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Abstract

In combustion modeling, it is desirable to know how sensitive the predictions are to certain parameters in the
model formulation. In this study, we develop a method for accurate and efficient sensitivity calculation in PDF
modeling of turbulent combustion. This method enables the calculation of the sensitivities for each particle in
PDF particle methods. These particle-level sensitivities are very revealing. They allow one to examine the particles
with the largest sensitivities, and the corresponding compositions reveal the sensitive region of composition space.
By ensemble averaging the particle sensitivities, sensitivities of mean (and conditional mean) quantities can be
extracted. The method is applied to the PDF calculations of the oxidation of diluted hydrogen in a partially stirred
reactor (PaSR) using three different mixing models. It is demonstrated that the method is capable of accurately
calculating the sensitivities at the particle level. The study also illustrates the qualitatively different behavior of the
three mixing models as revealed by both the particle composition and the particle sensitivities. The sensitivities
of mean (and conditional mean) quantities reveal the controlling processes in a PaSR. They confirm that when
combustion is controlled by mixing, the combustion is insensitive to chemistry; when the system is close to global
extinction, the combustion is extremely sensitive both to mixing and to chemistry.
© 2007 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Modeling combustion phenomena requires the
knowledge of chemical kinetics, transport properties,
turbulence/combustion model parameters, etc. as in-
put parameters, and produces predictions (such as
species concentration profiles, flame speed, etc.) as
the output, with the input and the output connected
by the governing model equations. Often it is desir-
able to know how sensitive the predictions are to cer-
tain parameters in the model formulation. Sensitivity
analysis is a formal approach to examine quantita-
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tively the relationship between the parameters and
the output of the model. Since it was introduced to
combustion research, it has been widely used in un-
derstanding and improving chemical kinetic models,
in uncertainty analysis, and in gaining insight into the
model performance. Examples of the application of
sensitivity analysis in chemical kinetics and laminar
flames can be found in [1–9]. For example, sensitivity
analyses have been performed on elementary reaction
rates. Thus, without solving the problem repetitively
with different values for the rate constants, sensitiv-
ity analysis allows one to understand how the model
responds to changes in the rate parameters. It also
provides insight about how important certain reaction
pathways are to the model’s predictions.

0010-2180/$ – see front matter © 2007 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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In the fields of chemical kinetics and laminar
flames, tools and softwares for sensitivity analysis are
well developed. For example, a series of computer
codes (e.g., SENKIN [10], CHEMKIN [11], CAN-
TERA [12]) have been developed. These codes have
been used as a routine procedure in kinetic modeling
and sensitivity analysis for homogeneous gas phase
reactions.

For turbulent combustion calculations, it would
be equally valuable to perform sensitivity analysis,
but the tools are less well developed. For example,
in modeling turbulent reactive flows based on PDF
methods [13], it is valuable to know the sensitivity of
the predictions to the mixing model constant as well
as to other parameters. In the past, somewhat crude
analyses have been performed to evaluate sensitivi-
ties by repeating a calculation with a single parameter
changed by a small amount. This divided difference
technique has been used to show the strong sensitiv-
ity of some PDF calculations of turbulent flames to
the temperature of a pilot stream [14,15], to a reaction
rate [16], and to the mixing model constant Cφ gov-
erning the rate of turbulent mixing [14,17–19]. How-
ever, using divided differences in the Monte Carlo
methods used to solve the PDF equations is costly and
inefficient, as the statistical errors need to be reduced
so as to be small compared to the differences in the
two calculations.

In this study, we develop a method for the accu-
rate and efficient calculation of sensitivities in PDF
modeling of turbulent combustion. This method is
demonstrated in the PDF calculation of a partially
stirred reactor (PaSR) burning a hydrogen–air mixture
with three different mixing models: interaction by ex-
change with the mean (IEM or LMSE) model [20,21];
the modified Curl mixing (MC) model [22]; and the
Euclidean minimum spanning tree (EMST) model
[23,24]. With the IEM model, accurate sensitivities
can be obtained by other means and hence can be used
to validate the accuracy of the method.

The remainder of the paper progresses as fol-
lows. In Section 2, the mathematical formulation of
the sensitivity calculation in PDF particle methods is
outlined. In Section 3, the sensitivity calculations in
a PaSR are described. Results and comparisons are
shown in Section 4. Conclusions are drawn in Sec-
tion 5.

2. Formulation

2.1. Sensitivity equation

In a PDF calculation of a reactive flow involving
ns species, with the Monte Carlo techniques [13], the

distribution of compositions is represented by an en-
semble of N particles. The composition φ(n) of the
nth particle consists of the ns species-specific moles
(denoted by z, kmol/kg, mass fractions divided by
the corresponding species molecular weights) and en-
thalpy, i.e., nφ = ns + 1 quantities. In the PDF calcu-
lation, the change in particle composition due to reac-
tion is treated exactly, while molecular mixing is rep-
resented by mixing models (e.g., IEM, MC, EMST)
which prescribe the evolution of the particles in com-
position space such that they mimic the change in the
composition of a fluid particle due to molecular mix-
ing in a turbulent reactive flow. We consider a set a =
{a1, a2, . . . , ana } of na sensitivity parameters. These
could be the temperature of an inflowing stream; a
species mass fraction in an inflowing stream; a pre-
exponential factor or an activation energy in a reaction
rate; or the mixing model constant. In a fuller no-

tation, φ
(n)
i

(t;a) denotes the ith composition of the
nth particle at time t for a PDF calculation performed
with the sensitivity parameters having the values a.
The nφ ×na sensitivity matrix W(n)(t;a) (for the nth
particle at time t) is then defined by

(1)W
(n)
ij

(t;a) ≡ ∂φ
(n)
i

(t;a)

∂aj
.

In general, in the PDF calculation of a reactive
flow, the evolution equation for φ(n)(t;a) is given by

dφ
(n)
i

(t;a)

dt
= Si

(
φ(n)(t;a);a

)
(2)+ CφM(n)

({
φi(t;a)

})
,

where S is the rate of change due to chemical reac-
tions, Cφ is the mixing model constant, and M(n)

denotes the effect of the mixing model, which de-
pends on the ensemble {φ} of particle compositions.
For the IEM model we have

(3)M(n)
({

φi(t;a)
}) = 1

2τt

(
φ̃i − φ

(n)
i

)
,

where φ̃ is the Favre mean composition (i.e., the en-
semble average of particle compositions {φ}) and τt is
the characteristic turbulence time scale. To compute
the sensitivity matrix W(n)(t;a) for each particle, we
make the following assumptions:

• We neglect the change in density ρ(n)(t) due to
changes in the parameters, i.e., we assume that
∂ρ(n)(t)/∂aj is negligible. Hence the velocity
and turbulence fields are (by assumption) inde-
pendent of infinitesimal changes in a.

• We neglect nonlinear effects in the mixing mod-
els. The IEM (see Eq. (3)) and MC mixing mod-
els are linear in the composition, as is the under-
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lying physics. In the MC model, particle compo-
sition evolves by processes that are linear in the
composition (see [22] for more details).
The EMST model is a more complicated particle-
interaction model, where the change in particle
composition is determined by particle interac-
tions along the edges of a Euclidean minimum
spanning tree constructed on the ensemble of par-
ticles in composition space. In the model, after
the construction of the EMST, the particle com-
position evolves according to a set of linear equa-
tions (see [23] for more details). However, the
construction of the EMST is based on the com-
position, which involves nonlinear operations. In
this regard, the EMST model is nonlinear. The as-
sumption, then, is that the topology of the EMST
(i.e., the construction of the EMST) is unaffected
by infinitesimal changes in a.

With the above assumptions, differentiating Eq. (2)
with respect to aj , we obtain the following evolution

equation for the sensitivities W(n)(t;a):

dW
(n)
ij

dt
= J

(n)
ik

W
(n)
kj

+ V
(n)
ij

+ ∂Cφ

∂aj
M(n)

({φi}
)

(4)+ CφM(n)
({Wij }),

where the summation convention applies and J(n) is
the nφ × nφ Jacobian matrix

(5)Jij ≡ ∂Si(φ;a)

∂φj
,

and Vij is the sensitivity of the reaction source term
to a

(6)Vij ≡ ∂Si(φ;a)

∂aj
.

In Eq. (4), the last two terms represent the effect of
mixing on particle sensitivities, which depend on the
ensemble {φ} of particle compositions and the ensem-
ble {W} of particle sensitivities, respectively. In gen-
eral, the matrices J and V in Eq. (4) can be accurately
and efficiently evaluated using automatic differentia-
tion (e.g., by using ADIFOR [25]). (For special cases,
analytical expressions can be obtained for J and V.)

In the computational implementation of the meth-
od, for the nth particle, the sensitivity matrix W(n)(t)

is represented (in addition to the composition φ(n)(t)),
which can result in a significant increase in storage re-
quirements (i.e., by a factor of na). The particle prop-
erties φ(n)(t) and W(n)(t) then evolve by Eqs. (2)
and (4) with appropriate initial and boundary condi-
tions. If aj is a model parameter, then the appropriate
boundary condition is Wij = 0. But if aj corresponds
to the value of φi on the boundary considered, then
the boundary condition is Wij = 1.

One thing worth mentioning is that the above for-
mulation enables sensitivity calculation for each par-
ticle. These particle-level sensitivities are very reveal-
ing. For example, in a region of significant local ex-
tinction in turbulent combustion, they allow one to ex-
amine the particles with the largest sensitivities, and
the corresponding compositions reveal the sensitive
region in the composition space. Moreover, sensitivi-
ties of mean (and conditional mean) quantities can be
extracted by ensemble averaging the particle sensitiv-
ities.

Notice that the sensitivity parameters and the var-
ious output quantities of the combustion model may
have different units; for example, rate coefficients be-
longing to reactions of different orders have different
units. In such cases, the elements of the sensitivity
matrix W are incomparable. The results are most eas-
ily understood in terms of normalized sensitivities,
such as the nondimensional logarithmic sensitivities

W̃
(n)
ij

(t;a) ≡ aj

φn
i
(t;a)

∂φ
(n)
i

(t;a)

∂aj

(7)= aj

φn
i

W
(n)
ij

(t;a)

and the dimensional semilogarithmic sensitivities

(8)Ŵ
(n)
ij

(t;a) ≡ aj

∂φ
(n)
i

(t;a)

∂aj
= ajW

(n)
ij

(t;a),

where the summation convention does not apply. The
logarithmic sensitivity W̃ij represents the fractional

change in composition φ
(n)
i

caused by an infinitesi-
mal fractional change of the parameter aj .

2.2. Splitting scheme

The evolution equations for the particle composi-
tion, Eq. (2), and the particle sensitivities, Eq. (4), can
be accurately integrated by numerical schemes based
on an operator-splitting approach [26,27]. These
schemes split the governing equation into subequa-
tions, with each having a single operator capturing
only a portion of the physics present, and then they
time integrate each separately and sequentially to ad-
vance to the next time step. Equations (2) and (4) can
be advanced from t over a time step �t to t + �t

through a Strang splitting scheme [28] as follows:

(1) Substep 1. We consider the reaction source terms.
The system to be solved (written in a simplified
matrix notation) over a time step �t/2 is

(9)
dφ(n)

dt
= S

(
φ(n)

)
,

(10)
dW(n)

dt
= J

(
φ(n)

)
W(n) + V

(
φ(n)

)
.
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The initial conditions for φ(n) and W(n) are
taken to be the final state from the previous time
step. At the completion of this substep, the final
state of the system serves as the initial conditions
for the next substep. In this study, we directly
solve Eqs. (9) and (10) using the ODE solver
DDASAC [29]. The direct integration of Eqs. (9)
and (10) for each particle at each time step in
the PDF calculation of real turbulent flames is
computationally inefficient and costly. An effi-
cient alternative for solving Eqs. (9) and (10) is
to use a storage–retrieval method such as in situ
adaptive tabulation (ISAT) [30]. The efficient so-
lution for Eqs. (9) and (10) via ISAT is discussed
in Section 2.3.

(2) Substep 2. The system to be solved over a time
step �t (from t to t + �t) is

dφ
(n)
i

dt
= CφM(n)

({φi}
)
,

(11)

dW
(n)
ij

dt
= CφM(n)

({Wij }) + ∂Cφ

∂aj
M(n)

({φi}
)
.

The initial conditions for φ(n) and W(n) are
taken to be the final state from the previous sub-
step. If the mixing model constant Cφ is not in-
cluded as one of the sensitivity parameters, then
∂Cφ/∂aj is zero and the last term in the sensitiv-
ity equation is absent. For this case, the system
is solved simply by applying the mixing model
to each component of the particle composition
and the particle sensitivities over a time step �t .
The legitimacy of this simple procedure stems
from the linearity of the mixing operation. Oth-
erwise, if Cφ is one of the sensitivity parameters,
let a1 = Cφ , so that ∂Cφ/∂aj = δ1j . The parti-
cle compositions and the particle sensitivities to
other sensitivity parameters except Cφ are still
obtained simply by applying the mixing model to
each component of them over a time step �t . The
sensitivities to the mixing model constant Cφ are
computed as follows.
The governing equation for the sensitivities to
Cφ during this substep is

(12)
dW

(n)
i1

dt
= CφM(n)

({Wi1}) + M(n)
({φi}

)
.

A second-order accurate solution to Eq. (12) can
be obtained by the following three steps:
• Substep 2(i): Integrate half of the term

M(n)({φi}) in Eq. (12) over a time step �t

from t to t + �t to yield simply

W
∗(n)
i1 = W

(n)
i1 (t)

+ 1

2Cφ

t+�t∫
t

CφM(n)
({φi}

)
dt

(13)= W
(n)
i1 (t) + 1

2Cφ

(
�φ

(n)
i

)
mix,

where W
(n)
i1 (t) is the final state from the pre-

vious substep (Substep 1), and (�φ(n))mix de-
notes the change in composition due to mixing
in the current substep (Substep 2). (Note that
the integrand in the first line of Eq. (13) is the

rate of change of φ
(n)
i

given by Eq. (11).)
• Substep 2(ii): Apply the mixing model to each

component of W
∗(n)
i1 over a time step �t .

We denote the sensitivities after mixing by

W
∗∗(n)
i1 .

• Substep 2(iii): Integrate the other half of the
term M(n)({φi}) over the time step from t to
t + �t , to yield, simply,

W
(n)
i1 (t + �t) = W

∗∗(n)
i1

(14)+ 1

2Cφ

(
�φ

(n)
i

)
mix.

(3) Substep 3. A substep identical to Substep 1 is
performed, taking as the initial conditions the fi-
nal state of the system from Substep 2. At the
completion of this substep, the final state of the
system is the solution at the end of the time step
and serves as the initial conditions for the next
time step.

As demonstrated in Section 4.1, the above splitting
scheme is second-order accurate in time for both com-
position and sensitivities.

2.3. Efficient implementation of the reaction substep

In this section, we show how Eqs. (9) and (10) for
the reaction substep can be solved efficiently using in
situ adaptive tabulation (ISAT) [30]. In PDF calcula-
tions without sensitivity analysis, during the reaction
substep, the governing equation is given by Eq. (9).
Given the initial composition φ(t0) at time t0, the re-
action mapping φ(t0 + �t) after a time step �t can
be efficiently computed by the ISAT algorithm. That
is, the composition φ(t0 + �t) at the end of the time
step is tabulated as a function of the initial compo-
sition φ(t0). Table entries are added as needed (for
possible later use) by using DDASAC to solve Eq. (9)
for φ(t0 + �t), in conjunction with the equation

(15)
dA(t)

dt
= J

(
φ(t)

)
A(t),

from the initial condition A(t0) = I to obtain the nφ ×
nφ matrix of sensitivities with respect to the initial
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composition. The matrix A(t0 + �t) is stored in the
ISAT table and is used in the construction of a linear
approximation for φ(t0 + �t).

With a very simple extension, the ISAT algorithm
can be used to compute the sensitivity matrix W(t0 +
�t) efficiently. This is based on the observation that
the solution to Eq. (10) can be written as

(16)W(t) = W0(t) + A(t)W(t0),

where W(t0) is the initial condition and W0(t) is
the solution to Eq. (10) from the initial condition
W0(t0) = 0. Notice that W0(t) depends solely on
φ(t0) and t . The sensitivity matrix after a time step
�t is

W(t0 + �t) = W0(t0 + �t)

(17)+ A(t0 + �t)W(t0).

While W(t0 + �t) depends on both φ(t0) and W(t0),
a key observation is that W0(t0 + �t)—like φ(t0 +
�t) and A(t0 + �t)—depends solely on φ(t0). Thus,
when an entry is added to the ISAT table, W0(t0 +
�t) is computed using DDASAC and stored in the
table. Then, for each particle on each time step, the
appropriate values of A(t0 + �t) and W0(t0 + �t)

are retrieved from the ISAT table and W(t0 + �t) is
evaluated by Eq. (17). The additional computational
work (beyond that needed to compute φ(t0 + �t)) is
simply the matrix–matrix multiplication AW which
requires of order nan

2
φ operations—at most a factor

of na more than is already required by ISAT for com-
position computation.

In summary, with a simple extension to ISAT, the
nφ × na sensitivity matrix W can be efficiently com-
puted for each particle. Both the memory and the CPU
time per time step are greater by at most a factor of na
compared to the computation without sensitivities.

3. Sensitivity calculations in a partially stirred
reactor (PaSR)

To demonstrate the above method, we consider the
sensitivity calculation in the PDF calculations of the
oxidation of a diluted H2/air mixture in an adiabatic
PaSR. Due to its simplicity, the PaSR has been widely
used to investigate combustion models and numerical
algorithms [31–34]. It is similar to a single grid cell
embedded in a large PDF computation of turbulent
combustion.

In this study, the pressure is atmospheric through-
out and the PaSR is continuously fed by two inlets,
which inject cold nonpremixed fuel and oxidant into
the reactor at the mass flow rates ṁfu and ṁox, re-
spectively. In our simulations, the two inflow streams
are the fuel stream (H2 and N2, γ :1 by volume,

T = 305 K) and the oxidant stream (N2 and O2,
79:21 by volume, T = 305 K). In the calculations,
the hydrogen-to-nitrogen ratio of the fuel stream
is γ = 1. The inflow mass fraction of the oxidant
stream, P , is defined as P = ṁox/[ṁox + ṁfu]. In
our simulations, the inflow mixture yields stoichiome-
try (with stoichiometric mixture fraction ξst = 0.304)
and therefore P = 0.696. The composition φ con-
sists of species-specific moles (kmol/kg) and en-
thalpy and it determines the thermochemical state
of the mixture. The compositions of the inflow ox-
idant and fuel streams are denoted by φ0 and φ1,
respectively. Inside the reactor, reaction occurs and
the mean thermochemical properties are assumed to
be statistically spatially homogeneous, but the fluid
is imperfectly mixed at the molecular level. Simulta-
neously, the resulting mixture is withdrawn from the
reactor at a rate equal to the total mass inflow rates,
i.e., ṁ = ṁox + ṁfu; hence the mass m of fluid inside
the reactor is constant.

The combustion process in a PaSR is character-
ized by three time scales: the residence time τres, the
specified turbulence time scale τt, and the character-
istic chemical time scale τc. The residence time τres
is defined as τres = m/ṁ and the chemical time scale
τc is determined by the chemical mechanism. Here
the detailed mechanism [35] for hydrogen oxidation,
which involves 9 species and 19 reactions, is incor-
porated into the calculations. The mixing time τmix,
which determines the decay of the variance of com-
position, is related to the turbulence time τt by the
mixing model constant Cφ through τmix = τt/Cφ . In
the PaSR, the inflow mixtures are nonpremixed cold
fuel and cold oxidant. As shown in [34], global ex-
tinction occurs for a fixed value of τmix/τres when
τres is reduced to a point at which chemical reactions
cannot be sustained. Also, global extinction occurs as
τmix increases (for a fixed value of τres) due to in-
sufficient mixing. In this study, we consider the first
circumstance. With a fixed value of τt/τres = 0.5,
calculations with decreasing τres are performed. In
the following, we present the calculation results with
Cφ = 2.0, i.e., a fixed value of τmix/τres = 0.25.
Qualitatively similar results are obtained (not shown)
with other specifications of Cφ (e.g., Cφ = 1 and 3),
which correspond to different values of τmix/τres.

For demonstration, we consider the sensitivities of
the PDF calculation to the mixing model constant Cφ ,
the hydrogen-to-nitrogen ratio of the fuel stream γ ,
and the pre-exponential factors for the following three
chain reactions:

R1 O2 + H � OH + O,

R2 H2 + O � OH + H,

(18)R3 H2 + OH � H2O + H.
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(The sensitivity to Cφ essentially contains the same
information as the sensitivity to the mixing time τmix
since τmix is inversely linearly proportional to Cφ by
τmix = τt/Cφ .) Hence the sensitivity parameters con-
sidered are a = {Cφ;γ ;α1;α2;α3}, where α1, α2 and
α3 are the pre-exponential factors of reactions R1, R2,
and R3, respectively.

The evolution equations for particle composition
φ(n)(t;a) and particle sensitivities W(n)(t;a) are
given by Eqs. (2) and (4). The Jacobian matrix J in
Eq. (4) is obtained by automatic differentiation us-
ing ADIFOR. The matrix V in Eq. (4) is determined
as follows. The rate of change S can be written as
a summation of the contributions from all reactions
involving the ith species

(19)Si =
nr∑

k=1

νikωk(αk),

where nr is the number of elementary reactions, and
αk , νik , and ωk are the pre-exponential factor, the
overall stoichiometric coefficients, and the overall re-
action rate of the kth reaction, respectively. For the
three chain reactions considered, since ωk is linear in
αk , the sensitivities of the reaction source term to the
pre-exponential factors are given by

(20)
∂Si(φ;a)

∂αk
= 1

αk
νikωk,

where the summation convention does not apply. The
sensitivities of the reaction source term to Cφ and to
γ are

(21)
∂Si(φ;a)

∂Cφ
= 0,

∂Si(φ;a)

∂γ
= 0.

In the following, we show how the particle compo-
sition and particle sensitivities are accurately solved
in fractional steps. In the stochastic simulation of
the PaSR based on the Monte Carlo methods, at any
time t , the PaSR consists of an even number N of
particles, the nth particle having composition φ(n)(t),
and its age in the PaSR being denoted by s(n)(t).
In our simulations, at any time t , the PaSR consists
of an even number N of particles and each particle
represents a mass m/N of fluid. With �t being the
specified time step, at the discrete times k�t (k inte-
ger) events occur corresponding to inflow and outflow,
which can cause the particle composition φ(n)(t) and
sensitivities W(n)(t) to change discontinuously. Be-
tween these discrete times, the particle composition
and sensitivities evolve by the mixing and reaction
processes. The procedure for solving the mixing and
reaction processes has been given in Section 2.2. The
inflow/outflow is now described in more detail.

Inflow/outflow. Choose Nreplaced(= N ×�t/τres)

particles randomly with replacement from the ensem-
ble of N particles, and replace them with an equal

number of particles from the inflow streams. For the
composition of the fuel stream φ1, all the species-
specific moles are zero except the specific moles of
species H2 and N2, which are given by

zH2 = γ

γwH2 + wN2

,

(22)zN2 = 1

γwH2 + wN2

,

where wH2 and wN2 are the molecular weights of
species H2 and N2. The sensitivities (to the sensitiv-
ity parameters {Cφ;γ ;α1;α2;α3}) for the incoming
particles are set to zero, except that for the incoming
particles from the fuel stream the sensitivities of the
following quantities to γ are specified as

∂zH2

∂γ
= wN2

(γwH2 + wN2 )
2
,

(23)
∂zN2

∂γ
= − wH2

(γwH2 + wN2)
2
,

which follows from Eq. (22).
In the calculations, at any time t , the PaSR con-

sists of N = 1000 particles. The initial condition is
that all particles are in chemical equilibrium with the
stoichiometric mixture fraction ξst (= 0.304). The ini-
tial sensitivities are zero for all particles. The time
step �t is chosen to be 1

40 min(τres, τt). The ODE

error tolerances for DDASAC are εa = 1 × 10−12

for absolute error and εr = 1 × 10−9 for relative er-
ror. The numerical settings for N , �t , εa, and εr are
sufficient to ensure numerical accuracy for both com-
position and sensitivity. In the following section, we
present the results when the PaSR has reached statis-
tical stationarity. Some of the results presented below
involve conditional Favre averages. These are denoted
by 〈•|η〉ρ ≡ 〈•ρ|η〉/〈ρ|η〉, where ρ is density and η

is the sample-space variable corresponding to mix-
ture fraction ξ . The range of ξ used to estimate the
quantities conditional on the mixture being stoichio-
metric is from 0.254 to 0.354. In practice, 〈•|ξst〉ρ is
obtained by averaging over all particles with 0.254 �
ξ � 0.354.

4. Results and discussion

In this section, we first validate the method given
in Section 2 for calculating sensitivities in PDF cal-
culations. Then we investigate and compare the sen-
sitivities from different mixing models.

4.1. Validation of the methodology for sensitivity
calculation in PDF methods

With the IEM mixing model, the evolution equa-

tion for φ
(n)
i

(t;a) in the PaSR is
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Fig. 1. Favre mean and variance of mixture fraction and their sensitivities to the mixing model constant Cφ for the PaSR in the

statistically stationary state, with τres = 3 × 10−4 s and τt = 1.5 × 10−4 s. Black curve: instantaneous predictions from the PDF
calculation; dashed line: exact values given by Eqs. (27)–(29); black line: time-averaged predictions from the PDF calculation
(averaged from 0.0024 s to 0.0048 s, i.e., eight residence times).

(24)
dφ

(n)
i

dt
= Si(φ

(n);a) − Cφ

φ
(n)
i

− φ̃i

2τt
,

where φ̃ is the Favre mean composition (known from
the ensemble of particle compositions {φ}). The cor-
responding evolution equation for the sensitivities is

dW
(n)
ij

dt
= J

(n)
ik

W
(n)
kj

+ ∂Si(φ
(n);a)

∂aj
− δj1(φ

(n)
i

− φ̃i )

2τt

(25)− Cφ

W
(n)
ij

− W̃ij

2τt
,

where the summation convention applies, and W̃ is
the matrix of Favre mean sensitivities (known from
the ensemble of particle sensitivities {W}). With the
IEM model, accurate sensitivities can be obtained by
other means as shown below, and hence these accu-
rate sensitivities can be used to validate the present
method for sensitivity calculation in PDF methods.

With the IEM model, when a statistical stationary
solution is reached in the PaSR, the transport equation
for the PDF of mixture fraction, p̃(η), is

0 = − p̃(η)

τres
+ 1

τres

[
Pδ(η) + (1 − P)δ(1 − η)

]
(26)+ ∂

∂η

[
Cφ

2τt
(η − ξ̃ )p̃(η)

]
.

As shown in [34], by multiplying both sides of
Eq. (26) by η and integrating from −∞ to ∞, the
Favre mean of mixture fraction ξ̃ in the statistically
stationary state can be obtained as

(27)ξ̃ = 1 − P.

By multiplying both sides of Eq. (26) by (η − ξ̃ )2 and
integrating from −∞ to ∞, the variance of mixture

fraction ξ̃ ′′2 in the statistically stationary state can be
obtained as

(28)ξ̃ ′′2 = P(1 − P)

1 + Cφτres/τt
.

Hence the sensitivities of the Favre mean and variance
of mixture fraction to the mixing model constant are

∂ξ̃

∂Cφ
= 0,

(29)
∂ξ̃ ′′2

∂Cφ
= − P(1 − P)τres/τt

(1 + Cφτres/τt)2
.

Fig. 1 shows the exact (given by Eqs. (27)–(29)
and calculated Favre mean and variance of mixture
fraction and their sensitivities to the mixing model

constant Cφ . The calculated values of ξ̃ , ξ̃ ′′2, and
their sensitivities are extracted from the ensemble of
particle compositions {φ} and particle sensitivities
{W} on each time step. As may be seen from the fig-
ure, the instantaneous predictions fluctuate around the
exact values due to the finite number of particles used
in the PDF calculation. Time averaging (over a time
2.4 × 10−3 s, or, equivalently, 640 time steps) is used
to estimate the means with reduced statistical error.
As may be seen from Fig. 1, the calculated means are
in good agreement with the exact values. The remain-
ing differences are caused by numerical errors such as
statistical and splitting errors.

With the IEM model, when statistical stationarity
is reached, the mean composition φ̃ and the mean
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Fig. 2. Temperature and sensitivities of different species
with respect to Cφ against mixture fraction η with τres =
3 × 10−4 s and τt = 1.5 × 10−4 s. Gray dots: scatterplot
obtained from the PDF calculation; black line: prediction
from Eqs. (24) and (25) with the initial conditions being
φ(t = 0) = φ0 and W(t = 0) = 0 (or φ(t = 0) = φ1 and
W(t = 0) = 0), the mean composition and sensitivities φ̃

and W̃ being extracted from the PDF calculation.

sensitivity W̃ are constant. Hence, with the knowl-
edge of the air or fuel stream the particle originates
from, the particle composition φ(n) and sensitivities
W(n) are unique functions of its age s(n) in the PaSR.
With the knowledge of φ̃ and W̃, the exact compo-
sition and sensitivities can be obtained by integrat-
ing Eqs. (24) and (25) with the initial conditions be-
ing {φ(n)(t = 0) = φ0,W(n)(t = 0) = 0} or {φ(n)

(t = 0) = φ1,W(n)(t = 0) = 0} (depending on the
air or fuel stream the particle originates from). These
observations provide another, independent means of
computing φ(n) and W(n), which we use as a further
test of the correctness of the method. In this study,
we take approximations to φ̃ and W̃ from the PDF
calculation. (There may be small differences between
the approximations and exact values of φ̃ and W̃ due
to the numerical errors in the PDF calculation.) With
these approximated means, composition and sensitiv-
ities are obtained by integrating Eqs. (24) and (25).
The composition and sensitivities obtained from this
approach should agree well with the composition and
sensitivities obtained from the PDF calculation. This
is confirmed in Fig. 2, which shows the temperature
and sensitivities of different species with respect to
Cφ obtained from the two different methods. As may
be seen from the figure, relative to their maximum ab-
solute values, the maximum difference between the
semilogarithmic sensitivities calculated by the two
different methods is 7%. Hence the present method
is capable of accurately calculating the sensitivities at
the particle level. The small differences are caused by
numerical errors in the PDF calculation and the error

in the means φ̃ and W̃ used in integrating Eqs. (24)
and (25).

As mentioned, with the IEM model, when statis-
tical stationarity is reached, the particle composition
and sensitivities can be obtained with high accuracy
by directly integrating Eqs. (24) and (25) forward
in time using an ODE solver (with the mean com-
position and sensitivities φ̃ and W̃ being extracted
from the PDF calculation). To demonstrate the accu-
racy of the splitting scheme described in Section 2.2,
Eqs. (24) and (25) are alternatively solved using the
splitting scheme. In each of the substeps, the corre-
sponding governing equations are solved accurately
so that (over the range of �t considered) the only
significant numerical error is the splitting error. We
define

εz(�t) ≡ 1

max |zDI(t)| max
(∣∣zDI(t) − zSP(t,�t)

∣∣),
(30)for 0 < t < tend,

to be the measure of the error between the accurate
species-specific moles zDI(t) from the direct integra-
tion of the full coupled equations (Eqs. (24) and (25)),
and the solution zSP(t,�t) from the splitting-scheme
with time step �t . (For the results presented below
tend = 2 × 10−3 s.) We define

εw(�t) ≡ 1

max |UDI(t)| max
(∣∣UDI(t) − USP(t,�t)

∣∣),
(31)for 0 < t < tend

(with Ui = ∂zi/∂ lnCφ ) to be the measure of the error
between the accurate sensitivities from the direct in-
tegration of Eqs. (24) and (25) and the solution from
the splitting scheme with time step �t . Fig. 3 com-
pares the sensitivities from the direct integration and
the splitting scheme with different time steps. The
initial conditions are φ(t = 0) = φ1 and W(t = 0)

= 0. As shown in the figure, the difference is small.
Fig. 4 shows the numerical errors in both composi-
tion and sensitivities against the time step. The errors
decrease with �t , essentially as �t2, thus illustrat-
ing the second-order accuracy of the splitting scheme.
With �t/τt = 0.025, the relative error incurred in the
sensitivities is less than 4 × 10−4. (Recall that in this
study the time step �t in the PDF calculations is cho-
sen to be 0.025 min(τres, τt). For all the results shown,
τres > τt.)

4.2. Sensitivities in PDF calculations with the IEM
model

In mixture fraction space, Fig. 5 shows the scat-
ter plots of particle temperature T , particle specific
moles of H2O, sensitivities of H2O with decreasing
values of τres and a fixed ratio of τt/τres = 0.5. As
may be seen from the scatterplot of H2O, for the
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Fig. 3. Comparison between the accurate direct integration
of Eqs. (24) and (25) and the splitting scheme (see Section
2.2) with different time steps. Figure showing the sensitivity
of H2O with respect to Cφ against time. The initial con-

ditions are φ(t = 0) = φ1 and W(t = 0) = 0, τt = 1.5 ×
10−4 s, and the mean composition and sensitivities φ̃ and
W̃ are extracted from the PDF calculation.

Fig. 4. Demonstration of the accuracy of the splitting scheme
in Section 2.2 for solving the particle composition equa-
tion (24) and the particle sensitivities equation (25) with
τt = 1.5 × 10−4 s. The initial conditions are φ(t = 0) = φ1

and W(t = 0) = 0. The mean composition and sensitivi-
ties φ̃ and W̃ are extracted from the PDF calculation. Fig-
ure showing the splitting error in composition εz (defined
by Eq. (30)) and the splitting error in sensitivities εw (de-
fined by Eq. (31)) against time step �t . Also shown are the
dashed line of slope 2 corresponding to second-order accu-
racy (ε(�t) ∼ �t2).

IEM model, the evolution of particle composition is
consistent with the following picture: particles cor-
responding to composition values outside the reac-
tion zone relax toward the mean composition and are
away from chemical equilibrium; particles in the re-
action zone react back toward their equilibrium values
due to reaction. The particle sensitivities depend on
the corresponding composition’s location in the mix-

ture fraction space. The most sensitive region lies on
the fuel-lean and fuel-rich boundaries of the reaction
zone, not on the stoichiometric mixture fraction. With
the decrease of residence time toward global extinc-
tion, the particle temperature and the specific moles
of H2O decrease consistently. Moreover, the fuel-lean
and fuel-rich boundaries of the reaction zone move
toward stoichiometry. Correspondingly, the most sen-
sitive region in the composition space moves toward
stoichiometry. Also, with the decrease of the resi-
dence time, the sensitivities both to the mixing time
and to the rates of the three chain reactions increase.
Another thing worth mentioning is that the shapes
of the sensitivities to the rates of the three chain re-
actions in the composition space are similar. Similar
observations can be made from the scatterplots of rad-
icals such as OH as shown in Fig. 6. Hence, as demon-
strated, the sensitivities obtained from the PDF cal-
culations allow one to examine the particles with the
largest sensitivities, and the corresponding composi-
tions reveal the sensitive region of composition space.
Also, the sensitivities allow one to study the sensitiv-
ities in the region of interest in composition space.

By ensemble averaging the particle sensitivities,
sensitivities of mean quantities can be extracted.
Figs. 7 shows sensitivities of mean species-specific
moles against residence time. As expected, for large
residence times, the mean species-specific moles are
relatively insensitive to the rates of the chain reac-
tions, i.e., insensitive to chemistry. In contrast, the
system is sensitive to the mixing model constant,
i.e., sensitive to mixing. With the decrease of resi-
dence time toward global extinction, sensitivities of
the mean species-specific moles increase (in magni-
tude). This observation can also be made from the
scatter plots shown in Fig. 5. When the system is
close to global extinction, the combustion is sensi-
tive both to the mixing and to the chemistry. (With
the IEM model for the fixed ratio of τt/τres = 0.5, the
system extinguishes around τres = 8 × 10−5 s.) No-
tice that close to global extinction, the sensitivities to
the mixing are of the same order of magnitude as (but
higher than) the sensitivities to the chemistry, which
reveals that close to extinction mixing is still the
controlling process for combustion in the PaSR with
τt/τres = 0.5. For some other values of τt/τres such as
τt/τres → 0 (not shown), the system is not sensitive to
mixing; close to extinction, reaction is the controlling
process and the sensitivities to chemistry dominate.

4.3. Comparison of the sensitivities between
different mixing models

The method for sensitivity calculation presented
here can be applied straightforwardly to PDF calcu-
lations with other mixing models such as MC and
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Fig. 5. For the IEM model, in the mixture fraction space, scatterplots of temperature T , species-specific moles of H2O, sensitiv-
ities of H2O to Cφ , and the pre-exponential factors of reactions listed in Eq. (18) for different values of τres with τt/τres = 0.5.
(E) τres = 2 ms; (∗) τres = 0.3 ms; (!) τres = 0.08 ms.

Fig. 6. For the IEM model, in the mixture fraction space, scatterplots of sensitivities of OH to Cφ and to the pre-exponential
factor α1 of R1 for different values of τres with τt/τres = 0.5. (E) τres = 2 ms; (∗) τres = 0.3 ms; (!) τres = 0.08 ms.
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Fig. 7. Sensitivities (to the mixing model constant Cφ and the pre-exponential factors αi of the reactions listed in Eq. (18)) of con-
ditional mean species-specific moles (conditional on stoichiometric mixture fraction) against residence time with τt/τres = 0.5.
In bottom row, solid line: sensitivities to the pre-exponential factor of R1; dashed line: sensitivities to the pre-exponential factor
of R2; dashed–dotted line: sensitivities to the pre-exponential factor of R3.

EMST. As previously mentioned, for EMST some ap-
proximation is involved, since the model is nonlinear.
In the mixture fraction space, Fig. 8 shows the scat-
terplots of temperature T , sensitivities of H2O to the
mixing model constant Cφ , and sensitivities of H2O
to the pre-exponential factor α1, from different mix-
ing models. (The sensitivities of H2O to α2 and α3
are qualitatively similar to those to α1.)

For all the mixing models, the particle sensitiv-
ities depend on their locations in mixture fraction
space. However, there are qualitatively different be-
haviors in both the compositions and the sensitivities.
For the IEM model, the most sensitive region (for
both Cφ and α1) lies on the boundaries of the re-
action zone. With the decrease of the residence time
toward global extinction, the most sensitive region in
the composition space moves toward stoichiometry.
In contrast, for the EMST model, both the most sensi-
tive region and the shape of the sensitivity distribution
in the composition space remain almost the same over
a wide range of residence times. However the most
sensitive region for the mixing parameter Cφ is dif-
ferent from that for the reaction parameter α1. For
the system considered, the most sensitive region for
Cφ in mixture fraction space is around ξ = 0.12 and
0.78, not at stoichiometric composition (ξst = 0.304);
for α1, it is around ξ = 0.4, closer to stoichiometric
composition. For the MC model, due to the random-
ness in the model, no clear pattern can be observed
from these particle-level sensitivities. Nevertheless as
revealed by the particle sensitivities the most sensitive
region is around stoichiometric.

Qualitative differences in the mixing models can
also be observed in the sensitivities to the hydrogen-
to-nitrogen ratio γ of the fuel stream. (Recall that for
the fuel stream, the larger the value of γ , the higher
the concentration of H2.) As shown in Fig. 9, for
the IEM model, a local maximum of the sensitivi-
ties occurs at the fuel-lean boundary of the reaction
zone, whereas a local minimum exists at the fuel-rich
boundary. For the EMST model, the most sensitive re-
gion is around ξ = 0.25, which is different from those
for Cφ and α1. Hence for the EMST model, the most
sensitive regions in the composition space are differ-
ent for different parameters.

In Figs. 10 and 11, we compare the sensitivities of
the mean (and conditional mean) quantities from the
three mixing models. Figs. 10 and 11 show the sen-
sitivities of H2O against the residence time (with a
fixed ratio of τt/τres = 0.5) till global extinction oc-
curs. As shown, the EMST model is more resistant
to global extinction than the IEM and MC models.
For the three different mixing models, the sensitivi-
ties of both the mean and conditional mean specific
moles of H2O show qualitatively the same behavior:
with the decrease of the residence time toward global
extinction, sensitivities increase. For large residence
time where combustion is controlled by the mixing
process, as expected, for all the mixing models, the
system is insensitive to the pre-exponential factors
of the chain reactions, i.e., insensitive to chemistry.
When τres is reduced close to global extinction, the
sensitivities of the combustion process both to the
mixing time and to the chemistry increase dramati-
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Fig. 8. In the mixture fraction space, scatterplots of temperature T , sensitivities of H2O to the mixing model constant Cφ ,
and sensitivities of H2O to the pre-exponential factor α1 of R1, for different mixing models with different values of τres and
τt/τres = 0.5. (E) τres = 2 ms; (∗) τres = 0.3 ms; (!) τres = 0.08 ms. First row: results from the IEM model; second row:
results from the MC model; bottom row: results from the EMST model.

cally. Among the three mixing models, for most cases,
with the same residence time, the mean and condi-
tional mean (conditioned on stoichiometric mixture
fraction) of the major product H2O obtained from the
EMST model is least sensitive to the mixing model
constant and the rates of the chain reactions.

5. Conclusions

We develop a method for the accurate and efficient
calculation of sensitivities in PDF calculations of tur-
bulent combustion. The evolution equations for the
composition and the sensitivities are solved by numer-
ical schemes based on an operator-splitting approach.
As discussed in Section 2.3, the efficient calcula-
tion of sensitivities in PDF particle methods can be
achieved via the use of the storage–retrieval method
ISAT [30] (although this is not implemented here).

In the PDF calculation, for each particle the
method enables the calculation of the sensitivities

to model parameters of interest. These particle-level
sensitivities allow one to examine the particles with
the largest sensitivities, and the corresponding com-
positions reveal the sensitive region in the compo-
sition space. As demonstrated, sensitivities of mean
(and conditional mean) quantities can be extracted
from the particle sensitivities via averaging.

The method is demonstrated in the PDF calcula-
tion of the oxidation of a diluted H2/air mixture in
a PaSR using different mixing models. It is shown
that the method is capable of accurately calculating
the sensitivities at the particle level. It is shown that
for all the mixing models, the particle sensitivities
depend on their corresponding composition’s loca-
tions in the composition space. However, there are
qualitatively different behaviors in both particle com-
position and particle sensitivities among the different
mixing models. For the PaSR test cases investigated,
for the IEM model, the most sensitive region (for all
the sensitivity parameters considered) lies close to the
boundaries of the reaction zone. With the decrease of
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Fig. 9. In the mixture fraction space, scatter plots of sensitiv-
ities of H2O to the hydrogen-to-nitrogen ratio γ of the fuel
stream for different mixing models with τres = 0.3 ms and
τt/τres = 0.5.

the residence time toward global extinction, the most
sensitive region in the composition space moves to-
ward stoichiometry. In contrast, for the EMST model,
for a particular sensitivity parameter, the most sensi-
tive region and the shape of the sensitivity distribu-
tion in the composition space remain almost the same
over a wide range of residence times. However, the

Fig. 10. Sensitivities (to the mixing model constant Cφ

and the pre-exponential factors of the reactions listed in
Eq. (18)) of mean specific moles of H2O against residence
time with τt/τres = 0.5. Solid line: sensitivities to the mix-
ing model constant Cφ ; dashed line: sensitivities to the
pre-exponential factor of R1; dashed–dotted line: sensitiv-
ities to the pre-exponential factor of R2; dotted line: sensi-
tivities to the pre-exponential factor of R3. Lines with solid
squares: results from IEM; lines with solid stars: results
from MC; lines with solid circles: results from EMST.

Fig. 11. Sensitivities (to the mixing model constant Cφ

and the pre-exponential factors of the reactions listed in
Eq. (18)) of the conditional mean specific moles of H2O
(conditional on stoichiometric mixture fraction) against res-
idence time with τt/τres = 0.5. Solid line: sensitivities to
the mixing model constant Cφ ; dashed line: sensitivities to
the pre-exponential factor of R1; dashed–dotted line: sen-
sitivities to the pre-exponential factor of R2; dotted line:
sensitivities to the pre-exponential factor of R3. Lines with
solid squares: results from IEM; lines with solid stars: results
from MC; lines with solid circles: results from EMST.

most sensitive regions in the composition space are
different for different sensitivity parameters. For the
MC model, no clear pattern can be observed from the
particle-level sensitivities (even to some extent they
reveal the most sensitive region). The sensitivities of
mean (and conditional mean) quantities confirm that
when combustion is controlled by mixing, composi-
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tions are insensitive to chemistry. When the reactive
system approaches global extinction, the sensitivity
of the combustion both to mixing and to chemistry
increases (in magnitude) dramatically.

Acknowledgment

This research is supported by the Department of
Energy under Grant DE-FG02-90ER.

References

[1] C.T. Bowman, Proc. Combust. Inst. 15 (1974) 869–
877.

[2] A.A. Boni, R.C. Penner, Combust. Sci. Technol. 15
(1977) 99–106.

[3] R. Yetter, L.A. Eslava, F.L. Dryer, H. Rabitz, J. Phys.
Chem. 88 (1984) 1497–1507.

[4] H. Rabitz, M. Kramer, D. Dacol, Annu. Rev. Phys.
Chem. 34 (1983) 419–461.

[5] M.A. Kramer, H. Rabitz, J.M. Calo, R.J. Kee, Int. J.
Chem. Kinet. 16 (1984) 559–578.

[6] T. Turányi, J. Math. Chem. 5 (1990) 203–248.
[7] M.R. Mishra, R. Yetter, Y. Reuven, H. Rabitz, M.D.

Smooke, Int. J. Chem. Kinet. 26 (1994) 437–453.
[8] R.C. Brown, C.E. Kolb, R.A. Yetter, F.L. Dryer, H. Ra-

bitz, Combust. Flame 101 (1995) 221–238.
[9] Z. Zhao, J. Li, A. Kazakov, F.L. Dryer, Int. J. Chem.

Kinet. 37 (2005) 282–295.
[10] A.E. Lutz, R.J. Kee, J.A. Miller, SENKIN: A Fortran

program for predicting homogeneous gas phase chem-
ical kinetics with sensitivity analysis, Technical Report
SAND87-8248, Sandia National Laboratories, 1987.

[11] R.J. Kee, F.M. Rupley, E. Meeks, J.A. Miller,
CHEMKIN-III: A FORTRAN chemical kinetics pack-
age for the analysis of gas-phase chemical and plasma
kinetics, Sandia Report SAND96-8216, Sandia Na-
tional Laboratories, Livermore, CA, 1996.

[12] CANTERA: Objected-oriented software for reacting
flows, http://www.cantera.org/.

[13] S.B. Pope, Prog. Energy Combust. Sci. 11 (1985) 119–
192.

[14] Q. Tang, J. Xu, S.B. Pope, Proc. Combust. Inst. 28
(2000) 133–139.

[15] R. Cao, S.B. Pope, A.R. Masri, Combust. Flame 142
(2005) 438–453.

[16] A.R. Masri, R. Cao, S.B. Pope, G.M. Goldin, Combust.
Theory Model. 8 (2004) 1–22.

[17] J. Xu, S.B. Pope, Combust. Flame 123 (2000) 281–307.
[18] R.P. Lindstedt, S.A. Louloudi, E.M. Váos, Proc. Com-

bust. Inst. 28 (2000) 149–156.
[19] R. Cao, H. Wang, S.B. Pope, Proc. Combust. Inst. 31

(2007) 1543–1550.
[20] J. Villermaux, J.C. Devillon, in: Proceedings of the 2nd

International Symposium on Chemical Reaction Engi-
neering, Elsevier, New York, 1972.

[21] C. Dopazo, E.E. O’Brien, Acta Astronaut. 1 (1974)
1239–1266.

[22] J. Janicka, W. Kolbe, W. Kollman, J. Nonequilib. Ther-
modynam. 4 (1979) 47–66.

[23] S. Subramaniam, S.B. Pope, Combust. Flame 115
(1998) 487–514.

[24] Z. Ren, S. Subramaniam, S.B. Pope, Implementation of
the EMST mixing model, http://eccentric.mae.cornell.
edu/~tcg/emst/.

[25] ADIFOR 2.0, Automatic differentiation of Fortran,
http://www-unix.mcs.anl.gov/autodiff/ADIFOR/.

[26] G.I. Marchuk, On the theory of the splitting-up
method, in: Proceedings of the 2nd Symposium on
Numerical Solution of Partial Differential Equations,
SVNSPADE, 1970, pp. 469–500.

[27] N.N. Yanenko, in: M. Holt (Ed.), The Method of Frac-
tional Steps, Springer-Verlag, New York, 1971.

[28] G. Strang, SIAM J. Numer. Anal. 5 (3) (1968) 506–517.
[29] M. Caracotsios, W.E. Stewart, Comput. Chem. Eng.

9 (4) (1985) 359–365.
[30] S.B. Pope, Combust. Theory Model. 1 (1997) 41–63.
[31] S.M. Correa, Combust. Flame 93 (1993) 41–60.
[32] J.-Y. Chen, Combust. Sci. Technol. 122 (1997) 63–94.
[33] B. Yang, S.B. Pope, Combust. Flame 112 (1998) 16–

32.
[34] Z. Ren, S.B. Pope, Combust. Flame 136 (2004) 208–

216.
[35] U. Maas, J. Warnatz, Proc. Combust. Inst. 22 (1988)

1695–1704.


