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The geometry of reaction trajectories and attracting
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In numerical simulations of combustion processes, the use of dimension reduction to simplify the
description of the chemical system has the advantage of reducing the computational cost, but it is
important also to retain accuracy and adequate detail. Most existing dimension reduction methods
assume the existence of low-dimensional attracting manifolds in the full composition space and try
to approximate or directly identify the low-dimensional attracting manifolds. However, questions
remain about the geometry of the reaction trajectories in the full composition space, the existence of
the low-dimensional attracting manifolds in low-temperature regions, and the minimum dimension of
the attracting manifold required for describing a particular chemical system. This paper tries to address
some of these issues by studying the reaction trajectories starting from a wide range of different initial
compositions for both H2/air and CH4/air mixtures. Along each trajectory, we study the tangent bundle
of the trajectory, the eigenvalues of the Jacobian matrices, and the singular values of the sensitivity
matrices (i.e. sensitivity with respect to initial composition). It is shown that the dimension of the
affine space containing a trajectory (or of the tangent bundle along a trajectory) is much smaller than
the dimension of the full composition space. Even at low temperatures, the Jacobian matrices still have
a significant number of large (in magnitude) negative eigenvalues, which implies the existence of fast
time scales and low-dimensional attracting manifolds (even at low temperatures). The geometrical
significance of sensitivity matrices is explored. Based on the sensitivity matrices, a new method is
proposed to determine the minimum dimension of the attracting manifold required for describing
a chemical system with prescribed accuracy, and to identify the ‘principal subspace’ which is an
approximation to the tangent space of the attracting manifold.
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Nomenclature

dε(t) dimension of the attracting manifold along reaction trajectories
ne number of elements
ns number of species
nr dimension of reduced composition
nφ dimension of full composition
nE dimension of the conserved subspace
nR dimension of the reactive subspace
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n′
R dimension of the affine space containing individual trajectory

r reduced composition
A sensitivity matrix
AR,R sensitivity matrix corresponding to the reactive subspace in the Ĉ − W basis
C full composition space
E conserved subspace
R reactive subspace
ei canonical basis vector for composition space, i = 1, 2, . . . , nφ

Ĉ matrix whose columns form an orthonormal basis for E
W matrix whose columns form an orthonormal basis for R
J Jacobian matrix
R(φ0, t) reaction mapping
RE component of R in the conserved subspace
RR component of R in the reactive subspace
S the rate of change of composition
SE component of S in the conserved subspace
SR component of S in the reactive subspace
T unit tangent vector along the trajectory
T̄ tangent bundle matrix
κ curvature
λi eigenvalues of J, i = 1, 2, . . . , nφ

λr
i real part of eigenvalues, i = 1, 2, . . . , nφ

σi singular values of the matrix A, i = 1, 2, . . . , nφ

σ̂i singular values of AR,R, i = 1, 2, . . . , nR
σ̄i singular values of T̄
σ>

i singular values of matrix AR,R which are greater than threshold value
σ<

i singular values of matrix AR,R which are no greater than threshold value
φ full composition
φE component of φ in the conserved subspace
φR component of φ in the reactive subspace
φ̂

E
, φ̂

R
coordinates in the Ĉ − W basis

1. Introduction

The computational cost of using the detailed chemical information in combustion simu-
lations can be dramatically reduced by exploiting techniques of dimension reduction [1–
13]. The aim of dimension reduction strategies is to represent the chemistry accurately in
terms of a relatively small number nr of reduced composition variables r = {r1, r2, . . . , rnr }
instead of directly in terms of the nφ = ns + 1 full composition variables (species spe-
cific moles and enthalpy) φ= {φ1, φ2, . . . , φnφ

}. Then in the combustion simulation, the
relevant equations are solved for the nr reduced compositions instead of for the nφ full
compositions.

The geometrical interpretation of the dimension reduction assumption is that the full com-
position is (by assumption) known in terms of the reduced composition, i.e.

φ = φm(r), (1)

where the function φm(r) defines an nr -dimensional manifold parameterized by r in the nφ-
dimensional full composition space.
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Most of the dimension reduction methods are based on the observation that, in a typical
combustion process, there is a wide range of time scales present in the chemical mechanism.
The very fast time-scales are usually associated with local equilibrium or quasi-steady state,
while the long-term dynamics of the combustion system are determined by a small number nr

of slow processes (at least after the decay of initial transients). Geometrically, the long term
behaviour of the combustion system can be described by a finite-dimensional attractor of lower
dimension than the full composition space. The attractor is embedded in an low-dimensional,
invariant, smooth manifold called the invariant attracting manifold MA which locally attracts
all trajectories [14]. Each existing dimension reduction method based on time-scale analysis of
the combustion system assumes the existence of the nr low-dimensional attracting manifold
MA in the full composition space and constructs an nr -dimensional manifold to directly
identify or approximate it.

Questions remain concerning the geometry of the trajectories in composition space, the ex-
istence of low dimensional attracting manifolds in low-temperature regions, and the minimum
dimension of the attracting manifold required for describing a particular chemical system with
prescribed accuracy. Specifically:

� As shown in ref. [15], to determine the dimensionality of the accessed region in composition
space (which is the union of all the compositions for all positions and times in a reactive
flow), an important issue is to determine the dimensionality of the affine space containing
individual reaction trajectories, i.e. the dimensionality of the tangent bundle along individual
trajectories.

� It is well known that the behaviours of chemical kinetics at low temperature are significantly
different than at high temperature [14]. At low temperature, the reactions are usually slow
and the chemical time scales are significantly larger than at high temperature. Yet there
are few direct studies of time scales in the chemical kinetics at low temperature. Direct
support for the existence of low-dimensional attracting manifolds at low temperature is not
available.

� For dimension reduction methods, it is essential to determine the minimum dimensionality
of the attracting manifold required for a particular chemical system, and to know how fast
the compositions relax to this attracting manifold. There are several existing algorithms
[16–20] that determine the local dimension of the attracting manifold for chemical systems.
All these methods are based on the analysis of the local Jacobian matrix and on the separa-
tion in the eigenvalue spectrum of this matrix. In this paper, after exploring the geometrical
significance of the sensitivity matrices along the trajectories in the composition space, we
give a criterion to determine the minimum dimension of the attracting manifold. Com-
pared with other methods, it is based on the sensitivity matrices instead of local Jacobian
matrices.

In this work, for both H2/air and CH4/air combustion, trajectories starting from a wide range
of different initial compositions are studied. For each trajectory, we show the dimension of the
affine space containing this trajectory and the eigenvalue spectrum along it. Following that,
we discuss the significance of sensitivity matrices and introduce the method to determine the
minimum dimension of the attracting manifold and to identify the ‘principal subspace’.

2. Tangent bundle, Jacobian matrices and sensitivity matrices

In this section we introduce the principal quantities that are investigated, and give some of
their fundamental properties.
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2.1 Composition space: conserved and reactive subspaces

We consider a homogeneous, adiabatic, isobaric reacting system consisting of ns chemical
species. The extension to other systems, such as a constant-volume isothermal one, is straight-
forward. Modelling reaction kinetics in this system usually leads to a stiff system of ordinary
differential equations (ODEs). At time t , the full composition is represented by the nφ = ns + 1
composition variablesφ(t) ≡ {φ1, φ2, . . . , φnφ

}, which we take to be the species specific moles
and enthalpy.

The full composition space C is defined to be the real nφ-dimensional Euclidean space
with canonical basis vectors ek , k = 1, 2, . . . , nφ in which the first ns directions correspond to
species and the last corresponds to enthalpy. The composition space C can be decomposed into
the conserved subspace E , and the reactive subspace R (which is the orthogonal complement
of E). With ne being the number of chemical elements in the system, the conserved subspace is
of dimension nE = ne + 1, reflecting the conservation of elements and enthalpy. The conserved
subspace E is the space spanned by the following nφ × nE matrix

C ≡
[

E 0

0 1

]
, (2)

where the first ne columns of C are vectors in composition space C corresponding to the
elements and the last column is the canonical basis vector corresponding to enthalpy. The
element matrix E, whose general component is Ekj , is an ns × ne matrix with non-negative
integer components, and Ekj denotes the number of atoms of element j in one molecule of
species k. Every row of E has at least one non-zero entry. The reactive subspace R is the
orthogonal complement of the conserved subspace and is of dimension nR = nφ − ne − 1.

It is convenient to introduce orthonormal basis for the conserved and reactive subspaces.
Thus we denoted by Ĉ an nφ × nE matrix whose orthonormal columns span E ; and similarly
we denote by W an nφ × nR matrix whose orthonormal columns span R. Thus the nφ × nφ

matrix [Ĉ W] is orthonormal and its columns span the composition space C. The composition
φ (and indeed any other vector in C) can be decomposed into components in the conserved
(φE ) and the reactive (φR) subspaces

φ = φE + φR = Ĉφ̂
E + Wφ̂

R
, (3)

where φE = ĈĈTφ and φR = WWTφ are the components (which are independent of the
chosen basis); and φ̂

E = ĈTφ (a vector of length nE ) and φ̂
R = WTφ (a vector of length nR)

are the coordinates in the Ĉ − W basis.
Moreover all compositions that occur in the system satisfy realizability, and hence (by

definition) are in the realizable region. This is defined as the (nφ − 1)-dimensional region
of the composition space corresponding to non-negative species specific moles satisfying the
normalization condition and with the enthalpy corresponding to positive absolute temperatures.

2.2 Reaction mapping and trajectories

In the homogeneous adiabatic, isobaric system considered, due to the chemical reactions, the
composition evolves by the autonomous ODEs

dφ(t)

dt
= S(φ(t)), (4)

where S is the rate of change of composition given by the detailed chemical kinetic mechanism,
which we refer to as the rate vector. The rate vector S can be decomposed into components
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in the conserved and reactive subspaces, S = SE + SR, but because the conserved variables
(elements and enthalpy) are indeed conserved (in an adiabatic, isobaric reaction), we have
SE = 0.

The reaction mapping R(φ0, t) is defined to be the solution to equation (4) after time t ,
starting from the initial condition φ0. Thus R(φ0, t) is completely defined by the equations

R(φ0, 0) = φ0, (5)

and

∂R(φ0, t)

∂t
= S(R(φ0, t)). (6)

For fixed φ0 and t increasing from zero, in the nφ-dimensional composition space, R(φ0, t)
represents the reaction trajectory from φ0, which approaches the chemical equilibrium com-
position as t tends to infinity. The decomposition R = RE + RR and equations (5) and (6)
yield

RE (φ0, t) = φ0,E (7)

(i.e. the conserved component is conserved for all time); and

∂RR(φ0, t)

∂t
= SR(R) = S(R)

= S(φ0,E + RR). (8)

Thus RR(φ0, t) represents the reaction trajectory in the nR-dimensional reactive subspace,
while RE (φ0, t) is fixed at its initial value. Therefore, during chemical reactions, due to the
conservation of elements and enthalpy, the reaction trajectories are confined in the reactive
subspace.

For the adiabatic, isobaric system considered, the chemical equilibrium is determined by the
element composition (ne elements) and enthalpy, i.e. the chemical equilibrium composition

R(φ0, ∞) = R(φ0,E + φ0,R, ∞) (9)

is independent of φ0,R.

2.3 Tangent vectors and curvature

The reaction trajectory is a curve (i.e. a one-dimensional manifold) that can be parameterized
by time t , by arclength s, by entropy, or by any other quantity which varies monotonically
along it. For each point along the reaction trajectory starting fromφ0 in the composition space,
the unit tangent vector is

T(φ0, t) = S(R(φ0, t))

‖S(R(φ0, t))‖ , (10)

where ‖φ‖ denotes the 2-norm (φTφ)1/2. The tangent bundle is the collection of the unit
tangent vectors at all points on this trajectory.

Along the reaction trajectory starting from φ0, the curvature κ is

κ(s) =
∥∥∥∥dT

ds

∥∥∥∥ , (11)

where the trajectory is parameterized by the arclength s. Both s and κ−1 have units of kmol/kg.
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2.4 Jacobian and sensitivity matrices

The Jacobian matrix J is defined as

Ji j (φ) ≡ ∂Si (φ)

∂φ j
. (12)

Then the Jacobian J along the trajectory starting from φ0 is

J̄ i j (φ
0, t) = Ji j (R(φ0, t)), (13)

which reveals the chemical time scales in terms of its eigenvalues as shown in a later section.
Sensitivity analysis investigates the effect of changes in parameters on the solution of

mathematical models. The application of sensitivity analysis in the field of chemical kinetics
is extensively reviewed in refs [21, 22]. Here we consider the sensitivity of the reaction
mapping with respect to the initial composition. The sensitivity (to initial condition) matrix
A(φ0, t) is an nφ × nφ matrix defined by

Ai j (φ
0, t) ≡ ∂ Ri (φ

0, t)

∂φ0
j

. (14)

It is readily deduced from equation (4) that (for fixed φ0) A evolves according to the system
of ordinary differential equations

d

dt
A(φ0, t) = J(R(φ0, t))A(φ0, t), (15)

from the initial condition

A(φ0, 0) = I. (16)

In the computations reported below, the Jacobian is calculated by automatic differenti-
ation using ADIFOR [23]. Compared to using divided differences, this technique makes
the Jacobian calculations more robust and accurate. Equations (4) and (15) are solved to-
gether using DDASAC code [24] to obtain R(φ0, t) and A(φ0, t) given the initial composition
φ0.

3. Geometrical significance of the sensitivity matrices

The sensitivity (to initial condition) matrix describes the effect of the perturbation in the
initial composition on the reaction mapping. Skodje and Davis [13] even used the sensitivity
matrix to construct low-dimensional manifolds in composition space. It is informative to
take a geometrical view of the significance of the sensitivity matrix. Let the singular value
decomposition (SVD) of A be

A = UA�AVT
A, (17)

where UA and VA are nφ × nφ orthogonal matrices and �A is the diagonal matrix of singular
values, σ1 ≥ σ2 ≥ · · · ≥ σnφ

≥ 0. The columns of UA (ui , i = 1, 2, . . . , nφ) and columns of VA

(vi , i = 1, 2, . . . , nφ) are the left and right singular vectors, respectively. It is readily shown
from equation (14) that the infinitesimal change in the reaction mapping, dR, with respect to
the infinitesimal perturbation in the initial composition, dφ0, can be written as

dR = Adφ0 = UA�AVT
Adφ0. (18)
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3.1 Mapping of an infinitesimal ball in composition space

A geometrical interpretation of equation (18) is that the infinitesimal ball of radius dr centred
at the initial composition φ0

{φ = φ0 + dφ0 | ‖dφ0‖ ≤ dr} (19)

is mapped to the hyper-ellipsoid

{φ = R + dR | ‖A−1dR‖ ≤ dr}, (20)

or, equivalently, {
φ = R + dR | ‖�−1

A UT
AdR‖ ≤ dr

}
, (21)

which is centred at the reaction mapping R(φ0, t).
Hence, as shown in figure 1, the geometrical significance of the sensitivity matrix is that the

initial nφ-dimensional infinitesimal ball centred at the initial point φ0 is mapped at time t to
an nφ-dimensional hyper-ellipsoid centered at R(φ0, t). The principal semi-axes are drσi ui ,
where ui is the ith column of UA. For singular values which are greater than unity, the initial
ball is elongated in the corresponding principal directions, while for singular values which
are smaller than unity, the initial ball is compressed in the corresponding principal directions.
The smaller the singular value, the smaller the effect of the initial perturbation in the direction
of the corresponding right singular vector on the reaction mapping.

In the Ĉ − W basis, the sensitivity matrix has the structure


∂R̂E

∂φ̂
0,E

∂R̂E

∂φ̂
0,R

∂R̂R

∂φ̂
0,E

∂R̂R

∂φ̂
0,R


 =




I 0

∂R̂R

∂φ̂
0,E

∂R̂R

∂φ̂
0,R


 . (22)

Furthermore, dφ0 and dR can be expressed as

dφ0 = Ĉdφ̂
0,E + Wdφ̂

0,R
(23)

and

dR = ĈdR̂E + WdR̂R, (24)

where dφ̂
0,E = ĈT dφ0, dφ̂

0,R = WT dφ0, dR̂E = ĈT dR and dR̂R = WT dR. (Hence dφ̂
0,E

and dR̂E are vectors of length nE ; and dφ̂
0,R

and dR̂R are vectors of length nR.) From

Figure 1. For a two-dimensional composition space, sketch showing the infinitesimal ball of radius dr atφ0 mapped
after time t to the infinitesimal ellipse at R(φ0, t). The principal semi-axes are drσ1u1 and drσ2u2, where σi and ui
are the singular values and left singular vectors of the sensitivity matrix A.
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equations (22)–(24), we have

[
dR̂E

dR̂R

]
=




I 0

∂R̂R

∂φ̂
0,E

∂R̂R

∂φ̂
0,R




[
dφ̂

0,E

dφ̂
0,R

]
=

[
I 0

AR,E AR,R

] [
dφ̂

0,E

dφ̂
0,R

]
, (25)

where AR,E = ∂R̂R

∂φ̂
0,E and AR,R = ∂R̂R

∂φ̂
0,R . It is readily shown that AR,R is related to the sensitivity

matrix A by

AR,R = WT AW. (26)

At t = 0, AR,R is an nR × nR identity matrix.
At chemical equilibrium (t → ∞), from equation (3) and (25), we have

dR(φ0, ∞) = dRE (φ0, ∞) + dRR(φ0, ∞)

= ĈdR̂E (φ0, ∞) + WdR̂R(φ0, ∞)

= Ĉdφ̂
0,E + W(AR,Edφ̂

0,E + AR,Rdφ̂
0,R

)

= (Ĉ + WAR,E )dφ̂
0,E + WAR,Rdφ̂

0,R
. (27)

At chemical equilibrium, R(φ0, ∞) is independent of φ0,R. This means that the term

WAR,Rdφ̂
0,R

is zero for arbitrary dφ̂
0,R

. Therefore when the trajectory reaches chemical
equilibrium, the singular values of matrix AR,R are zero, and the initial nφ-dimensional hyper-
sphere is mapped to an nE dimensional hyper-ellipsoid.

3.2 Mapping of an infinitesimal ball in the reactive subspace

We can consider an initial infinitesimal ball centred at the initial point in the reactive subspace
and take a geometrical view of the flow from this initial ball. (Note that the dimension of
the ball is nR and that all the trajectories starting from the points in the ball have the same
chemical equilibrium composition.) From equation (25), we have

dR̂R = AR,Rdφ̂
0,R

, (28)

for dφ̂
0,E = 0.

Let the singular value decomposition (SVD) of AR,R be

AR,R = Û�̂V̂T , (29)

where Û and V̂ are nR × nR orthogonal matrices and �̂ is the diagonal matrix of singular
values, σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂nR ≥ 0. The columns of Û (ûi , i = 1, 2, . . . , nR) and the columns
of V̂ (v̂i , i = 1, 2, . . . , nR) are the left and right singular vectors, respectively. Following the
same procedure, it is readily shown that the infinitesimal ball in the reactive subspace centered
at the initial composition φ0

{φ = φ0 + Wdφ̂
0,R | ‖dφ̂

0,R‖ ≤ dr} (30)

is mapped to the hyper-ellipsoid in the reactive subspace

{φ = R + WdR̂R | ‖AR,R−1
dR̂R‖ ≤ dr}, (31)
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or, equivalently,

{φ = R + WdR̂R | ‖�̂−1ÛT dR̂R‖ ≤ dr}, (32)

which is centred at the reaction mapping R(φ0, t). The principal semi-axes of the hyper-
ellipsoid are dr σ̂i ûi , i = 1, 2, . . . , nR, where ûi is the ith column of Û. Notice that at the
equilibrium point, the initial nR-dimensional ball is mapped to a single point. So, along
the trajectory, the dimension of the object decreases from nR initially to zero in infinite
time.

3.3 Mapping of the rate vector

Besides the above geometrical significance, the sensitivity matrix also provides a link between
the rate vector at R(φ0, t) and the rate vector at the initial point φ0. If the time along the
trajectory is increased from t to t + dt , the final composition is

R(φ0, t + dt) = R(φ0, t) + S(R(φ0, t)) dt. (33)

The same composition results if the initial condition, instead of being φ0, is taken to be
R(φ0, dt) =φ0 + S(φ0) dt , i.e.

R(φ0, t + dt) = R(φ0 + S(φ0) dt, t). (34)

From equations (18), (33) and (34) we have

S(R(φ0, t)) = AS(φ0). (35)

Thus the rate vector at R(φ0, t) is related to the rate vector at φ0 through the sensitivity matrix.

4. Results

In this work, we study reaction trajectories starting from a wide range of different initial
composition for both H2/air and CH4/air systems. The initial compositions we consider are
either: randomly chosen from the composition space; or from the compositions resulting
from the autoignition of pure fuel/air mixtures; or from the mixing line between the pure
fuel/air mixture and its corresponding equilibrium point in the composition space; or from
the composition in one-dimensional laminar flames computed by SANDIA’s PREMIX and
OPPDIF codes. Table 1 lists some of the initial compositions. The pressure is atmospheric
for all cases studied in this paper. For the results presented below, comprehensive tests were
performed in order to ensure numerical accuracy.

Table 1. Test cases and the methods of generating initial compositions.

H2-1 Autoignition of a stoichiometric H2/air mixture at the initial temperature 300 K
H2-2 Autoignition of a stoichiometric H2/air mixture at the initial temperature 1000 K
H2-3 Unstrained, one-dimensional, laminar premixed flame of stoichiometric H2/air at

300 K
CH4-1 Autoignition of a stoichiometric CH4/air mixture at the initial temperature 300 K
CH4-2 Autoignition of a stoichiometric CH4/air mixture at the initial temperature 1500 K
CH4-3 Unstrained, one-dimensional, laminar premixed flame of stoichiometric CH4/air at

300 K
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For H2/air combustion, the Mueller mechanism [25], which has 9 species and 21 reactions,
is employed. Hence the dimension for the full composition space is 10 and the dimension of
the reactive subspace is 6. This mechanism has been updated by Li et al. [26]; however, the
differences are unlikely to affect any of the conclusions drawn.

For CH4/air combustion, the GRI3.0 mechanisms [27] with and without nitrogen chemistry
are employed. The GRI3.0 mechanism without nitrogen chemistry is generated from the
standard GRI3.0 mechanism by stripping out all the N-containing species and reactions except
for N2. The GRI3.0 mechanisms with and without nitrogen chemistry have 53 and 36 species,
respectively, and therefore the dimensions of the full composition spaces are 54 and 37, and
the dimensions of the reactive subspaces are 48 and 31.

4.1 Dimensionality of reaction trajectories

To address questions concerning the accessed compositions in reactive flows, an important
issue is to determine the dimensionality of the affine space (denoted by n′

R) containing in-
dividual reaction trajectories, i.e. the dimensionality of the tangent bundle along a trajectory
[15]. If the trajectory is a line segment (and hence has no curvature) then n′

R = 1. In general
we have 1 ≤ n′

R ≤ nR. Here the dimensionality of the tangent bundle for different trajectories
and mechanisms is determined.

As illustrated in figure 2, the trajectory is parameterized by arclength, s, with φ(s = 0) =φ0

and φ(s = seq ) =φeq , where seq is the total arclength of the trajectory and φeq is the equilib-
rium point. Proceeding backwards from the equilibrium point, the trajectory is decomposed
into N segments, each having the same arclength 
s = seq/N . The composition increment

φi (i = 1, 2, . . . , N ) is defined as the difference between the corresponding beginning and
ending compositions. As N approaches infinity (i.e. 
s approaches 0), the unit tangent vec-
tor for each segment of the trajectory is well approximated by Ti = 
φi

‖
φi ‖ , and the curva-

ture along the trajectory is well approximated by κ(s = i × 
s) = ‖Ti + 1 − Ti‖/
s, where
i = 1, 2, . . . , N .

Figure 2. Trajectory in composition space:φ0 andφeq denote the initial composition and the corresponding equilib-
rium composition. Proceeding backwards from the equilibrium point, the trajectory is decomposed into N segments,
each having the same arclength 
s. Symbol 
φi denotes the composition difference between the corresponding
beginning and ending compositions.
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For fixed N , proceeding backwards from the equilibrium point, we form the following
matrices containing the unit tangent vectors (or tangent bundle matrices)

T̄1 = [T1]
...

T̄k = 1√
k

[T1 T2 · · · Tk]

...

T̄N = 1√
N

[T1 T2 · · · TN ].

(36)

The normalization factor 1/
√

k is chosen so that all the singular values of the above tangent
bundle matrices are between 0 and 1, and the results shown below becomes independent of
the parameter N , as N approaches infinity. The k columns of the matrix T̄k are proportional
to the tangent vectors over the final k segments of the reaction trajectory, and hence they span
the tangent bundle of this part of the trajectory. The dimensionality of the tangent bundle
is, therefore, the rank of T̄k , which can be determined through the singular values of the
matrix: small (less than some threshold value, i.e. σ̄i < ε) or zero singular values indicate rank
deficiency. As the distance from the equilibrium point increases, the dimensionality of the
affine space increases.

Figure 3 shows the singular values of the tangent bundle matrices and the dimensionality
of the affine space containing the trajectory proceeding backwards from the equilibrium point
for H2/air mixtures along one trajectory in the composition space, using different values
of the numerical parameters N and threshold ε. As may be seen from figure 3, there is
no noticeable difference in the numerically computed singular values of the tangent bundle
matrices between N = 800 and N = 1200. Therefore the results for the singular values of
the tangent bundle matrices are numerically accurate. Also figure 3 shows the effect of the
threshold ε. As expected, for a smaller value of the threshold ε, proceeding backwards from
the equilibrium point, the dimension of the affine space increases earlier. However for a wide
range of trajectories, the dimensionality of the affine space is found to be insensitive to the
value of threshold ε. The results reported below (figures 4–6) are obtained with N = 1200
and ε = 0.01.

Figure 3. (a) Singular values of the tangent bundle matrices proceeding backwards from the equilibrium points; dash
line: N = 800; solid line: N = 1200. (b) The dimensionality of the affine space containing the trajectory proceeding
backwards from the equilibrium points with two threshold different ε values and N = 1200. The trajectory starts from
the initial composition H2 − 2 in table 1 with temperature 1000 K.
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Figure 4. (a) Singular values of the tangent bundle matrices proceeding backwards from the equilibrium points. (b)
The dimensionality of the affine space containing the trajectory proceeding backwards from the equilibrium points.
The trajectory starts from the initial composition H2 − 3 in table 1 with temperature 1204 K. The threshold ε is 0.01
and N = 1200.

As may be seen from figures 3 and 4, for the H2/air mixtures, proceeding backwards from
the equilibrium points, the dimensionality of the affine space increase from 1 to 4 for these two
cases. (For H2/air with the Mueller mechanism, the dimensionality of the reactive subspace
is 6.) The singular value in one direction is much larger than all other singular values, which
implies that the trajectory is aligned with that direction.

Figure 5 shows the results for CH4/air mixtures along two representative trajectories. Pro-
ceeding backwards from the equilibrium point, the dimensionality of the affine space increases,
but it remains much smaller than the dimension of the full composition space. For CH4/air, the
maximum dimension observed is n′

R = 11, whereas the dimensions of the reactive subspaces
are 48 and 31 for GRI3.0 with and without nitrogen chemistry. Nitrogen chemistry increases
the dimension of the affine space as expected. However, the number of dimensions increased

Figure 5. First and second columns: singular values of the tangent bundle matrices proceeding backwards from
the equilibrium points; third column: the dimensionality of the affine space containing the trajectory proceeding
backwards from the equilibrium points. First row: the trajectory starts from the initial composition CH4 −2 in table 1
with temperature 1500 K; second row: CH4 − 3 with temperature 1835 K. The threshold ε is 0.01 and N = 1200.
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Figure 6. (a) Singular values of the tangent bundle matrices proceeding backwards from the equilibrium point; (b)
the curvature κ (unit: (kmol/kg)−1) along the trajectory; (c) normalized reaction rate of the elementary reactions
(normalized by the maximum elementary reaction rate in magnitude) along the trajectory. The trajectory start from
the initial composition CH4 − 2 in table 1 with temperature 1500 K.

(about 1 and 2 for these two cases) is much smaller than the number of the dimensions added
to the system (17) by the nitrogen chemistry. This is because all of the nitrogen species have
relatively small concentrations (except N2) and nitrogen chemistry is active only at high tem-
peratures (close to equilibrium). The difference in the singular values of the tangent bundle
matrices close to equilibrium for the same case between GRI3.0 with and without nitrogen
chemistry is also due to the fact that nitrogen chemistry is active and the trajectory close to
equilibrium (at high temperatures) is mostly determined by the nitrogen chemistry.
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The dimensionality of the affine space is highly related to the curvature along the trajectory.
If the trajectory has no curvature (i.e. it is a line segment), the dimensionality of the affine
space is 1. Figure 6 shows the singular values of the tangent bundle matrices, the curvature
and the normalized reaction rate of the elementary reactions (normalized by the maximum
elementary reaction rate in magnitude) along the trajectory. As may be seen from the figure,
proceeding backwards from the equilibrium point, new nontrivial singular values (greater than
some threshold ε) arise where the curvature is large. Also from the figure, we observe that
large curvature occurs where the reaction path changes, i.e. the dominant reactions change
along the trajectory.

4.2 Spectra of eigenvalues of the Jacobian matrices

An important quantity in studying the time-scales and stability of a set of differential equations
is the Jacobian. For a chemical system, the eigenvalues of the Jacobian matrix of the reaction
source term are related to the chemical time scales with τi = 1/|λr

i |, where λr
i denotes the real

part of the ith eigenvalue. Moreover, there are ne + 1 eigenvalues which are exactly zeros due
to the conservation of elements and enthalpy in the reaction process. Also the Jacobian matrix
contains the information which describes the short-time evolution of a small perturbation
to the nonlinear chemical system [6, 14, 28]. For λr

i > 0, the magnitude of the perturbation
increases; for λr

i = 0, the magnitude of the perturbation does not change with time; for λr
i < 0,

the magnitude of the perturbation relaxes to zero. A Jacobian matrix with a set of eigenvalues
with large negative real parts implies the existence of a low-dimensional attracting manifold
in the composition space.

It is informative to look at some representative spectra of the eigenvalues of the Jacobian,
which provide the characteristic chemical times scales. Figures 7, 9 and 10 show three repre-
sentative spectra of eigenvalues along trajectories for both H2/air and CH4/air mixtures. The
figures show the real parts of the eigenvalues which are either greater than 1 s−1 or less than
−1 s−1 along the trajectories parameterized by temperature. In figure 7, trajectories start from
pure stoichiometric H2/air mixture and pure stoichiometric CH4/air mixture at the low initial
temperature 300 K. As may be seen from figure 7, there are many large (in magnitude) negative
eigenvalues for both CH4/air and H2/air mixtures even at low temperatures. (Figure 8 charac-
terizes eigenvalues of CH4/air mixture at temperature 300 K. As may be seen from figure 8,
for the GRI3.0 mechanism with nitrogen chemistry, there are 13 eigenvalues whose real parts
are smaller than − 1 × 105 s−1.) With the increase of temperature along the trajectories, the
number of small eigenvalues increases. Positive eigenvalues and conjugate eigenvalue pairs
are observed for both CH4/air and H2/air mixtures. For the H2/air mixture, between around
900 K and 1300 K, there are positive eigenvalues and a conjugate eigenvalue pair. For the
CH4/air mixture, between around 800 K and 1700 K, there is a positive eigenvalue; around
1700 K, there is a conjugate eigenvalue pair. Also in figure 7, it may be observed that the
ordering of eigenvalues changes along the trajectories.

Based on the spectra of eigenvalues, we see that the hydrogen mechanism plays a very
important role in the methane combustion: the structure of the spectrum of eigenvalues for
the hydrogen mechanism can be observed in the spectrum of eigenvalues for the methane
combustion. For methane combustion using the GRI3.0 mechanism with or without nitrogen
chemistry, we notice that nitrogen chemistry adds a relative large eigenvalue (corresponding
to the slow process in nitrogen chemistry).

Figure 9 shows the same case but with a higher initial temperature. Similar phenomena are
also observed for the high-temperature region. The trajectories in figure 10 start from com-
positions obtained from one-dimensional laminar premixed flames for pure stoichiometric
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Figure 7. Real parts of eigenvalues (unit: s−1) of the Jacobian against temperature along the trajectories starting
from the initial compositions H2 − 1 and CH4 − 1 in table 1, respectively.

fuel/air mixtures with unburnt temperatures of 300 K. As may be seen from figure 10,
for this case, all the real parts of the eigenvalues (except the ne + 1 zero eigenvalues) are
negative.

By studying the eigenvalue spectra along trajectories, even at low temperatures, a wide
range of time scales in the chemical system is observed. Therefore it is reasonable to assume
the existence of low-dimensional attracting manifolds in the composition space. For a given
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Figure 8. Real parts of eigenvalues (unit: s−1) of the Jacobian for stoichiometric CH4/air mixture at temperature
300 K.

chemical system, the questions needing to be addressed are: what is the required dimension
of the attracting manifold to describe the particular system? How can the low-dimensional
attracting manifold be identified? In the following sections, based on the sensitivity matrices,
a new method is proposed to determine the minimum dimension of the attracting mani-
folds required for describing a chemical system with prescribed accuracy and to identify
the ‘principal subspace’ which is an approximation to the tangent space of the attracting
manifold.

4.3 Spectra of singular values of the sensitivity matrices

The geometrical significance of the sensitivity matrix is explained in section 3. The sensi-
tivity matrix provides information about the behaviour of the flow from the vicinity of the
initial point of the trajectory considered. Along this trajectory, at different times, the ini-
tial infinitesimal ball in the reactive subspace centred at the initial point is mapped to a
hyper-ellipsoid, and at infinite time it contracts to a point, which is the corresponding equi-
librium point. Moreover the singular value decomposition of the sensitivity matrix charac-
terizes the geometry of the hyper-ellipsoid along the trajectory. Therefore it is worthwhile
to study some representative spectra of the singular values (in the reactive subspace) along
trajectories.

Figure 11 shows the spectra of singular values along the trajectories for H2/air and CH4/air
autoignition. In this case the trajectories start from pure stoichiometric H2/air with initial
temperature 1000 K, and from the pure CH4/air with initial temperature 1500 K, respec-
tively. As may be seen from the figure, for both H2/air and CH4/air mixtures, most singular
values decrease from one towards zero quickly, well before reaching equilibrium. Gradu-
ally, all the singular values decrease towards zero at the equilibrium point. The large sin-
gular value is due to presence of positive eigenvalues (see figure 9) in this particular case.
This corresponds to accelerating reaction along the trajectory. For the CH4/air autoignition,
the sharp transition around 2350 K where many singular values drop rapidly is due to the
sharp transition in the spectra of eigenvalues (see figure 9) where the positive eigenvalues
become negative. Also we observe that nitrogen chemistry adds one relatively large and
slowly decreasing singular value, which corresponds to the slow process in the nitrogen
chemistry.
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Figure 9. Real parts of eigenvalues (unit: s−1) of the Jacobian against temperature along the trajectories starting
from the initial compositions H2 − 2 and CH4 − 2 in table 1, respectively.

Figure 12 shows another spectrum of singular values. In this case, the trajectories start from
the compositions obtained from one-dimensional premixed laminar flames of pure stoichio-
metric fuel/air mixtures with unburnt temperatures of 300 K. The same observations apply
except that for this case there is no positive eigenvalues (see figure 10) so there is no large
singular value compared with the previous case, although several are greater than unity at
early times. Nor is there the sharp transition for CH4/air observed in figure 11.
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Figure 10. Real parts of eigenvalues (unit: s−1) of the Jacobian against temperature along the trajectories starting
from the initial compositions H2 − 3 and CH4 − 3 in table 1, respectively.

4.4 Attracting manifolds

As a result of the wide range of time scales in the chemical system, after the initial transient,
the sensitivity matrix has a wide range of singular values. Along the trajectory, most singular
values decrease from one towards zero very quickly, well before reaching the equilibrium
point (see figures 11 and 12). This implies an effective dimension decrease of the initial ball
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Figure 11. Singular values of the sensitivity matrices AR,R against temperature along the trajectories starting from
the initial compositions H2 − 2 and CH4 − 2 in table 1, respectively.

along the trajectory. Geometrically, in the reactive subspace, after the initial transient, the
initial ball becomes a hyper-ellipsoid and is attracted to and aligned with a low-dimensional
attracting manifold.

Based on these considerations we define the dimension of the attracting manifold as follows.
Given a small positive threshold ε (0 < ε � 1), the dimension dε(t) of the attracting manifold
after a time t along the reaction trajectory from the given initial condition φ0, is defined to be
the number of singular values σ̂i (φ

0, t) that are greater than ε. Recall that σ̂i (φ
0, t) denotes
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Figure 12. Singular values of the sensitivity matrices AR,R against temperature along the trajectories starting from
the initial compositions H2 − 3 and CH4 − 3 in table 1, respectively.

the ith singular value of AR,R which is defined in equation (25) and related to A by equation
(26).

At the initial point, AR,R is the nR × nR identity matrix and has nR singular values of
unity, so dε(t = 0) = nR. At the equilibrium point, all the singular values of AR,R are zero, so
dε(t = ∞) = 0 as expected.

With ε specified, we consider an intermediate time t such that nR > dε(t) > 0. Considering

the initial infinitesimal perturbation in the reactive subspace (dφ̂
0,E = 0), from equations (28)
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and (29), we have

dRR = WdR̂R = WAR,Rdφ̂
0,R

= WÛ�̂V̂T dφ̂
0,R = Ũ�̂V̂T dφ̂

0,R

= [ U> U< ]

[
�> 0

0 �<

]
[ V> V< ]T dφ̂

0,R

= U>�>V>T dφ̂
0,R + U<�<V<T dφ̂

0,R
, (37)

where Ũ = WÛ and its orthonormal columns span the reactive subspace R, �> is a dε × dε

diagonal matrix with σ>
i > ε, and �< is a (nR −dε)× (nR −dε) diagonal matrix with σ<

i ≤ ε.
The matrices U> and U< are nφ × dε and nφ × (nR − dε) matrices, respectively; V> and V<

are nR × dε and nR × (nR − dε) matrices, respectively. Thus in the approximation that the
singular values less than or equal to ε are negligible, we have

dRR = U>�>V>T dφ̂
0,R + dRε

≈ U>�>V>T dφ̂
0,R

, (38)

where the error dRε satisfies

‖dRε‖ = ‖U<�<V<T dφ̂
0,R‖

≤ ε‖dφ̂
0,R‖ = ε‖dφ0,R‖. (39)

So, as illustrated in figure 13, the infinitesimal nR-dimensional ball of radius dr centred
at φ0 in the reactive subspace is mapped to within a distance of εdr of the dε-dimensional
affine space which intersects R(φ0, t) and has tangent space span (U>). Thus, in the reactive
subspace, along the trajectory, the initial ball becomes a hyper-ellipsoid and is attracted to
and aligned with a dε(t)-dimensional attracting manifold. The columns of U> span the dε(t)-
dimensional ‘principal subspace’ which is a good approximation to the tangent space of the
dε(t)-dimensional attracting manifold; and the columns of U< span the (nR − d)-dimensional
‘compressive subspace’.

From equation (35), the reaction rate vector along the trajectory is related to the sensitivity
matrix by

S(R(φ0, t)) = AS(φ0). (40)

Because the rate vector has no components in the conserved subspace, equation (40) can
also be written as

S(R(φ0, t)) = AWWT S(φ0) = WAR,RWT S(φ0)

= [ U> U< ]

[
�> 0

0 �<

]
[ V> V< ]T WT S(φ0)

= U>�>V>T WT S(φ0) + Sε

≈ U>�>V>T WT S(φ0), (41)

where the second step follows from equation (26) and the last step follows from the assumption
that the singular values less than ε are neglected. The error Sε satisfies

‖Sε‖ ≤ ε‖S(φ0)‖. (42)
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Figure 13. In the reactive subspace R, the infinitesimal nR-dimensional hypersphere of radius dr is mapped to
within a distance εdr of the dε -dimensional affine space (shown as the solid line). The affine space intersect R(φ0, t)
and its tangent space is the principal subspace, span(U>).

Equation (41) implies that, after the initial transient, the rate vector along the trajectory is in
the dε(t)-dimensional ‘principal subspace’.

Figure 14 shows the reaction trajectories from different initial compositions for the H2/air
system. The initial compositions are randomly chosen from the composition space and have
the same amount of elements and enthalpy. Therefore all the trajectories have the same chem-
ical equilibrium. As may be seen from the figure, all the trajectories are attracted to a one-
dimensional attracting manifold well before reaching chemical equilibrium. Based on the
singular values of matrix AR,R, the dimension of the attracting manifold along the reac-
tion trajectory from each initial condition φ0 is determined using threshold value ε = 0.001.
Geometrically, this implies that once the length of a principal axis of the hyper-ellipsoid
reaches one-thousandth of the initial ball radius, the dimension associated with that direction

Figure 14. Projection onto different planes of the reaction trajectories for the H2/air system with the Mueller
mechanism. The initial compositions are chosen randomly from the composition space and have the same amount of
elements and enthalpy (H: 0.03420 kmol/kg; O: 0.01697 kmol/kg; N: 0.04955 kmol/kg; enthalpy: 6.9021 × 109 k-
ergs/kg ). Each trajectory is coloured by the dimension of the attracting manifold determined based on the matrix AR,R.
Yellow: 6—dimensional; green: 5-dimensional; magenta: 4-dimensional; cyan: 3-dimensional; black: 2-dimensional;
red: 1-dimensional; blue: 0-dimensional. The blue dot is the equilibrium point. The threshold ε is 0.001.
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Figure 15. Dimension of the attracting manifold for H2/air against time and temperature along the trajectories
starting from different initial compositions. For the first row, the initial composition is chosen from H2 − 2 in table 1.
For the second row, the initial composition is chosen from H2 − 3.

is neglected. In figure 14, each trajectory is coloured by the value of dimension. And along
each trajectory the dimension of the attracting manifold decreases from 6 (coloured yellow)
to zero (coloured blue) at equilibrium as expected. (For H2/air autoignition with the Mueller
mechanism, the dimension of the reactive subspace is 6.)

Figure 15 shows the dimension of the attracting manifold for the H2/air mixture against
time and temperature along the trajectories. In figure 15 we use two different thresholds,
ε = 0.01 and 0.001, and as may be seen the difference between these two threshold values
is not significant. As may be seen from figure 15, the dimension of the attracting manifold
decreases from 6 to zero at equilibrium. After the initial transient, the dimension of the
attracting manifold is much smaller than the dimension of the full composition space. With
increasing initial temperature, the time for the initial transient to reach a given dimension of
attracting manifold decreases. For the first row in figure 15 where the trajectory starts from
a stoichiometric H2/air mixture with initial temperature 1000 K, the time required to reach
a three dimensional attracting manifold is about 2 × 10−5 s. However, with respect to the
temperature, the initial transient is very quick (less than 1 K). For the last row in figure 15 where
the trajectory starts from laminar flame results, the time required to reach a three dimensional
attracting manifold is much smaller than the previous case, whereas the transient with respect
to the temperature is larger due to the larger reaction rate during the transient period.

Figure 16 shows the dimension of the attracting manifold for CH4/air mixtures along the
trajectories. For the first row, the trajectory starts from a stoichiometric CH4/air mixture.
For the second row, the trajectory starts from the laminar flame results. As may be seen from
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Figure 16. Dimension of the attracting manifold for CH4/air against time and temperature along the trajectories.
For the first row, the initial composition is chosen from CH4 −2 in table 1. For the second row, the initial composition
is chosen from CH4 − 3. The threshold ε is 0.01.

figure 16, for the first case the dimension of the attracting manifold quickly decreases to around
21 and 12 for the GRI3.0 with and without nitrogen chemistry, respectively; whereas for the
second case the dimension of the attracting manifold quickly decreases to around 8 and 4 for
the GRI3.0 with and without nitrogen chemistry. Therefore the behaviour is highly dependent
on the location in the composition space. For these two cases, the dimension of the attracting
manifold when starting from laminar flame results is much smaller than that when starting from
the pure CH4/air mixture. Nevertheless, after the initial transient, the dimension of the attracting
manifolds for both cases is much smaller than the dimension of the full composition space.
Also from figure 16, we see that nitrogen chemistry increases the dimension of the attracting
manifold as expected (by about 4 to 9 after the initial transition): however, the number of
dimensions increased is much smaller than the number of dimensions added to the full system
by nitrogen chemistry. (Nitrogen chemistry adds 17 more dimensions to the system.)

It is informative to study the angle between the reaction rate vector and the ‘principal
subspace’ along individual trajectories. The ‘principal subspace’ with fixed dimension d is
the subspace spanned by the first d columns of the matrix Ũ (see equation (37)), and is
an approximation to the tangent space of the d-dimensional attracting manifold along the
trajectory. If the identified ‘principal subspace’ is a good approximation to tangent space of
the attracting manifold, the angle should remain small after the initial transient. Figure 17a
shows the dimension of the attracting manifold for CH4/air along the trajectory starting from
pure stoichiometric CH4/air mixture with initial temperature 1500 K. Figure 17c shows the
angle between the reaction rate vector and the ‘principal subspace’ with dimension 3 and 6
along the trajectory, respectively. As may be seen from the figure, the angle is small after
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Figure 17. (a) Dimension of the attracting manifold for CH4/air along the trajectory starting from a stoichiometric
CH4/air mixture with initial temperature 1500 K. (The threshold is ε = 0.01.) (b) Angle between the reaction rate
vector and the slow subspaces identified by the ILDM method (with dimension 3 and 6) along the trajectory. (c)
Angle between the reaction rate vector and the ‘principal subspaces’ with the same dimensions along the trajectory.

the initial transient, which indicates that the reaction rate vector is aligned with the ‘principal
subspace’. For comparison, also shown in figure 17 is the angle between the reaction rate vector
and the slow subspaces (identified by the ILDM method) with the same dimensions along the
trajectory. Large angles occur after the initial transient, which indicates that the reaction rate
vector is not aligned with the slow subspaces identified by the ILDM method based on the
local Jacobian matrices. Another observation from figure 17 is that the reaction rate vector
lies in a subspace of dimension much smaller than the dimension of the attracting manifold.
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Figure 18. (a) Dimension of the attracting manifold for H2/air against temperature along the trajectory starting from
the initial condition H2 − 3 in table 1. (b) Angle between the species vectors and the one-dimensional ‘principal
subspace’ along the trajectory.

After the initial transient, the dimension of the attracting manifold is around 20 (figure 17a),
whereas the reaction rate vector is in a 3-dimensional ‘principal subspace’ (figure 17c).

In simulations of combustion processes, it is convenient if the d-dimensional attracting
manifold can be parameterized by d species. This requires that the mapping be one-to-one; and,
to be well conditioned, it required that the largest angle between tangent space of the attracting
manifold and the d species vectors be small (compared to π/2). For the chemical system, after
determining the dimension of the attracting manifold and identifying the ‘principal subspace’
based on the sensitivity matrices, we can study the angle between the species vector and the
‘principal subspace’, and choose the species which have the smallest angle with the ‘principal
subspace’ as the parameters. As shown in figure 18, after the initial transient, this chemical
system approaches a one-dimensional attracting manifold and H2O is a good parameter to
parameterize this one-dimensional attracting manifold. (It is obvious in figure 14 that H2O is
a good parameter for the one-dimensional attracting manifold for the hydrogen systems.)

4.5 Discussion

The method proposed above can be used to determine the dimensionality of the attracting
manifold along the reaction trajectory of a temporal chemical kinetic system starting from one
particular initial composition. The method is sound no matter whether the initial composition
is close to chemical equilibrium or not in the composition space. In the context of dimension
reduction of chemistry over the whole realizable region, one can determine the minimum
dimensionality of the attracting manifold required by using this method to perform dimension
analysis for the trajectories starting from some edge in the realizable region. One such edge
identified by Ren et al. in ref. [29] is the constrained equilibrium edge.

Also the method proposed is based on a homogeneous system without considering flow
and molecular transport processes (i.e. isolating the chemical reaction from other processes).
However, most interesting reacting flow problem involve the coupling of chemical kinetics
with physical processes like flow and molecular transport. The physical processes can be
viewed as disturbances of the chemical reaction system. In this case, besides the chemical
time scales, the system has characteristic time scales of the physical processes. Of particular
interest is the characteristic molecular diffusion time, which can serve as the threshold value
to determine the minimum dimension of the attracting manifold required for the system.
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5. Conclusion

In this work, we study the geometry of the reaction trajectories in the composition space for
the autoignition of both H2/air and CH4/air mixtures. For these chemical systems, by studying
the tangent bundle, we reveal that the dimension of the affine space containing the trajectory
is much smaller than the dimension of the reactive subspace. For H2/air with the Mueller
mechanism, for all the cases studied, the dimension of the affine space is about 4, whereas the
the dimension of the reactive subspace is 6. For CH4/air, the dimensions of the affine spaces
for GRI3.0 with and without nitrogen chemistry are about 11 and 8, respectively, whereas the
dimensions of the reactive subspaces are 48 and 31, respectively. Large curvature along the
trajectory is explained in terms of the chemical kinetics.

By studying the eigenvalues of the Jacobian along the trajectories in the composition space,
we observe a wide range of time scales in the chemical dynamic system even at low tempera-
tures, which provides direct support for the existence of low-dimensional attracting manifolds
in the composition space.

The geometrical significance of sensitivity matrices is explored in this paper. Along the
trajectory, at different times, in the reactive subspace, the initial infinitesimal ball centered at
the initial point is mapped to a hyper-ellipsoid with the information of principal axes given
by the sensitivity matrices. Based on the sensitivity matrices, a new method is proposed to
determine the dimension of the attracting manifolds and identify the ‘principal subspace’
along the reaction trajectory. Compared with other existing methods that determine the local
dimension of the attracting manifold for the chemical system, this new method is global in
the sense that it is based on the sensitivity matrices instead of the local Jacobian matrices.

The method is applied to the autoignition of both H2/air and CH4/air mixtures. Studies
also show that after the initial transient, the dimension of the attracting manifold is much
smaller than the dimension of the full composition space. Considering nitrogen chemistry in
the chemical dynamic system increases the dimension of the attracting manifold as expected
(by about 4 to 9); however, the number of dimensions increased in the attracting manifold is
smaller than the number of dimensions added to the system by nitrogen chemistry (which is
17). Moreover the behaviour is highly dependent on the location in the composition space.
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