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Abstract

In calculations of chemically reactive flows, dimension reduction of reactive systems via the use of slow at-
tracting manifolds is an effective approach to reducing the computational burden. In the reduced description,
the reactive system is described in terms of a smaller number of reduced composition variables (e.g., some major
species) instead of the full composition (i.e., the full set of chemical species), and the evolution equations for the re-
duced composition variables are solved. In this work, we address the issues arising from the use of chemistry-based
slow manifolds in inhomogeneous reactive flows. Chemistry-based slow manifolds are identified (or constructed)
based solely on chemical kinetics (i.e., based on homogeneous reactive systems) without accounting for transport
processes such as convection and molecular diffusion. For a class of reaction–diffusion systems, by perturbation
analysis, it is shown that three different mechanisms contribute to pulling compositions off the chemistry-based
slow manifolds, namely, noninvariance, dissipation–curvature, and differential diffusion effects. As the names
indicate, these mechanisms contribute, respectively, if the manifold is not invariant; if the manifold is curved
(and there is nonzero molecular diffusion); and if the diffusivities of the species differ. In the regime where the fast
chemical time scales are smaller than the physical time scales, the composition perturbations off the slow manifold
by these three mechanisms are small. However, these three seemingly small perturbations introduce three gener-
ally nontrivial terms into the governing equations for the reduced compositions, which in general are of leading
order. Moreover, for the convection–reaction–diffusion systems, we validate the close-parallel assumption [Z. Ren,
S.B. Pope, A. Vladimirsky, J.M. Guckenheimer, Proc. Combust. Inst. (2007), doi:10.1016/j.proci.2006.07.106] to
account for these effects in the reduced description. It is shown that with the use of the close-parallel assumption,
the reduced description agrees well with the full reactive system. Different scenarios where these three effects
could be neglected are also discussed.
© 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

A wide variety of chemically reactive flows in-
volve a large number of chemical species, which par-
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ticipate in tens to thousands of elementary chemical
reactions occurring simultaneously within a complex
flow field. These processes are modeled by a large set
of partial differential equations (PDEs) representing
the evolution of chemical species and energy, coupled
with the Navier–Stokes equations. One challenging
feature of chemical kinetics is the presence of a wide
range of time scales, which adds a dramatic compu-
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tational burden and makes the direct use of detailed
chemical kinetics computationally expensive. Hence,
there is a well-recognized need to develop methods
that rationally reduce the computational burden im-
posed by the direct use of detailed chemical kinetics
in the calculations of reactive flows.

For a transient homogeneous reactive flow (in the
absence of transport processes such as convection
and molecular diffusion) that is described by a set
of ordinary differential equations (ODEs), the time-
dependent solution corresponds to a reaction trajec-
tory in the composition space. Due to the fast time
scales in chemical kinetics, all the reaction trajecto-
ries quickly relax to a low-dimensional slow manifold
in the composition space [1–9]. Based on this obser-
vation, dimension reduction and hence the reduced
description of the reactive flows via the use of low-
dimensional manifolds are widely used to effectively
reduce the computational burden [1–23]. For exam-
ple, techniques such as intrinsic low-dimensional
manifolds (ILDM) [1], the quasi-steady-state assump-
tion (QSSA) [10–13], computational singular pertur-
bation (CSP) [21–23], the zero derivative principle
method [16,17], and the ICE-PIC method [9] explic-
itly or implicitly identify a low-dimensional manifold
in the composition space (as an approximation to a
slow attracting manifold) to represent the reactive sys-
tem. In the reduced description, the reactive system is
described in terms of a smaller number of reduced
composition variables (e.g., some major species), and
the evolution equations for the reduced composition
variables are solved.

The dimension reduction for homogeneous reac-
tive flows has achieved great success in the past 20
years. However, most realistic reactive flows are in-
homogeneous and involve transport processes such
as convection and molecular diffusion. The reduced
description of inhomogeneous flows via the use of
slow manifolds is greatly complicated by the transport
processes present and the coupling between chemistry
and the transport processes. Substantial studies on
how and when the transport processes can affect the
compositions and the reduced description of the reac-
tive flows have been performed in Refs. [18,22–44].
Currently, there are two distinct approaches to provide
a reduced description of the inhomogeneous reactive
flows.

In the first approach the slow manifold (which
is explicitly or implicitly identified) is based on the
governing PDEs, which include convection, diffu-
sion, and reaction [22,23,25,27–39]. The transport–
chemistry coupling is incorporated into the construc-
tion of the slow manifolds. For example, in Ref. [35],
Bongers et al. identify a manifold in an augmented
space consisting of both the compositions and com-
position fluxes. In Refs. [38,39], Davis considers low-

dimensional manifolds in the infinite-dimensional
function space for reaction–diffusion systems. In
Ref. [34], after the initial transient, by equilibrat-
ing the transport process and reactions in the fast
subspace, Singh et al. obtain a set of differential alge-
braic equations (involving transport processes such
as molecular diffusion), which defines an infinite-
dimensional slow manifold in function space. Sim-
ilarly, in Refs. [22,23,25,27–29], when CSP is ex-
tended to inhomogeneous flows, a similar set of dif-
ferential equations defining a slow manifold can be
obtained. One thing worthy of mention is that the slow
manifolds defined by these differential (or differential
algebraic) equations are difficult to compute due both
to the spatial information needed and to the change
of slow and fast directions in the composition space
(with possible discontinuities).

In the second approach the slow manifold is a
low-dimensional manifold in the finite-dimensional
composition space and is identified solely based on
chemical kinetics without accounting for transport
processes [12,24,41,42]: we refer to such manifolds
as “chemistry-based.” Hence all the existing meth-
ods and algorithms for homogeneous systems can be
straightforwardly applied. In the reduced description,
the transport–chemistry coupling either is accounted
for by projecting transport processes back onto the
low-dimensional manifold or is simply neglected, as
is done in the QSSA method [12,45,46]. The use
of chemistry-based slow manifolds to describe inho-
mogeneous flows is expected to be adequate in the
regime where the fast chemical time scales are smaller
than the transport time scales [29]. This is the case
for typical combustion processes. Two examples in
this approach are the extension of the ILDM method
[41,42] and the ICE-PIC method to inhomogeneous
reactive flows [24].

Consequently, the formulation of reduced descrip-
tions of reactive flows from the above two approaches
is different. For example, in the CSP or ASIM
method, the reduced description may be given by a set
of PDEs for the reduced composition variables sup-
plemented by differential (or differential algebraic)
equations defining a manifold. On the boundaries, the
full composition is provided. During the calculation,
all the equations have to be solved together and this
is in general computationally expensive. In contrast,
in the ILDM and ICE-PIC methods, the reduced de-
scription is given by a set of PDEs for the reduced
composition variables, in which the terms arising can
be evaluated on the chemistry-based manifold. On
the boundaries, only the reduced composition needs
to be provided. Given the reduced composition, the
manifold point can either be retrieved from a precom-
puted table containing the manifold information, or
be obtained through a local computation. In the local
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computation of the manifold, no spatial information
is needed.

This paper focuses on the use of chemistry-based
slow manifolds to describe inhomogeneous reactive
flows. As mentioned earlier, the slow manifold em-
ployed is identified solely based on chemical kinet-
ics, i.e., based on homogeneous systems governed
by a set of ODEs. Chemistry-based manifolds can
be categorized based on whether or not they are in-
variant. By definition, a chemistry-based manifold is
invariant if the reaction trajectory from any point in
the manifold remains in the manifold. In homoge-
neous reactive flows, for invariant manifolds, with the
full composition being on the manifold, the rate of
change of the reduced composition variables is deter-
mined by the full chemical kinetics without approxi-
mation; whereas, for noninvariant manifolds, the rate
of change of the reduced composition variables de-
pends strongly on the choice of the projection used to
project the full rate-of-change vector onto the man-
ifold (see Refs. [1,47]). Thus, being invariant is a
highly desirable property. (Moreover, it is also de-
sirable for the manifold to be attractive; see Refs.
[48,49].) Among existing dimension-reduction meth-
ods, trajectory-generated low-dimensional manifolds
(TGLDM) [2,3], the Roussel and Fraser algorithm
(RF) [4–6,18], the method of invariant manifolds
[19,20], the ICE-PIC method [9], and other iterative
techniques as discussed in Refs. [20,30] fall into the
class of methods that identify chemistry-based invari-
ant manifolds.

Besides the noninvariance difficulty (if the slow
manifold is not invariant), the use of chemistry-
based slow manifolds in inhomogeneous flows is
complicated by the transport processes present and
the coupling between chemistry and these transport
processes. Even through an inhomogeneous reactive
flow with arbitrary initial conditions can admit an
infinite number of time scales associated with the
transport processes such as molecular diffusion, for
a particular flow a finite number of transport time
scales can be identified based on the given compo-
sition distribution [50,51]. For typical [1] combustion
processes, chemical kinetics have a much wider range
of time scales than those of transport processes. It
is believed that due to the fast chemical time scales,
all the compositions in inhomogeneous reactive flows
(after an initial transient and far from the boundaries)
still lie close to a low-dimensional chemistry-based
attracting manifold. Previous studies [18,26,29,33,
41,42,44] confirm that the compositions in inhomo-
geneous reactive flows are not exactly on, but are
close to chemistry-based slow manifolds. Transport
processes such as molecular diffusion may tend to
draw the composition off the slow manifold, whereas
the fast processes in chemistry relax the perturba-

tions back toward the slow manifold. Previous studies
have also pointed out some mechanisms that pull
compositions off the chemistry-based slow mani-
fold, such as the dissipation–curvature mechanism
found in Ref. [44]. However, a systematic study of
the mechanisms that may draw compositions off the
chemistry-based slow manifold is still not available.
Also, questions remain on how to quantify the trans-
port effects on the compositions. As far as the evo-
lution of the reduced composition is concerned, a set
of PDEs for the reduced compositions can be deduced
from those for the full composition. However, in order
for this set of equations to be closed, it is necessary
to introduce assumptions or approximations. Based
on time-scale analysis, previous studies [22,41] sug-
gest that the transport–chemistry coupling could be
accounted for and thus the accurate evolution equa-
tion can be obtained by projecting the transport and
reaction processes onto the slow subspaces identified
in each individual approach. However, no attempts
have been made in Refs. [22,41] to understand and
quantify the relation between the departure of compo-
sitions from the chemistry-based slow manifold and
the consequent transport–chemistry coupling. In this
study, we deduce the evolution equations for the re-
duced compositions by exploring the relation between
the departure of compositions and the consequent
transport–chemistry coupling. The major contribu-
tions of the paper are the identification of all the pos-
sible mechanisms through which transport processes
act on both composition and the reduced description;
clarification and quantification of the composition
departure and the resulting transport–chemistry cou-
pling; and verification of the close-parallel assump-
tion by Ren et al. [24] to quantify the transport effect
and to account for the transport–chemistry coupling
in the reduced description.

In this paper, we introduce a model reaction–
diffusion system, for which an asymptotic analysis is
performed. This confirms the conclusions reached in
[22,24,25,29,41,42] that, in general, a common prac-
tice referred to as the “first approximation” is not
valid. This first-approximation approach amounts to
the complete neglect of departures from the manifold,
and therefore the complete neglect of the transport–
chemistry coupling in the reduced description. In-
stead, the exact PDEs for the reduced compositions
contain three additional terms that in general are of
leading order. These three terms are referred to as
noninvariance, dissipation–curvature, and differential
diffusion. As the names indicate, these terms repre-
sent effects that arise, respectively, if the manifold is
not invariant; if the manifold is curved (and there is
nonzero molecular diffusion); and if the diffusivities
of the species differ.
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In previous work [24] we obtained a closed set of
PDEs for the reduced compositions by invoking the
close-parallel assumption, namely that compositions
that occur in a reacting flow lie close to and evolve
parallel to the low-dimensional chemistry-based man-
ifold used in the reduced description. In this paper, we
show that the close-parallel assumption leads to the
correct PDE for the model systems.

The outline of the remainder of the paper is as fol-
lows. In Section 2, we provide a brief overview of the
reduced description of reactive flows via slow mani-
folds. In Section 3, we consider a class of reaction–
diffusion models and derive the accurate evolution
equation for the reduced composition variable by per-
turbation analysis. The noninvariance, dissipation–
curvature, and differential diffusion effects are re-
vealed. In Section 4, we validate the close-parallel
assumption to account for these effects in the reduced
description. Conclusions are drawn in Section 5.

2. Reduced description of inhomogeneous
reactive flows

To demonstrate the reduced description, we con-
sider an inhomogeneous reactive flow, where the pres-
sure p and enthalpy h are taken to be constant and
uniform (although the extension to variable pressure
and enthalpy is straightforward). The system at time t

is then fully described by the full composition z(x, t),
which varies both in space, x, and in time, t . The full
composition z can be taken to be the mass fractions
of the ns species or the specific species moles (mass
fractions divided by the corresponding species mole-
cular weights). The system evolves according to the
set of ns PDEs

(1)
∂

∂t
z(x, t) + vi

∂z
∂xi

= D
{
z(x, t)

} + S
(
z(x, t)

)
,

where S denotes the rate of change of the full compo-
sition due to chemical reactions. The spatial transport
includes the convective contribution (vi

∂z
∂xi

, where
v(x, t) is the velocity field) and the diffusive con-
tribution (D). In calculations of reactive flows, one
simplified model widely used for diffusion is

(2)D{z} = 1

ρ
∇ · (ρΓ ∇z),

where ρ is mixture density and Γ is a diagonal matrix
with the diagonal components Γ1,Γ2, . . . ,Γns being
the mixture-averaged species diffusivities, which are
usually functions of z.

In the reduced description, the reactive system is
described in terms of a smaller number nr of reduced
composition variables r(x, t) = {r1, r2, . . . , rnr },
which can be taken to be the mass fractions (or the

Fig. 1. A sketch in the composition space showing the rep-
resentation of the general composition as z = zM + δz.
The axes denote the reduced composition r (in the subspace
span(B)) and the unrepresented variables u (in the subspace
span(U) = span(B)⊥). Also shown are the tangent subspace
span(T(r)) and the normal subspace span(N(r)).

specific moles) of some species and linear combi-
nations of the species (depending on the different
methods). In general, the reduced composition r(x, t)

can be expressed as

(3)r(x, t) = BTz(x, t),

where B is an ns ×nr constant matrix. For example, if
r consists of specified “major” species, then each col-
umn of B is a unit vector consisting of a single entry
(unity) in the row corresponding to a major species.
But more generally, Eq. (3) allows for linear combina-
tion of species. It is in fact the subspace spanned by B
that is significant, not the particular form of B. Hence,
without loss of generality, and for simplicity of the
following exposition, we take B to be orthonormal.
Thus, as illustrated in Fig. 1, the full ns-dimensional
composition space can be decomposed into an nr-
dimensional represented subspace (spanned by the
columns of B) and an nu-dimensional unrepresented
subspace (spanned by the columns of U, with U be-
ing a constant ns × nu orthonormal matrix spanning
span(B)⊥ with nu = ns − nr). The matrices B and U
satisfy BTU = 0 and BBT + UUT = Ins×ns . We de-
fine the unrepresented variables to be

(4)u(x, t) = UTz(x, t).

The nr-dimensional chemistry-based manifold M
used in the dimension reduction is assumed to be the
graph of a function of r, i.e.,

(5)M= {
z | z = zM(r) = Br + UuM(r)

}
,

for some function uM(r). One important aspect of
the reduced description (not discussed in the paper) is



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Z. Ren, S.B. Pope / Combustion and Flame 147 (2006) 243–261 247

the choice of the reduced representation, i.e., the spec-
ification of nr and B. For the purpose of this study,
both nr and B are user-specified. Some studies on this
topic can be found in Refs. [8,22,52].

In an inhomogeneous reactive system, the full
compositions can be expressed as

(6)z(x, t) = zM
(
r(x, t)

) + δz(x, t),

where δz(x, t) is the departure from the low-dimen-
sional manifold (which may be introduced by initial
and boundary conditions, molecular diffusion, and
noninvariance). With this representation, as illustrated
in Fig. 1, the departure is defined to be in the unrep-
resented subspace, i.e.,

(7)δz = Uδu,

where

(8)δu = UT[
z(x, t) − zM

(
r(x, t)

)]
.

Without loss of information, the governing equa-
tion, Eq. (1), can be premultiplied by the matrix
[B U]T to yield

∂

∂t

[
r
u

]
+ vi

∂

∂xi

[
r
u

]

(9)=
[

BTD
UTD

]
+

[
BTS(z)
UTS(z)

]
.

Hence when the reduced composition variables are
used to represent the reacting system, the exact evo-
lution equation for r(x, t) is

(10)
∂r
∂t

+ vi
∂r
∂xi

= BTD{z} + BTS(z).

In the reduced description, the task is to express the
right-hand side of Eq. (10), (BTD{z} + BTS(z)), as
a function of r. The most straightforward approach,
denoted as the “first approximation” in Ref. [24], is
to completely neglect the departures δz and assume
that the compositions in the reactive flow lie on this
chemistry-based manifold, i.e.,

(11)z(x, t) = zM
(
r(x, t)

)
.

Hence the evolution equation for the reduced compo-
sition variables according to the “first approximation”
is

(12)
∂r
∂t

+ vi
∂r
∂xi

= BTD
{
zM(r)

} + BTS
(
zM(r)

)
.

As shown below, for a model problem, the “first
approximation” is not valid in general, even when
Eq. (11) is a valid approximation. It is valid only un-
der some particular circumstances.

In general reactive flows, the accessed composi-
tions are not exactly on the chemistry-based slow
manifold. The following factors may cause the com-
positions to depart from the manifold:

• The chemistry-based slow manifold being not
invariant. For some widely used dimension-
reduction method such as QSSA and ILDM, the
low-dimensional manifolds employed are not in-
variant.

• The transport processes such as molecular diffu-
sion (see Ref. [44]).

• Initial compositions not lying on the chemistry-
based slow manifold. After the initial transient,
due to the fast chemical time scales, the composi-
tions are expected to approach the slow manifold.

• The boundary conditions not lying on the chem-
istry-based slow manifold. Thin boundary layers
are expected to be formed adjacent to the bound-
aries [26,27]. In the boundary layers, the com-
positions may not be on the slow manifold no
matter how faster the fast chemical time scales
are. However, far from the boundaries, the com-
positions are expected to lie close to the slow
manifold. These phenomena have been observed
by Goussis et al. [29].

The effect of initial and boundary conditions on
the reduced description via the use of slow manifold
has been studied in Refs. [26,27]. In this study, we fo-
cus on investigating the noninvariance effect and the
transport effects on the compositions and on the re-
duced description. As pointed out in Refs. [42,44],
the convection process in PDEs does not pull com-
positions off any chemistry-based manifold. In fact,
from the Lagrangian point of view, it is obvious that
the convection process alone does not even change the
composition of a fluid particle. Hence in this study, we
mainly focus on reaction–diffusion systems instead of
convection–reaction–diffusion systems. A discussion
on the effect of convection on the reduced description
is given in Section 4.4. To fulfill the purpose of this
study, for all the systems considered, both the initial
and boundary compositions are specified to be exactly
on the chemistry-based slow manifold considered.
(Notice that when the ICE-PIC method [24] is used
in the reduced description of reactive flows, the repre-
sented variables can be chosen such that the boundary
and initial compositions are on the chemistry-based
slow manifold.)

3. Noninvariance effect and transport–chemistry
coupling in reaction–diffusion systems

In this section, for a class of reaction–diffusion
systems, by perturbation analysis, we derive the exact
evolution equation for the reduced composition vari-
ables. The nontrivial terms in the reduced description
introduced by noninvariance of the slow manifold and
molecular diffusion are identified.
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The unsteady reaction–diffusion system in x–t

space considered evolves according to the PDEs

∂z1

∂t
= c

z2 − f (z1)

ε
+ g1(z1, z2) + ∇ · (D1∇z1),

(13)

∂z2

∂t
= −z2 − f (z1)

ε
+ g2(z1, z2) + ∇ · (D2∇z2),

where z =
[

z1
z2

]
is the full composition, t is a nor-

malized (i.e., nondimensional) time, ε � 1 is a small
parameter, c is a positive constant (may be 0, O(ε)

or O(1)) that describes the coupling between z1 and
the fast chemistry, and D1 and D2 (in general depen-
dent on z) are the diffusivities of z1 and z2, respec-
tively. In Eq. (13), f (z1), g1(z1, z2), and g2(z1, z2)

are assumed to be on the order of 1. The chemical
reactions have a large linear contribution from the

fast chemistry (represented by the terms c
z2−f (z1)

ε

and − z2−f (z1)
ε ) and another generally nonlinear con-

tribution from the slow chemistry (represented by
g1(z1, z2) and g2(z1, z2)). The Jacobian matrix from
reaction source terms is

(14)J = 1

ε

[−cf ′ c

f ′ −1

]
+O(1),

where f ′(z1) ≡ df (z1)/dz1. The eigenvalue asso-
ciated with the fast chemical time scale is −(1 +
cf ′)/ε + O(1), where the function f (z1) is speci-
fied so that (1 + cf ′) is positive (and of order unity)
and hence there are slow attracting manifolds in the
system. The fast chemical time scale in the system
is O(ε). This set of PDEs is also studied by Lam in
the computational singular perturbation (CSP) con-
text [26].

For this system, depending on the methods used,
different chemistry-based slow attracting manifolds
can be identified. Among them, a valid slow attracting
manifold that can be easily identified and employed in
the reduced description is

(15)z =
[

z1
z2

]
= zM(z1) =

[
z1

f (z1)

]
.

The tangent unit vector of the slow manifold is T =
1√

1+f ′2

[
1

f ′(z1)

]
and the normal unit vector is N =

1√
1+f ′2

[−f ′(z1)

1

]
. Moreover, this chemistry-based

slow manifold is invariant if the condition

(16)

[
g1(z1, z2)

g2(z1, z2)

]
= k(z1, z2)

[
1

f ′(z1)

]
is satisfied on the manifold, where k(z1, z2) is any
function of z1 and z2. The condition basically is a
statement of the invariance requirement that the vec-
tor [g1 g2]T be in the tangent space of the chemistry-
based manifold. Clearly, this condition is not gener-

ally satisfied (i.e., it is not satisfied for a general spec-
ification of g1 and g2).

The unsteady reaction–diffusion system (Eq. (13))
is well posed given the boundary conditions and ini-
tial conditions. In this study, both the initial and
boundary compositions for the governing PDEs (Eq.
(13)) are taken to be exactly on the slow manifold
(Eq. (15)).

In the reduced description, z1 is chosen as the re-
duced composition variable to represent the reaction–
diffusion system. Hence the represented subspace is

spanned by B =
[

1
0

]
and the unrepresented subspace

is spanned by U =
[

0
1

]
.

3.1. Composition perturbation in inhomogeneous
reactive flows

By multiplying with ε, Eq. (13) can be written as

ε
∂z1

∂t
= c

(
z2 − f (z1)

) + εg1(z1, z2)

+ ε∇ · (D1∇z1),

(17)

ε
∂z2

∂t
= −(

z2 − f (z1)
) + εg2(z1, z2)

+ ε∇ · (D2∇z2).

With L1 and L2 being the characteristic diffusion
length scales of z1 and z2, respectively, we assume
the fast chemical time scales are much smaller than
the diffusion time scales, i.e., L2

1/(D1ε) � 1 and

L2
2/(D2ε) � 1. We further assume z2 to be a func-

tion of x, t , and ε, and that it can be expressed as the
perturbation series

(18)z2(x, t, ε) = f0(x, t) + εf1(x, t) + o(ε),

with limε→0 o(ε)/ε = 0. To obtain the first term in
this series, we set ε = 0 in Eq. (17) to obtain

0 = c
(
z2 − f (z1)

)
,

(19)0 = −(
z2 − f (z1)

)
.

Hence z2(x, t,0) = f (z1), i.e.,

(20)f0(x, t) = f (z1).

This leading order solution is consistent only if the
initial conditions and boundary conditions are on the
manifold as we assume. (If the initial conditions and
boundary conditions are not on the manifold, this
leading order solution is valid away from the thin
boundary layers close to the boundaries after the ini-
tial transient.)

Substituting z2(x, t, ε) = f (z1)+ εf1(x, t)+ o(ε)

into Eq. (17), and neglecting terms of order ε2 and
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Fig. 2. Results for Case 2 in Table 1 with ε = 1 × 10−4

and D1 = 1. (a) Steady state distribution of z1 and z2
against x; (b) the normalized perturbation off the slow man-
ifold (f (z1) = z1/(1 + az1)). The figure illustrates the
boundary layers of the composition perturbation.

higher, we obtain

∂z1

∂t
= cf1 + g1

(
z1, f (z1)

) + ∇ · (D1∇z1),

(21)

∂f (z1)

∂t
= −f1 + g2

(
z1, f (z1)

)
+ ∇ · (D2∇(

f (z1) + εf1
))

.

Now the term ∂f (z1)/∂t can be reexpressed as
f ′(z1)∂z1/∂t . Thus, by multiplying the first equa-
tion by f ′ and subtracting for the second, ∂z1/∂t is
eliminated to yield an expression for f1(x, t):

ε∇ · (D2∇f1)

= (1 + cf ′)f1 − g2
(
z1, f (z1)

) + f ′g1
(
z1, f (z1)

)
(22)− ∇ · (D2∇f (z1)

) + f ′∇ · (D1∇z1).

The order of the term ε∇ · (D2∇f1(x, t)) needs
more consideration. At the boundaries, f1(x, t) = 0
given that the boundary compositions are on the slow
manifold; away from the boundaries, f1(x, t) isO(1).
As a result (see Fig. 2), close to the boundaries, f1
forms boundary layers of thickness

√
D2ε. Inside the

boundary layers, ε∇ · (D2∇f1(x, t)) is on the order
of 1; away from the boundaries, this term is order
of ε and negligible. Hence for regions away from the
boundaries, an explicit expression for f1(x, t) can be
obtained,

f1 = g2(z1, f (z1)) − f ′g1(z1, f (z1))

1 + cf ′

(23)

+ f ′′D1∇z1 · ∇z1

1 + cf ′ + ∇ · (f ′[D2 − D1]∇z1)

1 + cf ′ ,

where f ′′ ≡ d2f (z1)/dz2
1 is proportional to the man-

ifold curvature and D1∇z1 · ∇z1 is the scalar dissipa-
tion. Hence, in the model reaction–diffusion system,
away from the boundaries,

z2 = f (z1) + ε
g2(z1, f (z1)) − f ′g1(z1, f (z1))

1 + cf ′

+ ε
∇ · (D1∇f (z1)) − f ′∇ · (D1∇z1)

1 + cf ′

+ ε
∇ · ([D2 − D1]∇f (z1))

1 + cf ′ + o(ε)

= f (z1) + ε
g2(z1, f (z1)) − f ′g1(z1, f (z1))

1 + cf ′

+ ε
f ′′D1∇z1 · ∇z1

1 + cf ′

(24)+ ε
∇ · (f ′[D2 − D1]∇z1)

1 + cf ′ + o(ε).

Close to the boundaries, this solution may have an er-
ror on the order of ε if the boundary conditions are on
the manifold. Otherwise the error close to the bound-
aries is on the order of one.

The following observations can be made from
Eq. (24):

• In the reaction–diffusion inhomogeneous reac-
tive systems, the compositions may be displaced
from the slow manifold by an amount of order ε.
Each of the three terms in ε may be nonzero even
for c = 0.

• Three different mechanisms contribute to pulling
compositions off the slow manifold, represented
by the three terms in ε in Eq. (24); in order, these
are
(1) Noninvariance of the chemistry-based slow

manifold;
(2) The combined effects of manifold curvature

and scalar dissipation;
(3) Differential diffusion.
For zero diffusivities or homogeneous flows ab-
sent transport processes, the noninvariance effect
is the only mechanism that pulls compositions off
the slow manifold. If the slow manifold is invari-
ant (i.e., g2 = f ′g1 on the manifold), the non-
invariance effect is zero. This is the advantage
of using the invariant low-dimensional manifold
to describe reactive flows. The latter two mech-
anisms are introduced by the diffusion process.
The dissipation–curvature mechanism has previ-
ously been pointed out in Ref. [44], where the
study is focused on systems with equal diffu-
sivities. In Ref. [24], Ren et al. show the gross
effects of diffusion processes without differen-
tiating the dissipation–curvature and differential
diffusion mechanisms.
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• With equal diffusivities (D = D1 = D2), and
with L being the diffusion length scale, the per-
turbation caused by molecular diffusion is in-
versely proportional to the Damköhler number

Daf = L2/D
ε , which is the ratio between the

diffusion time scale and the fast chemical time
scale. The larger the ratio, the less the composi-
tion is pulled off the slow manifold.

3.2. Evolution equation for the reduced composition
variable

The evolution equation for z1 can be obtained by
substituting Eq. (18) into the first equation of Eq. (13),

∂z1

∂t
= g1

(
z1, f (z1)

) + ∇ · (D1∇z1)

+ cf1(z1) + o(ε)/ε

= g1
(
z1, f (z1)

) + ∇ · (D1∇z1)

+ c
g2(z1, f (z1)) − f ′g1(z1, f (z1))

1 + cf ′

+ c
f ′′D1∇z1 · ∇z1

1 + cf ′

(25)+ c
∇ · (f ′[D2 − D1]∇z1)

1 + cf ′ + o(ε)/ε,

where the second step follows from Eq. (23) and the
remainder term o(ε)/ε approaches zero as ε tends to
zero. As a comparison, by neglecting the “small” per-
turbation in Eq. (24), the first approximation gives the
following evolution equation for z1:

(26)
∂z1

∂t
= g1

(
z1, f (z1)

) + ∇ · (D1∇z1).

Equation (25) differs from Eq. (26) by the three ad-
ditional terms. These three terms are in general non-
trivial (even as ε tends to zero) and are referred to
as noninvariance, dissipation–curvature, and differen-
tial diffusion, respectively. These terms arise, respec-
tively, if the manifold is not invariant; if the manifold
is curved and there is nonzero molecular diffusion;
and if the diffusivities of the species differ. Hence
the first-approximation approach to the reduced de-
scription is only accurate under some particular cir-
cumstances. One way to understand the origin of the
extra terms is that due to the slight perturbation of
composition (order of O(ε); see Eq. (24)) caused by
the noninvariance effect and molecular diffusion ef-
fects, the contribution from the fast chemistry to the
evolution of the reduced composition variables may
no longer be trivial. Hence when the slow manifolds
are employed in the reduced description of inhomo-
geneous reactive systems, it is essential to be able to
account for these effects.

As may be seen, in Eq. (25) one essential para-
meter is c, which describes the coupling between the

reduced composition variable z1 and the fast chem-
istry. If c is zero or O(ε), the noninvariance of the
slow manifold and molecular diffusion have negligi-
ble effects on the evolution of the reduced composi-
tion, even though the full compositions are still off the
slow manifold by the order of ε (see Eq. (24)). Here,
we further explore the significance of the parameter c.
For the model reaction–diffusion system considered
(Eq. (13)), recall that the Jacobian matrix is

(27)J = 1

ε

[−cf ′ c

f ′ −1

]
+O(1),

and the eigenvalue associated with the fast chemical
time scale is −(1 + cf ′)/ε +O(1). Hence the corre-
sponding fast eigenvector is

(28)Vf =
[−c

1

]
+O(ε).

Recall that the represented subspace is spanned by

B =
[

1
0

]
and the unrepresented subspace is spanned

by U =
[

0
1

]
. Thus c is the tangent of the angle be-

tween Vf and U. Hence, in the reduced description
of reactive flows, if the unrepresented subspace is not
aligned with the fast directions (or the represented
subspace is not perpendicular to the fast directions),
a nontrivial coupling (e.g., c in the model problem)
between the reduced composition variables and the
fast processes occurs and hence nontrivial extra terms
arise in the evolution equation for the reduced com-
position variables (e.g., the last three extra terms in
Eq. (25)).

3.3. Discussion

Given the evolution equation, Eq. (25), the re-
duced description of the unsteady reaction–diffusion
system (Eq. (13)) is well posed given the appropriate
boundary and initial conditions on z1. In this study,
the boundary and initial conditions for the reduced
composition variable in the reduced description are
taken directly from those corresponding conditions in
the full description. This simplicity follows from the
fact that, in this study, both the initial and boundary
compositions are exactly on the chemistry-based slow
manifold. When the ICE-PIC method [24] is used in
the reduced description of reactive flows, the repre-
sented variables can be chosen so that the boundary
and initial compositions are on the chemistry-based
slow manifold.

When the boundary and initial compositions are
not exactly on the chemistry-based slow manifold,
thin boundary layers of compositions form close to
the boundaries. Inside these boundary layers, the
compositions are not within O(ε) of the manifold,
whereas far away from the boundaries, after the initial
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transient, the compositions are close to the mani-
fold. The evolution equation, Eq. (25), for the reduced
composition variable is accurate to describe the long-
term composition dynamics away from the bound-
aries. However, the boundary and initial conditions
for the reduced description require a more thorough
study [26,27], which is not undertaken in this paper.

For this model problem, Lam [26,27] has shown
that results similar to Eq. (25) can be obtained via
CSP.

3.4. Demonstration

To illustrate the different effects in Eq. (24) and
Eq. (25), we consider a particular system in the class
of Eq. (13),

∂z1

∂t
= c

ε

(
z2 − z1

1 + az1

)
− dz1 + ∂

∂x

(
D1

∂z1

∂x

)
,

(29)

∂z2

∂t
= −1

ε

(
z2 − z1

1 + az1

)
− z1

(1 + bz1)2

+ ∂

∂x

(
D2

∂z2

∂x

)
,

where D1 and D2 are diffusion coefficients for z1 and
z2, respectively, with D2 = D1 + ex, with a, b, c, d ,
e, and D1 being specified constant model parameters.
This system is an extension of the reactive models
used by Davis and Skodjie [3] and Singh et al. [34].
Based on the reaction source term, a slow manifold is

(30)z =
[

z1
z2

]
= zM(z1) =

[
z1
z1

1+az1

]
.

In this study, the length of the physical domain
is set to be L = 1 over the physical domain 0 � x

� 1. The boundary conditions are on the manifold and
given by[

z1(t, x = 0)

z2(t, x = 0)

]
=

[
0
0

]

and[
z1(t, x = 1)

z2(t, x = 1)

]
=

[
1
1

1+a

]
.

Initially, z1(t = 0, x) is linear in x, and z2(t = 0, x)

is determined from Eq. (30) so that the full com-
positions are initially on the slow manifold. Equa-
tion (29) is discretized in space with central finite
differences over a mesh consisting of 101 equally
spaced nodes and integrated in time using a stiff
ODE integrator. Substantial efforts were made to en-
sure that the results are numerically accurate. Ta-
ble 1 lists the four different cases designed. For the
first three, we demonstrate the individual noninvari-
ance, dissipation–curvature, and differential diffusion
effects, respectively. The values used for D1 and ε

Table 1
Parameters for model systems, Eq. (29)

Case 1 Case 2 Case 3 Case 4

a 0 1 0 1
b 1 1 0 1
c 1 1 1 1
d 2 1 1 2
e 0 0 3 3
g2 − f ′g1 �= 0 0 0 �= 0
f ′′ 0 �= 0 0 �= 0
D2 − D1 0 0 �= 0 �= 0

Note. The noninvariance, dissipation–curvature, and differ-
ential diffusion effects are proportional to g2 − f ′g1, f ′′ ,
and D2 − D1, respectively. For the model systems consid-
ered, g2 − f ′g1 = dz1/(1 + az1)2 − z1/(1 + bz1)2, f ′′ =
−2a/(1 + az1)3, and D2 − D1 = ex.

are given in the figure legends (usually D1 = 1, ε =
0.01).

The three terms in Eq. (24) givingO(ε) departures
from the manifold are proportional to g2 − f ′g1, f ′′,
and D2 − D1, respectively. For the particular form of
Eq. (29) these quantities are

g2(z1) − f ′(z1)g1(z1)

(31)= dz1

(1 + az1)2
− z1

(1 + bz1)2
,

(32)f ′′(z1) = −2a

(1 + az1)3
,

and

(33)D2 − D1 = ex.

Note that these are identically zero for a = b, d = 1;
a = 0; and e = 0, respectively.

In Case 1, we demonstrate the noninvariance effect
on composition and the reduced description. In Fig. 3,
we compared the composition perturbations between
the full model and the prediction from Eq. (24). As
may be seen from the figure, the perturbation is of
order ε as predicted. Away from the boundaries, af-
ter the initial transient (t � O(ε)), there is good
agreement between the full model and the predic-
tion. Close to the boundary, the perturbation predicted
by Eq. (24) is significantly different from the full
model due to the effect of the boundary conditions.
As shown in Fig. 3, the extent of the boundary con-
dition effect on composition decreases with ε. Fig. 4
shows the comparison of the evolution of z1 between
the full model and the reduced description. As may be
seen from the figure, the accuracy of the reduced de-
scription is substantially increased by incorporating
the noninvariance effect in the reduced description.
Even though the prediction for the composition per-
turbation is not accurate close to the boundary, the
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Fig. 3. Distribution of composition perturbation (z2 − z1/

(1 + az1))/ε at different times for Case 1 in Table 1 with
D1 = 1. Solid line: full model (Eq. (29)); dashed line: pre-
diction based on Eq. (24). (a) ε = 0.01; (b) ε = 1 × 10−4.

prediction of the distribution of z1 shows good agree-
ment with the full model over the whole physical do-
main.

In Case 2 and Case 3, we demonstrate the dissipa-
tion–curvature effect and the differential diffusion ef-
fect, respectively, on the composition and the reduced
description, respectively. As may be seen from Figs. 5
and 6, both perturbations are order of ε. Away from
the boundaries, after the initial transient (t � O(ε)),
there is good agreement between the full model and
the predictions. Also, as may be seen from Figs. 7
and 8, by incorporating the coupling, the accuracy
of the reduced description is substantially improved.
Most interestingly, as may be seen from Fig. 8, ne-
glecting the differential diffusion effect in the reduced
description gives a qualitatively inaccurate evolution
of the reduced composition compared with the full
model.

In Case 4, we consider the presence of all the
three effects. As may be seen from Fig. 9, by tak-
ing into account the different effects, the accuracy of

Fig. 4. Results for Case 1 in Table 1 with ε = 0.01 and
D1 = 1. (a) Distribution of z1 at t = 1; (b) evolution of z1 at
x = 1

2 .

Fig. 5. Distribution of composition perturbation (z2 − z1/

(1 + az1)) at different times for Case 2 in Table 1 with
ε = 0.01 and D1 = 1. Solid line: full model (Eq. (29));
dashed line: prediction based on Eq. (24).

the reduced description is substantially improved and
moreover the accuracy increases with the decrease of
ε as expected. In comparison, the error in the “first
approximation” does not decrease with ε.

As pointed out in Section 3.1, the perturbation
analysis is only valid when the fast chemical time
scale is much smaller than the diffusion time scales,
i.e., L2

1/(D1ε) � 1 and L2
2/(D2ε) � 1 with L being

the characteristic diffusion length scale. Also shown
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Fig. 6. Distribution of composition perturbation (z2 − z1/

(1 + az1)) at different times for Case 3 in Table 1 with
ε = 0.01 and D1 = 1. Solid line: full model (Eq. (29));
dashed line: prediction based on Eq. (24).

Fig. 7. Results for Case 2 in Table 1 with ε = 0.01 and
D1 = 1. (a) Distribution of z1 at t = 1; (b) evolution of z1 at
x = 1

2 .

in Fig. 10, when the diffusion time scale is compa-
rable to the fast time scale, even the prediction from
Eq. (25) (taking into account all the three effects) re-
sults in large errors. The reason for this particular
case, as demonstrated in Fig. 11, is that the molecu-
lar diffusion pulls the composition far away from the
slow manifold. As expected, the coupling obtained
based on small perturbation analysis is not accurate.

Fig. 8. Results for Case 3 in Table 1 with ε = 0.01 and
D1 = 1. (a) Distribution of z1 at t = 1; (b) evolution of z1 at
x = 1

2 .

Fig. 9. Evolution of z1 at x = 0.5 for Case 4 in Table 1
with D1 = 1. (a) ε = 0.01; (b) ε = 1 × 10−4. On (b), the
difference between the full PDE solution and the reduced
description by perturbation analysis is indistinguishable.
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Fig. 10. The evolution of z1 at x = 0.5 for Case 2 in Table 1
with ε = 0.01 and D1 = 10.

Fig. 11. Steady-state distribution of compositions in the
composition space obtained from Case 2 in Table 1 with
ε = 0.01 and different values of diffusivity D (= D1 = D2).

For this regime, the use of chemistry-based slow man-
ifolds to describe inhomogeneous reactive flow is in-
adequate.

4. Close-parallel assumption for reduced
description of reactive flows

The close-parallel assumption was first employed
by Tang and Pope [47] to provide a more accu-
rate projection for homogeneous systems in the rate-
controlled constrained equilibrium method [14,15]. In
Ref. [24], the close-parallel assumption is extended
by Ren et al. to incorporate the transport–chemistry
coupling in the reduced description of reactive flows.
In that study, the chemistry-based low-dimensional
manifold used is invariant and therefore the noninvari-
ance effect is zero. Although in Ref. [24] no justifica-
tion for the close-parallel assumption was presented,
as reported, when the transport–chemistry coupling is

incorporated, the accuracy of the reduced description
of the reactive systems is substantially improved.

In the following, we extend the assumption to
the general case where the chemistry-based low-
dimensional manifold is not necessarily invariant. In
model reaction–diffusion systems, for the first time,
we demonstrate the close-parallel phenomena from
different aspects and provide support for the assump-
tion. We show that the close-parallel assumption gives
the same evolution equation for the reduced compo-
sition variable as the perturbation analysis. Finally
we discuss the noninvariance effect and transport–
chemistry coupling in the reduced description of a
general reactive flow.

4.1. An overview of the close-parallel assumption

In the reduced description of an inhomogeneous
reactive flow, the system is described in terms of the
reduced composition variables r. In the close-parallel
assumption, the compositions are assumed to lie on
a low-dimensional manifold which is close to and
parallel to the chemistry-based slow manifold (see
Fig. 1). In other word, in the inhomogeneous flow,
the full system evolves on a manifold which is close
to and parallel to the chemistry-based slow manifold
employed. The assumption is expected to be valid in
the regime where fast chemical time scales are smaller
than the transport time scales, such as diffusion time
scales. In this regime, as shown below, with the use of
the close-parallel assumption, the reduced description
agrees well with the full reactive system.

Recall that the compositions can be expressed
as z(x, t) = zM(r(x, t)) + δz(x, t) with δz = Uδu
(Eqs. (6), (7)), and substituting Eqs. (6) and (7) into
Eq. (10), we obtain

∂r
∂t

+ vi
∂r
∂xi

= BTD
{
zM(r) + Uδu

}
(34)+ BTS

(
zM(r) + Uδu

)
.

For the first term on the right-hand side, since D de-
pends on derivatives of z, and since by assumption z
is close to and parallel to zM, the diffusion process
is not sensitive to the perturbations and the indicated
approximation is

(35)BTD
{
zM(r) + Uδu

} ≈ BTD
{
zM(r)

}
.

For chemical reaction, however, small perturbations
off the manifold may result in significant changes in
the reaction rate due to fast processes in the chemical
kinetics. The assumption that z is close to zM implies
δz (or Uδu) is small, and hence the last term on the
right-hand side of Eq. (34) can be well approximated
by

(36)BTS
(
zM(r) + Uδu

) ≈ BTS(zM) + BTJUδu,
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where Jij ≡ ∂Si
∂zj

∣∣
z=zM is the Jacobian matrix. Hence,

with the close-parallel assumption, we obtain

∂r
∂t

+ vi
∂r
∂xi

= BTD
{
zM(r)

} + BTS
(
zM(r)

)
(37)+ BTJUδu.

The perturbation δz (= Uδu) can be obtained by con-
sidering the balance equation in the normal subspace
of the manifold and therefore an accurate evolution
equation can be deduced for the reduced composi-
tion variables. For given r, we denote by T(r) an
ns × nr orthogonal matrix spanning the tangent sub-
space of the manifold at zM(r), and similarly N(r)
is an ns × nu orthogonal matrix spanning the normal
subspace. Hence, NTT = 0, NTN = Inu×nu , TTT =
Inr×nr , and NNT + TTT = Ins×ns . For the model
problems, as shown below, the tangent and normal
subspaces are readily known. For realistic reactive
flows, when using the ICE-PIC method in the reduced
description, the tangent and normal subspaces of the
chemistry-based manifold are readily computed [24,
53]. For the ILDM method, as shown in Ref. [43],
good approximations to the tangent and normal sub-
space are provided by the slow and fast subspaces
identified in the ILDM method.

Considering the balance of the governing PDEs
(Eq. (1)) in the normal subspace, with z = zM + δz,
we have

NT(r)
∂(zM + δz)

∂t
+ NT(r)vi

∂(zM + δz)
∂xi

(38)
= NT(r)D

{
(zM + δz)

} + NT(r)S(zM + δz).

The close-parallel assumption amounts to the approx-
imations

(39)NT(r)
∂δz
∂t

≈ 0

and

(40)NT(r)vi
∂δz
∂xi

≈ 0.

(Note that NT ∂zM
∂t

and NTvi
∂zM
∂xi

are exactly zero.)
Hence Eq. (38) can be simplified to

(41)0 ≈ NT(r)D
{
(zM + δz)

} + NT(r)S(zM + δz).

Note that the terms on the right-hand side of Eq. (41)
are the components of molecular diffusion and chem-
ical reactions in the normal subspace, respectively.
Equation (41) implies that in the normal subspace of
the manifold, there is a balance between the molecular
diffusion and reaction. (When the transport processes
are absent, the system evolves on a low-dimensional
manifold that is close and parallel to the slow mani-
fold and Eq. (41) implies that the reaction rate in the

normal subspace of the manifold is negligible com-
pared to the reaction rate in the tangent subspace.) It
is worthwhile to make a comparison between Eq. (41)
and the analogous equations obtained in the reduced
description by the CSP method [22,23,25,28,29], the
ILDM method [41–43], and the ASIM method [34].
In the reduced description by the CSP method, after
the relaxation of fast time scales, there exists a bal-
ance between transport processes and reaction in the
fast subspace which is constructed by the refined CSP
basis. Similarly, in the ILDM and ASIM methods,
there exists a balance between transport processes
and reaction in the fast subspace which is identified
based on the local Jacobian matrix. For the model
problems considered in Eq. (13), it is easy to show
that these relations from CSP, ILDM, ASIM, and
the close-parallel assumption are identical (to lead-
ing order) [27,43]. However, the functionality of these
equations in the reduced descriptions by the differ-
ent approaches is different. In the CSP and ASIM
methods, the differential (or differential algebraic)
equations define the slow manifolds for inhomoge-
neous flows, whereas, in the close-parallel assump-
tion, Eq. (41) is used (as shown below) to obtain
the composition perturbations off the chemistry-based
slow manifolds. Another point worthy of mention is
that, for the general case, the basis N used in the
close-parallel approach is different from the analo-
gous bases used in the other approaches, and in partic-
ular N is continuous if the chemistry-based manifold
is sufficient smooth, whereas the fast subspace con-
structed in CSP, ILDM, and ASIM may be discontin-
uous.

Since D depends on the derivative of z(x, t) and
since by assumption z(x, t) is close and parallel to
zM(r(x, t)), Eq. (41) can be simplified as

(42)0 ≈ NTD{zM} + NTS(zM) + NTJ(zM)δz,

where δz = Uδu. In Eq. (42), if the slow manifold
used is invariant, then NTS(zM) is zero. In [24], the
study is focused on the use of invariant manifolds.
Here we extend to the general case.

By manipulating Eq. (42), we obtain

δu = −(
NTJ(zM)U

)−1

(43)× [
NTD{zM} + NTS(zM)

]
.

As may be seen from Eq. (43), based on the close-
parallel assumption, the compositions in the inhomo-
geneous reactive flows are pulled off the slow mani-
fold due to the molecular diffusion and the noninvari-
ance of the slow manifold.

Substituting Eq. (43) into Eq. (37), we have the
evolution equations for the reduced composition vari-
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able r,

∂r
∂t

+ vi
∂r
∂xi

= BTD
{
zM(r)

} + BTS
(
zM(r)

)
(44)+ HTS(zM) + HTD{zM},

where HT ≡ −BTJU(NTJU)−1NT is an nr × ns ma-
trix. Compared to the first approximation (Eq. (12)),
there are two extra terms that arise from the nonin-
variance effect and diffusion–chemistry coupling.

Hence, as shown in Eqs. (43) and (44), the com-
positions in general inhomogeneous reactive flows
are pulled off the chemistry-based slow manifold by
the noninvariance of manifold and molecular diffu-
sion, and correspondingly, these perturbations intro-
duce coupling terms into the evolution equation of the
reduced composition variables.

4.2. Noninvariance effect and transport–chemistry
coupling in general reactive flows

For the general reactive flow, we further explore
Eq. (44) and explicitly show the dissipation–curvature
effect and the differential diffusion effect on the re-
duced description of reactive flows. In describing
combustion processes, the diffusion model, Eq. (2),
is widely used. We consider the decomposition of the
diagonal diffusivity matrix Γ as

(45)Γ = Γ̄ I + δΓ ,

where Γ̄ is a reference diffusivity, chosen to make
δΓ small in some sense. A natural choice of Γ̄ is the
species-weighted diffusivity ‖Γ zM‖ / ‖zM‖.

Substituting Eqs. (2) and (45) into (44), we have

∂r
∂t

+ vi
∂r
∂xi

= BTD
{
zM(r)

} + BTS
(
zM(r)

)

+ HTS(zM) + HT ∂2zM

∂rj ∂rk

(
Γ̄

∂rj

∂xi

∂rk

∂xi

)

(46)+ HT 1

ρ
∇ · (ρδΓ ∇zM),

where HT = −BTJU(NTJU)−1NT. Hence, as demon-
strated in the reaction–diffusion system, in general
reactive flows, the transport processes introduce two
usually nontrivial coupling terms into the reduced
composition evolution equation: one is due to the
combination of scalar dissipation and manifold cur-
vature, the other to differential diffusion. These two
terms represent the transport–chemistry coupling.
Notice that the decomposition of HTD into these two
terms is not unique. Different decompositions of Γ

may lead to different decompositions of HTD.
One essential quantity in Eq. (46) is the matrix

HT which provides the coupling information between
the reduced composition and chemistry. (It plays the

same role as the parameter c in the model reaction.)
Assume that the Jacobian can be decomposed as

(47)J = VΛṼ = [Vs Vf]Λ
[

Ṽs
Ṽf

]
,

where V is the ns × ns right eigenvector matrix and
Ṽ = V−1 is the left eigenvector matrix. The diagonal
matrix Λ, of dimension ns × ns, contains the eigen-
values of J, ordered in decreasing value of their real
parts. The columns of Vs (ns ×nr) span the slow sub-
space, and the columns of Vf (ns × nu) span the fast
subspace. It is easy to verify that if the unrepresented
subspace span(U) is aligned with the fast subspace
(i.e., the represented subspace span(B) is perpendic-
ular to the fast subspace), HT is zero; otherwise a
nontrivial coupling between the reduced composition
variables and chemistry may occur and hence nontriv-
ial extra terms may arise in the evolution equation for
the reduced composition variables (e.g., the last three
extra terms in Eq. (46)).

As may be seen from Eq. (46), the “first ap-
proximation” for the evolution equation for the re-
duced composition variables is only accurate under
the special circumstances: negligible noninvariance
effect and negligible transport–chemistry coupling.
One way to reduce the noninvariance effect and the
transport–chemistry coupling is to carefully choose
the represented subspace so that it is perpendicular to
the fast directions. Since the fast directions Vf vary
with position in composition space, for a fixed re-
duced representation with constant B, the best that
can practically be achieved is a choice of B that
minimizes the principal angles between span(B) and
span(Vf) for compositions in the region of the slow
manifold where the transport–chemistry coupling is
significant. Two other effective ways to increase the
accuracy of the “first approximation” are to use in-
variant manifolds in the reduced description, and to
increase the dimensionality of the reduced descrip-
tion (i.e., increase the number of reduced composition
variables). When invariant manifolds are used in the
reduced description, the noninvariance effect is zero.
By increasing the dimensionality of the reduced de-
scription, the transport–chemistry coupling is likely
to decrease due to the decrease of both manifold cur-
vature and the possible differential diffusion effect.
At the same level of reduction, accounting for the
noninvariant effect and the transport coupling usu-
ally gives a more accurate description. As reported in
Ref. [24], when using the ICE-PIC approach to per-
form the species reconstruction for one-dimensional
premixed laminar flames of methane/air mixture, with
transport–chemistry coupling, the ICE-PIC method
with 8 reduced composition variables is much more
accurate than the one with the same reduced composi-
tion but without transport–chemistry coupling; more-
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Fig. 12. The reaction trajectory from Eq. (48) with ε = 0.01
starting from the initial condition [ 1

2 ; 1
3 ] in the composition

space z1–z2. The small parameter ε = 0.01.

over it achieves comparable accurate results with the
one with 12 reduced composition variables that does
not include the coupling.

4.3. Validation in the reaction–diffusion systems

The close-parallel phenomena are observed in
both homogeneous and inhomogeneous systems,
which serve as supports for the close-parallel as-
sumption. Fig. 12 shows the reaction trajectory in the
composition space for the homogeneous reactive sys-
tem (with ε = 0.01),

dz1

dt
= 1

ε

(
z2 − z1

1 + z1

)
− 2z1,

(48)
dz2

dt
= −1

ε

(
z2 − z1

1 + z1

)
− z1

(1 + z1)2
.

The initial composition [ 1
2 ; 1

3 ] is on the slow manifold

z = zM(z1) =
[

z1
z1

1+z1

]
.

As may be seen from the figure, due to the noninvari-
ance of the slow manifold, the reaction trajectory is
pulled off the slow manifold in the initial transient.
After that the reaction trajectory is close to and paral-
lel to the slow manifold.

Fig. 13a shows the evolution of the compositions
at four different physical locations in the composition
space for Case 2 in Table 1 with ε = 0.1 and D1 = 1.
Due to molecular diffusion, in the initial transient, all
the compositions are pulled off the chemistry-based
slow manifold (invariant in this case). After the ini-
tial transient, the compositions at different physical
locations evolve approximately in the same manifold,
close to and parallel to the slow invariant manifold.
(This parallel phenomena is also observed by Gous-
sis et al. [29] in studying the diffusion and chemical

Fig. 13. Results for Case 2 in Table 1 with ε = 0.01 and
D1 = 1. (a) Evolution of compositions at four different phys-
ical locations in the composition space. Solid line: slow
manifold; solid dots: initial compositions; dashed lines: evo-
lution trajectories. (b) The distribution of the compositions
at different times in the composition space.

time scales.) Another perspective to look at this close-
parallel phenomena is to study the composition distri-
bution in the composition space at discrete times. As
may be seen from Fig. 13b, in the composition space,
during the evolution, the compositions in the physi-
cal domain stay close to the slow manifold. A close
look reveals that after the initial transient, at each dis-
crete time, the compositions in the physical domain
approximately lie on a manifold that is close to and
parallel to the slow manifold.

As discussed in Section 4.1, the close-parallel as-
sumption implies a balance between the molecular
diffusion and reaction process in the normal subspace
of the slow manifold (see Eq. (41)). We demonstrate
this balance in Fig. 14. The figure shows the com-
ponents of the rate of change, molecular diffusion,
and reaction in the normal subspace of the manifold
for Case 4 in Table 1 with ε = 0.01 and D1 = 1. As
may be seen, after the initial transient (≈0.01 s), the
dominant balance is between reaction and molecular
diffusion over the whole physical domain.

Besides the above phenomenological validation,
it is easy to show that for the class of reaction–
diffusion systems (Eq. (13)) considered in Section 3,
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Fig. 14. The balance of rate of change, molecular diffusion,
and reaction in the normal subspace of the slow manifold
for Case 4 in Table 1 with ε = 0.01 and D1 = 1. Solid line:
molecular diffusion; dashed line: reaction; dash–dotted line:
rate of change.

the close-parallel assumption gives the same evolu-
tion equation for the reduced composition variable as
the perturbation analysis. Recall that the represented

subspace is B =
[

1
0

]
, the unrepresented subspace is

U =
[

0
1

]
, the tangent unit vector of the slow manifold

is T = 1√
1+f ′2

[
1

f ′(z1)

]
, and the normal unit vector is

N = 1√
1+f ′2

[−f ′(z1)

1

]
. The Jacobian matrix on the

slow manifold is

(49)

J(zM) =
[

− cf ′
ε + ∇z1g1

c
ε + ∇z2g1

f ′
ε + ∇z1g2 − 1

ε + ∇z2g2

]∣∣∣∣∣
z=zM

,

where ∇z1 and ∇z2 are partial derivative operators
with respect to z1 and z2, respectively. Substituting
the above expressions into Eq. (43), we obtain

δu = δu

= g2(z1, f (z1)) − f ′g1(z1, f (z1))

1
ε (1 + cf ′) + ∇z2g1f ′ − ∇z2g2

− f ′∇ · (D1∇z1) − ∇ · (D2∇z2)

1
ε (1 + cf ′) + ∇z2g1f ′ − ∇z2g2

= ε
g2(z1, f (z1)) − f ′g1(z1, f (z1))

1 + cf ′

+ ε
f ′′D1∇z1 · ∇z1

1 + cf ′

(50)+ ε
∇ · (f ′[D2 − D1]∇z1)

1 + cf ′ +O(ε2).

Hence for the reaction–diffusion systems, the close-
parallel assumption predicts z2 = f (z1) + δu, which

is identical to Eq. (24) (to leading order). By substitut-
ing Eq. (50) into Eq. (37), it is easy to verify that the
evolution equation for z1 given by the close-parallel
assumption is identical to Eq. (25) (to leading order).

4.4. Effect of convection on the composition and the
reduced description

Besides the diffusion and reaction, most inhomo-
geneous flows involve convection. It is important to
understand its effect and role in the reduced descrip-
tion. As mentioned [42,44], convection alone does not
pull compositions off chemistry-based manifolds and
in fact it does not even change the composition of
a fluid particle. Moreover in the reduced description
(see Eq. (10)), the corresponding convection term for
the reduced composition is exact, with no approxima-
tion needed.

However, in spite of its seeming insignificance,
convection does have significant effects both on the
composition and the reduced description. Convection
manifests its effect through the diffusion process by
changing the gradients of the composition field. It
is well known that convection may introduce small
flow structures such as eddies and therefore changes
the length and time scales of diffusion. The compo-
sitions in a reactive flow may be further pulled off
the chemistry-based manifold by enhanced diffusion
caused by convection. In a regime where convection
is not so strong that the time scales of the enhanced
diffusion are still much larger than the fast chem-
ical time scales, the compositions still lie close to
the chemistry-based slow manifold. This is true when
the convection time scales are much larger than the
fast chemical time scales. As shown below, in this
regime, the close-parallel assumption for the reduced
description, Eq. (44), and its implication, Eq. (41), are
still valid. When convection is so strong that the time
scales of the enhanced diffusion are comparable to or
smaller than the fast chemical time scales, the compo-
sitions are pulled far away from the chemistry-based
slow manifold. As expected the transport–chemistry
coupling obtained based on small perturbation is not
accurate. Consequently, the close-parallel assumption
for the reduced description, Eq. (44), and its impli-
cation, Eq. (41), are not accurate in these circum-
stances. This occurs when the convection time scales
are comparable to or smaller than the fast chemical
time scales.

To illustrate the effect of convection, we add con-
vection to the model system, Eq. (29), so that the
governing equations are

∂z1

∂t
+ v

∂z1

∂x
= c

ε

(
z2 − z1

1 + az1

)

− dz1 + ∂

∂x

(
D1

∂z1

∂x

)
,
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Fig. 15. Results from the system Eq. (51) with differ-
ent values of velocity. All the other parameters including
boundary and initial conditions are the same as those for
Case 4 of the system Eq. (29) in Table 1 with ε = 0.01
and D1 = 1. (a) Distribution of z1 at t = 1 for different ve-
locities. (b) Steady-state distribution of compositions in the
composition space.

(51)

∂z2

∂t
+ v

∂z2

∂x
= −1

ε

(
z2 − z1

1 + az1

)

− z1

(1 + bz1)2
+ ∂

∂x

(
D2

∂z2

∂x

)
,

where v is the velocity, and all the other parame-
ters including boundary and initial conditions are the
same as those specified in Eq. (29). For simplicity,
the velocity is taken to be constant and uniform over
the whole domain. As may be seen from Fig. 15,
with the increase of velocity, convection gradually en-
hances the composition gradient and consequently en-
hances the molecular diffusion which pulls the com-
position off the chemistry-based slow manifold. We
observe that for v = 1, where the convection time
scale (order of 1) is much larger than the fast chem-
ical time scale (order of 0.01), the compositions still
lie close to the chemistry-based slow manifold. For
this regime, as may be seen from Fig. 16, after the
initial transient, the dominant balance in the normal
subspace of the chemistry-based slow manifold is be-
tween molecular diffusion and chemical reaction, i.e.,
the implication Eq. (41) of the close-parallel assump-
tion is still valid even when convection is present.
The components of convection and rate of change in
the normal subspace are negligible as implied by the
close-parallel assumption. Moreover, as may be seen
from Fig. 17, the close-parallel assumption (Eq. (44))
provides an accurate reduced description of the full
system. However, as shown in Fig. 15, when convec-

Fig. 16. The balance of rate of change, molecular diffusion,
and reaction in the normal subspace of the chemistry-based
slow manifold from the system Eq. (51) with different val-
ues of velocity: (a) v = 1; (b) v = 10. All the other pa-
rameters including boundary and initial conditions are the
same as those for Case 4 of the system Eq. (29) in Table 1
with ε = 0.01 and D1 = 1. Solid line: molecular diffusion;
dashed line: reaction; dash–dotted line: rate of change; dot-
ted line: convection.

Fig. 17. Results from different descriptions of the system
Eq. (51) with velocity v = 1. All the other parameters includ-
ing boundary and initial conditions are the same as those for
Case 4 of the system Eq. (29) in Table 1 with ε = 0.01 and
D1 = 1. (a) Distribution of z1 at t = 1; (b) evolution of z1 at
x = 0.5. Solid line: full PDE solution; dashed line: reduced
description with first approximation; dash–dotted line: re-
duced description with close-parallel assumption.
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tion becomes larger and therefore the convection time
scale become smaller (for example, v = 10), convec-
tion greatly enhances the diffusion process such that
the compositions are far away from the slow mani-
fold and consequently the close-parallel assumption
and its implication are not valid. As may be seen from
Fig. 16, when v = 10, the balance between diffusion
and reaction does not hold in some region.

5. Conclusion

In this study, the issues arising from the use of
chemistry-based slow manifolds in inhomogeneous
reactive flows are addressed. For a class of reaction–
diffusion systems, by perturbation analysis, an ex-
pression is obtained for the composition perturba-
tion off the chemistry-based slow manifold. It re-
veals that there are three different mechanisms that
pull compositions off the chemistry-based slow man-
ifold in an inhomogeneous reactive flow: noninvari-
ance, dissipation–curvature, and differential diffu-
sion. Correspondingly, these three perturbations in-
troduce three usually nontrivial terms in the evolution
equation of the reduced composition variables. Hence
the first approximation, which simply neglects these
small perturbations (and hence neglects the usually
nontrivial terms in the evolution equation of the re-
duced composition variable), is only accurate under
some particular circumstances.

In this study, from different perspectives, we
demonstrate the close-parallel phenomena, which
provides support for the close-parallel assumption in
Ren et al. [24]. We show that due to the noninvariance
of the chemistry-based slow manifold, the reaction
trajectory in a homogeneous systems is pulled off
the slow manifold in the initial transient and then
evolves close to and parallel to the slow manifold.
We also show that in the regime where fast chemical
time scales are much smaller than those of transport
processes, the transport processes only slightly per-
turb the compositions off the chemistry-based slow
manifold. After the initial transient, the compositions
in an inhomogeneous reactive flow tend to lie on a
manifold that is close to and parallel to the chemistry-
based slow manifold.

Moreover, we quantitatively validate the close-
parallel assumption proposed by Ren et al. [24] to
account for the noninvariance, dissipation–curvature,
and differential diffusion effects in the reduced de-
scription. We illustrate the balance between the mole-
cular diffusion and chemical reactions in the normal
subspace of the slow manifold. Based on this bal-
ance, composition perturbations are computed and the
above three effects can be incorporated in the evolu-
tion equation of the reduced composition variables.

It is demonstrated that after the noninvariance effect
and transport–chemistry coupling are accounted for,
the reduced description agrees well with the full reac-
tive system.

For simplicity of exposition, in this paper, we con-
sider only inhomogeneous flows with constant and
uniform enthalpy and pressure. However, the exten-
sion to variable pressure and enthalpy is straightfor-
ward. For example, for an inhomogeneous reactive
flow with nonuniform enthalpy, it is easy to show
that the heat transfer and heat loss introduce addi-
tional coupling terms into the reduced description of
the same form as those in the species equations.
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