD7,9

and the velocity FDF.16 All the subsequent simulations ar
conducted withDE5D/2 andNE540.

D. Comparative assessments of the VSFDF

The objective of this section is to analyze some of t
characteristics of the VSFDF via comparative assessm
against DNS data. In addition, comparisons are also m
with LES via the ‘‘conventional’’ Smagorinsky18,51 model:
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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tL~ui ,uj !2 2
3 kd i j 522n tSi j ,
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]^f&L

]xi
,

~32!
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1

2 S ]^ui&L

]xj
1

]^uj&L

]xi
D ,

n t5CnDL
2S, G t5

n t

Sct
.

FIG. 5. Statistical variability of LES–FD and VSFDF–C simulations wi
NE540 for Reynolds-averaged values oft(u,f) at t534.4. Solid lines,
LES–FD; dashed lines, VSFDF–C.
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Cn50.04, Sct51, S5ASi j Si j and DL is the characteristic
length of the filter. This model considers the anisotropic p
of the SGS stress tensorai j 5tL(ui ,uj )22/3kd i j . The iso-
tropic components are absorbed in the pressure field.

For comparison, the DNS data are transposed from
original high resolution 1933 points to the coarse 333 points.
In the comparisons, we also consider the ‘‘resolved’’ and
‘‘total’’ components of the Reynolds-averaged moments. T

FIG. 6. Statistical variability of LES–FD and VSFDF–C simulations wi
NE540 for Reynolds-averaged values oft(v,f) at t534.4. Solid lines,
LES–FD; dashed lines, VSFDF–C.
e
FIG. 7. Cross-stream variations of th
Reynolds-averaged values oft(u,f)
~a! DE5D/2, ~b! DE5D, ~c! DE

52D.
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FIG. 8. Cross-stream variations of th
Reynolds-averaged values oft(v,f)
~a! DE5D/2, ~b! DE5D, ~c! DE
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former are denoted byR(a,b) with R(a,b)5(^a&2^a&)
3(^b&2^b&); and the latter isr (a,b) with r (a,b)5(a
2ā)(b2b̄). In DNS, the ‘‘total’’ SGS components are d
rectly available, while in LES they are approximated
r (a,b)'R(a,b)1t(a,b).44 Unless indicated otherwise, th
values of the model constants areC052.1, C«51, Cf51;
but the effects of these parameters on the predicted re
are assessed.

Figure 11 shows the instantaneous iso-surface of the^f&
field t580. By this time, the flow has gone through pairin
and exhibits strong 3D effects. This is evident by the form
tion of large scale spanwise rollers with presence of mu
room like structures in streamwise planes.45 Similar to pre-
vious results,16 the amount of SGS diffusion with th
Downloaded 22 Sep 2004 to 140.121.120.39. Redistribution subject to AI
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Smagorinsky model is significant. Thus, the predicted res
are overly smooth. The Reynolds-averaged values of the
tered scalar field att580 are shown in Fig. 12, and th
temporal variation of the ‘‘scalar thickness,’’

ds~ t !5uy~^f&50.9!u1uy~^f&50.1!u ~33!

is shown in Fig. 13. The filtered and unfiltered DNS da
yield virtually indistinguishable results. The dissipative n
ture of the Smagorinsky model at initial times resulting in
slow growth of the layer is shown. All VSFDF prediction
compare well with DNS data in predicting the spread of t
layer.

Several components of the planar averaged values o
second-order SGS moments are compared with DNS da
e
FIG. 9. Cross-stream variations of th
Reynolds-averaged values oft(u,f)
~a! NE520, ~b! NE540, ~c! NE580.
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FIG. 10. Cross-stream variations of the Reynolds-averaged values oft(v,f) ~a! NE520, ~b! NE540, ~c! NE580.
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Figs. 14 and 15 for several values of the model constants
general, the VSFDF results are in better agreement with D
data than those predicted by the Smagorinsky model. In
regard, therefore, the VSFDF is expected to be more ef
tive than the Smagorinsky type closures for LES of react
flows since the extent of SGS mixing is heavily influenc
by these SGS moments.52,53 However, it is not possible to
suggest ‘‘optimum’’ values for the model constants, exc
that at smallC« andCf values, the SGS energy is very larg

Several components of the resolved second-order
ments are presented in Figs. 16 and 17. As expected,
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performance of the Smagorinsky model is not very good a
does not predict the spread and the peak value accura
The VSFDF yields reasonable predictions except for sm
C« values. However, the total values of these moments
fairly independent of the model constants and yield ve
good agreement with DNS data as shown in Figs. 18 and
It is also noted that while the SGS moments and/or the
solved moments may be overestimated and/or under
mated depending on the values of the model coefficients,
total values of the moments are fairly independent of th
coefficients, at least in the range of values as considered.
FIG. 11. ~Color! Contours surface of thêf& field in the 3D mixing layer att580 as obtained by~a! DNS, ~b! Smagorinsky,~c! VSFDF.
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low values ofCf , C« are not recommended as they wou
result in too much SGS energy in comparison to the resol
energy.

The computational cost of VSFDF simulations relati
to those required by DNS and by the Smagorinsky mode
the same as that reported previously.16 The typical ratios of

FIG. 12. Cross-stream variations of the Reynolds-averaged values o
filtered scalar field att580.

FIG. 13. Temporal variations of the scalar thickness.
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d

is

the normalized Smagorinsky–VSFDF–DNS run times
12O~30!2O~200!.

VI. SUMMARY AND CONCLUDING REMARKS

The filtered density function~FDF! methodology has
proven effective for LES of turbulent reactive flows. In pr
vious investigations, either the marginal FDF of the scalar
that of the velocity were considered. The objective of pres
work is to develop the joint velocity-scalar FDF methodo
ogy. For this purpose, the exact transport equation govern
the evolution of VSFDF is derived. It is shown that effects
the SGS convection and chemical reaction appear in a clo
form. The unclosed terms are modeled in a fashion simila
those typically followed in PDF methods. The model
VSFDF transport equation is solved numerically via a L
grangian Monte Carlo~MC! scheme via consideration of
system of equivalent stochastic differential equatio

he

FIG. 14. Cross-stream variations of some of the components oft at t
560.

FIG. 15. Cross-stream variations of some of the components oft at t
580.
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~SDEs!. These SDEs are discretized via the Eule
Maruyamma approximation. The consistency of the VSF
method and the convergence of its MC solutions are asse
in LES of a two-dimensional~2D! temporally developing
mixing layer. This assessment is done by comparing the
sults obtained by the MC procedure with those of the fin
difference scheme~LES–FD! for the solution of the trans
port equations of the first two moments of VSFDF. B
including the third moments from the VSFDF into the LES
FD, the consistency and convergence of the MC solution
demonstrated by good agreements of the first two SGS
ments with those obtained by LES–FD.

The VSFDF predictions are compared with LES resu
with the Smagorinsky18 SGS model. All of these results ar
also compared with direct numerical simulation~DNS! data
of a three-dimensional, temporally developing mixing lay

FIG. 16. Cross-stream variations of some of the components ofR̄ at t
560.

FIG. 17. Cross-stream variations of some of the components ofR̄ at t
580.
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It is shown that the VSFDF performs well in predicting som
of the phenomena pertaining to the SGS transport. Mos
the overall flow features, including the mean field, the
solved and total stresses as predicted by VSFDF are in g
agreement with DNS data. However, the model does req
the input of three empirical constants. Also, the numeri
implementation of VSFDF is more expensive than the tra
tional models. It may be possible to improve the predict
capabilities of the VSFDF by two ways:~1! development of
a dynamic procedure to determine the model coefficie
and/or ~2! implementation of higher order closures for th
generalized Langevin model parameterGi j .50 Future work is
recommended for development and application of the jo
filtered velocity-scalar mass density function~VSFMDF! to
allow for LES of variable density flows with/or without th
presence of chemical reaction.

FIG. 18. Cross-stream variations ofr̄ at t560.

FIG. 19. Cross-stream variations ofr̄ at t580.
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