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The reduced description of inhomogeneous reactive flows by chemistry-based low-dimensional man-
ifolds is complicated by the transport processes present and the consequent transport-chemistry cou-
pling. In this study, we focus on the use of intrinsic low-dimensional manifolds (ILDMs) to describe
inhomogeneous reactive flows. In particular we investigate three different approaches which can be
used with ILDMs to incorporate the transport-chemistry coupling in the reduced description, namely,
the Maas–Pope approach, the ‘close-parallel’ approach, and the approximate slow invariant manifold
(ASIM) approach. For the Maas–Pope approach, we validate its fundamental assumption: that there is
a balance between the transport processes and chemical reactions in the fast subspace. We show that
even though the Maas–Pope approach makes no attempt to represent the departure of composition
from the ILDM, it does adequately incorporate the transport-chemistry coupling in the dynamics of
the reduced system. For the ‘close-parallel’ approach, we demonstrate its use with the ILDM to in-
corporate the transport-chemistry coupling. This approach is based on the ‘close-parallel’ assumption
that the compositions are on a low-dimensional manifold which is close to and parallel to the ILDM.
We show that this assumption implies a balance between the transport processes and chemical reaction
in the normal subspace of the ILDM. The application of the ASIM approach in general reactive flows
is investigated. We clarify its underlying assumptions and applicability. Also in the regime where the
fast chemical time scales are much smaller than the transport time scales, we reformulate the ASIM
approach so that explicit governing PDEs are given for the reduced composition. For the reaction–
diffusion systems considered, we show that all the three approaches predict the same dynamics of the
reduced compositions, i.e. each results in the same evolution equations for the reduced composition
variables (to leading order). We also show that all the three approaches are valid only when the fast
chemical time scales are much smaller than the transport time scales. Moreover, a simplified ASIM
approach is proposed.

Keywords: Close-parallel; Dimension reduction; ILDM; Low-dimensional manifold; Transport-chemistry coupling

1. Introduction

Many detailed chemical mechanisms describing reactive flows (in combustion, atmospheric
science and elsewhere) involve large numbers of chemical species, large numbers of elemen-
tary reactions, and widely disparate time scales. For example, the detailed mechanism for the
primary reference fuel [1] contains more than 1000 species and more than 4000 elementary
reactions that proceed on time scales ranging from nanoseconds to minutes. Consequently,
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716 Z. Ren and S. B. Pope

the direct use of detailed chemical mechanisms in numerical calculations of reactive flows is
computationally expensive. Therefore there is a well-recognized need to develop methodolo-
gies that radically decrease the computational burden imposed by the direct use of detailed
mechanisms. Of the several different types of such methodologies, three approaches that are
currently particularly fruitful (and which can be used in combination) are: the development of
skeletal mechanisms from large detailed mechanisms by the elimination of inconsequential
species and reactions [2–4]; storage/retrieval methodologies [5, 6] such as in situ adaptive
tabulation ISAT [5]; and dimension-reduction techniques [7–49].

Dimension reduction, i.e. the reduced description of reactive flows, is achieved through
the use of slow manifolds. The reduced description of inhomogeneous flows is greatly com-
plicated by the transport processes present and the coupling between chemistry and these
transport processes. Substantial studies on how and when the transport processes can affect
the compositions and the reduced description of reactive flows have been performed in [16,
22, 23, 31–34, 36–49]. Currently, there are two distinct approaches to identifying slow mani-
folds and providing reduced descriptions. In the first approach, the slow manifold is identified
based on the governing PDEs which include convection, diffusion and reaction [38–48]. The
transport-chemistry coupling is incorporated in the construction of slow manifolds. For exam-
ple, in [41], the CSP global approach obtains slow manifolds for reaction–diffusion systems
with full account of the combined effects of transport processes and chemical reactions. This
is done through transforming the governing PDEs into a set of ODEs by performing finite
differencing of the diffusion term in the reaction–diffusion system on a computational grid. In
[38, 39], starting from the governing PDEs for inhomogeneous reactive flows, Davis obtains
low-dimensional manifolds in the infinite-dimensional function space. In the second approach,
the slow manifold is a low-dimensional attracting manifold in the finite-dimensional composi-
tion space and is identified solely based on chemical kinectics without accounting for transport
processes: we refer to such manifolds as ‘chemistry-based’. Chemistry-based manifolds are
identified based on homogeneous systems by different existing methods [7–21, 25–30, 33, 34],
such as intrinsic low-dimensional manifolds (ILDM) [21], the quasi-steady state assumption
(QSSA) [7–10], computational singular perturbation (CSP) [33–35], the method of invariant
manifolds [17–19], and the ICE-PIC method [30]. When applying the chemistry-based man-
ifolds for the reduced description of inhomogeneous flows, the transport-chemistry coupling
needs to be accounted for appropriately. Moreover the accuracy of this approach depends
on the dimensionality of the manifold being sufficiently high that the largest unrepresented
chemical timescale is less than transport time scales [32, 41].

In this paper, we focus on studying the use of chemistry-based manifolds, particularly the
widely used intrinsic low-dimensional manifold (ILDM) [21], to describe inhomogeneous re-
active flows. The ILDM is identified based on the analysis of the Jacobian matrix of chemical
reaction source term in a reactive flow. As shown in [16, 24, 28, 45] the ILDM is not strictly
invariant, but is so to a good approximation. By definition, a chemistry-based manifold is
invariant if the reaction trajectory from any point in the manifold remains in the manifold.
(Note that the definition of invariance used pertains to the homogenous system in which the
ILDM is identified.) Previous studies [21, 32] show that for typical combustion processes,
chemical kinetics have a much wider range of time scales than those of transport processes.
It is believed that due to the fast chemical time scales all the compositions in inhomogeneous
reactive flows (after an initial transient and far from the boundaries) still lie close to the ILDM
(with sufficiently high dimension). The transport processes such as molecular diffusion may
tend to draw the composition off the ILDM, whereas the fast chemical processes relax the
perturbations back towards the manifold. Hence as shown in [32], in the regime where the
fast chemical time scales are much smaller than the transport time scales, the ILDMs (iden-
tified based solely on chemical kinectics) can still be employed to describe inhomogeneous
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Transport-chemistry coupling in reactive flows 717

reactive flows, but it is essential to incorporate the transport-chemistry coupling in the reduced
description. Here, we investigate different approaches for ILDM to incorporate the transport-
chemistry coupling in the reduced description, namely, the Maas–Pope approach [22, 23], the
‘close-parallel’ approach [14, 31, 32], and the approximate slow invariant manifold (ASIM)
approach of Singh et al. [45].

In [22, 23], based on time scale arguments, the Maas–Pope approach is proposed for the
ILDM to incorporate the coupling in the regime where the fast chemical time scales are
much smaller than the transport time scales. The fundamental assumption employed in this
approach is that there is a balance between the transport processes and chemical reactions
in the fast subspace (identified based on the Jacobian matrix of the reaction source term).
The transport-chemistry coupling is incorporated in the reduced description by projecting
the transport processes onto the slow subspace. No attempts have been made in [22, 23] to
understand and quantify the relation between the departure of compositions from the ILDM
and the consequent transport-chemistry coupling. The validity of the approach is tested both
in a perfectly stirred flow reactor of CO/H2/air mixture and in premixed laminar hydrogen
and syngas flames. The results from the reduced description are compared with those of
the full description. In the present study, for a class of reaction–diffusion systems, we more
rigorously quantify the approach’s accuracy in the prediction for both the full composition
and the dynamics of the reduced composition.

Following the work of Tang and Pope [14], the ‘close-parallel’ assumption is proposed by
Ren et al. [31, 32] for general chemistry-based slow manifolds to incorporate the transport-
chemistry coupling in the reduced description. The assumption employed is that when the
fast chemical time scales are much smaller than the transport time scales, the compositions in
inhomogeneous flows lie on a manifold which is close to and parallel to the chemistry-based
manifold used in the reduced description. The validity of this assumption is studied in [32].
Previous works [31, 32] show that, with the use of the ‘close-parallel’ approach, the departure
of compositions from the chemistry-based manifold and the consequent transport-chemistry
coupling can be obtained and incorporated in the reduced description. In the present study,
we demonstrate the use of this assumption for the ILDM to incorporate transport-chemistry
coupling.

Following similar ideas to those in the Maas–Pope approach, the approximate slow invariant
manifold (ASIM) approach is proposed by Singh et al. [45] to provide a reduced description
of reactive flows. In the ASIM approach, the full governing equations are projected onto
the fast and slow subspaces. By equilibrating the fast dynamics, a set of elliptic PDEs are
obtained which describe the infinite-dimensional approximate slow invariant manifold (ASIM)
to which the reactive flow system relaxes before reaching steady state. In [45], Singh et al.
performed a comparison between the Mass–Pope approach and the ASIM approach. However
the comparison is focused on the prediction of the full composition instead of the more
important quantity: the dynamics of the reduced composition. In the present paper, for a
class of reaction–diffusion systems, we more rigorously compare these two approaches in
the prediction for both the full composition and the dynamics of the reduced composition.
Moreover, by studying reaction–diffusion systems, we also clarify the underlying assumptions
and applicability of the ASIM approach.

The contributions of the present paper are to clarify the underlying assumptions and to
validate the three different approaches to incorporate transport-chemistry coupling. Moreover,
a modified ASIM approach is proposed. For a class of reaction–diffusion model systems,
the accuracy of these approaches are quantified and compared. While we use the ILDM
in this study, most of the conclusions on coupling issues apply to other dimension reduction
approaches too. The outline of the remainder of the paper is as follows. In Section 2, we provide
a brief overview of the reduced description of reactive flows using ILDM. In Section 3, we
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718 Z. Ren and S. B. Pope

outline the Maas–Pope approach and validate it in the reaction–diffusion system. In Section 4,
we introduce the ‘close-parallel’ assumption for ILDM to incorporate the transport-chemistry
coupling. In Section 5, we briefly outline the ASIM approach: its underlying assumptions and
applicability are clarified. Section 6 provides a discussion and conclusions.

2. Reduced description of inhomogeneous reactive flows using ILDM

In this section, we provide a brief overview of the reduced description of reactive flows using
ILDM. Then we introduce the class of reaction–diffusion systems employed for this study.

2.1 General reactive flows

We consider an inhomogeneous reactive flow, where the pressure p and enthalpy h are taken
to be constant and uniform (although the extension to other circumstances is straightforward).
The system at time t is then fully described by the full composition z(x, t), which varies both
in space, x, and time, t . The full composition z can be taken to be the mass fractions of the
ns species or the specific species moles (mass fractions divided by the corresponding species
molecular weights). The system evolves according to the set of ns PDEs

∂

∂t
z(x, t) + C{z(x, t)} = D{z(x, t)} + S(z(x, t)), (1)

where S denotes the rate of change of the full composition (or net reaction rate) due to chemical
reactions. The spatial transport includes the convective contribution C (vi∂z/∂xi , where v(x, t)
is the velocity field) and the diffusive contribution D. In calculations of reactive flows, one
simplified model widely used for diffusion is

D{z} = 1

ρ
∇ · (ρΓ∇z), (2)

where ρ is the mixture density, and Γ is a diagonal matrix with the diagonal components
�1, �2, . . . , �ns being the mixture-averaged species diffusivities, which are usually functions
of z.

In the reduced description, when the ILDM method [21–23] is employed, the full com-
positions in the reactive flow are assumed to be on (or close to) an nr -dimensional intrinsic
low-dimensional manifold (where nr < ns is specified). The nr -dimensional ILDM is iden-
tified based on the analysis of the Jacobian of the reaction source term, i.e. identified solely
based on chemical kinetics without accounting for transport processes. (In other words, the
ILDM is identified based on a corresponding homogeneous system.) The Jacobian J is defined
as

Jij = ∂Si

∂z j
. (3)

We assume that the Jacobian can be diagonalized as

J = VΛṼ
T = [

Vs V f
] [

Λ1 0

0 Λ2

] [
Ṽs Ṽ f

]T
, (4)

where V is the ns × ns right eigenvector matrix and Ṽ
T = V−1 is the left eigenvector matrix.

The diagonal matrices Λ1 (nr ×nr ) and Λ2 (nu ×nu with nu ≡ ns −nr ), contain the eigenvalues
of J (λi , i = 1, 2, . . . , ns), ordered in decreasing value of their real parts. The chemical time
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ILDM

ILDM
V f

r

~V s

V s

zIL DM (r )

U

N (r )
δz T (r )
z

B

u

u

~
V f

r

Figure 1. A sketch in the composition space showing the ILDM and the different subspaces spanned by Vs , V f ,
Ṽs and Ṽ f . Also shown are the tangent subspace span(T(r)) and the normal subspace span(N(r)) of the ILDM.
The composition in reactive flows is expressed as z = zILDM + δz with δz being in the unrepresented subspace. The
axes denote the reduced composition r (in the subspace span(B)) and the unrepresented variables u (in the subspace
span(U) = span(B)⊥).

scales are related to the eigenvalues by τi ≡ 1/|Re(λi )|. (Hence the knowledge of the nu

fast chemical time scales is contained in Λ2.) The columns of Vs (ns × nr ) span the slow
subspace; and the columns of V f (ns × nu) span the fast subspace. The matrices Ṽs and Ṽ f

are of dimension ns × nr and ns × nu , respectively. A geometric interpretation of the different
subspaces is shown in figure 1. The nr -dimensional ILDM is defined as the union of all the
compositions which satisfy the set of nu algebraic equations Ṽ

T
f (z)S(z) = 0, i.e. the manifold

is

MILDM ≡ {z | Ṽ
T
f (z)S(z) = 0}. (5)

(We do not address the difficulty that arises when the eigenvalues λnr and λnr +1 form a
complex conjugate pair.) The ILDM can be parameterized by a smaller number nr of reduced
composition variables r(x, t) = {r1, r2, . . . , rnr }, which can be taken to be the mass fractions
(or the specific moles) of some species and linear combinations of the species. One important
aspect, not discussed in the paper, is the choice of the parametrization of the ILDM, i.e. the
specification of nr and r. For the purpose of this study, both nr and r are user-specified. Some
studies on this topic can be found in [21–23, 28].

In general, the reduced composition r can be expressed as

r = BT z, (6)

where B is an ns × nr constant matrix. For example, if r consists of specified ‘major’ species,
then each column of B is a unit vector consisting of a single entry (unity) in the row corre-
sponding to a major species. But more generally, equation (6) allows for linear combinations
of species. (In practice, the choice of a constant fixed reduced representation, i.e. constant
B is important for the application of dimension reduction to reactive flows.) Thus the full
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720 Z. Ren and S. B. Pope

ns-dimensional composition space can be decomposed into an nr -dimensional represented
subspace (spanned by the columns of B) and an nu-dimensional unrepresented subspace
(spanned by columns of U, with U being a constant ns × nu orthogonal matrix spanning
span(B)⊥). We define the unrepresented variables to be

u(x, t) = UT z(x, t). (7)

In the inhomogeneous reactive system, the full compositions can be generally expressed as

z(x, t) = zILDM(r(x, t)) + δz(x, t), (8)

where zILDM(r(x, t)) is the full composition on the ILDM, and δz(x, t) is the departure from
the ILDM. The departure δz(x, t) is small if the dimensionality of the ILDM is sufficiently
high. As shown in [16, 22, 23, 37, 41, 44, 49], departures from the ILDM may be introduced
by initial and boundary conditions, transport processes, and the non-invariance of the ILDM.
With this representation, the departure is defined to be in the unrepresented subspace, i.e.

δz = Uδu, (9)

where δu = UT [z(x, t) − zILDM(r(x, t))].
In the reduced description, the reactive system is described in terms of of the reduced

composition r. The essential task of the reduced description is to derive the evolution equations
for the reduced composition variables, which accurately represent the dynamics of the full
system. Note that the exact evolution equation for the reduced composition can be obtained
by pre-multiplying equation (1) with BT , i.e.

∂r
∂t

+ vi
∂r
∂xi

= BT D{z} + BT S(z). (10)

In the reduced description, the task is to express the right-hand side of equation (10) (BT D{z}+
BT S(z)) as a function of r. It is known [22, 23, 31–33, 36, 41] that a common practice referred
to as the ‘first approximation’ is in general not valid to derive the evolution equation for r.
The ‘first approximation’ assumes that the compositions in a reactive flow lie exactly on the
ILDM, i.e.

z(x, t) = zILDM(r(x, t)). (11)

Hence the evolution equation for the reduced composition variables according to the ‘first
approximation’ is

∂r
∂t

+ vi
∂r
∂xi

= BT D{zILDM(r)} + BTS(zILDM(r)). (12)

By completely neglecting the departures from the ILDM, the ‘first approximation’ completely
neglects the transport-chemistry coupling in the reduced description, which is in general not
valid.

Hence, when employing ILDM for the reduced description of inhomogeneous reactive
flows, it is important to adequately incorporate the transport-chemistry coupling. In the fol-
lowing, by using a class of reaction–diffusion systems, we investigate and compare the Maas–
Pope approach, the ‘close-parallel’ approach, and the ASIM approach to incorporate the
transport-chemistry coupling in the reduced description.

2.2 Reaction–diffusion model system

In order to investigate and quantify the performance of different approaches, we consider the
following class of non-dimensional reaction–diffusion systems (which have been thoroughly



D
ow

nl
oa

de
d 

B
y:

 [C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
] A

t: 
15

:0
8 

8 
O

ct
ob

er
 2

00
7 

Transport-chemistry coupling in reactive flows 721

studied in [32]),

∂z1

∂t
= c

z2 − f (z1)

ε
+ g1(z1, z2) + ∇ · (D1∇z1)

∂z2

∂t
= − z2 − f (z1)

ε
+ g2(z1, z2) + ∇ · (D2∇z2), (13)

where z = [z1 z2]T is the full composition, t is a normalized (i.e. non-dimensional) time,
ε � 1 is a small parameter, c is a non-negative constant (which may be 0, O(ε) or O(1))
which describes the coupling between z1 and the fast chemistry, and D1 and D2 (in general
dependent on z) are the non-dimensional diffusivities of z1 and z2 respectively. In equation (13),
f (z1), g1(z1, z2) and g2(z1, z2) are assumed to be of order one. The chemical reactions have
a large linear contribution from the fast chemistry (represented by the terms c [z2 − f (z1)] /ε

and − [z2 − f (z1)] /ε) and another generally nonlinear contribution from the slow chemistry
(represented by g1(z1, z2) and g2(z1, z2)). As shown below, for the systems considered, the
fast chemical time scale is O(ε). Let L1 and L2 be the characteristic diffusion length scales
of z1 and z2, respectively. We assume that the fast chemical time scale is much smaller than
the diffusion times scales, i.e. L2

1/D1ε � 1 and L2
2/D2ε � 1. In this study, the characteristic

diffusion length scales are estimated based on the given composition distribution. A more
rigorous study on the diffusion time scales is given in [41]. The unsteady reaction–diffusion
system (equation 13) is well posed given appropriate boundary and initial conditions. In this
study, both the initial and boundary compositions for the governing PDEs are taken to be
exactly on the ILDM. As discussed in Section 2.2.2, this simplification allows the boundary
and initial conditions for the reduced composition variable in the reduced description to be
taken directly from those corresponding conditions in the full description. Hence we can focus
on comparing the accuracy of the reduced description by different approaches without the need
to consider the difficulties relates to the boundary and initial conditions.

2.2.1 ILDM for the reaction–diffusion system. For the reaction–diffusion system con-
sidered, the Jacobian matrix of the reaction source term is

J = 1

ε

[
−c f ′ c

f ′ −1

]
+ O(1), (14)

where f ′(z1) ≡ d f (z1)/dz1. The eigenvalue associate with the fast chemical time scale is
−(1+c f ′)/ε+O(1). (The function f (z1) is specified such that (1+c f ′) is positive and hence
there are slow attracting manifolds in the system.) Hence the fast chemical time scale is O(ε).
Based on the Jacobian matrix, the slow and fast invariant subspaces are

[
Vs V f

] =
[

1 −c

f ′ 1

]
+ O(ε), (15)

and

[
Ṽs Ṽ f

] = 1

1 + c f ′

[
1 − f ′

c 1

]
+ O(ε). (16)

When applying the ILDM method to the reaction–diffusion system, z1 is chosen as the
reduced composition variable and used to parameterize the ILDM. We assume the composition
on the ILDM to have the following perturbation series expression

zILDM
2 = f (z1) + ε f1(z1) + o(ε), (17)
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722 Z. Ren and S. B. Pope

with lim
ε→0

o(ε)/ε = 0. Substituting the expression for S and equations (16) and (17) into equation

(5), we obtain [
− f ′

1

]T [
c f1 + g1(z1, f (z1))

− f1 + g2(z1, f (z1))

]
+ o(ε)/ε = 0, (18)

and hence

f1 = g2(z1, f (z1)) − f ′g1(z1, f (z1))

1 + c f ′ . (19)

Thus the ILDM is given by

zILDM
2 = f (z1) + ε

g2(z1, f (z1)) − f ′g1(z1, f (z1))

1 + c f ′ + o(ε). (20)

From equation (20), it is easy to verify that, to o(ε), the ILDM is invariant for the corresponding
homogeneous system, i.e. for z2 = zILDM

2 (z1)

dz2

dt
=

(
dzILDM

2

dz1

)
dz1

dt
+ o(ε)/ε. (21)

2.2.2 Reduced description of the reaction–diffusion system. The class of reaction–
diffusion systems (equation (13)) is thoroughly studied in [32]. In the reduced description, if
z1 is chosen as the reduced composition variable, then by perturbation analysis, it is shown
that (after the initial transient and far away from the boundaries) the composition is given by

z2 = f (z1) + ε
g2(z1, f (z1)) − f ′g1(z1, f (z1))

1 + c f ′

+ ε
f ′′ D1∇z1 · ∇z1

1 + c f ′ + ε
∇ · ( f ′[D2 − D1]∇z1)

1 + c f ′ + o(ε), (22)

and the evolution equation for z1 is given by

∂z1

∂t
= g1(z1, f (z1)) + ∇ · (D1∇z1) + c

g2(z1, f (z1)) − f ′g1(z1, f (z1))

1 + c f ′

+ c
f ′′ D1∇z1 · ∇z1

1 + c f ′ + c
∇ · ( f ′[D2 − D1]∇z1)

1 + c f ′ + o(ε)/ε, (23)

where f ′(z1) ≡ d f (z1)/dz1 and f ′′ ≡ d2 f/dz2
1. (Note that f ′′/(1 + f ′2)

1
2 is the curvature of

the ILDM to a good approximation, see equation (20).) The last two terms in equations (22)
and (23) are in general nontrivial and arise when transport processes are present. Therefore
they represent the chemistry-transport coupling. More specifically as identified in [32], they
represent the effects of the ‘dissipation-curvature’ and ‘differential diffusion’ on the compo-
sition and evolution of the reduced composition variable. These two terms arise, respectively:
if the manifold is curved and there is non-zero molecular diffusion; and if the diffusivities
of the species differ. The difference between equation (20) and equation (22) reveals that the
compositions in the reaction–diffusion system are perturbed from the ILDM by O(ε) due to
molecular diffusion.

The reduced description of the unsteady reaction–diffusion system (e.g. equation (23)) is
well posed given the appropriate boundary and initial conditions on z1. In this study, the bound-
ary and initial conditions for the reduced composition variable in the reduced description are
taken directly from those corresponding conditions in the full description. This simplification
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Transport-chemistry coupling in reactive flows 723

follows from the fact that, in this study, both the initial and boundary compositions are taken
to be exactly on the ILDM. When the boundary and initial compositions are not exactly on
the ILDM, thin boundary layers of compositions form close to the boundaries [37, 41]. Inside
these boundary layers, the compositions are not within O(ε) of the ILDM; whereas far away
from the boundaries, after the initial transient, the compositions are close to the manifold. The
evolution equation equation (23) for the reduced composition variable is accurate to describe
the long-term composition dynamics away from the boundaries. However, the boundary and
initial conditions for the reduced description require a more thorough study, which is not
undertaken in this paper. A rigorous derivation of the reduced description of reactive flows
within the boundary layers has recently been given by Lam [37].

In the following, we validate the Maas–Pope approach, the ‘close-parallel’ assumption
and the ASIM approach by comparing their predictions with the reduced description (equa-
tions (22) and (23)).

3. The Maas–Pope approach

In the Maas–Pope approach [22, 23], the transport processes such as convection and molecular
diffusion are viewed as small disturbances to the chemical reaction system. This is valid only
when the fast chemical time scales are much smaller than the transport time scales. These
perturbations are decomposed in the local eigenvector basis, i.e. in two part, one describing
the rate of change in the slow subspace, and the other describing the rate of change in the fast
subspace. Hence equation (1) is decomposed as

∂

∂t
z(x, t) = (

VsṼ
T
s + V f Ṽ

T
f

)
(−C{z} + D{z} + S(z)). (24)

In the regime where the fast chemical time scales are much smaller than the transport times
scales, Maas and Pope assume that the components of the reaction and transport processes in
the fast subspace have a minor effect on the reactive system, i.e.

V f Ṽ
T
f (−C{z} + D{z} + S(z)) = 0, (25)

whereas the components in the slow subspace instead directly affect the movement, i.e.

∂

∂t
z(x, t) = VsṼ

T
s (−C{z} + D{z} + S(z)). (26)

In other words, after the initial transient, in the fast subspace the transport processes balance
the net reaction rate. By pre-multiplying equation (26) with BT , the evolution equation for the
reduced composition is obtained as

∂r
∂t

= BT VsṼ
T
s (−C{z} + D{z} + S(z)). (27)

Hence in the reduced description, the transport-chemistry coupling is accounted for by pro-
jecting the transport processes locally onto the slow subspace. Maas and Pope argue that
the right-hand side of equation (27) can be well approximated based on the ILDM and the
evolution equation for the reduced composition is (with VsṼ

T
s S(zILDM) = S(zILDM))

∂r
∂t

+ BT VsṼ
T
s vi

∂zILDM

∂xi
= BT S(zILDM(r)) + BT VsṼ

T
s D{zILDM(r)}. (28)

As far as the full composition is concerned, without attempting to represent the composi-
tion departure from the ILDM due to molecular diffusion, Maas and Pope argue that the
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compositions in the reactive flow is well approximated by

z(x, t) ≈ zILDM(r(x, t)). (29)

In short, following the assumption (equation (25)) that there exists a balance between the
transport processes and chemical reaction in the fast subspace, the Maas–Pope approach pre-
dicts that the dynamics of the reduced composition are given by equation (28). Given the
reduced composition, it also predicts that the full composition (or the unrepresented composi-
tion) in the reactive flow could be well approximated by equation (29), i.e. by the composition
on the ILDM.

3.1 Validation of the Maas–Pope approach in reaction–diffusion system

When applying the ILDM to the reaction–diffusion systems considered (equation (13)), given
the reduced composition, the Maas–Pope approach predicts the unrepresented composition by
equation (20). Hence there is an error (of order O(ε)) in the prediction (see equations (20) and
(22)) because the Maas–Pope approach does not attempt to account for the small departure of
composition from the ILDM caused by molecular diffusion. However as far as the dynamics of
the reduced composition is concerned, it is easy to verify (by substituting equations (15), (16)
and (20) into equation (28)) that the approach gives the same evolution equation (to leading
order) for the reduced composition as the perturbation analysis (equation (23)).

For demonstration, we consider one particular case in the class of models. In this case
f (z1) = z1/(1+ z1), g1(z1, z2) = −z1, g2(z1, z2) = −z1/(1+ z1)2 and c = 1. Similar models
have been investigated in [26, 41, 45]. The length of the physical domain is set to be L= 1 over
0 ≤ x ≤ 1. The boundary conditions are on the ILDM with z1(t, x = 0) = 0 and z1(t, x =
1) = 1. Initially, z1(t = 0, x) is linear in x . The corresponding boundary and initial conditions
for z2 are determined from equation (5) so that the full compositions are on the ILDM. The
governing PDEs such as equation (13) are discretized in space with central finite differences
over a mesh consisting of 201 equally spaced nodes, and integrated in time using a stiff ODE
integrator. Substantial efforts were made to ensure that the results are numerically accurate.

Figure 2 validates the fundamental assumption in the Maas–Pope approach: that there is
a balance between the transport processes and chemical reactions in the fast subspace (see

0

2

t=0

2

0

2 t=0.001

0 0.5 1
2

0

2

x

t=0.01

0 0.5 1
1

0

1

x

t=1

Figure 2. The balance at different times of rate of change (dash-dotted line), molecular diffusion (solid line) and
reaction (dashed line) in the fast subspace from the full model (13) with ε = 0.001, D1 = 1 and D2 = 2.
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Maas Pope

Close parallel

Figure 3. Distribution of z1 (unnormalized and normalized) from the full model, reduced description by the Maas–
Pope approach, and reduced description by the ‘close-parallel’ assumption at t = 1 with ε = 0.001, D1 = 1 and
D2 = 2. In the upper figure, the three lines are indistinguishable. In the lower figure, zFull

1 denotes the results from
the full model and z∗

1 denotes the results using the Maas–Pope (dashed line) and the ‘close-parallel’ assumption
(dot-dashed line).

equation (25)). The figure shows the components of the rate of change, molecular diffusion
and reaction in the fast subspace for the reaction–diffusion system. As may be seen, after the
initial transient (t ≈ 0.001), over the whole physical domain molecular diffusion balances the
net reaction rate.

Figure 3 shows the steady-state distribution of the reduced composition z1 from both the full
description and reduced descriptions. In figure 4, the dynamics of the reduced composition are
studied by comparing the evolution of z1 at the center location (x = 1/2). As may be seen, as
far as the reduced composition is concerned, the reduced description given by the Maas–Pope

0.4

0.45

0.5

z 1

 

 

=0.01Full PDE

10
4

10
3

10
2

10
1

10
0

0.4

0.45

0.5

t

z 1

=0.001

Figure 4. Evolution of z1 at x = 1
2 from the full model, reduced description by the Maas–Pope approach, and the

reduced description by the ‘close-parallel’ assumption with D1 = 1 and D2 = 2. In the upper figure, the results
from the Maas–Pope and ‘close-parallel’ assumption are indistinguishable. In the lower figure, the three lines are
indistinguishable.
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Figure 5. The steady state distribution of z2 (unnormalized and normalized) against z1 from the full model, the
reduced description by the Maas–Pope approach, and the reduced description by the ‘close-parallel’ assumption with
ε = 0.001, D1 = 1 and D2 = 2. In the figure, zFull

1 denotes the results from the full model and z∗
1 denotes the results

using the Maas–Pope (dashed line) and the ‘close-parallel’ assumption (dot-dashed line).

approach agrees well with the full description. The error in the reduced composition is of order
ε. As shown in figure 4, the accuracy of the Maas–Pope approach dramatically increases with
the decease of ε.

As mentioned, the Maas–Pope approach does not account for the transport effect on the
compositions. As a consequence, in the composition space, given the reduced composition,
the Maas–Pope approach’s prediction for unrepresented compositions has an error of order ε

as shown in figure 5.

3.2 Comments on convection

As shown, the exact evolution equation for the reduced composition, equation (10), is obtained
by pre-multiplying equation (1) with BT . This equation follows from equation (1) without any
assumption or approximation. By comparing equation (28) with equation (10), we see that
any accurate reduced description should not project the convection process onto the slow
subspace (even though the projection of convection most likely incurs a negligible error as
can be shown for simple systems). Hence when applying ILDM to inhomogeneous reactive
flows, the Maas–Pope approach for the evolution of the reduced composition can be improved
as

∂r
∂t

+ vi
∂r
∂xi

= BT S(zILDM(r)) + BT VsṼ
T
s D{zILDM(r)}, (30)

i.e. only the molecular diffusion process is projected onto the slow subspace.
It is worth mentioning briefly the effect and role of convection in the reduced description. As

previously observed [23, 32, 49], convection alone does not pull compositions off the ILDM
and in fact it does not even change the composition of a fluid particle. Hence convection does
not have a direct effect on the composition; nor, as may be seen from equation (30), does it
have a direct effect on the evolution of the reduced composition. However, convection can have
significant indirect effects both on the composition and the reduced description. Convection
manifests its effect through the diffusion process by changing the gradients of composition
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Transport-chemistry coupling in reactive flows 727

field. In a reactive flow, the enhanced diffusion caused by convection may further pull the
compositions off the ILDM and therefore enhance the transport-chemistry coupling.

4. ‘Close-parallel’ assumption for the ILDM method

The ‘close-parallel’ assumption was first employed by Tang and Pope [14] to provide a more
accurate projection for homogeneous systems in the rate-controlled constrained equilibrium
method [11, 12]. In [31, 32], the ‘close-parallel’ assumption is extended to incorporate the
transport-chemistry coupling when chemistry-based slow manifolds are used to provide re-
duced descriptions of inhomogeneous reactive flows. Here, we demonstrate the use of the
‘close-parallel’ assumption for the ILDM to incorporate the transport-chemistry coupling.
In the assumption, compositions in an inhomogeneous reactive flow are assumed to be on
a low-dimensional manifold which is close to and parallel to the ILDM. This assumption
is valid only when the fast chemical time scales are much smaller than the transport time
scales. The departure δz (= Uδu) from the ILDM can be obtained by considering the bal-
ance equation in the normal subspace of the ILDM. For given r, we denote by T(r) an
ns × nr orthogonal matrix spanning the tangent subspace of the ILDM at zILDM(r), and simi-
larly N(r) is an ns × nu orthogonal matrix spanning the normal subspace. Hence, NT T = 0,
NT N = Inu×nu , TT T = Inr ×nr , and NNT + TTT = Ins×ns . As sketched in figure 1, in general,
the subspace span(T) does not coincide with the subspace span(Vs) due to the non-invariance
of the ILDM. However, when the ILDM is highly attractive, the angle between span(T) and
span(Vs) is likely to be small. For the model system (13), as shown in Section 4.1, the tan-
gent and normal subspaces are readily known. Moreover, to a good approximation, T and Vs

span the same direction (see equations (46) and (15)), so do N and Ṽ f (see equations (47)
and (16)).

Considering the balance of the governing PDEs (equation (1)) in the normal subspace, with
z = zILDM + δz, we have

NT (r)
∂(zILDM + δz)

∂t
+ NT (r)vi

∂(zILDM + δz)

∂xi

= NT (r)D{zILDM + δz} + NT (r)S(zILDM + δz). (31)

Following the close-parallel assumption, we have the following approximations

NT (r)
∂δz
∂t

≈ 0, (32)

and

NT (r)vi
∂δz
∂xi

≈ 0. (33)

(Note that NT ∂zILDM/∂t and NT vi∂zILDM/∂xi are exactly zero.) Hence equation (31) can be
simplified to

0 ≈ NT (r)D{zILDM + δz} + NT (r)S(zILDM + δz). (34)

Note that the terms on the right-hand side of equation (34) are the components of molec-
ular diffusion and chemical reactions in the normal subspace, respectively. Hence equation
(34) implies a balance between the molecular diffusion and chemical reaction in the normal
subspace of the ILDM.

In equation (34), since D depends on derivatives of z, and since by assumption z is close
to and parallel to zILDM, the diffusion process is not sensitive to the perturbations and the
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indicated approximation is

D{zILDM + δz} ≈ D{zILDM}. (35)

For chemical reaction, however, small perturbations off the ILDM may result in significant
changes in the reaction rate due to fast processes in the chemical kinetics. The assumption
that z is close to zILDM implies that δz is small, and hence the last term on the right-hand side
of equation (34) can be well approximated by

S(zILDM + δz) ≈ S(zILDM) + Jδz, (36)

where Ji j ≡ ∂Si/∂z j |z=zILDM is the Jacobian matrix. Hence, with the ‘close-parallel’ assump-
tion, equation (34) can be simplified as

0 ≈ NT D{zILDM} + NT S(zILDM) + NT J(zILDM)δz. (37)

The term NT S(zILDM) is generally nonzero due to the fact that the ILDM is not exactly
invariant. (But it may be negligible compared with other terms in equation 37 as shown in the
reaction–diffusion systems.) With δz = Uδu (see equation 9), from equation (37) we obtain

δu = −(NT J(zILDM)U)−1
[
NT D{zILDM} + NT S(zILDM)

]
. (38)

As may be seen from equation (38), based on the ‘close-parallel’ assumption, the compositions
in the inhomogeneous reactive flows are pulled off the ILDM due to the molecular diffusion
and the non-invariance of the ILDM. And the compositions are given by

z = zILDM(r) − U(NT J(zILDM)U)−1
[
NT D{zILDM} + NT S(zILDM)

]
. (39)

With equations (38) and (39), the evolution equations for the reduced composition variables
can be obtained as following. Recall that the exact evolution equation (10) for the reduced
composition can be obtained by pre-multiplying equation (1) with BT . With z = zILDM +δz =
zILDM + Uδu, equation (10) can be written as

∂r
∂t

+ vi
∂r
∂xi

= BT D{zILDM(r) + Uδu} + BT S(zILDM(r) + Uδu). (40)

With the ‘close-parallel’ assumption, equation (40) can be simplified as

∂r
∂t

+ vi
∂r
∂xi

= BT D{zILDM(r)} + BT S(zILDM(r)) + BT JUδu. (41)

With the perturbation given by equation (38), the evolution equations for the reduced compo-
sition r are

∂r
∂t

+ vi
∂r
∂xi

= BT D{zILDM(r)} + BT S(zILDM(r)) + HT D{zILDM} + HT S(zILDM) (42)

where HT ≡ −BT JU(NT JU)−1NT is an nr × ns matrix. Equation (42) differs from equation
(12) by the last two additional terms, which represent the transport-chemistry coupling and
non-invariance effect. Hence as shown in equation (39) and (42), the compositions in general
inhomogeneous reactive flows are pulled off the ILDM by molecular diffusion and the non-
invariance of the ILDM, and correspondingly, these perturbations introduce coupling terms in
the evolution equation of the reduced composition. (As shown in [32], the molecular diffusion
affects the composition and reduced description through ‘dissipation curvature’ and ‘differ-
ential diffusion’ effects.) For the reaction–diffusion model system, as is shown in Section 4.1,
the non-invariance effect is negligible since the ILDM is invariant to o(ε).

It is worth exploring more about the transport-chemistry coupling terms which arise. Assume
that the Jacobian can be decomposed as in equation (4). When the ILDM is highly attractive,



D
ow

nl
oa

de
d 

B
y:

 [C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
] A

t: 
15

:0
8 

8 
O

ct
ob

er
 2

00
7 

Transport-chemistry coupling in reactive flows 729

to a good approximation, N and Ṽ f span the same subspace. (Compare N given by equation
47 and Ṽ f given by equation (16) in the model system (13).) Hence, the coupling terms can
be approximated by

HT (D{zILDM} + S(zILDM)) ≈ −BT V f
(
Ṽ

T
f V f

)−1
NT (D{zILDM} + S(zILDM))

−BT VsΛ1Ṽ
T
s U

(
Ṽ

T
f U

)−1Λ−1
2

(
Ṽ

T
f V f

)−1
NT (D{zILDM} + S(zILDM))

≈ −BT V f
(
Ṽ

T
f V f

)−1
NT (D{zILDM} + S(zILDM)), (43)

where the second step follows from the observation that the second term on the right-hand side
involves the ratio of eigenvalues which is small. According to equation (43), the transport-
chemistry coupling is in general not negligible. One exception is when the represented subspace
(spanned by B) is chosen to be perpendicular to the fast directions spanned by V f . Since the
fast directions V f vary with position in composition space, for a fixed reduced representation
with constant B, the best that can practically be achieved is a choice of B which minimizes
the principal angles between span(B) and span(V f ) for compositions in the region of the slow
manifold where the transport-chemistry coupling is significant. In practice, without a prior
knowledge of V f , the pragmatical choice of constant B in general introduces non-negligible
transport-chemistry coupling in the reduced description. Moreover, the matrix NT JU in the
definition of the matrix H is invertible as long as the represented subspace is not aligned
with the subspace spanned by Ṽ f (i.e. U is not perpendicular to Ṽ f ), which is the case for a
reasonable parametrization of the ILDM.

We also note that equation (42) can be rewritten as

∂r
∂t

+ vi
∂r
∂xi

= BT P(S(zILDM(r)) + D{zILDM(r)}), (44)

where the ns × ns matrix P

P ≡ TTT + (N − JU[NT JU]−1)NT , (45)

represents a particular projection onto the tangent subspace of the ILDM (since NT P = 0,
PT = T). The matrix P serves the similar functionality asVsṼ

T
s in the Maas–Pope approach

(see equation (28)). Hence, as far as the dynamics of the reduced composition are concerned,
by following the close-parallel assumption, a particular projection can be identified to ob-
tain the accurate reduced description when a constant reduced representation (constant B) is
employed to describe a reactive flow. The projection matrix P involves only the information
about the manifold and the reduced representation (requiring no transport information). As
shown in [32], the ‘close-parallel’ approximation can be applied to both homogeneous and
inhomogeneous reactive flows to obtain an accurate reduced description.

4.1 Validation of the ‘close-parallel’ approximation in reaction–diffusion systems

For the reaction–diffusion systems considered, the unit tangent vector of the ILDM (derived
based on equation (20)) is

T = 1√
1 + f ′2

[
1 + O(ε)

f ′(z1) + O(ε)

]
, (46)
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and the normal unit vector is

N = 1√
1 + f ′2

[
− f ′(z1) + O(ε)

1 + O(ε)

]
. (47)

Recall that B = [1 0]T , U = [0 1]T , the Jacobian is given by equation (14), and the compo-
sition on the ILDM is given by equation (20). Substituting the above expressions into equation
(38), we obtain

δz2 = ε
f ′′ D1∇z1 · ∇z1

1 + c f ′ + ε
∇ · ( f ′[D2 − D1]∇z1)

1 + c f ′ + o(ε). (48)

Note that the non-invariance of the ILDM NT S(zILDM) only pulls the compositions off the
ILDM by of order o(ε), and hence the non-invariance effect is negligible compared with the
molecular diffusion effect on the composition. This is consistent with the findings in [16],
in which by asymptotic expansion, it is shown that the ILDM manifold agrees with the slow
invariant manifold up to and including terms of O(ε) as is evident from equation (20). For
general reactive systems, it is not clear whether the non-invariance effect is negligible or not
compared with the diffusion effect. Nevertheless, both the non-invariance effect and diffusion
effects have been included in the ‘close-parallel’ assumption (see equations (39) and (42)).

Hence for the reaction–diffusion systems, the ‘close-parallel’ approximation predicts the
compositions by equation (48) which is the same as the perturbation analysis result to leading
order (see equation (22)). By substituting equation (48) into equation (13), it is easy to verify
that the evolution equation for z1 given by the ‘close-parallel’ approximation is the same as
the perturbation analysis results and the Maas–Pope prediction (equation (23)) (to leading
order in ε).

As mentioned above, the ‘close-parallel’ assumption implies a balance between molecular
diffusion and chemical reaction in the normal subspace of ILDM (see equation (34)). For
the reaction–diffusion system, this balance is easy to demonstrate. (For the model system, the
angle between the fast subspace and normal space isO(ε). Therefore, the balance in the normal
subspace is similar to the balance in the fast subspace, see figure 2.) As may be seen from
figures 3 and 4, as far as the reduced composition is concerned, the ‘close-parallel’ assumption
achieves the same accuracy as the Maas–Pope approach. However, in the composition space,
as shown in figure 5, given the reduced composition, the ‘close-parallel’ assumption gives
a more accurate prediction for the unrepresented composition because it incorporates the
transport effect on the composition. (The deterioration close to the boundaries is due to the
effect of boundary conditions.)

4.2 Discussion

The Maas–Pope approach and the ‘close-parallel’ assumption for the ILDM to incorporate
the transport-chemistry coupling are similar in several aspects. The Maas–Pope approach
assumes a balance between the transport processes and chemical reaction in the fast sub-
space (equation (25)). In contrast, the ‘close-parallel’ assumption implies a balance between
the transport processes and chemical reaction in the normal subspace of the ILDM. For the
reaction–diffusion systems considered, the angle between the fast subspace and normal sub-
space is small (O(ε)). Moreover, the formulations of the reduced description from the two
approaches are similar. The reduced description is given by a set of PDEs for the reduced
composition variables, in which the terms arising can be evaluated on the ILDM. On the
boundaries, only the reduced composition needs to be provided.
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Figure 6. (a) Steady state distribution of compositions in the composition space from the full model with ε = 0.01,
D1 = 10 and D2 = 20. Also shown is the calculated ILDM. (b) Evolution of z1 at x = 1

2 from the full model, the
reduced description by the Maas–Pope approach, and the reduced description by the ‘close-parallel’ assumption with
ε = 0.01, D1 = 10 and D2 = 20.

Even though the Maas–Pope approach makes no attempt to represent the departure of com-
position from the ILDM (by neglecting the molecular diffusion effect on the compositions),
it does incorporate the transport-chemistry coupling in the dynamics of the reduced system.
For the reaction–diffusion systems, as shown, the reduced description given by Maas–Pope
approach accurately represents the full system even though the prediction for composition
has an error of O(ε). In contrast, the ‘close-parallel’ assumption accurately incorporates the
effects of molecular diffusion both on the composition and on the dynamics of the reduced
composition.

Both approaches are supposed to be valid only when the fast chemical time scales are much
smaller than the transport time scales. When the transport time scales are comparable to the
fast chemical time scales, the accuracy of both these approaches decreases. As shown in figure
6, when we increase the diffusivities of the compositions, in the composition space, the full
compositions are far away from the ILDM. The reduced description results obtained from
both approaches are significantly different from the full PDE solution. (For the case shown,
L2/(D1ε) = 10 and L2/(D2ε) = 5.)

5. Infinite-dimensional approximate slow invariant manifold (ASIM)

In [45], Singh et al. proposed the ASIM approach, an extension of the ILDM method, for the
reduced description of reactive flows with transport processes. The reduced model equations
are obtained by equilibrating the fast dynamics of a system and resolving only the slow
dynamics of the same system in order to reduce computational costs. In the following, after
briefly outlining this approach, we clarify its underlying assumption. We also show that in
the regime where fast chemical time scales are much smaller than the transport time scales,
the ASIM approach gives the same accurate description of the reduced compositions as the
Maas–Pope approach and the close-parallel assumption.
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In the ASIM approach, the full model equations (1) are projected onto the slow and fast
invariant subspaces based on the reaction source terms, i.e.

Ṽ
T
s

∂z
∂t

+ Ṽ
T
s C{z} = Ṽ

T
s D{z} + Ṽ

T
s S(z), (49)

and

Ṽ
T
f

∂z
∂t

+ Ṽ
T
f C{z} = Ṽ

T
f D{z} + Ṽ

T
f S(z). (50)

In the regime where transport processes occur on time scales which are slower than reaction
time scales of order 1/|Re(λnr +1)|, i.e. all the fast chemical time scales, Singh et al. assume
that in the fast subspace the components of the transient and transport processes are negligible,
i.e.

0 = Ṽ
T
f S(z). (51)

(Note that λnr +1 is the (nr +1)-th eigenvalue of the Jacobian J and the eigenvalues are ordered
in decreasing value of their real parts.) Hence, the slow dynamics of the system (1) can be
approximated by equation (49) and equation (51). On the other hand, in the regime where the
transport time scales overlap with fast chemical time scales, i.e. the convection and diffusion
processes occur on time scales of order 1/|Re(λp)| for nr < p < ns and slower, Singh et al.
assume the following balance

0 = Ṽ f sS(z) + Ṽ f s(−C{z} + D{z})
0 = Ṽ f f S(z), (52)

where Ṽ f s (ns × (p − nr )) and Ṽ f f (ns × (ns − p)) are components of the matrix Ṽ f , i.e.

Ṽ f = [
Ṽ f s Ṽ f f

]
. (53)

Hence the slow dynamics for equation (1) is approximated by equation (49) and equation (52).
The authors also argue that in general reactive flows, the transport time scales are not known
a priori and so, for convenience, equation (49) and equation (52) can be used to represent the
dynamics of the full system (equation 1) in both regimes.

Equation (52) represents the infinite-dimensional approximate slow invariant manifold
(ASIM) on which the slow dynamics occur once all fast time scale processes have equi-
librated. Equations (49) and (52) correspond to a system of differential algebraic equa-
tions which have to be solved in physical space together with the prescribed boundary
conditions.

As may be seen, the formulation of the reduced description by the ASIM approach is dif-
ferent from those by the Maas–Pope and ‘close-parallel’ approaches. In the ASIM approach,
the reduced description is given by the set of PDEs (49) supplemented by the differential
algebraic equations (52). The ASIM approach makes no clear distinction between the reduced
compositions and unrepresented compositions. On the boundaries, the full composition is pro-
vided, and therefore the boundary conditions are satisfied even for arbitrary full composition
at the boundaries. During the calculation, all the equations have to be solved together and it
is in general computationally expensive. In contrast, in the Maas–Pope and ‘close-parallel’
approaches, the reduced description is given by a set of PDEs for the reduced composition
variables (see equations (28) and (44)), in which the terms arising are evaluated on the ILDM.
On the boundaries, only the reduced composition needs to be provided. When the full compo-
sition on the boundaries is on the low-dimensional manifold, the boundary conditions for the
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reduced composition can be taken directly from the corresponding full composition at bound-
aries. For arbitrary full composition at the boundaries, a rigorous derivation of the boundary
conditions for the reduced description is given by Lam [37]. Given the reduced composition,
the ILDM point can either be retrieved from a pre-tabulated table containing the manifold
information, or it can be obtained through a local computation using equation (5). In the local
computation of the manifold, no spatial information is needed.

5.1 Investigation of the ASIM assumptions

In the regime where the fast chemical time scales are much smaller than the diffusion time
scales, according to ASIM, the components of the transient and transport processes in the
fast subspace are negligible (see equation (51)); but we can see from figure 2 that, for the
reaction–diffusion system considered, in fact the component of the molecular diffusion in
the fast subspace is not negligible (of order one). In the fast subspace, after the initial transient,
molecular diffusion and reaction (both of order one) balances each other. Hence the physically
sound assumption should be

0 = Ṽ
T
f (−C{z} + D{z} + S(z)), (54)

instead of equation (51). Note that this assumption (54) is exactly the one used in the Maas–
Pope approach, see equation (25). However, the functionality of these equations in these two
approaches is different. In the Maas–Pope approach, equation (25) is only used to derive the
governing equations for the reduced composition, and does not need to be solved in the reduced
description. In the Maas–Pope approach, the full composition (or unrepresented composition)
is given by equation (29). In contrast, in the ASIM approach, equation (54), which defines the
infinite-dimensional approximate slow invariant manifold (ASIM), has to be solved both to
give a reduced description and to predict the full composition.

In the regime where the convection and diffusion time scales overlap with the fast chemical
time scales, according to ASIM, the component of the transient process in the fast subspace is
negligible (see equation (52)). Here we designed the following case to test this assumption by
studying the balance of different processes in the fast subspace. For this particular case in the
class of models, we specify f (z1) = z1/(1+z1), g1(z1, z2) = −z1, g2(z1, z2) = −z1/(1+z1)2

and c = 1. The length of the physical domain is set to be L = 1 over 0 ≤ x ≤ 1. (These are
the same setting as those in Section 3.1.) The boundary conditions are set to be periodic.
The initial conditions are on the ILDM with z1(t = 0, x) = 1 − cos(2πx). The corresponding
initial conditions for z2 are determined from equation (5) so that the full compositions are on
the ILDM.

Figure 7 shows the distribution of z1 and z2 from the full model in physical space at discrete
times with ε = 0.01 and D1 = D2 = 1. The diffusion length scale can be roughly estimated
from figure 7, which is of order L/4 = 0.25. Hence the characteristic diffusion time scale
estimated based on the diffusion length scale and the diffusivities is of order 0.06, which is
comparable to the fast chemical time scale (which is of order 0.01). In figure 8, we show
the balance of rate of change, molecular diffusion and reaction in the fast subspace from
the full model. One clear piece of information from the figure is that the component of the
rate of change in the fast subspace is not negligible compared to other processes. Hence the
assumption (54) is questionable in the regime where the convection and diffusion time scales
overlap with fast chemical time scales. Note that the fast and slow subspace decomposition
used depends only on the chemistry. One possible solution proposed by Singh et al. [45] is to
perform the fast and slow subspace decomposition with account for the transport effects.
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Figure 7. The distribution of z1 and z2 from the full model in physical space at discrete times with ε = 0.01, D1 =
D2 = 1 and periodic boundary conditions. The initial conditions are on the ILDM with z1(t = 0, x) = 1 − cos(2πx)
(see Section 5.1 for details).

5.2 Simplification of the ASIM approach

Following the above discussion, in the regime where the fast chemical time scales are much
smaller than those of transport processes, the appropriate governing equations for the ASIM
approach are

Ṽ
T
s

∂z
∂t

+ Ṽ
T
s C{z} = Ṽ

T
s D{z} + Ṽ

T
s S(z),

0 = Ṽ
T
f (−C{z} + D{z} + S(z)). (55)

This set of partial differential equations is computationally expensive to solve. Here following
similar techniques in the ‘close-parallel’ approach, we propose the following simplification.

0
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Figure 8. The balance of rate of change (dash-dotted line), molecular diffusion (solid line) and reaction (dashed
line) in the fast subspace from the full model (13) with ε = 0.01, D1 = D2 = 1, and periodic boundary conditions.
The initial conditions are on the ILDM with z1(t = 0, x) = 1 − cos(2πx) (see Section 5.1 for details).
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Notice that the assumption (54) in the ASIM approach implies Ṽ f ∂z/∂t = 0. With this
relation, by pre-multiplying the first equation in (55) with BT , equation (55) can be rewritten
as

∂r
∂t

+ BT VsṼ
T
s C{z} = BT VsṼ

T
s D{z} + BT VsṼ

T
s S(z),

0 = Ṽ
T
f (−C{z} + D{z} + S(z)). (56)

Notice that by making this transformation, we make a clear distinction between the reduced
compositions and unrepresented compositions.

Following the fact that in this regime considered, the compositions in the reactive flows
depart only slightly from the ILDM, the second equation in equation (56) can be rewritten as

0 = Ṽ
T
f (−C{zILDM + δz} + D{zILDM + δz} + S(zILDM) + J(zILDM)δz), (57)

where δz is in the unrepresented subspace, i.e. δz = Uδu. By manipulating equation (57), and
neglecting the negligible terms, the modified ASIM predicts the departure from the ILDM as

δu = −(
Ṽ

T
f J(zILDM)U

)−1( − Ṽ
T
f C{zILDM} + Ṽ

T
f D{zILDM}), (58)

where Ṽ
T
f C{zILDM} is generally negligible (cf. the close-parallel approach in equation (38)).

With the perturbation given by equation (58) and VsṼ
T
s S(zILDM) = S(zILDM), for the mod-

ified ASIM approach, we obtain the following set of PDEs for the reduced compositions

∂r
∂t

+ BT VsṼ
T
s (I + PA)C{zILDM} = BT VsṼ

T
s (I + PA)D{zILDM} + BT S(zILDM), (59)

where PA = −JU(Ṽ
T
f JU)−1Ṽ

T
f . Following the same argument as in Section 3.2, the convection

process does not require any projection, therefore equation (59) can be improved as

∂r
∂t

+ vi
∂r
∂x

= BT VsṼ
T
s (I + PA)D{zILDM} + BT S(zILDM). (60)

As shown, the original ASIM approach (equation (55)) can be modified and simplified
to equation (60). Similar to the Maas–Pope and ‘close-parallel’ approaches, in the modified
ASIM approach, the reduced description is given by a set of PDEs for the reduced composi-
tion variables equation (60), in which the terms arising are evaluated on the ILDM. On the
boundaries, only the reduced composition needs to be provided. The modified ASIM approach
incorporates the transport effects on both the compositions and the dynamics of the reduced
compositions. It predict the composition off the ILDM by equation (58) and the dynamics
of the reduced compositions by equation (60). It is easy to verify that when applied to the
reaction–diffusion system, the composition for z2 and the evolution equation for z1 given by the
modified ASIM approach (58) and (60) are identical (to leading order) to the ‘close-parallel’
assumption.

Figure 9 compares the predictions of z1 by the full model and different reduced descriptions.
The computations are for ε = 0.001, D1 = 1 and D2 = 2. The fast chemical time scale (and
the initial transient time) is of order 0.001. As may be seen, all of the four reduced descriptions,
the Maas–Pope approach, the ‘close-parallel’ approach, the ASIM approach, and the modified
ASIM approach, achieve the same accuracy: all have an error (of order ε) in the prediction
for the dynamics of the reduced composition. For the case considered, it finally reaches
steady state. Inevitably, when approaching steady state, the accuracy in the ASIM approach
increases because the steady-state solution from the ASIM approach is identical to the full
system. However, this does not justify that the ASIM approach is more accurate than other
approaches. As may be seen from the figure, after the initial transient (t ≈ 0.001), for a wide
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Figure 9. Normalized errors in the predictions for the reduced composition variable z1 by different approaches.
The error εz1 (t) is defined to be the square root of 1

L

∫ L
0 (z∗

1(x, t) − zFull
1 (x, t))2dx , where L is the length of physical

domain, zFull
1 denotes the results from the full model, and z∗

1 denotes the results by the different approaches. Model
parameters are ε = 0.001, D1 = 1 and D2 = 2.

range of time (from about t = 0.0001 to t = 0.1) where the dynamics are interested, the ASIM
approach has an error of order ε.

Figure 10 compares the predictions of unrepresented composition z2 against z1 in the compo-
sition space at discrete times. As may be seen, after the initial transient, away from the bound-
aries, the ‘close-parallel’ approach, the ASIM approach and the modified ASIM approach give
more accurate predictions for the unrepresented composition than the Maas–Pope approach
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Figure 10. Given z1, the predictions of normalized z2 (i.e. (z∗
2 − zFull

2 )/ε) against z1 in the composition space at
discrete times by the Maas–Pope approach (29) (solid line), the ‘close-parallel’ assumption (39) (dashed line), the
ASIM approach (54) (dot-dashed line), and the modified ASIM approach (58) (dotted line). In the normalization, zFull

1
denotes the results from the full model and z∗

1 denotes the results by the different approaches. Model parameters are
ε = 0.001, D1 = 1 and D2 = 2. In the figure, the ASIM approach (dot-dashed line) and the modified ASIM approach
(dotted line) are indistinguishable.
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because they incorporates the transport effect on the composition whereas the Maas–Pope
approach does not. The deterioration of the ‘close-parallel’ approach close to the boundaries
is due to the effect of boundary conditions.

6. Conclusion

In this study, we investigate three different approaches for the chemistry-based manifold, the
ILDM to incorporate the transport-chemistry coupling in the reduced description of inhomoge-
neous reactive flows, namely, the Maas–Pope approach [22, 23], the ‘close-parallel’ approach
[31, 32] and the ASIM approach [45]. Moreover, a modified ASIM approach is proposed.

Both the Maas–Pope approach and the ‘close-parallel’ approach explicitly use the reduced
composition variables r to represent the reactive system. The reduced description is given
by the set of PDEs for the reduced composition variables, in which the terms arising can
be evaluated on the ILDM. On the boundaries, only the reduced composition needs to be
provided. When the full composition on the boundaries is on the low-dimensional manifold, the
boundary conditions for the reduced composition can be taken directly from the corresponding
full composition at boundaries. For arbitrary full composition at the boundaries, a rigorous
derivation of the boundary conditions for the reduced description is given by Lam [37]. For
the Maas–Pope approach, we validate its fundamental assumption: that there is a balance
between the transport processes and chemical reactions in the fast subspace. We show that
even though the Maas–Pope approach makes no attempt to represent the composition departure
from the ILDM (by neglecting the molecular diffusion effect on the compositions), it does
incorporate the transport-chemistry coupling in the dynamics of the reduced system. For the
‘close-parallel’ approach, we demonstrate its use for the ILDM method to incorporate the
transport-chemistry coupling. In the ILDM context, this approach assumes the compositions
in an inhomogeneous reactive flow are on a low-dimensional manifold which is close to and
parallel to the ILDM. We demonstrate the implied balance between the transport processes
and chemical reactions in the normal subspace of the ILDM.

For the ASIM approach, by studying reaction–diffusion systems, we clarify the underlying
assumptions and the applicability of the ASIM approach. In the regime where the fast chemical
time scale is much smaller than the diffusion time scale, the correct balance in the fast subspace
is between the transport processes and reaction (as assumed in the Maas–Pope approach). An
improved set of PDEs are then proposed. The applicability of the ASIM in the regime where
the convection and diffusion time scales overlap with the fast chemical time scales is examined.
It is shown that the transient process in the fast subspace is not negligible compared to other
processes as it is assumed to be in the ASIM approach. The ASIM approach is different
from the Maas–Pope approach and the ‘close-parallel’ approach in the sense that it makes
no clear distinction between the reduced compositions and unrepresented compositions and
the formulation of the reduced description is given by the set of PDEs supplemented by the
differential algebraic equations. The application of the ASIM approach in general reactive
flows are computationally expensive. In this study, in the regime where the fast chemical time
scale is much smaller than the transport time scale, we proposed a simplification for the ASIM
approach so that explicit governing PDEs are formulated for the reduced composition.

For the reaction–diffusion systems, as shown here, the Mass-Pope approach yields a consis-
tent approximation for both the dynamics of the reduced composition ż1 and the unrepresented
composition z2, i.e. in each the error isO(ε). The error ofO(ε) in z2 is caused by neglecting the
molecular diffusion effect on the compositions. In contrast, the ‘close-parallel’ assumption, the
ASIM approach, and the modified ASIM approach incorporate the effects of molecular diffu-
sion both on the composition and on the dynamics of the reduced composition. Consequently,
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given the reduced composition, these approaches are more accurate in the composition predic-
tion (with an error of o(ε)) compared with the Maas–Pope approach. As far as the dynamics of
the reduced composition are concerned, the ‘close-parallel’ assumption, the ASIM approach,
and the modified ASIM approach give the same evolution equation (to leading order) as the
Maas–Pope approach. All the approaches are valid only when the fast chemical time scales are
much smaller than the transport time scales. When the transport time scales are comparable
to the fast chemical time scales, the accuracy of all these approaches decreases.

In the reduced description, all the approaches project physical processes locally back onto the
chemistry-based manifold. We regard the ‘close-parallel’ assumption to be the best approach
to use. It is simple, and it provides a continuous projection (unlike the Maas–Pope approach
and the ASIM approach) if the manifold is sufficiently smooth. Both the Maas–Pope approach
and the ASIM approach are based on the slow and fast invariant subspaces, which are locally
identified in the composition space based on the local Jacobian matrix. Even though the
Jacobian of the reaction rates varies continuously in the composition space, these invariant
subspaces do not. Discontinuities occur when the nr -th and (nr + 1)-th eigenvalues form a
complex conjugate pair or cross.
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