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Significance and novelty of this paper 

 

This paper studies specific volume coupling between large eddy simulation (LES) and 

probability density function (PDF) components of an LES/PDF algorithm for turbulent 

reactive flows. Previous work has tackled this issue in the context of an overall 

algorithm for the simulation of turbulent reactive flows; the present work extends 

previous studies by examining the LES to PDF coupling error in detail, isolating it from 

other sources of numerical errors in an LES/PDF algorithm, and determining the optimal 

coupling strategy. A further original contribution of the present work is in the 

development of an LES/PDF coupling algorithm which allows for second-order accuracy 

of the overall code (with respect to both the grid size and time step); this second-order 

convergence is then verified numerically. 
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Abstract

We investigate the coupling between the two components of a Large
Eddy Simulation / Probability Density Function (LES/PDF) algorithm
for the simulation of turbulent reacting flows. In such an algorithm, the
Large Eddy Simulation (LES) component provides a solution to the hy-
drodynamic equations, whereas the Lagrangian Monte Carlo Probability
Density Function (PDF) component solves for the PDF of chemical com-
positions. Special attention is paid to the transfer of specific volume infor-
mation from the PDF to the LES code: the specific volume field contains
probabilistic noise due to the nature of the Monte Carlo PDF solution,
and thus the use of the specific volume field in the LES pressure solver
needs careful treatment. Using a test flow based on the Sandia/Sydney
Bluff Body Flame, we determine the optimal strategy for specific vol-
ume feedback. Then, the overall second-order convergence of the entire
LES/PDF procedure is verified using a simple vortex ring test case, with
special attention being given to bias errors due to the number of particles
per LES finite volume (FV) cell.

1 Introduction

The PDF method for the treatment of turbulent reactive flows [1,2] has been
shown to be highly effective, due to the fact that the chemical source term,
which is highly non-linear in a combustion application, appears in closed form
and thus requires no modeling [3]. Initially, the PDF methodology was cou-
pled to Reynolds-averaged Navier-Stokes (RANS) hydrodynamic solvers, thus
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giving rise to the RANS/PDF class of algorithms for simulation of turbulent
reactive flows, which are to this date effectively used in simulating combustion
processes (see [3] for a review). We note that there are three main classes of
computationally tractable algorithms for approximating the composition PDF
[3]. Here we focus on the Lagrangian Particle Monte Carlo class, in which the
PDF is approximated from an ensemble of points (from here on referred to as
“particles”) that are advected and diffused in physical space according to the
LES resolved velocity and turbulent diffusivity [1,9] (in this paper, we use the
terms “turbulent viscosity” and “turbulent diffusivity” to denote the viscosity
and diffusivity used to model the turbulent motions unresolved by the LES
grid). In the related Eulerian Particle Monte Carlo method [22], the locations
of particles are fixed to the grid nodes. Yet another class of PDF algorithms,
the Eulerian Field Monte Carlo class [21,20,8], instead employs an ensemble of
composition fields defined over the entire domain, which evolve by partial dif-
ferential equations with a stochastic forcing component. All of these approaches
have their strengths and differences [3]: for example, the Lagrangian Particle
Monte Carlo approach allows for more accurate treatment of sub-filter mixing
and diffusion [6]. With increasing computational resources, the Large Eddy Sim-
ulation (LES) approach for turbulence modeling has been supplanting RANS as
the hydrodynamic solver used for turbulent combustion simulations [17]. First
introduced by Pope [16], hybrid Large Eddy Simulation / Probability Density
Function (LES/PDF) methods have the added benefit that the LES approach
eliminates the need for modeling of the large scale turbulent motions, which are
highly geometry-dependent and fall outside of the scope of the Kolmogorov hy-
potheses [2]. Hybrid LES/PDF methods have been demonstrated to be highly
effective in simulating laboratory-scale flames [9, 10, 11, 18].

In a typical LES/PDF simulation, the LES code provides fields of velocity
and turbulent diffusivity to the PDF code. The PDF code then transports the
particles in physical space, performs molecular diffusion and mixing, and chem-
ical reaction steps, and then passes back to the LES code the fields of specific
volume, molecular viscosity and diffusivity. The very different nature of the
two components of an LES/PDF algorithm poses serious challenges for the im-
plementation of information transfer between the stochastic PDF code, whose
fields contain considerable random errors, and the LES code, which is a straight-
forward finite volume (FV) algorithm, employing discretization schemes which
assume a certain level of regularity from the fields on which they operate. Here,
we examine in detail this interplay between the LES and PDF components. Par-
ticular emphasis is given to the feedback of specific volume from PDF to LES. In
advancing the hydrodynamic variables, the LES code solves a Poisson equation
for pressure, whose source term contains the rate of change of specific volume.
Since specific volume information is obtained from the stochastic PDF code,
special effort must be made to ensure that the specific volume fields which are
input into the LES pressure solver contain as little statistical error as possible.
Furthermore, it is desired that the overall LES/PDF time stepping procedure be
second-order accurate in space and time. In the context of the LES/PDF code
developed by the Turbulence and Combustion Group at Cornell University [18],
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we address these two issues, examining different strategies in performing PDF
to LES feedback, and testing the overall order of convergence of the LES/PDF
code.

We note that specific volume feedback from PDF to LES (or from PDF to
RANS, which is a closely related problem) has previously been addressed as a
component of an overall algorithm for the simulation of turbulent reactive flows.
Previous researchers have proposed specific volume coupling schemes based on
direct evaluation from the particle ensemble [10] (analogous to the scheme PSV
described in Section 3), and schemes based on extracting specific volume in-
formation from an auxiliary transported scalar (analogous to the scheme TSV
described in Section 3), where the transported scalar is either enthalpy [13, 12,
4, 11] or temperature [10]. While using a similar formulation at the PDE level
for specific volume feedback, the present work extends the above studies by ex-
amining the LES to PDF coupling error in detail, isolating it from other sources
of numerical errors in an LES/PDF algorithm, and determining the optimal
coupling strategy. A further original contribution of the present work is in the
development of an LES/PDF coupling algorithm which allows for second-order
accuracy of the overall code (with respect to both the grid size and time step);
this second-order convergence is then verified numerically.

The rest of this paper is organized as follows: in Section 2, we present the
equations solved by an LES/PDF algorithm for turbulent reactive flows. Section
3 describes in detail the issues that arise in the coupling of the LES and PDF
algorithms; two alternative approaches for specific volume coupling are outlined.
The numerical algorithms for coupling between the LES and PDF codes are
described in Section 4. Numerical tests of these couplings are performed in
Sections 5 and 6, in which the fully-coupled LES/PDF implementations are
tested against a standalone-LES (S-LES) code with no coupling errors. Section
5 describes results from a long time interval turbulent jet flow, representative of
a typical LES/PDF simulation. In Section 6, we show convergence results from
a simple vortex ring numerical test case, which demonstrates that the overall
LES/PDF algorithm is second-order accurate in space and time.

2 Equations Solved by the LES/PDF Algorithm

In this section, we present the equations which are solved by an LES/PDF
algorithm. Throughout the present paper we use a tilde to denote mass weighted
resolved quantities (also referred to here as Favre-averaged quantities) solved for
by the LES/PDF solver, e.g. ũ for the mass-weighted resolved velocity vector,

and φ̃ for the mass-weighted resolved composition vector. Additionally, the
composition PDF solver computes the evolution of individual particle properties,
which we denote by a star superscript, e.g. φ∗

α for the α−component of an
individual particle’s composition vector.

In the present study, we use a simple flamelet chemistry model [19], and
the composition vector φα consists of a single component, the mixture fraction.
This still allows for considerable specific volume variation throughout the flow,

3



which is necessary for testing the specific volume coupling. Furthermore, using
a mixture-fraction-only composition vector enables us to perform simulations of
the same flow via both LES/PDF and standalone-LES methods, with both solu-
tions evolving by the same governing equations. This allows us to approximate
the LES/PDF coupling error as the difference between the standalone-LES and
the LES/PDF solutions.

First, we describe the governing equations for a standalone-LES simulation
with flamelet chemistry modeling. The LES governing equations are the same
as those used by Pierce and Moin [7] (with the exception that in [7] the authors
also use a progress variable in the flamelet model), by Wang and Pope [18], and
by Kemenov et al. [19].

2.1 Governing equations for a standalone-LES simulation

We denote by ũj , ξ̃, ξ̃2, respectively, the Favre-averaged LES velocity, mixture
fraction and square of mixture fraction. The Favre-averaged molecular viscosity
and diffusivity are denoted as ν̃ and D̃, and their turbulent counterparts are
ν̃T , D̃T respectively. The turbulent viscosity, ν̃T , is evaluated by the dynamic
Smagorinsky procedure, and the turbulent diffusivity, D̃T , is determined by
using a specified value for the turbulent Schmidt number:

ν̃T

D̃T

= σT , σT = 0.4. (1)

Finally, we denote with p, ρ, respectively, the LES resolved pressure and density.
With these definitions, the variable-density incompressible standalone-LES code
solves the following set of equations

∂ρ

∂t
+

∂ρũj

∂xj
= 0, (2)

∂ (ρũj)

∂t
+

∂(ρũiũj)

∂xi
= − ∂p

∂xj
+ 2

∂

∂xi

(
ρ (ν̃ + ν̃T )

(
S̃ij −

1

3
S̃kkδij

))
, (3)

∂
(
ρξ̃
)

∂t
+

∂
(
ρũj ξ̃

)

∂xj
=

∂

∂xj

(
ρ
(
D̃ + D̃T

) ∂ξ̃

∂xj

)
, (4)

∂
(
ρξ̃2
)

∂t
+

∂
(
ρũj ξ̃2

)

∂xj
=

∂

∂xj

(
ρ
(
D̃ + D̃T

) ∂ξ̃2

∂xj

)
+ Sξ2 . (5)

Equations (2-5) are respectively the Favre-averaged forms of the continuity,
momentum, and scalar evolution equations for the mixture fraction, ξ, and its
square ξ2. The tensor S̃ij is the resolved strain rate, whereas the scalar Sξ2 is

a source term in the scalar evolution equation for ξ̃2, determined by the scalar
mixing model. For the present study, which uses the dynamic Smagorinsky
procedure, we denote by ∆ the Smagorinsky filter size, and the exact form of
Sξ2 is:
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Sξ2 = −2ρD̃
∂ξ̃

∂xi

∂ξ̃

∂xi
− 2ρΩ

(
ξ̃2 − ξ̃2

)
, (6)

Ω =
D̃T + 2D̃

∆2
, (7)

where the quantity Ω is known as the mixing frequency [9].

In the flamelet chemistry approach, the material properties ρ, ν̃, D̃ are func-

tions of ξ̃ and ξ̃2 only, the latter two via the resolved temperature, T̃

ρ = ρ
(
ξ̃, ξ̃2

)
, (8)

T̃ = T̃
(
ξ̃, ξ̃2

)
, (9)

ν̃ = ν0

(
T̃

300K

)1.69

,
ν̃

D̃
= σ, σ = 0.82, ν0 = 1.42×10−5

[
m2

s

]
. (10)

For most turbulent reactive flows with flamelet modeling, the form of the consti-
tutive equations (eqs.8-10) is traditionally determined by performing a laminar
opposing jet flame simulation, and assuming that the PDF of the mixture frac-
tion, ξ, belongs to the β−function family. This then allows us to tabulate every

moment of the PDF of ξ - in particular ρ, T̃ – as a function of ξ̃, ξ̃2. However, in
the present work we forgo the flamelet opposed jet solution: instead, we specify
the temperature T and specific volume v as quadratic functions of the mixture
fraction ξ:

v (ξ) = 7.98− 23(ξ − 0.551)2
[
kg

m3

]
, (11)

T (ξ) = 2100K − 7200K(ξ − 0.5)2. (12)

As elaborated in Section 5, this is done so that the Favre-averaged values ṽ and
T̃ are independent of the shape of the PDF of ξ. This allows for consistency
between the self-contained solution of eqs. (2-10) (which we shall refer to as a
Standalone-LES (S-LES) solution), and the fully-coupled LES/PDF simulation
(described in the remainder of this section and in Section 3) with a single scalar
for mixture fraction. As seen in Sections 5 and 6, such consistency provides a
useful numerical test case for examining the errors inherent to the LES to PDF
coupling.
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2.2 Governing Equations for the LES component of an
LES/PDF simulation

In an LES/PDF simulation, we remove the flamelet modeling from the standalone-
LES simulation described in the previous subsection, and replace it with com-
position PDF modeling of the reaction. Therefore, from all the governing equa-
tions of a standalone-LES simulation listed above, the LES component of an
LES/PDF simulation solves only eqs.(2,3,7,10). This leaves the evaluation of
resolved specific volume and temperature, which is done by the PDF component.

2.3 Governing equations for the PDF component of an
LES/PDF simulation

The PDF code takes a Monte Carlo approach to approximating the mass-
weighted composition PDF. The simulation domain is discretized into PDF
cells, which consist of one or more LES FV cells [18], and, for a specified pa-

rameter Npc, each PDF cell contains between
√
2Npc

2 and
√
2Npc particles. Each

particle has a mass m∗, which is unchanged unless that particle is split in two or
combined with another (for the purpose of controlling the number of particles
in a PDF cell), and a location X∗

j and composition φ∗
α. In the equations be-

low, we use the superscript ∗ to denote either an individual particle’s property
(such as m∗ for the mass of the current particle), or the value of an LES field

evaluated at that particle’s location (such as φ̃∗
α for the resolved mass weighted

composition vector at the particle’s current location). With this notation, the
evolution equations for X∗

j and φ∗
α are:

dX∗
j =


ũj +

1

ρ

∂
(
ρD̃T

)

∂xj



∗

dt+
[
2D̃∗

T

]1/2
dW ∗

j , (13)

dφ∗
α = −Ω∗

(
φ∗
α − φ̃∗

α

)
dt+

[
1

ρ

∂

∂xj

(
ρD̃

∂φ̃α

∂xj

)]∗
dt+ Sα (φ∗) dt. (14)

In the above equations, Ω denotes the mixing frequency introduced in eq.(7),
and Sα (φ∗) is the reaction source term. The term dW ∗

j denotes a Wiener
increment, with the star superscript emphasizing that the Wiener processes for
the different particles are independent.

We shall use angled brackets, 〈·〉, to denote a sum over all particles in a given
cell and its immediate neighbors, weighted by a basis function B

(
X∗

j

)
whose

support lies within the present cell and its neighbors: for a general particle
property g, we have

〈g〉 =
∑

cell+neighbors

g∗B
(
X∗

j

)
. (15)

The two most common examples for B
(
X∗

j

)
are the indicator function of the

cell, whose use we shall refer to as the Particle-in-Cell (PIC) approach and a
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linearly decreasing tent function which is centered at the cell’s center of mass,
whose use we shall refer to as the Cloud-in-Cell (CIC) approach [6]. The imple-
mentation of CIC is more difficult, since it involves additional communication in
order to obtain information about the particles in the neighboring cells. How-
ever, CIC comes with the advantage that the continuous form of B

(
X∗

j

)
implies

that 〈g〉 is itself continuous in time, whereas for PIC there is a discontinuous
jump in 〈g〉 as particles enter and leave the cell.

We also apply alternating direction implicit smoothing to the cell mean
averages 〈g〉, and denote the smoothed fields as {〈g〉}. The smoothing process is
described in detail in [6]. Here, we need only note that the amount of smoothing
is controlled by a parameter, α, so that implicit smoothing with a given value
of α is equivalent to explicit smoothing over α cells in each direction. The value
α = 1.0 corresponds to no smoothing.

With this definition of a local ensemble mean, ṽ, T̃ are defined as

ṽ =

{ 〈mv〉
〈m〉

}
, (16)

T̃ =

{ 〈mT 〉
〈m〉

}
, (17)

where m∗, v∗, T ∗ respectively denote a particle’s mass, specific volume and tem-
perature. The resolved viscosities and diffusivities are then defined by eqs.(9,10),
as in the standalone-LES approach. Whereas in the standalone-LES approach,
v, T are functions of the mixture fraction only, in the LES/PDF approach, v, T
are functions of the entire composition vector, φα. As already mentioned, in
Sections 5 and 6 we use for our numerical tests a composition vector which
consists only of the mixture fraction, for the purposes of comparing standalone-
LES and LES/PDF solutions, which allows us to determine the amount of error
in the simulation which is due to the LES/PDF coupling. However, it is im-
portant to note that in a typical LES/PDF simulation, the composition vector
φα consists of the collection of significant chemical species, with the addition
of enthalpy, and so there is no modeling involved in obtaining v and T from
φα. This is one of the advantages of PDF reaction modeling over the flamelet
approach. Another advantage is that the source term Sα(φ) on the right hand
side of eq.(14) requires no modeling either, provided that the chemical species
to be used in the composition vector φα are appropriately chosen.

3 Coupling between the LES and PDF solutions

In the present LES/PDF algorithm, the LES algorithm uses resolved temper-
ature values obtained from the PDF code, and the PDF code uses values for
velocity, molecular and turbulent viscosity obtained from the LES code. In-
formation about specific volume originates in the PDF code, but its transfer
to the LES code is challenging, for the following reason: in the solution of the
momentum and continuity equations, eqs.(2,3) by the LES solver, pressure is

7



determined as the solution of a Poisson equation whose source includes the term
∂ṽ/∂t. Due to the stochastic nature of the PDF solution, however, (eq.13) for a
given time step ∆t, the statistical error in the increment ∆ṽ, for a single-particle
ensemble, is

εst1 = C1∆t1/2, (18)

where C1 is a fixed constant, proportional to D̃
1/2
T . Therefore, the statistical

error in the smoothed increment ∆ṽ, with Npc particles per cell [6], is

εst2 =
C2∆t1/2

(Npcα3)1/2
, (19)

and so the approximation

∂ṽ/∂t ≈ ∆ṽ/∆t (20)

contains a statistical error whose magnitude scales in the following manner

εst =
C

(Npcα3∆t)
1/2

, (21)

where C is a constant which depends only on the flow geometry and material
properties, Npc is the number of particles per cell and α is the smoothing pa-
rameter: note that since ∆t appears in the denominator of eq.(21), for small
values of ∆t the error implied by eq.(21) is considerable.

In order to obtain a solution to the Poisson equation for pressure, we can
take one of two alternative approaches for specific volume coupling.

3.1 The Particle Specific Volume Approach (PSV)

The PSV approach uses the straightforward procedure of simply passing the
PDF values of specific volume to the LES code, and using a value for the smooth-
ing parameter α which is large enough to reduce the error εst to manageable
levels. As we see below, in the numerical tests of coupled LES/PDF turbulent
jet simulations, this approach requires the use of smoothing parameter values
as large as α = 4.0 (which implies that smoothing is performed over 64 cells).
Overall, we show below that the PSV approach is not as accurate as the specific
volume coupling approach which is described next.

3.2 The Transported Specific Volume Approach (TSV)

The transported specific volume (TSV) approach is based on the fact that the
change of resolved specific volume which is due to transport in physical space
(eq.13) can be calculated by the LES solver, thus leaving only the specific volume
change due to turbulent mixing, molecular diffusion, and chemical reaction (the
three terms on the right hand side of eq.14) to be extracted from the PDF code.
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In the TSV approach, the LES code solves for an additional scalar: the
transported specific volume, v̂. This is used as the LES Favre-averaged specific
volume. The equation for the transported specific volume, v̂, is:

∂ (ρv̂)

∂t
+

∂ (ρũj v̂)

∂xj
=

∂

∂xj

(
ρD̃T

∂v̂

∂xj

)
+ Sv + ωv, (22)

where Sv is the specific volume source term due to mixing, molecular diffusion,
and chemical reaction, defined by

Sv ≡
{ 〈v̇〉
〈v〉

}
, (23)

where v̇∗ is the rate of change of a particle’s specific volume due to mixing,
molecular diffusion, and chemical reaction. The second term on the right hand
side of eq.(22), ωv, is a relaxation term of the form

ωv = ρ
ṽ − v̂

τ
, (24)

with the relaxation time step, τ , set to τ = 4∆t in this work. The inclusion of
the relaxation term ωv is necessary to keep the LES specific volume, v̂, and the
PDF specific volume, ṽ, consistent with each other. In the absence of numerical
errors, eq.(22) implies v̂ = ṽ, but for a practical reactive flow simulation omitting
ωv from eq.(22) causes v̂ and ṽ to become independent of each other over long
time intervals.

Since the LES code is wholly deterministic, there is no statistical error due to
transport in the approximation of ∂ṽ/∂t, and so the value of the constant C on
the right hand side of eq.(21) is reduced relative to the PSV implementation of
specific volume coupling. This allows the use of smaller values of the smoothing
parameter α, which, as we will see in Section 5, yields overall more accurate
solutions.

It should be noted that specific volume coupling via a transported scalar
equation has previously been used by researchers working on PDF methods for
turbulent reactive flows [13, 12, 11, 4]. The contribution of the present work is in
the development of a second-order accurate (in both space and time) algorithm
for LES/PDF specific volume coupling via a transported scalar equation, in the
testing and determination of an optimal specific volume coupling scheme, and
in the verification of the overall second-order accuracy of the LES/PDF code
with respect to the grid size and time step.

4 Description of a Second-Order Accurate LES/PDF
Time Stepping Algorithm

In this section, we describe the coupling procedure between the LES and PDF
solvers which yields an overall second-order accurate solution with respect to the
grid size and time step, for a fixed LES filter width. This convergence behavior
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is demonstrated in Section 6, in which we present results from a numerical test
case, which indicate that second-order convergence is indeed achieved. In this
section, we describe the LES to PDF coupling procedure that allows second-
order convergence of the overall code.

First, we give a short description of the pre-existing time-stepping algorithms
for the standalone LES code with flamelet/progress variable chemistry modeling
[7], and the particle PDF code with externally specified velocity and diffusivity
fields [5]. Then, a description is given to the modifications in the above pro-
cedures which yield a fully-coupled second-order accurate LES code with PDF
chemistry modeling. For simplicity, we assume that all time steps are of the
same length, ∆t.

4.1 Time stepping in the standalone-LES code

At the beginning of the time step, we have values for the resolved mixture

fraction and its square, resolved density and temperature, ξ̃, ξ̃2, ρ, and T̃ re-
spectively, at t = t0. From here, we also have resolved viscosity and diffusivity
at t = t0, via eqs.(9,10). The velocity, on the other hand, is staggered half a time
step back in time: at the beginning of the time step, it is known at t = t0−∆t/2

[7]. The objective of the time step is to obtain the values of ξ̃, ξ̃2, ρ, and T̃ at
t = t0 +∆t, and to obtain the values of velocity at t = t0 +∆t/2.

In the sub-steps described below, we use the notation ·|q to denote fields at

the time level t = t0 + q∆t, as in ũj|−1/2 for ũj at t = t0 −∆t/2, and ρ|0 for ρ
at t = t0. In the procedure below, several iterations (whose number is specified
by the user, and must be at least two) of sub-steps 2, 3 and 4 are taken for each
time step.

1. Evaluation of turbulent viscosity and diffusivity. Evaluate the tur-
bulent viscosity and diffusivity values, ν̃T , D̃T respectively, using the dy-
namic Smagorinsky procedure on the initial velocity and scalar fields. Set

the initial guess for the velocity as ũj |1/2 = ũj |−1/2
.

2. Scalar equations. If this is the first iteration, set ξ̃
∣∣∣
1

= ξ̃
∣∣∣
0

and ξ̃2
∣∣∣
1

=

ξ̃2
∣∣∣
0

. Using a transport-diffusion solver based on the QUICK scheme,

update the increments ∆ξ̃ = ξ̃
∣∣∣
1

− ξ̃
∣∣∣
0

and ∆ξ̃2 = ξ̃2
∣∣∣
1

− ξ̃2
∣∣∣
0

which are

implied by the evolution of eqs.(4,5) forward in time by a time step of

length ∆t. The velocity used in that time step is ũj |1/2. Increments in a
given field are updated by changing the value of that field at the later time

level, so that, for example, an update in the increment ∆ξ̃ = ξ̃
∣∣∣
1

− ξ̃
∣∣∣
0

implies a change in the field ξ̃
∣∣∣
1

.

3. Momentum equation. If this is the first iteration, use the value of

p|0 from the previous time step, and set ũj|1/2 = ũj |−1/2
. Using the
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material properties at the beginning of the time step and the current
working values for the pressure field at time t = t0, p|0, update the velocity
increments ∆ũj = ũj|1/2 − ũj|−1/2

which are implied by the evolution of
the momentum equation, eq.(3) forward in time by a time step of length
∆t.

4. Pressure correction. Solve the Poisson equation for pressure implied
by eqs.(2,3) to update the working pressure, p|0. Use the change in p|0 to

update ∆ũj = ũj|1/2− ũj |−1/2 and ensure that the continuity equation is
satisfied.

5. If we are at the last iteration, use the current working values as the end
result. If not, go back to sub-step 2.

Note that this description is more narrowly focused on the structure of the
LES code’s time step than on the numerical solvers used to advance the scalar
and momentum equation and to solve for the pressure. For a description of
those algorithms, the reader is referred to Pierce and Moin [7].

4.2 Time stepping in the PDF component of an LES/PDF
solution

For the LES/PDF algorithm, we adopt one of the weakly second-order accurate
splitting schemes for the evolution of the particle positions and composition
variables which are described in [5]. In the composition PDF context, split-
ting schemes are algorithms for evolving the particle equations (eqs.(13,14)) by
taking several fractional steps, each of which deals with one of the three phys-
ical processes which occur in the evolution of eqs.(13,14): these processes are
transport in physical space, mixing and chemical reaction.

The splitting scheme which we use here is referred to as “TCRCT” in [5].
This splitting scheme consists of half a time step of transport in physical space,
followed by half a time step of mixing and molecular diffusion, a full time step
of reaction, another half time step of mixing and diffusion, and a half time
step of transport. We note that, unlike the iterative procedure of the previous
subsection, the PDF time stepping requires only one iteration.

Here is a description of the algorithm used to update X∗
j , φ

∗
α from t0 to t0 +

∆t. It is assumed that the velocity, density and diffusivity fields, ũj, ρ, D̃, D̃T ,
are known with second-order accuracy at the middle of the time step, t0+∆t/2.
Note that the velocity and diffusivity fields are evaluated in the LES component
of the LES/PDF solution.

1. Transport half-step. Using a weakly second-order accurate SDE in-
tegration scheme such as that of Kloeden and Platen [15], advance the

particle positions for half a time step, X∗
j

∣∣0 → X∗
j

∣∣1/2 by taking an incre-
ment of length ∆t/2 in eq.(13)
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2. Mixing and diffusion half-step. Advance the mixing and molecular
diffusion processes in time by an increment of length ∆t/2, by taking an
increment of length ∆t/2 in the evolution equation

dφ∗
α = −Ω∗

(
φ∗
α − φ̃∗

α

)
dt+

[
1

ρ

∂

∂xj

(
ρD̃

∂φ̃α

∂xj

)]∗
dt, (25)

which is the mixing and molecular diffusion component of the chemical
composition evolution equation (eq.14).

3. Reaction step. Advance the reaction process in time by an increment of
length ∆t, by taking an increment of length ∆t in the evolution equation

dφ∗
α = Sα (φ∗) dt, (26)

which is the reaction component of eq.(14).

4. Mixing and diffusion half-step. Repeat sub-step 2.

5. Transport half-step. Advance the particle positions for half a time step,

X∗
j

∣∣1/2 → X∗
j

∣∣1, analogously to sub-step 1.

Sub-steps 2,3,4 use the particle positions X∗
j

∣∣1/2 after the first transport

half-step (sub-step 1). Also, all steps 1 through 5 use the values of ũj, ρ, D̃, D̃T

at the midpoint of the time step: t = t0 +∆t/2. The purpose of this particular
choice of splitting for the processes of transport, mixing and reaction is that
it allows us to take a single reaction time step of length ∆t, which reduces
overall simulation time due to the fact that the reaction substep (the evolution
of eq.(26)) is the most costly component in a PDF simulation.

4.3 Time stepping in the coupled LES/PDF simulation

The LES/PDF coupling scheme proposed here does not make any changes to
the PDF time stepping algorithm described in Section 4.2. However, when using
the auxiliary scalar approach (TSV) for passing of specific volume information
from the PDF to the LES portion of the code, the source term Sv (eq.23) is
evaluated by taking the difference in particle specific volumes before and after
the mixing, molecular diffusion and reaction substeps. In particular, if v∗1 , v

∗
5

are respectively the specific volumes of a given particle, as determined by its
composition vector φα, before and after the mixing, molecular diffusion, and
reaction substeps (sub-steps 2,3, and 4 in subsection 4.2), then we calculate Sv

by

Sv =

{
2 〈m∗ (v∗5 − v∗1)〉
∆t 〈m∗ (v∗5 + v∗1)〉

}
. (27)

Similarly to Section 4.1, at the beginning of the time step we have values for
ρ, T̃ at t = t0 and values for ũj at t = t0 − ∆t/2. Also, similarly to Section
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4.2, at the beginning of the time step we have values for X∗
j , φ

∗
α at t = t0. In

the following algorithm, any steps which are denoted as “TSV only” or “PSV
only” are to be skipped if the alternative algorithm for specific volume coupling
is used. Also, similarly to the procedure described in subsection 4.1, sub-steps
7 and 8 are iterated a user-specified number of times (at least twice, to achieve
overall second-order accuracy in time).

1. Extrapolation of LES fields forward in time, to the middle of
the PDF step. Evaluate the turbulent viscosity and diffusivity values,
ν̃T , D̃T respectively, using the dynamic Smagorinsky procedure on the ini-
tial velocity and scalar fields. Using linear extrapolation on the LES fields
ρ, D̃, D̃T , and ũj from the last two time steps, compute a second-order

approximation of the values of ρ, D̃, D̃T , and ũj at time t = t0 + ∆t/2.

We denote these extrapolated fields as
(
ρ, D̃, D̃T , ũj

)∣∣∣
1/2

. This extrap-

olation in time is done in order to provide the PDF algorithm described
in the above subsection with the velocity, density and diffusivity fields at
the time level necessary for achieving second-order accuracy.

2. First iteration of auxiliary transported scalar equation (TSV

only). Using
(
ρ, D̃, D̃T , ũj

)∣∣∣
1/2

and the initial values for Sv, ṽ, respec-

tively Sv|−1/2 , ṽ|0, update the increment ∆v̂ = v̂ |1 − v̂ |0 implied by the
evolution of eq.(22) forward in time by a time step of length ∆t. The same
transport-diffusion solver is used as in sub-step 2 of the standalone LES
solution.

3. PDF time step. Using the extrapolated fields
(
ρ, D̃, D̃T , ũj

)∣∣∣
1/2

ob-

tained from the LES solver, perform the PDF time step described in Sec-

tion 4.2. Calculate Sv |1/2 via eq.(27), and calculate ṽ |1, T̃ |1 from the
particle ensemble after the PDF time step, via eqs.(16,17).

4. Second, and final, iteration of auxiliary transported scalar equa-

tion (TSV only). Using
(
ρ, D̃, D̃T , ũj

)∣∣∣
1/2

and the updated values for

Sv, ṽ at t = t0 + ∆t/2, respectively Sv |1/2 and
(
ṽ |1 + ṽ |0

)/
2, update

the increment ∆v̂ = v̂ |1 − v̂ |0 implied by the evolution of eq.(22) forward
in time by a time step of length ∆t. This second iteration is performed
so that the solution for the transported scalar is second-order accurate in
time.

5. Evaluation of LES resolved specific volume. For PSV, set ρ |1 =

(1/ṽ)|1. For TSV, set ρ |1 = (1/v̂)|1.

6. Evaluation of molecular density and diffusivity at the end of the
PDF step. Using ṽ |1, T̃ |1, calculate D̃ |1, ν̃ |1. This information is not
used until the next time step.
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7. Iteration of momentum equation. If this is the first iteration of sub-
steps 7 and 8, use the value of p|0 from the previous time step, and use

the value of ũj|1/2 obtained at sub-step 1. Using the initial transport

properties, ṽ |0, T̃ |0, D̃ |0, ν̃ |0, D̃T |0, ν̃T |0, and the current working values

for the pressure field, p |0, update the velocity increments ∆ũj=ũj |1/2 −
ũj |−1/2

which are implied by the evolution of the momentum equation,
eq.(3), forward in time by a time step of length ∆t.

8. Iteration of the pressure correction. Solve the Poisson equation for
pressure implied by eqs. (1,2) to update the working pressure, p |0. Use

the change in p |0 to update ∆ũj=ũj |1/2 − ũj |−1/2
and ensure that the

continuity equation is satisfied.

9. If we are at the last iteration of sub-steps 7 and 8, use the current working

values ũj |1/2, p |0, as the end result for velocity and pressure. If not, go
back to sub-step 7.

Note that, unlike the standalone-LES simulation, which requires iteration
of the scalar transport-diffusion solver, the above algorithm requires only one
PDF time step for each LES/PDF time step. This is intentional, as the cost
of a PDF time step, for a typical PDF simulation with at least 20 particles per
cell, is much greater than the cost of an LES time step.

In sections 5 and 6, we test the performance of this LES/PDF coupling
algorithm.

5 Numerical Testing of Alternative Coupling Strate-

gies: Turbulent Jet Bluff-Body Flame

In this section, we compare the performance of the alternative choices for LES to
PDF coupling schemes, in order to establish which provides optimal performance
for a turbulent test flow representative of modern applications of LES/PDF
methods.

Firstly, we establish a criterion for measuring the performance of the coupling
scheme, apart from that of other aspects of the LES/PDF code. In order to do
this, we specify a chemical model and material properties which can be solved
consistently by both a standalone-LES (S-LES) simulation and a fully-coupled
LES/PDF solution. Then, the coupling error is defined as the difference between
the S-LES and the LES/PDF solutions.

To this end, we use the flamelet model without progress variable as described
in Section 2. Then, in order to model subfilter variance, a standalone-LES
simulation solves for the resolved mixture fraction, ξ̃, and the resolved square

mixture fraction, ξ̃2, and estimates resolved quantities by assuming that the
shape of the PDF of the mixture fraction, f(ξ), belongs to the β−function
family. On the other hand, an LES/PDF simulation approximates the exact
functional form of f(ξ) without assumptions. Therefore, the shapes of the PDF
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of mixture fraction yielded by the two alternative solution methods are bound
to differ: in order to account for this, we set the relevant material properties –
specific volume and temperature – to vary quadratically with mixture fraction,
as formulated in eqs.(11),(12). The values of molecular viscosity and diffusivity
are defined by eq.(10).

This quadratic variation of v and T implies that their Favre mean is a func-

tion only of the Favre mean and variance of ξ, ξ̃ and ξ̃′′2, respectively, and

does not depend on the shape of f (ξ). Since ξ̃′′2 = ξ̃2 −
(
ξ̃
)2

, this implies that

ṽ, T̃ are functions of ξ̃, ξ̃2 only, and hence the governing equations yielded by
the standalone-LES and coupled LES/PDF methodologies are consistent.

This specification of material properties is applied to the geometry of the
Sandia/Sydney Bluff Body Flame, flame HM1 as first described by Masri and
Bilger [14]. In this canonical test flame, a jet of diameter 3.6mm and bulk
velocity of 118m/s is located inside a bluff body of diameter 50mm, surrounded
by a fast coflow whose velocity is 40m/s. The Reynolds number based on the jet
velocity and radius is 14950, and in our simulations the turbulence is modeled
by the dynamic Smagorinsky model. Denoting the radius of the bluff body
as RB, in the present simulations we use a computational domain which has
the following extent: x ∈ [0, 10RB] , r ∈ [0, 3RB], where x denotes distance
downstream from the jet, and r is the radial distance from the jet centerline.
The domain is discretized on a uniform cylindrical grid of size 128× 128× 64 in
the axial, radial and azimuthal directions, respectively, and the nominal number
of particles per cell is Npc = 50.

Here, we emphasize that we do not aim to simulate the HM1 flame accu-
rately, but rather to use its features in order to ensure that we measure the
coupling error between S-LES and LES/PDF simulations in a flow which re-
sembles typical applications of the LES/PDF methodology. It is for this reason
that we can use the small computational domain and simple chemistry described
above.

We consider three different coupling implementations. The first uses the
transported specific volume approach (TSV) with cloud-in-cell (CIC) mean es-
timation; the second uses TSV with particle in cell (PIC) mean estimation, and
the third uses the particle specific volume (PSV) with CIC mean estimation.
For each of these implementations, we test different values for the smoothing
parameter from the set α ∈ {1.0, 2.0, 3.0, 4.0, 6.0}. For each of the 15 alternative
simulations outlined above, the LES/PDF algorithm is run for 100 flow-through
times, based on the coflow velocity. In all cases, the solution has become statis-
tically stationary by the 30th flow-through time. Statistics are calculated over
the latter half of the simulation, after the 50th flow though time.

Here, we consider as statistics the fields of the mean resolved axial veloc-
ity, mean (ũ1) (x), the variance of the resolved axial velocity var (ũ1) (x), the
mean resolved density, mean (ρ) (x), and the variance of the resolved density,
var (ρ) (x). Means and variances are computed by averaging over the simu-
lation’s time interval and the azimuthal direction, θ. In order to determine
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the optimal value of the smoothing parameter α for each coupling scheme, we
choose that value of the parameter which minimizes the L1 differences between
mean (ũ1) , var (ũ1) ,mean (ρ) and var (ρ) yielded by the LES/PDF algorithm
and those yielded by the S-LES solution.

More specifically, the L1 error definition based on mean resolved axial ve-
locity is as follows

εmean(ũ1) =

∫
|mean(ũ1)LES/PDF (x)−mean(ũ1)S−LES (x) ||dx|∫

|mean(ũ1)S−LES (x) ||dx| . (28)

The errors for var (ũ1) ,mean (ρ) and var (ρ), respectively εvar(ũ1), εmean(ρ) and
εvar(ρ), are analogously defined. Tables 1, 2, and 3 present the values for
εmean(ũ1), εvar(ũ1), εmean(ρ) and εvar(ρ) for all simulation cases. Based on these
results, we conclude that for PSV/CIC, the optimal choice for smoothing pa-
rameter is α = 4.0, for TSV/PIC it is α = 2.0, and for TSV/CIC it is α = 1.0.

Error
Type

α = 1.0 α = 2.0 α = 3.0 α = 4.0 α = 6.0

εmean(ũ1) N/A 2.5×10−2 1.7×10−2 9.7×10−3 2.2×10−2

εvar(ũ1) N/A 1.9×10−1 8.9×10−2 4.5×10−2 1.7×10−1

εmean(ρ) N/A 3.7×10−3 2.3×10−3 2.2×10−3 3.5×10−3

εvar(ρ) N/A 3.5×10−2 1.7×10−2 1.4×10−2 2.7×10−2

Table 1: L1 errors for PSV/CIC simulations. Minimal error values are shown in
bold type. There is no data point for α = 1.0: at that value for the smoothing
parameter, the PSV/CIC code is unstable.

Error
Type

α = 1.0 α = 2.0 α = 3.0 α = 4.0 α = 6.0

εmean(ũ1) 6.7×10−3 5.0×10−3 8.0×10−3 1.0×10−2 1.7×10−2

εvar(ũ1) 2.2×10−2 1.7×10−2 2.4×10−2 2.8×10−2 3.3×10−2

εmean(ρ) 2.1×10−3 1.5×10−3 2.4×10−3 2.9×10−3 4.2×10−3

εvar(ρ) 1.0×10−2 8.4×10−3 1.2×10−2 1.4×10−2 1.5×10−2

Table 2: L1 errors for TSV/PIC simulations. Minimal error values are shown
in bold type.
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Error
Type

α = 1.0 α = 2.0 α = 3.0 α = 4.0 α = 6.0

εmean(ũ1) 4.7×10−3 5.7×10−3 6.5×10−3 8.1×10−3 1.5×10−2

εvar(ũ1) 9.8×10−3 1.2×10−2 1.4×10−2 1.6×10−2 2.0×10−2

εmean(ρ) 1.1×10−3 1.0×10−3 1.3×10−3 1.8×10−3 2.7×10−3

εvar(ρ) 6.3×10−3 6.6×10−3 8.0×10−3 9.7×10−3 1.1×10−2

Table 3: L1 errors for TSV/CIC simulations. Minimal error values are shown
in bold type.

Next, we compare the three solutions with optimal smoothing parameter values
for the respective coupling scheme, in order to arrive at the optimal coupling
scheme overall. Radial profiles of the statistics are examined at three axial
locations: at x/RB = 0.27, 2.18 and 3.96. Figure 1 presents a comparison
between the mean resolved axial velocity profiles of the three LES/PDF solutions
and the S-LES solution. As we can see, both the TSV/PIC and the TSV/CIC
implementation agree well with the S-LES solution. On the other hand, the
PSV/CIC solution underpredicts the S-LES mean resolved axial velocity close
the centerline, for the intermediate location of x/RB = 2.18. The variance of
the resolved axial velocity is more sensitive to the coupling scheme – its profiles
are plotted on fig.2. Here, all three schemes are in good agreement with the
S-LES solution near the inlet, at x/RB = 0.27; at the intermediate location of
x/RB = 2.18, the two TSV solutions fall close to the S-LES solution, whereas the
PSV/CIC solution overpredicts the peak value by 20%. The results are most
sensitive at the downstream location of x/RB = 3.96, where the TSV/CIC,
TSV/PIC and PSV/CIC solutions overpredict the peak variance of the S-LES
solution by respectively 11%, 43% and 314%.

Next, we examine profiles for mean resolved density and variance of the
resolved density. Figure 3 shows the results for mean resolved density: it
can be seen that the results are not sensitive to the coupling scheme – at
x/RB = 0.27, 2.18 all three LES/PDF solutions are in good agreement with
the S-LES solution, whereas at x/RB = 3.96 the TSV/CIC implementation falls
almost on top of the S-LES curve, whereas the other two solutions: TSV/PIC
and PSV/CIC, underpredict it slightly. Finally, profiles of the variance of the
resolved density can be seen on fig.4. Here, all three LES/PDF solutions un-
derpredict the S-LES solution at x/RB = 0.27, 2.18, whereas the TSV/PIC
solution overpredicts slightly at x/RB = 3.96. Overall, the TSV/CIC scheme is
in best agreement with the S-LES results.

From the examination of the radial profiles of velocity and density statistics
of the most accurate TSV/CIC, TSV/PIC and PSV/CIC solutions, we con-
clude that the optimal coupling scheme is TSV/CIC with smoothing parameter
α = 1.0 (which corresponds to no smoothing). Moreover, we note that this
LES/PDF solution can accurately match the S-LES profiles, even for the most
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sensitive statistic – variance of axial velocity. Since the present test case is
hydrodynamically similar to the Sandia/Sydney Bluff Body Flame, which is a
representative application for an LES/PDF solution, this leads us to the con-
clusion that TSV/CIC is a satisfactory coupling scheme for LES/PDF methods.

6 Numerical Test for Verification of Second-Order

Convergence: Smooth Vortex Ring Flow

In the previous section, we established that for a representative turbulent flow
the optimal LES/PDF coupling strategy is TSV/CIC coupling with no smooth-
ing (α = 1.0). Here, we test, for this coupling implementation, the overall
second-order convergence behavior of the code, as the cell size and time step
are decreased, and the number of particles per cell is increased.

The computational domain is a cylinder of axial length 2.0m and radius
1.5m. Using χE(q) to denote the indicator function of q ∈ E, for a given set E,
the initial velocity field is axi-symmetric, analytically specified as a superposi-
tion of a vortex ring and a jet (the following equations are in MKS units, which
are omitted in order to avoid clutter):

ρũx (x, r, t = 0) = 0.5× e−r2/4 − χ1sin
2 (2π (q1 − 0.05))× ((r − 0.65)/(rq1)) ,

(29)
ρũr (x, r, t = 0) = χ1sin

2 (2π (q1 − 0.05))× ((x− 0.65)/(rq1)) , (30)

ρũθ (x, r, t = 0) = 0, (31)

q1 =
(
(x− 0.65)2 + (r − 0.65)2

)1/2
, (32)

χ1 = χ[0.05,0.55] (q1) . (33)

Similarly, the initial condition for the mixture fraction mean and variance has
the following analytic form:

ξ̃ (x, r, t = 0) = 0.1 + 0.8× χ2cos
2 (πq2) , (34)

q2 =
(
(x− 0.65)2 + (max(r − 0.5, 0)× 3/5)2

)1/2
, (35)

χ2 = χ[0,0.5] (q2) , (36)

ξ
′′

(x, r, t = 0) = 0.5ξ̃
(
1− ξ̃

)
. (37)

The material property definitions are analogous to the previous test case, with
the exception that the molecular viscosity and diffusivity, ν and D, have been

scaled by a constant (ν0 = 1.5×10−3
[
m2

s

]
in eq.(10)) in order to yield a value

for the Reynolds number of Re = 3000, based on the cylinder’s radius and the
maximal velocity in the initial condition. For turbulence modeling we use a large
filter of fixed size ∆ = 0.5m, instead of the traditional dynamic Smagorinsky
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procedure. This yields a grid-independent solution, which is necessary in order
to test the overall order of convergence of the LES/PDF code.

The order of convergence is tested by taking the differences between the final

values of ũ1, ξ̃, ξ̃2, and ρ, as obtained by the LES/PDF simulation, and a highly
resolved S-LES solution on a 128×128×64 grid. These differences are averaged
over the azimuthal direction, integrated against a collection of 16 Fourier modes
in x− r space, and the overall error is defined as the root-mean-square error of
these 16 functionals.

More concretely, for measuring error based on the resolved axial velocity, we
define the functionals gj,k by

gj,k =

∫

x∈[0,2],r∈[0,1.5]

ũ1 (x, r, θ) e
iπ(2jx+1.5kr)rdrdxdθ, (38)

and then we define the error measure for resolved axial velocity, εũ1
, as

εũ1
=




4∑

j,k=1

∣∣∣E
(
g
LES/PDF
j,k − gS−LES

j,k

)∣∣∣
2




1/2

, (39)

where we use E (·) to denote the expectation of a random variable. The error
measures for resolved mixture fraction, resolved square mixture fraction, and
resolved density, εξ̃, εξ̃2 and ερ respectively, are similarly defined. Convergence

of the LES/PDF algorithm with respect to these error measures verifies the weak
convergence properties of the method. In the present context, weak convergence
is taken to mean convergence of the expectations of general linear functionals
of the end solution, as opposed to standard pointwise convergence.

Convergence studies of LES/PDF computational algorithms, such as the one
we present here, are rare [5,6], due to the high cost introduced by the stochastic
nature of the PDF aspect of the code. In particular, for a grid with a cell size
of ∆x, a time step of length ∆t, Npc particles per cell and Np particles total,
and a fixed value of the smoothing parameter α [6], second-order convergence
of the overall code with respect to the grid size and time step implies that the
errors in the functionals gj,k scale in the following manner:

ε = C1∆x2 + C2∆t2 + C3
1

Npc
+ C4

(
1

Np

)1/2

Y. (40)

In the above equation, the four terms on the right represent, respectively, errors
due to grid resolution, time step, statistical bias and statistical errors, where
Y is a Gaussian random variable of zero mean and unit variance. The last
component in the above expression, which is due to statistical error, illustrates
the advantage of using error norms based on linear functional of the solution, as
opposed to pointwise error estimates: for the latter, the statistical error scales

as
(

1
Npc

)1/2
, which is much larger than

(
1
Np

)1/2
.

Even for the linear functionals considered above, the bias error scales as
1

Npc

. The scaling of the bias error implies that, in order to test second-order
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convergence with respect to the grid and time step, we need to increase the
number of particles per cell by a factor of 4 each time that ∆x and ∆t are
decreased by a factor of 2, and hence the overall number of particles is increased
by a factor of 32.

We perform simulations on five successively more refined grids. The simula-
tion parameters are summarized in the table below

Simulation
Type

Grid size (nx×
nr × nθ)

Particles per
cell (Npc)

Time step, ∆t

S1 16× 16× 8 20 0.0160
S2 24× 24× 8 35 0.0106
S3 32× 32× 16 50 0.0080
S4 48× 48× 16 112 0.0066
S5 64× 64× 32 200 0.0040

In the above table, note that, for Npc to be proportional to ∆x−2, Npc for
S1 would have to be 12 (or 13), and Npc for S2 would have to be 28. The higher
numbers of Npc = 20 for S1 and Npc = 35 for S2 are used in order to ensure a
stable run of the particle PDF code. For the simulations S3, S4, S5, on whose
data points the second-order convergence is primarily based, the relationship
Npc ∝ ∆x−2 is maintained. Contours of the resolved axial velocity and resolved
mixture fraction at the end time, t = 0.45, are shown on fig.5.

For each of the simulation types S1 through S5, we perform, for the pur-
pose of estimating confidence intervals for gj,k, 8 independent simulations, with
different initial seeds for the random number generator. The 95% confidence
interval width for the error measures εũ1

, εξ̃, εξ̃2 , ερ is estimated by the formula:

CI width = 1.96×

√√√√1

8

4∑

j,k=1

V ar (gj,k). (41)

The computed error from these simulations can be seen on fig.6, which plots,
on a log-log scale, the means and confidence intervals for εũ1

, εξ̃, εξ̃2 , ερ against

∆x, the grid cell size in the axial direction. Since ∆t is directly proportional to
∆x for S1 through S5, second order convergence with respect to the grid and
time step corresponds to the data points falling on a straight line of slope 2 in
this log-log plot.

As can be seen on fig.6, all four error measures indicate second-order con-
vergence – the reference line of slope 2 passes through the confidence intervals
of the S3, S4, S5 data points, and with the exception of the S1 data points for
ε
ξ̃2

and εũ1
, the errors for the coarse-grid S1 and S2 simulation types are also

close to the reference line of slope 2. From these results, we conclude that the
LES/PDF scheme implemented in this work is indeed second-order accurate
with respect to the grid size and time step.

20



7 Conclusions

In this paper, we have addressed the issue of coupling between the LES and
PDF components of an LES/PDF algorithm for turbulent combustion simula-
tions. A coupling methodology has been proposed which allows for second-order
overall accuracy of the algorithm with respect to the grid cell size and the time
step. Using a numerical test case based on the turbulent Sandia/Sydney Bluff
Body Flame, it has been determined that the optimal coupling scheme is that
which uses the auxiliary transported specific volume approach with cloud in cell
mean estimation and no smoothing. Finally, for this choice of coupling scheme,
convergence studies have been performed to verify the second-order accuracy of
the LES/PDF algorithm.

Acknowledgements

This work is supported in part by the Air Force Office of Scientific Research,
Grant FA 9550-09-1-0047, and by NASA Grant NNX08A B 36A.

References

[1] S. B. Pope, PDF Methods for Turbulent Reactive Flows, Prog. Energy Com-
bust. Sci., 11, pp. 119-192 (1985)

[2] S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000

[3] D. C. Haworth, Progress in Probability Density Function Methods for Tur-
bulent Reacting Flows, Prog. Energy Comb. Sci., 36, 2, (2010), pp. 168-259

[4] Y. Z. Zhang, and D. C. Haworth, A General Mass Consistency Algorithm
for Hybrid Particle/Finite Volume PDF Methods, J. Comp. Phys., 194,
(2004), pp. 156-193

[5] H. Wang, P. P. Popov, and S. B. Pope, Weak Second-Order Splitting
Schemes for Lagrangian Monte Carlo Particle Methods for the Composi-
tion PDF/FDF Transport Equations, J. Comput. Phys. 229, (2010), pp.
1852-1878

[6] S. Viswanathan, H. Wang, and S. B. Pope, Numerical Implementation of
Mixing and Molecular Transport in LES/PDF Studies of Turbulent React-
ing Flows, J. Comput. Phys. 230, (2011), pp. 6916-6957

[7] C. D. Pierce, and P. Moin, Progress-Variable Approach for Large-Eddy
Simulation of Turbulent Combustion, J. Fluid Mech.504, (2004), pp. 73-97

[8] V. A. Sabel’nikov, and O. Soulard, Rapidly Decorrelating Velocity-Field
Model as a Tool for Solving One-Point Fokker-Planck Equations for Prob-
ability Density Functions of Turbulent Reactive Scalars, Phys. Rev. E, 72
(2005)

21



[9] P. Colucci, F. Jaberi, P. Givi, and S. B. Pope, Filtered Density Function
for Large Eddy Simulation of Turbulent Reacting Flows, Phys. Fluids 10
(1998), pp.499-515

[10] F. Jaberi, P. Colucci, S. James, P. Givi, and S. B. Pope, Filtered Mass
Density Function for Large Eddy Simulation of Turbulent Reacting Flows,
J. Fluid Mech. 401 (1999), pp.85-121

[11] V. Raman, and H. Pitsch, A Consistent LES/Filtered Density Function
Formulation for the Simulation of Turbulent Flames with Detailed Chem-
istry, Proc. Comb. Inst., 31, (2007), pp. 1711-1719

[12] Y. Ge, M. J. Cleary, and A. Y. Klimenko, Sparse-Lagrangian FDF Simu-
lations of Sandia Flame E with Density Coupling, Proc. Comb. Inst., 33,
(2011)

[13] M. Muradoglu, P. Jenny, S. B. Pope, and D. A. Caughey, A Consistent
Hybrid Finite-Volume/Particle Method for the PDF Equations of Turbulent
Reactive Flows, J. Comput. Phys., 154 (1999), pp. 342-371

[14] A. R. Masri, and R. W. Bilger, Turbulent Diffusion Flames of Hydrocarbon
Fuels Stabilized on a Bluff Body, Proc. Comb. Inst., 20, (1985)

[15] P. E. Kloeden, and E. Platen Numerical Solution of Stochastic Differential
Equations, Springer-Verlag, Berlin, 1992

[16] S. B. Pope Computations of Turbulent Combustion: Progress and Chal-
lenges, Proc. Comb. Inst., 23, (1991), pp. 591-612

[17] H. Pitsch Large-Eddy Simulation of Turbulent Combustion, Annu. Rev.
Fluid Mech., 38, (2006), pp. 453-482

[18] H. Wang, and S. B. Pope Large Eddy Simulation/Probability Density Func-
tion Modeling of a Turbulent CH4/H2/N2 Jet Flame, Proc. Comb. Inst.,
33, (2011), pp. 1319-1330

[19] K. A. Kemenov, H. Wang, and S. B. Pope Turbulence Resolution Scale
Dependence in Large-Eddy Simulations of a Jet Flame, Flow Turb. Comb.
(2011), DOI: 10.1007/s10494-011-9380-x.

[20] R. Mustata, L. Valino, C. Jimenez, W. P. Jones, S. Bondi A Probability
Density Function Eulerian Monte Carlo Field Method for Large Eddy Sim-
ulations: Applications to a Turbulent Piloted Methane/Air Diffusion Flame
(Sandia D), Combust. Flame, 145, (2006), pp. 88-104

[21] L. Valiño A Field Monte Carlo Formulation for Calculating the Probabil-
ity Density Function of a Single Scalar in a Turbulent Flow, Flow Turb.
Combust., 60, (1998), pp. 157-172

[22] S. B. Pope A Monte Carlo Method for the PDF Equations of Turbulent
Reactive Flow, Combust. Sci. Tech., 25, (1981), pp. 159-174

22



Figure 1: Comparison of the radial profiles of the mean of the resolved axial
velocity yielded by the LES/PDF coupling schemes with optimal values for the
smoothing parameter α
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Figure 2: Comparison of the radial profiles of the variance of the resolved axial
velocity yielded by the LES/PDF coupling schemes with optimal values for the
smoothing parameter α

24



Figure 3: Comparison of the radial profiles of the mean of the resolved density
yielded by the LES/PDF coupling schemes with optimal values for the smooth-
ing parameter α
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Figure 4: Comparison of the radial profiles of the variance of the resolved den-
sity yielded by the LES/PDF coupling schemes with optimal values for the
smoothing parameter α
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Figure 5: Resolved axial velocity (top) and resolved mixture fraction (bottom)
fields at the end time, t = 0.45 of the smooth vortex ring test case. From left
to right, results are shown for the simulations S1, S3, S5 and the S − LES
simulation.
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Figure 6: Mean errors and 95% confidence intervals for the convergence simu-
lations S1 through S5. The grey and black reference lines indicate respectively
first and second-order convergence behavior.
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