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Abstract

Modeling of partially stirred reactors (PaSR) by stochastic Monto Carlo simulations is carried out to investigate
the relative performance of three existing turbulent mixing models: the interaction by exchange with the mean
model, the modified Curl mixing model, and the Euclidean minimum spanning tree model. A detailed mechanism
for hydrogen oxidation, which involves 9 species and 19 reactions, is incorporated into the simulations using the
in situ adaptive tabulation algorithm. Numerical simulations are performed for a wide range of residence and
mixing times revealing the significant differences in the PDFs of mixture fraction, in the scatter plots, and in the
extinction behaviors between the three different mixing models. The conditional mean scalar dissipation implied
by each model is deduced analytically or numerically in the PaSR, but it is shown not to have the same significance

as in the conditional moment closure and flamelet models.
0 2003 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

In the modeling of turbulent reactive flows based
on PDF methods, the change in fluid composition due
to reaction is treated exactly, while molecular mix-
ing has to be modeled. Modeling mixing in particle
implementations of PDF methods involves prescrib-
ing the evolution of stochastic/conditional particles in
composition space such that they mimic the change in
the composition of a fluid particle due to mixing in a
turbulent reactive flow.

Mixing models are essential for PDF methods
and previous calculations show sensitivity of piloted
flame results to the choice of mixing model. Cal-
culations of the Barlow and Frank [1] piloted-jet
methane/air flame F performed by different groups,
especially by Tang et al. [2], by Xu and Pope [3], and
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by Lindstedt et al. [4], demonstrate the sensitivity of
extinction results to the choice of the mixing model
and constants.

In order to investigate the relative performance
of different mixing models for nonpremixed turbu-
lent reactive flows, this work examines the perfor-
mance of three different existing mixing models:
the interaction by exchange with the mean (IEM or
LMSE) model [5,6], the modified Curl mixing (MC)
model [7], and the Euclidean minimum spanning tree
(EMST) model [8]. The idealized partially stirred re-
actor (PaSR) is studied for simplicity. It is similar to
a single grid cell embedded in a large PDF computa-
tion of nonpremixed turbulent combustion. Similarly
we consider a single dilutedHair case as a function
of the two time scales: the residence timgs and the
mixing time k. We first study the PDFs of the mix-
ture fraction&, the scatter plots, and the extinction
behaviors to reveal the differences between the three
mixing models. In Appendices A and B, we derive
analytic expressions for the Favre mean and variance
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of mixture fraction¢ and the conditional mean scalar
dissipation implied by the IEM model for the PaSR
in the statistically stationary state. We show that the
conditional mean scalar dissipation implied by the
IEM model does not have the same significance as in
the conditional moment closure (CMC) and flamelet
models.

2. Test case: partially stirred reactor

It is supposed that the adiabatic PaSR is con-
tinuously fed by two inlets, which inject cold non-
premixed fuel and oxidant into the reactor at the mass
flow ratesm, andmoy, respectively. In our simula-
tions, the two inflow streams are the fuel stream (H
and N\, 1: 1 by volume,T = 300 K) and the oxidant
stream (N and @, 79: 21 by volume,T = 300 K).

The pressure is atmospheric throughout. Inside the re-
actor, reaction occurs and the mean thermochemical

properties are assumed to be statistically spatially ho-
mogeneous, but the fluid is imperfectly mixed at the
molecular level. Simultaneously, the resulting mix-
ture is withdrawn from the reactor at a rate equal
to the total mass inflow rates, i.ei, = mox + miy.
The mass of fluid inside the reactar, is constant;
so the mean residence timgss can be defined as
tres= m/m. The inflow mass fraction of the oxidant
stream,P, is defined as® = rox/[1ox +msy]. In the
PaSR, when statistically stationary, the equivalence
ratio @ is related taP through® = (1— P)/(1— Psp),
where Pst is the value of P when the inflow mix-
ture yields stoichiometry. In our simulationgst is
equal to 0.696. The compositighconsists of species
mass fractions and enthalpy, and it determines the
thermochemical state of the mixture. We usas the
sample-space variable correspondingtand usep?
and¢? to denote the compositions of the inflow oxi-
dant and fuel streams, respectively.

With the assumption of equal diffusivities, the
transport equation for the density-weighted joint PDF,
F@:0=p@) W —$)/(p@)),is [9]
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action, respectively, on the joint PDF: these processes
require no modeling. The last term represents the ef-
fect of microscale mixing on the joint PDF: each of
the three mixing models considered is intended to
model this process.

In the stochastic simulation of the PaSR, a time
marching scheme is used to solve Eq. (1) (with the
final term replaced by a model). At any timethe
PaSR consists oN = 1000 particles, theéth parti-
cle having compositiog ) (1), weightw®, and age
s@ (which is the elapsed time since the particle en-
tered the reactor). In our simulations, all particles
have equal weights. With¢ being the specified time
step, at the discrete timéar (k integer) events occur
corresponding tinflow andoutflow; which can cause
¢® (1) to change discontinuously. Between these dis-
crete times, the composition evolves bynaxing
fractional step and @eaction fractional step. These
processes are now described in more detail.

(1) Inflow/outflow: Choos&Viepjaced= N x At/
Tres) particles randomly with replacement from the
ensemble ofV particles, replace them with an equal
number of particles from the inflow streams, and reset
their ages to zero. This procedure leads to a theo-
retical age distribution given by an exponential form
fagds) = %es exp(—s/tres) [10] with an average age
of rresfor At — 0.

(2) Mixing fractional step: Mixing models are
used to model molecular mixing. In this fractional
step, the mixing timeryix is the characteristic time
scale and is defined to yield a particular decay of vari-
ance. For IEM [5,6], the ordinary differential equa-
tion,

d¢p® @ —¢)
dr 2Tmix
is solved for each particle over a period&f, where
¢ is the Favre mean composition of the ensemble
of particles. In MC [7] with equal-weight particles,
N x % pairs of particles are randomly selected with
replacement from the ensemble and mixing occurs
within each pair according to

)

pPnew) _ g(p) 4 %a(d,(q) _ ),

®)

where p and ¢ denote the pair of particles and

is a random variable uniformly distributed 9, 1).
EMST [8,11] is a complicated particle-interaction
model, loosely based on the form of the mapping
closure particle equations, which uses the Euclidean
minimum spanning trees in composition space. In

. 1
¢(Q,ncw) :¢(q) + 5a(¢(p) _ ¢(q)),

1
+——[Ps(¢° —¥) + Q- P)s (1 — ¥)]
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Rl
Yy
32 [ -
- 4r ﬂ}
Mo
where p is density, S, is the source term due to
reaction, and the summation convention applies. In this model, the change in particle composition is de-
Eq. (1), the first three terms on the right-hand side rep- termined by particle interactions along the edges of
resent the effects of outflow, inflow, and chemical re- Euclidean minimum spanning tree constructed on the
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Table 1
Reaction mechanism of theplair system [12]
A B Eq4
R1 O +H&OH+0 200x 1014 0.0 703
R2 Ho+O<« OH+H 5.06 x 10% 2.7 263
R3 Hp + OH & HyO+H 1.00 x 1C8 1.6 138
R4 OH+ OH & H,0+0 150 10° 1.1 04
R5 H+H+M & Hy+ M 1.80x 1018 -1.0 00
R6 H+OH+M & HyO+M 2.20x 10?2 —2.0 00
R7 0+0+M& Oy +M 2.90x 107 -1.0 0.0
RS H+0;+M & HOy + M 2.30x 1018 -0.8 00
R9 HO; 4+ H & OH+OH 150x 1014 0.0 42
R10 HO +H & Hy + 0, 2.50x 1013 0.0 29
R11 HO, +H < H0+ 0 300x 1013 0.0 7.2
R12 HO + 0« OH+0y 1.80x 1013 0.0 -17
R13 HO + OH < H,0+ O, 6.00x 1013 0.0 0.0
R14 HO, + HOp = Hy05 + 0Oy 2.50x 10t 0.0 -52
R15 OH+ OH+M & Hy0, + M 3.25x 1072 -20 0.0
R16 HO5 +H < Hy + HO, 1.70x 102 0.0 157
R17 HO, +H < HyO + OH 100x 1013 0.0 150
R18 H0, + O < OH+ HO, 2.80x 1013 0.0 268
R19 HO, + OH & Hy0 + HO, 5.40 % 10'2 0.0 42

A units, molcm s KiE, units, kyYmol; k+ = ATP exp(—Eq/RT), molcmsK.

ensemble of particles in composition space. Conse-
quently, the mixing is modeled locally in composition
space.

(3) Reaction fractional step: Each particle evolves
by the reaction equation

d¢(i)
dt
over a period ofAr. The detailed mechanism [12] (see
Table 1) for hydrogen oxidation, which involves 9
species and 19 reactions, is incorporated into the sim-
ulations using then situ adaptive tabulation (ISAT)
algorithm [13]. The ISAT error tolerancey), is set
to 1.0 x 10>, which guarantees less than 1% tabula-
tion error for all species in our calculation.

In our simulations, the initial condition is that
all particles are in chemical equilibrium: 60% of the
particles have the stoichiometric mixture fractigg
(=0.304), and the remaining 40% of the particles are
uniformly distributed based on mixture fraction. The
time stepAr is chosen to bq% MiN(tres, Tmix) iN Or-
der to ensure numerical accuracy.

For convenience, we introduce conditional Favre
averaging:(-|n), = (-pln)/{p|n), wherep is density
andn is the sample-space variable corresponding to
mixture fraction. In the PaSR, when statistically sta-
tionary, for the IEM model there are no conditional
fluctuations, and hence there is no difference between
the unweighted conditional averages and the condi-
tional Favre averages, i.€:|n), = (-|n), because all
quantities p, ¢, etc.) are deterministic functions pf

=5(¢®), @)

In the following section, we present the results
when the PaSR has reached statistical stationarity.
The quantities conditional on the mixture being sto-
ichiometric are estimated according {d4sp), =
Jeso0s PD LN pdn/ [55005 b dn, e, the
range of¢ used to estimate the quantities conditional
on the mixture being stoichiometric is from 0.254
to 0.354. Herep(n) is the PDF of mixture fraction,
P ={pIm)(8(n — &)/ (p).

3. Resultsand discussion

3.1. Effect ofrypix/tres 0N the PDF of mixture
fraction

As shown in Appendix A, when statistically sta-
tionary, the Favre mean and variance of mixture frac-
tion in the PaSR are

E=1-pP ®)
and
722 P(1— P)/(1+ Tres/Tmix)- )

These results hold for all of the mixing models, except
that (as discussed in Appendix A) Eq. (6) is satisfied
only to an approximation in EMST.

As the ratiormiy/Tresincreasess” 2 increases and
the PDF of mixture fraction evolves from one delta

function (atn = &, for tmix/tres — 0, which is the
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Fig. 1. PDFs of mixture fraction given by the three models
for different values ot ix/tresandrres= 2 x 1073 (s). The
values of the Favre-averaged rfisare shown in the keys.

PSR limit) toward two delta functions (at= 0 and
n =1, for tmix/tres > oo, which is the unmixed
limit).

Figure 1 shows the PDFs given by the three mixing
models for several intermediate valueswgfix/tres
with tres= 2 x 1073 (s) and® = 1.0. The figure

211

shows that for the same values&®and&”2 (result-
ing from the same values aP and tpix/tres), the
PDFs of the mixture fraction for the three different
mixing models are quite different. The EMST model
results in a relatively higher probability around stoi-
chiometry whert” 2 increases. For other equivalence
ratios @ = 0.7 and® = 1.3, not shown), we obtain
conclusions similar to that fop = 1.0.

3.2. Scatter plots

Figure 2 shows the scatter plots of temperature
against mixture fractiom, which are obtained with
Tres= 2 X 1073 (S), Tmix/tres= 0.35, and® = 1.0.

The lines in the scatter plots correspond to chemi-
cal equilibrium. Note from Fig. 2a that the reaction
zone in mixture fraction space is from about 0.24 to
about 0.5. The scatter below the equilibrium line in
the reaction zone corresponds to incompletely burned
particles or extinguished particles. In this cagesis

at least an order of magnitude greater than the extinc-
tion value (see Fig. 3b) and little local extinction is to
be expected.

Figure 2 shows the qualitatively different behav-
ior of the three mixing models. For the IEM model,
Fig. 2a is consistent with the following picture: parti-
cles corresponding to composition values outside the
reaction zone relax to the mean composition and are
drawn away from their initial condition on the equi-
librium line; particles in the reaction zone react back
close to their equilibrium values due to fast reac-
tions. It is clear that particles do not all lie close to
the equilibrium line and the model fails to reproduce
the expected physical behavior in this case. Figure 2b
shows that the MC model mixes cold fuel with cold
oxidant to produce cold, nonreactive mixtures which
are within the reaction zone in mixture-fraction space.
Clearly, this is physically incorrect in this case. Fig-
ure 2c shows that all compositions given by the EMST
model for this case are close to equilibrium. So Fig. 2
shows that the EMST mixing model produces the
expected physical behavior, whereas the IEM model
and MC model do not. The corresponding mixture-
fraction PDFs are also shown in Fig. 2 and they are
quite different.

3.3. Extinction results

In the PaSR, the inflow mixtures are nonpremixed
cold fuel and cold oxidant. Global extinction occurs
for a fixed value oftyix/tres When tres is reduced
to a point at which chemical reaction cannot be sus-
tained. Also global extinction occurs gg;jy increases
(for a fixed value ofrres) due to insufficient mixing.
The mean temperature conditional on the mixture be-
ing stoichiometric(T |£st) p, is a sensitive measure of
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Fig. 2. Scatter plots of temperatufeagainst mixture fractiom and the corresponding PDFs of mixture fraction obtained with
Tres= 2 x 1073 (S) andryix/tres= 0.35. The lines in the scatter plots correspond to chemical equilibrium.

the approach to extinction. Here we ugg|&st) to turbulent combustion such as the CMC [14] and
study the above two extinction behaviors for the three flamelet models [15]. In the following two subsec-
mixing models (for¢ = 1.0). tions, the conditional mean scalar dissipation of mix-

Figures 3a and 3b shoyr'|ésy), for different ture fraction (x|n), implied by the three mixing
values oftres, for fixed tmix/tres Figure 3c shows models in the PaSR is derived, compared, and shown

(T|&st)p for different values ofryix, for fixed tres. not to have the same significance as in the CMC and
The asterisk symbol in the figure is the corresponding flamelet models.
extinction point. Figure 3 shows that the three mix- In the PaSR, the implied Favre mean scalar dissi-

ing models are in good agreement with each other for pation is

small Favre-averaged rms mixture fractigh(small ~

Tmix/ Tres), but considerable differences arise for large % = £”2/tmix. (7)
&' (large tmix/tres). The EMST model is more re-
sistant to global extinction than the IEM and MC
models. For other equivalence ratio® & 0.7 and

andy and(x|n), are related through

1
@ = 1.3, not shown) we obtain conclusions similar  _ .
to that for® = 1.0. X= f<X|’7>pP(’7)d’7’ ®)
0
3.4. Implied conditional mean scalar dissipation where jp(n) is the density-weighted PDF df and
(xImp/x depends only ortmix/tres, P (or @), n,
The scalar dissipation of mixture fractign (de- and the model. .
fined asy = 2I' V& - V&) and its statistics (its PDF, According to Eq. (6)¢”2 is determined bymix/

variance, conditional mean, etc.) are important quan- tresandP. So, given the same values®fix/tres, P,
tities in most modeling approaches to nonpremixed andrpix, x is the same for the three mixing models.
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Tres=2 x 1073 (s). The extinction point is indicated by an
asterisk.

However, the implied conditional mean scalar dissi-
pation distribution is quite different.

For the IEM model in the statistically stationary
state, as shown in Appendix B, we obtain an ana-
Iytical expression for the PDF of mixture fraction
(Eqg. (17)) and then derive an analytical expression
for the implied value of(x|n), (Eq. (22)) from the
PDF balance equation. For the MC and EMST mod-
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Fig. 4. (a) The distribution of the implied value 6f|n),/x
for the IEM model (obtained analytically) witkp = 1.0.
(b) Implied value of(x|&st),/x for different values of®
for the IEM model. (c) Implied values dfy |&st) / x for dif-
ferent mixing models (obtained numerically) fér=1.0.

els in the statistically stationary state, we can ob-
tain numerical values of the PDFs of mixture fraction
through simulations. Then, by numerically integrating
the PDF balance equation twice, we can obtain the
implied conditional mean scalar dissipation of mix-
ture fraction.
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Figures 4a and 4b show the distribution(@f) , /
x and (x|&st)p/x for the IEM model under differ-
ent conditions. Figure 4c showg |&st),/x for the
three mixing models as functions afyix/tres for
@ = 1. Figure 4 shows that, even for the same mix-
ing model, the distribution of conditional mean scalar
dissipation changes significantly whegix / tresor @
is changed. Figure 4 also shows that whgf /tres

is increased, large differences arise among the three

mixing models. These results are consistent with the
extinction results.

3.5. Relevance of conditional mean scalar
dissipation implied by the IEM model

In the PaSR when statistically stationary, for the
IEM model, all quantities are deterministic functions
of n, so there are no conditional fluctuations and
(-In)p is equal to(-|n). Furthermore, taking the mass
fraction Yn,o as the progress variable and following
the procedure in [14], the CMC model equation for
the conditional mean of the progress variable is

2
S(n, Q)=—%(x|n)p%, 9)
where Q(i7) denotes(Yn,oln)p and S(n, Q) is the
reaction rate.

If the conditional mean scalar dissipation implied
by the IEM model has the same significance as in
CMC and flamelet theories, the CMC model equation
should hold. But this is not the case. Figure 5 clearly
shows that the equation does not hold (very obvi-
ously in the rectangular region: the left-hand side of
the equation is positive, whereas the right-hand side
is negative). So the implied conditional mean scalar
dissipation by the IEM model does not have the same
significance as in CMC and flamelet theories. The rea-
son is as follows.

In both CMC and simple flamelet theory, the reac-
tion progress variable is related to mixture fraction by
a relation of the formy,o(x, 1) = Q(&[x, t]). Con-
sequently the diffusive fluxes are linked by

I'VYpy,0=TVEQ' (&),

where Q' denotes the derivative @, and the CMC
equation (Eq. (9)) stems from this linkage. But the
IEM model does not contain this linkage, and so its
results do not conform to Eg. (9).

In the combustion regimes in which CMC and
flamelet models are well founded, these models ac-

(10)

curately represent the coupled process of reaction and

molecular diffusion. In these circumstances, the IEM
model does not contain the correct coupling (e.g.,
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Fig. 5. (a) The expectation dfy,o conditional on¢ =»n
against mixture fraction. (b) The distribution of the im-
plied value of (x|n),. (c) Reaction rate against mixture
fraction. All results were obtained for the IEM model with
Tres= 2 x 1073 (S), Tmix/Tres= 0.35, and® = 1.0.

4. Conclusions
The PaSR test reveals several important differ-

ences in the performance of the three mixing models
(IEM, MC, and EMST). For given values ofix/tres

Eqg. (10)), and consequently can be expected to be lessand P, the Favre mean and variance of mixture frac-

accurate.

tion are almost the same for all models, but the PDFs
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are significantly different: the EMST model results in
a relatively higher probability around stoichiometry
whené&’ is increased. For the same conditions, scatter
plots reveal the qualitatively different behavior of the
three mixing models. Except at small values tfthe
models exhibit substantially different extinction be-
haviors: the EMST model is more resistant to global
extinction than the IEM and MC models. The implied
conditional mean scalar dissipation can be deduced
for each model analytically or numerically, but it does
not have the same significance as in the CMC and
flamelet models.
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Appendix A. Determination of the Favre mean
and variance of mixture fraction in the PaSR

In the PaSR, when statistically stationary, the
transport equation for the PDF of mixture fraction,
p(n), is

ap(n) _o
ar
5 1
__b +—[Ps(n) + (1 — P)s(1—n)]
Tres Tres
32 (1 _
- a—nz<§p(n)<xln>p)’ 11

where (x|n), is the density-weighted conditional
mean scalar dissipation of mixture fraction. For the
IEM model in the statistically stationary state, the
PDF equation is

p 1
0= 2D L rpsiy - Pysa—n]
Tres Tres
Al 1 N
-— —5p( |. 12
o [ZTmix (o E)p(n)} (12)

By multiplying both sides of Eq. (12) by and inte-
grating from—oo to co, we obtain the formula fog
in the statistically stationary state:

E=1-P. (13)

By multiplying both sides of Eq. (12) bgn — £)2and
integrating from—oo to oo, we obtain the formula for
£"2 in the statistically stationary state:

£72= P(1— P)/(1+ Tres/Tmix)-

In the PaSR, given the same values Bfand
Tmix/Tres, the Favre mean and variance (or the rms,

(14)
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&) of mixture fraction are the same for the IEM and
MC models because they both conserve the mean of
each component of the composition and make the
variance of each component of the composition decay
at the proper rate. So Egs. (13) and (14) also apply to
the MC model. The EMST model also conserves the
mean of each component of the composition and con-
sequently Eq. (13) also applies to the EMST model.
But in the EMST model, the variance of each compo-
sition can decay at a different rate, while the amount
of mixing performed is controlled so that the sum
of the composition variances decays at the rate pre-
scribed byryix. Consequently, the decay of variance
of mixture fraction for the EMST model is different
from that in the IEM and MC models, but the differ-
ence is generally small. To a good approximation, we
can also apply Eq. (14) to the EMST model.

Appendix B. Derivation of analytical solutionsfor
the [EM model

In this section, for the IEM model when statis-
tically stationary in the PaSR, we derive analytical
expressions for the PDF of mixture fractigiin) and
for the implied conditional mean scalar dissipation
(xIm . The way to derive the expression fof|n),
is similar to the approach developed by Janicka and
Peters [16].

For the IEM model, the evolution of mixture frac-
tion for theith particle is

dg® B
dr

1 . ~
—5—(ED-§), (15)
2tmix ( )
where£ = 1— P. So the mixture fraction of each par-

ticle is a unique function of its age

S(s):(lfP)[lfexp<f . )] for £(0) =0,

2tmix

5 ) for£(0)=1.
Tmix

(16)
And the age distribution is given byfage(s) =
L exp(—s/tres). SOp() is

Tres

:1—P+Pexp(—2

5 = / Fage$)[P3(n — ) le(0-0)
0

+ (1= P)s(n—£)|g0)=1)]ds
o
1
—eX
Tres

p(—i> {P3(n — &(5)|e(0)=0)
o Tres

+ (1= P)3(n —£®)|g0)=1)} ds
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o
<)
Tres Tres
0
x {P6<n - P)[l - exp<— u )])
2Tmix

+(1-P)s
x(n—[l—P+Pexp<— u )])}ds
2Tmix
=GP
forO<n<1-P,
Al—P _
=%[n—(1—1°)]A !

forl— P <n<1l, 17

wherei = 2ty ix/tress Note thaty =1 — P is a sin-
gular point. It is caused by the fact that in the IEM
model it takes a particle an infinite time to reach the
mean mixture fraction.

In the PaSR, when statistically stationary, from
Eq. (11), we have

82
W(ﬁ(n)(xln)p)

2
=—[-pm + Ps(m) + (1 — P)s(L—n)]. (18)
Tres

Integrating Eq. (18) from-oo to n, we obtain

D (0 (xinip) = [~ Fn) + PH()
anPn an_fres n n

+1—-P)Hn—1D]. (19)

where F(n) is the density-weighted cumulative dis-
tribution function of mixture fraction andi () is the
Heaviside function.

Integrating Eq. (19) from-oo to n (0 < n < 1),
we obtain

(xIm)p = —/F(n’)dn/+Pn>- (20)

n
2
Tresp (1) (
0

This equation is used to determifg|n), from the
numerical calculation of () for the MC and EMST
mixing models. For the IEM model, from Eq. (17),
we obtain

Fn) =P yA-P—n

S @a-p
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foro<n<1-P,

P
(1= =P’
forl—P<np<l (21)

Substituting Egs. (17) and (21) into Eg. (20), we ob-
tain the expression fay 1),

21— Pyl -1 — P -l
U = G DA P 1
forO<n<1-P,
APl —@a-pyrth
" Treg(A+ D — (1— P)r-L
forl— P <n<l,

(22)

wherei = 2tyix/tres: Note thaty =1 — P is also a
singular point.
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