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a b s t r a c t

We consider the numerical time integration of a class of reaction–transport systems that
are described by a set of ordinary differential equations for primary variables. In the gov-
erning equations, the terms involved may require the knowledge of secondary variables,
which are functions of the primary variables. Specifically, we consider the case where,
given the primary variables, the evaluation of the secondary variables is computationally
expensive. To solve this class of reaction–transport equations, we develop and demonstrate
several computationally efficient splitting schemes, wherein the portions of the governing
equations containing chemical reaction terms are separated from those parts containing
the transport terms. A computationally efficient solution to the transport sub-step is
achieved through the use of linearization or predictor–corrector methods. The splitting
schemes are applied to the reactive flow in a continuously stirred tank reactor (CSTR) with
the Davis–Skodjie reaction model, to the COþH2 oxidation in a CSTR with detailed chem-
ical kinetics, and to a reaction–diffusion system with an extension of the Oregonator model
of the Belousov–Zhabotinsky reaction. As demonstrated in the test problems, the proposed
splitting schemes, which yield efficient solutions to the transport sub-step, achieve second-
order accuracy in time.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

In this study, we consider the numerical solution of the time dependent reaction–transport systems described by the fol-
lowing set of nonlinear ordinary differential equations:

dr
dt
¼ Sðr;uðrÞÞ þMðr;uðrÞ; tÞ; ð1Þ

where: the dependent variables r (of dimension nr) are called primary variables; the variables u (of dimension nu), which are
known functions of r, are called secondary variables; S (of dimension nr) denotes the rate-of-change of the primary variables
due to chemical reactions; and M (of dimension nr) denotes the rate-of-change of the primary variables due to transport pro-
cesses such as diffusion, heat loss, or inflow/outflow. For general reaction–diffusion systems described by a set of partial dif-
ferential equations (PDEs), the governing PDEs can be transformed into a set of ODEs of the form of Eq. (1) by the method of
lines. That is, by discretizing in space only, one transforms the PDEs into a set of ODEs for the variables at the grid nodes. It is
important to appreciate the mathematical difference between the reaction operator S and the transport operator M. The
operator S is independent of time; in the method of lines, the reaction process is separate for each grid point. The operator
M may depend on time because of external interactions or time-dependent boundary conditions; in the method of lines, the
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transport process is not separate for different grid points. As shown in Eq. (1), the reaction and transport terms may require
the knowledge of the secondary variables, which are functions of primary variables. In this study, we focus on the circum-
stance in which the evaluation of the function u(r) is computationally expensive. Moreover we assume that the reaction
operator S is stiff whereas M is not.

Equations of the form of Eq. (1) arise in the formulation of a variety of physical problems. One example is the description
of reactive flows with enthalpy being the (primary) energy variable. The governing equations are solved for the primary vari-
ables r consisting of the velocities, pressure, enthalpy and the concentrations of the chemical species involved. The secondary
variables u may consist of density and temperature. The knowledge of density and temperature is needed for evaluating
transport properties and the corresponding terms in the energy equation (if heat loss due to convection or radiation is pres-
ent). For a mixture of thermally perfect gases, the standard nonlinear polynomial dependencies of enthalpy on temperature
(see CHEMKIN [1]) are often used for all chemical species involved. Due to this nonlinear relationship, given the enthalpy of
the mixture and species concentrations, an iteration procedure has to be employed to obtain temperature. This may incur a
significant computational burden for certain simulations.

Another example where equations of the form of Eq. (1) arise is in the reduced description of reactive flows. (For simplic-
ity, we consider the reduced description of reactive flows, where the pressure is taken to be constant and uniform.) In the
reduced description, the reactive system is described in terms of the primary variables r, which can be taken to be enthalpy,
concentrations of some species and linear combinations of the concentrations of all the species (depending on the method
used). For example, the primary variables r can consist of enthalpy and the concentrations of specified ‘‘major” species. The
secondary variables u can consist of the concentrations of the ‘‘minor” species and temperature. In the reduced description,
the secondary variables u, which are functions of the primary variables r, are needed for evaluating chemical reactions. The
knowledge of u is also needed for evaluating transport properties and heat loss processes (if heat loss due to convection or
radiation is present) in the transport term. In the reduced description provided by different dimension-reduction methods
such as the quasi-steady state assumption (QSSA) method [2], the rate-controlled constrained equilibrium (RCCE) method
[3], and the ICE-PIC method [4], the evaluation of u(r) is computationally expensive. For example, in the RCCE method, given
the primary variables r, a constrained equilibrium problem must be solved to obtain the secondary variables u(r). In ICE-PIC
u is obtained from r by a yet more expensive process involving the solution of stiff ODEs.

Eq. (1) can be efficiently solved by numerical schemes based on an operator-splitting approach. These schemes split the
governing equation into sub-equations, usually with each having a single operator capturing only a portion of the physics
present, and integrate each separately and sequentially in time to advance to the next time step [5,6]. In [7,8], for example,
operator-splitting schemes are used to separate chemical reaction processes from transport processes in atmospheric mod-
eling simulations. The results from the sub-steps are then combined in such a way that the final solution accurately approx-
imates the solution to the original equation. In recent years, operator-splitting schemes have been widely applied in reactive
flow calculations [9–16]. More recently, operator-splitting schemes are combined with the storage/retrieval method, known
as in situ adaptive tabulation (ISAT) [17], for unsteady reactive flow calculations with detailed chemistry [18,19]. In this
study, we develop and demonstrate several computationally efficient, second-order accurate in time, splitting schemes
for solving Eq. (1).

The outline of the remainder of the paper is as follows. In Section 2, we first describe the Strang splitting scheme [20] for
solving Eq. (1). Then computationally more efficient methods for the transport sub-step are proposed. In Section 2, we also
propose splitting schemes based on staggered time steps. Numerical tests are reported in Section 3. Section 4 provides a dis-
cussion and conclusions.

2. Splitting schemes

To solve Eq. (1) numerically, the time is discretized in increments Dt � ðtf � t0Þ=nt , where t0 and tf are the initial and final
simulation time respectively, and nt þ 1 is the total number of time steps. (For simplicity, non-constant Dt is not discussed
here.) Then, time is discretely represented by tn ¼ t0 þ nDt, where n ¼ 0;1;2; . . . ;nt . The integration of Eq. (1) forward in
time is then performed as follows: starting from n ¼ 0, the schemes march in time steps Dt from tn to tnþ1. In the following,
we describe different splitting schemes.

2.1. Strang splitting scheme

With the Strang splitting scheme [20], reaction is separated from the transport process, and Eq. (1) is integrated over a
time step Dt as follows:

� Sub-step 1. The reaction terms are integrated over a time interval Dt=2 by solving

dra

dt
¼ Sðra;uðraÞÞ: ð2Þ

The initial condition rað0Þ is taken to be the final state r from the previous time step, and the solution to Eq. (2) is denoted
by raðDt=2Þ.
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� Sub-step 2. The transport terms are integrated over a time interval Dt by solving

drb

dt
¼Mðrb;uðrbÞ; tÞ: ð3Þ

The initial condition rbð0Þ corresponds to the final state of the system from the previous sub-step, raðDt=2Þ, and the solu-
tion to Eq. (3) is denoted by rbðDtÞ.

� Sub-step 3. A sub-step identical to Sub-step 1 is performed taking as the initial condition the final state of the system from
Sub-step 2, rbðDtÞ. At the completion of this sub-step, the final state of the system is given by rcðDt=2Þ. This is the solution
at the end of the current time step and serves as the initial condition for the next time step.

The classical analysis [11,20] (which considers the limit Dt ! 0) shows that the splitting error in the Strang splitting
scheme is of order Dt2. If each of the three sub-steps in the above splitting procedure is solved accurately (with at least sec-
ond-order accuracy in time), the Strang splitting scheme is second-order accurate in time. As discussed by Sportisse [11], the
classical analysis of the splitting error may fail when the Strang scheme is applied to a stiff system with Dt in practice being
much larger than the smallest time scales. This is the case here where a large time step is sought for solving the above sub-
steps, in particular, larger than the smallest chemical time scales. Under this circumstance, the accuracy of the Strang scheme
is determined by numerical tests [11,18,19].

The reaction and transport sub-steps can be solved accurately using an ODE solver such as DDASAC [33]. However in the
Strang splitting scheme, both the reaction sub-steps and transport sub-step are expensive to integrate due to the required
expensive function evaluation of the secondary variables (and stiffness in the reaction term). For the reaction sub-steps,
the governing equation Eq. (2) is autonomous. Given the initial condition r(0), the state of the system rðDt=2Þ after fixed
Dt=2 depends only on r(0), and can be efficiently computed by a storage/retrieval method such as ISAT [17–19]. That is, ISAT
tabulates rðDt=2Þ as a function of r(0). Given a new initial condition, whenever possible, ISAT uses a linear approximation to
obtain the primary variables after the reaction sub-step, which is accurate to within a user-specified error tolerance. Only
when needed, new table entries (consisting of the primary variables before and after reaction sub-step) are added for possible
later use, where the primary variables after reaction are obtained by integrating Eq. (2) using the ODE integrator DDASAC.

In this study, we focus on the efficient solution to the transport sub-step (Sub-step 2). Splitting schemes are introduced
with modifications to Sub-step 2. The purpose is to obtain a more efficient solution to the transport sub-step by minimizing
the number of expensive function evaluations u(r), while at the same time achieving second-order accuracy in time for solv-
ing the reactive system Eq. (1). In Section 3 the numerical accuracy of the proposed splitting schemes is demonstrated
through different numerical tests.

2.2. Modified Strang splitting schemes with a predictor–corrector for the transport sub-step

To simplify notation, Eq. (3) is rewritten as

dr
dt
¼Mðr;uðrÞ; tÞ: ð4Þ

The initial condition is denoted by r0, which corresponds to the final state of the system from the previous sub-step raðDt=2Þ
(i.e., r0 � raðDt=2Þ). The solution to the transport sub-step (i.e., Eq. (4)) after a time step Dt is denoted by rðDtÞ. In the follow-
ing, two modified Strang splitting schemes are described with modifications to the transport sub-step based on predictor–
corrector methods.

2.2.1. Predictor–corrector method PC1
The second-order accurate solution for the transport sub-step (Sub-step 2) can be obtained through the following predic-

tor–corrector method, referred to as PC1.

� Predictor: The predictor for rðDtÞ given by Eq. (4) is obtained by integrating over a time interval Dt by solving

dr
dt
¼Mðr;u0; tÞ; ð5Þ

with the initial condition being r0 ¼ raðDt=2Þ and the secondary variables u0 � uðr0Þ being fixed at the values obtained
after Sub-step 1. The solution to Eq. (5) after time step Dt is denoted by rp. The secondary variables evaluated based
on rp are denoted by up, i.e.,

up � uðrpÞ: ð6Þ

� Corrector: The corrector for rðDtÞ given by Eq. (4) is then obtained by integrating over a time interval Dt by solving

dr
dt
¼ 1

2
Mðr;u0; tÞ þ 1

2
Mðr;up; tÞ ð7Þ

with initial condition r0. The solution to Eq. (7) is rðDtÞ, which is the final state of the system after Sub-step 2.
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The scheme PC1 requires the knowledge of the secondary variables u0 and up, respectively, which are obtained by di-
rectly performing two expensive function evaluations, i.e., u0 � uðr0Þ and up � uðrpÞ. Notice that the secondary variables in
the governing ODEs (Eqs. (5) and (7)) for the predictor and corrector are fixed. With u0 and up having been obtained, with-
out additional expensive function evaluations of the secondary variables, Eqs. (5) and (7) can be solved accurately (either
analytically or using an ODE solver) or they can be solved using computationally more efficient but less accurate numer-
ical schemes. In this study, the ODEs (Eqs. (5) and (7)) are solved accurately, i.e., with numerical errors that are small com-
pared to the splitting error, so that (over the range of Dt considered) the only significant numerical error is the splitting
error.

2.2.2. Predictor–corrector method PC2
An alternative method, referred to as PC2, is to use an approximation to up obtained from the following linear extrapo-

lation (instead of using Eq. (6))

up � u0 þ ðrp � r0Þ:rrujr¼r0 ; ð8Þ

where rru are the gradients, i.e., oui=orj. This scheme requires the expensive function evaluation u0 � uðr0Þ, but does not
need the expensive function evaluation for up after the predictor step. However it requires the evaluation of rru.
When divided differences are employed to evaluate rru, at least nr þ 1 function evaluations of u(r) are required. For
example, when a two-point stencil (with one point at r0) is used for the gradient operator, nr þ 1 function evaluations
of u(r) are needed. Hence in general, compared to PC1, the scheme PC2 requires at least nr more function evaluations
of u(r) in the transport sub-step (Sub-step 2). However, there are some circumstances (e.g., in the reduced description
of reactive flows [21,22]) in which the gradient rru is known from the previous reaction sub-step. Under these
circumstances, compared to PC1, the scheme PC2 requires one less function evaluation u(r) in the transport sub-step
(Sub-step 2).

2.3. Modified Strang splitting scheme with linearization for the transport sub-step

The second-order accurate solution for transport sub-step (Sub-step 2) can be obtained through the following lineariza-
tion method, referred to as Lin. With r0 being the initial condition (for the transport fractional sub-step) and u0 � uðr0Þ being
the corresponding secondary variables, the transport term M, linearized about the initial condition is

Miðr;uðrÞ; tÞ � Miðr0;u0; tÞ þ oMi

ork
ðrk � r0

kÞ þ
oMi

ouj

ouj

ork
ðrk � r0

kÞ ¼ M0
i þ D0

ikðrk � r0
kÞ; ð9Þ

where

M0
i �Miðr0;u0; tÞ; ð10Þ

D0
ik �

oMi

ork
þ oMi

ouj

ouj

ork
; ð11Þ

the summation convention applies, and all the derivatives are evaluated at ðr;uÞ ¼ ðr0;u0Þ.
Thus with this linearization, the governing equation for the transport sub-step (Eq. (3)) becomes

dri

dt
¼ M0

i þ D0
ikðrk � r0

kÞ; ð12Þ

which has an analytic solution (when M is independent of t). The linearization method requires only one function evaluation
u(r) in the transport sub-step, i.e., u0 � uðr0Þ. However it requires the evaluation of the matrix D0, which is in general com-
putationally expensive. Under certain circumstances (e.g., in the reduced description of reactive flows [21,22]) D0 is known
from the previous reaction sub-step, and compared to PC1 the scheme Lin requires one less function evaluation u(r) in the
transport sub-step.

2.4. Splitting schemes based on staggered time steps

All the splitting schemes described above are based on the Strang splitting scheme with two reaction sub-steps of length
Dt=2 and one transport sub-step of length Dt per time step. Under some circumstances [22], a single reaction fractional step
of length Dt and a single transport sub-step of length Dt per time step is preferable (while still maintaining second-order
accuracy in time). For example when ISAT [17] is employed for reaction sub-steps in PDF [23] modeling of turbulent com-
bustion, the computational cost scales with the number of reaction sub-steps that need to be performed. Hence it is com-
putationally significant to decrease the number of reaction sub-steps by a factor of two. This can be achieved based on
staggered time steps. Fig. 1 illustrates the proposed staggered splitting scheme for solving Eq. (1). On the time axis, time
is discretely represented by tn ¼ t0 þ nDt, where n ¼ 0;1;2; . . . ;nt: the full time steps are labeled n, nþ 1, . . ., and the middle
points are labeled nþ 1=2, nþ 3=2, . . .. The primary variables at the full time step nþ 1 are denoted by rnþ1 and are obtained
by integrating Eq. (1) forward in time as follows:

8168 Z. Ren, S.B. Pope / Journal of Computational Physics 227 (2008) 8165–8176
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� From time step n to nþ 1, a reaction sub-step of length Dt is performed. The initial conditions are taken to be the final
state of the system from the previous transport sub-step from n� 1=2 to nþ 1=2. The solution to this reaction sub-step
is denoted by rnþ1

S .
� Following the reaction sub-step, a transport sub-step (of length Dt) is performed from nþ 1=2 to nþ 3=2, with the initial

conditions being the final state of the system from the previous reaction sub-step, rnþ1
S . The solution to this transport sub-

step is denoted by rnþ3=2
M . For the transport sub-step, all the methods described in the previous subsections can be applied.

For the first time step (i.e., n ¼ 0), the initial conditions for the reaction subs-step need special treatment and are taken to
be the final state of the system from the first transport sub-step, which is of length Dt=2 and from 0 to 1/2. The initial con-
ditions for the first transport sub-step is specified as the initial conditions for a particular system.

The primary variables rnþ1, i.e., the state of the system at time step nþ 1 are obtained as

rnþ1 � 1
2
ðrnþ1

S þ rnþ3=2
M Þ: ð13Þ

As demonstrated below, splitting schemes based on the above staggered time steps achieve second-order accuracy in
time (even with a single reaction fractional step of length Dt and a single transport sub-step of length Dt per time step).

2.5. Discussion

In the above, we introduce two classes of splitting schemes: one is based on the Strang splitting scheme, and the
other is based on staggered time steps. For schemes based on the Strang splitting scheme, for each time step Dt, it in-
volves two reaction sub-steps of length Dt=2 and one transport sub-step of length Dt. For schemes based on staggered
time steps, for each time step Dt, it involves a single reaction fractional step of length Dt and a single transport sub-step
of length Dt.

For the transport sub-step, either method PC1, method PC2, or method Lin can be employed. For PC1, two function eval-
uations uðrÞ are required to obtain ua and up in the transport sub-step. For PC2 and Lin, only one function evaluation (for
evaluating ua) is required. However they require the evaluation of other information such as the derivatives rru or the ma-
trix D0, which is in general computationally expensive. Under certain circumstances [21,22] where rru and D0 are known
from the previous reaction sub-step, compared to PC1, schemes PC2 and Lin require one less function evaluation uðrÞ and are
computationally advantageous. It is worth mentioning that for some problems such as the reduced description of reactive
flows [22], even ua may be known from the previous reaction sub-step, and therefore no function evaluation is needed
for evaluating ua during the transport sub-step.

3. Numerical tests

In this Section, we apply the various splitting methods to three test problems and examine their performance.

n_1/2 n+1 n+3/2n+1/2

n

n

n_1/2 n+3/2

n_1/2 n n+1 n+3/2

n_1/2 n n+1/2 n+1 n+3/2

n+1n+1/2

n+1/2

t

M

S

M

Fig. 1. The time axis showing the staggered splitting scheme for solving Eq. (1). The time is discretized in increments Dt=2. Symbols S and M denote reaction
sub-step (of length Dt) and transport sub-step (of length Dt), respectively.
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3.1. Extension of the Davis–Skodjie model

The first test considered is the following model system

dr1=dt
dr2=dt

� �
¼
�r1u expð�r2Þ
0

� �
þ ðrin

1 � r1Þ=tres

ðrin
2 � r2Þ=tres þ r1u2

" #
; ð14Þ

where r � ½r1; r2� are the primary variables, u (a function of r) is the secondary variable, tres is the specified residence time,
and rin is the specified inflow condition. The first term on the right-hand side represents reaction and the second term on the
right-hand side represents transport (i.e., inflow/outflow). This model is an abstraction of the reduced description of the Da-
vis–Skodjie reactive model [24,25] in a continuously stirred tank reactor. In this model, r1 and u correspond to chemical spe-
cies, and r2 corresponds to temperature. For the particular case considered, the residence time is taken to be tres ¼ 2, the
inflow conditions are rin ¼ ½1; 1� and the initial conditions are r ¼ ½1; 1�. For simplicity, the secondary variable u is taken to
be related to the primary variables through

u ¼ r1

1þ r1
: ð15Þ

We pretend that the above function is computationally expensive to evaluate. The purpose is to demonstrate different split-
ting schemes in a simple model problem.

The solution to Eq. (14) can be obtained with high accuracy by directly integrating Eq. (14) forward in time using an ODE
solver. Fig. 2 shows the evolution of the primary variables with time. After the initial transient, the system reaches a steady
state. To demonstrate the different splitting schemes described in Section 2, Eq. (14) is alternatively solved using the splitting
schemes with reaction being separated from inflow/outflow. For this model system, the Strang scheme, modified Strang
schemes and Staggered schemes can be straightforwardly applied. In each of the sub-steps, the governing ODEs are inte-
grated accurately using an ODE solver so that (over the range of Dt considered) the only significant numerical error is the
splitting error. We define

emaxðDtÞ � 1
jrDIðtendÞj

maxðjrDIðtÞ � rSPðt;DtÞjÞ; for 0 < t < tend; ð16Þ

to be the normalized measure of the maximum two-norm error between the accurate solution rDIðtÞ from the direct integra-
tion of the fully coupled equations (Eq. (14)) and the solution rSPðt;DtÞ from one of the splitting schemes with time step Dt.
(For the results presented below tend ¼ 10.) Fig. 3 shows the numerical errors against the time step. As shown in the plot, for
this system, schemes Strang-PC1, Strang-PC2 and Strang-Lin achieve comparable accuracy to the original Strang scheme. The
Staggered-PC1 scheme is less accurate compared to other schemes. Nevertheless, for all the splitting schemes considered,
over a wide range of Dt, the error decreases with Dt, essentially as Dt2, thus illustrating their second-order accuracy in time.
For this system, the number of function evaluations per mixing sub-step is about 40 for the Strang scheme, 2 for Strang-PC1
and Staggered-PC1 and 1 for Strang-PC2 and Strang-Lin. (For this system, the knowledge of derivatives necessary for Strang-
PC2 and Strang-Lin is known and requires no extra function evaluations.)

0 2 4 6 8 10
0.8

0.9

1

1.1

1.2

1.3

t

r 1
, r

2

r
 

r
2

1

Fig. 2. The primary variables r1 and r2 against time in the model system Eq. (14).
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3.2. Extension of the Oregonator model of the Belousov–Zhabotinsky reaction

The second test is a one-dimensional reaction–diffusion system capable of generating periodic patterns. The chemical
reaction model employed is an extension of the Oregonator model of the Belousov–Zhabotinsky reaction [26–28] appending
a general functional relation between the activator and its nonreactive form,

Aþ Y ! Cþ P
Cþ Y! 2P
Aþ C! 2Cþ 2Z
2C! Aþ P

Bþ Z! 1
2

fZ;

U ¼ fnðCÞ;

where A ¼ ½HBrO�3 �, B = malonic acid, P = HOBr, C ¼ ½HBrO2�, Y ¼ ½Br�1� and U is the nonreactive form of C. As denoted in the
reaction scheme, U is assumed to be a function of C. As shown in [28], by using a quasi-steady-state approximation for Y, a
two variable reaction–diffusion model describing this system is given by the following PDEs

oc=ot

oz=ot

� �
¼

1
e c � c2 � fz c�q

cþq

� �
c � z

" #
þ Dcðc; z; uðc; zÞÞo2c=ox2

Dzðc; z; uðc; zÞÞo2z=ox2

" #
; ð17Þ

where: the variables cðx; tÞ, zðx; tÞ and u (which is a function of c and z) are the non-dimensionalized concentrations of species
C, Z and U, respectively; Dc and Dz (which depend on c, z and u) are the non-dimensional diffusivities of c and z respectively;
and e, f and q are related kinetic parameters with values e ¼ 0:343, f ¼ 0:94 and q ¼ 0:009. In Eq. (17), the first term on the
right-hand side represents reaction, and the second term on the right-hand side represents diffusion. The primary variables
are r � ½c; z�, and the secondary variable is u � u. The diffusivities are given by

Dcðc; z;uðc; zÞÞ ¼ 0:05c=ðc þ zþ uÞ
Dzðc; z;uðc; zÞÞ ¼ 0:4z=ðc þ zþ uÞ: ð18Þ

The secondary variable u is related to the primary variables c and z through

u ¼ 0:2c1=2: ð19Þ

We pretend that the above function is computationally expensive to evaluate.
The solution domain is set to be 0 6 x 6 L ¼ 5. The boundary conditions are given by ½cðt;0Þ zðt;0Þ�T ¼ ½0:4 0:15�T and

½cðt; LÞ zðt; LÞ�T ¼ ½0:4 0:15�T , and the initial condition is taken to be ½cð0; xÞ zð0; xÞ�T ¼ ½0:4 0:15�T .
The governing PDEs (Eq. (17)) are transformed into a set of ODEs of the form of Eq. (1) by performing central finite dif-

ferencing of the diffusion term over a mesh consisting of 201 equally spaced grid nodes in x-space. We define rf ðtÞ (of dimen-
sion 402) to be the dependent variables of the resulting set of ODEs, i.e., rf ðtÞ is the collection of all the primary variables r at
the 201 grid nodes at time t. The solution to the resulting set of ODEs can be obtained by integrating forward in time using an

10
_2

10
_1

10
_5

10
_

10
_3

Δt

ε m
ax

(Δ
t)

Strang

Strang_PC1

Strang_PC2

Strang_Lin

Staggered_PC1

slope 2

4

Fig. 3. Demonstration of the accuracy of different splitting schemes for the model system Eq. (14): the splitting error defined by Eq. (16) against time step
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ODE solver. Fig. 4 shows the evolution of the primary variables from this extended Oregonator model in x-t space. After the
initial transient ðt < 20Þ, as may be seen, sustained patterns form in this reactive system.

The resulting ODEs after spatial discretization can be alternatively solved using the splitting schemes described in Section
2 with reaction being separated from the diffusion. To investigate the splitting error, in each of the sub-steps, the governing
ODEs are integrated accurately using an ODE solver so that (over the range of Dt considered) the only significant numerical
error is the splitting error. We define

emaxðDtÞ � 1
maxðjrDI

f ðtÞjÞ
maxðjrDI

f ðtÞ � rSP
f ðt;DtÞjÞ; for 0 < t < tend; ð20Þ

to be the normalized measure of the maximum two-norm error between the accurate solution rDI
f ðtÞ (from the direct inte-

gration of the resulting ODEs after spatial discretization of Eq. (17)) and the solution rSP
f ðt;DtÞ from one of the splitting

schemes with time step Dt. (For the results presented below tend ¼ 35.) Fig. 5 shows the numerical errors against the time
step. As shown in the plot, for Dt less than 0.2, the errors of all the five splitting schemes decrease with Dt, essentially as Dt2,
thus illustrating their second-order accuracy. When the time step Dt is greater than about 0.2, the accuracy of all the splitting
schemes deteriorates. For this system, schemes Strang-PC1, Strang-PC2 and Staggered-PC1 achieve comparable accuracy as
the original Strang scheme. The Strang-Lin scheme is less accurate compared to other schemes. For this system, the number
of function evaluations per mixing sub-step is about 230 for the Strang scheme, 2 for Strang-PC1 and Staggered-PC1 and 1 for
Strang-PC2 and Strang-Lin. (For this system, the knowledge of derivatives necessary for Strang-PC2 and Strang-Lin is known
and requires no extra function evaluations.)
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Fig. 4. Contour plots of the primary variables r1 � c (top figure) and r2 � z (bottom figure) from the extended Oregonator model in x-t space.
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3.3. COþH2 oxidation in a continuously stirred tank reactor

The third test is the reaction of a CO=H2=O2 mixture in an isobaric continuously stirred tank reactor. As shown in [29,30],
at low pressures and moderate ambient temperatures, the system may sustain oscillatory ignition. The detailed chemical
kinetics mechanism employed for COþH2 oxidation is the COþH2 subset of the Leeds methane mechanism [31,32], which
involves 11 species and 33 reactions. The chemical species are H2, O2, H2O, H2O2, CO, CO2, H, O, OH, HO2 and HCO. The reac-
tive system at time t is fully described by fhðtÞ; zðtÞg, where hðtÞ is the specific enthalpy and the composition zðtÞ is taken to
be the species specific moles (mass fractions divided by the corresponding species molecular weights). With the assumption
of perfect mixing in the reactor, the dynamics in a non-isothermal CSTR are governed by the following set of ordinary dif-
ferential equations (ODEs):

dz=dt
dh=dt

� �
¼

Sðz; Tðz;hÞÞ
0

� �
þ
ðzin � zÞ=tres

ðhin � hÞ=tres þ ðTa � Tðz;hÞÞQ=qðz; Tðz; hÞÞ

" #
; ð21Þ

where: the primary variables r � ½z; h� are the species specific moles and specific enthalpy; the secondary variables u � ½T;q�
are the temperature and the density of the mixture in the reactor; zin, hin are the species specific moles and enthalpy of the
inflowing stream; tres is the residence time; Ta is the ambient temperature; Q is the heat loss coefficient; and the vector S
(determined by the detailed chemical kinetics) is the rate of change of the composition due to chemical reactions. In Eq.
(21), the first term on the right-hand side represents reaction, and the second term on the right-hand side represents trans-
port i.e., inflow/outflow and heat loss. As indicated by the notation, T, q are functions of z and h. Due to the nonlinear rela-
tionship between temperature and enthalpy, it requires iterations to obtain temperature from fh; zg, which is
computationally expensive.

For the particular case considered, the heat loss coefficient Q is taken to be 160 J K�1 m�3 s�1, the residence time is taken
to be tres ¼ 8s, and the pressure is P ¼ 25 Torr. The inflow mixture considered is 0.5% H2, 49.5% CO and 50% O2 (by volume) at
the ambient temperature Ta ¼ 760 K, the initial conditions are taken to be zðt ¼ 0Þ ¼ ½6:42� 10�6; 9:29� 10�3; 1:6� 10�4;

6:23�10�9;1:84�10�3;1:47�10�2;8:73�10�7;8:36�10�6;3:06�10�7;1:12�10�7;1:18�10�11�kmol/kg and Tðt ¼ 0Þ ¼
800:43 K. The initial enthalpy hðt ¼ 0Þ is determined from zðt ¼ 0Þ and Tðt ¼ 0Þ.

The solution to Eq. (21) can be obtained by integrating it forward in time by using the ODE solver DDASAC [33]. As
shown in Fig. 6, the system exhibits a periodic sequence of ignition events separated by periods of relatively little chem-
ical activity, but during which the mixture composition changes under the influence of inflow and outflow. However this
direct integration is computationally expensive due to the required expensive temperature and density evaluations. Alter-
natively, Eq. (21) can be efficiently solved by splitting schemes with reaction being separated from inflow/outflow. (With
this operator splitting, an efficient solution to the reaction sub-step can be obtained using a storage/retrieval methods
such as ISAT [17], and efficient solution to the transport sub-step can be obtained by methods described in Section
2.2.) For this system, the Strang, Strang-PC1 and Staggered-PC1 splitting schemes can be applied straightforwardly for
solving Eq. (21). For this particular system, the other splitting schemes such as Strang-PC2 and Strang-Lin described in
Section 2 are not computationally advantageous due to the cost and difficulties in obtaining the required gradient infor-
mation. For this particular system, this gradient information cannot readily be obtained from the previous reaction
substep.
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Fig. 5. Demonstration of the accuracy of different splitting schemes for the extended Oregonator model: the splitting error defined by Eq. (20) against time
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To investigate the splitting error, the governing ODEs in each of the sub-steps are solved accurately (either using DDASAC
or solved analytically) so that (over the range of Dt considered) the only significant numerical error is the splitting error. We
define

emaxðDtÞ � 1
maxðjzDIðtÞjÞmaxðjzDIðtÞ � zSPðt;DtÞjÞ; for 0 < t < tend; ð22Þ

to be the normalized measure of the maximum two-norm error between the accurate solution zDIðtÞ from the direct integra-
tion of the full coupled equations (Eq. (21)) and the solution zSPðt;DtÞ from one of the splitting schemes with time step Dt.
For the results presented below tend ¼ 2s.

Fig. 7 shows the numerical errors against the time step during the oscillatory ignition. As shown in the plot, for Dt less
than 0.06 s, the errors of all the three splitting schemes decrease with Dt, essentially as Dt2, thus illustrating their sec-
ond-order accuracy. When the time step Dt is greater than 0.06 s, the accuracy of all the splitting schemes deteriorates.
One thing worth mentioning is that the governing equation (Eq. (21)) for the COþH2 oxidation in a CSTR is highly stiff.
Fig. 8 shows the chemical time scales during the oscillatory ignition. As may be seen, the system contains a wide range of
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chemical time scales. The time step Dt (order of 0.01 s) employed in practice for the splitting schemes is much larger than the
smallest chemical time scales (order of 10�6 s). Nevertheless, even with this large time step, the splitting schemes achieve
second order accuracy in time.

For this system, schemes Strang-PC1 and Staggered-PC1 achieve comparable accuracy, but are less accurate than the ori-
ginal Strang scheme.

4. Conclusions

In this study, we develop computationally efficient splitting schemes for solving a class of reaction–transport problems.
The systems are described by a set of governing equations for primary variables, and the terms involved may require the
knowledge of secondary variables, which are computationally expensive to evaluate. The schemes are based on the splitting
technique wherein the portions of the governing equations containing chemical reaction terms are separated from those
parts containing the transport terms. We introduce two classes of splitting schemes: one is based on the Strang splitting
scheme, and the other is based on staggered time steps. For each time step Dt, schemes based on Strang splitting require
two reaction sub-steps of length Dt=2 and one transport sub-step of length Dt. Schemes based on staggered time steps re-
quire a single reaction fractional step of length Dt and a single transport sub-step of length Dt.

For the reaction sub-steps, efficient solutions can be obtained using the storage/retrieval methods such as ISAT [17]. In
this work, a computationally efficient solution to the transport sub-step is achieved through predictor–corrector methods
or linearization, namely, methods PC1, PC2, and Lin, described in Sections 2.2,2.3. For splitting schemes with PC1 for the
transport sub-step, two function evaluations u(r) are required to obtain ua and up in the transport sub-step. For splitting
schemes with PC2 or Lin for the transport sub-step, only one function evaluation (for evaluating ua) is required. However
they require the evaluation of other information such as derivatives, which is in general computationally expensive. Under
certain circumstances where this information is known from the previous reaction sub-step, compared to PC1, schemes PC2
and Lin require one less function evaluation and are computationally advantageous.

The splitting schemes are applied to solve the reactive flow in a continuously stirred tank reactor (CSTR) with the Davis–
Skodjie reaction model, to solve the COþH2 oxidation in a CSTR with detailed chemical kinetics, and to solve a reaction–dif-
fusion system with an extension of the Oregonator model of the Belousov–Zhabotinsky reaction. As demonstrated in the test
problems, the proposed splitting schemes, which yield efficient solutions to the transport sub-step, achieve second-order
accuracy in time. Their relative accuracy, cost and ease of implementation is problem dependent. For problems without par-
ticular structure, splitting schemes with PC1 for the transport sub-step are easiest to implement and hence are
recommended.
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