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This work addresses the issue of particle mass consistency in Large Eddy Simulation/
Probability Density Function (LES/PDF) methods for turbulent reactive flows. Numerical
schemes for the implicit and explicit enforcement of particle mass consistency (PMC) are
introduced, and their performance is examined in a representative LES/PDF application,
namely the Sandia–Sydney Bluff-Body flame HM1. A new combination of interpolation
schemes for velocity and scalar fields is found to better satisfy PMC than multilinear
and fourth-order Lagrangian interpolation. A second-order accurate time-stepping scheme
for stochastic differential equations (SDE) is found to improve PMC relative to Euler time
stepping, which is the first time that a second-order scheme is found to be beneficial, when
compared to a first-order scheme, in an LES/PDF application. An explicit corrective velocity
scheme for PMC enforcement is introduced, and its parameters optimized to enforce a
specified PMC criterion with minimal corrective velocity magnitudes.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the field of turbulent reactive flow simulation, probability density function (PDF) methods have been shown to be
effective in modeling turbulence–chemistry interactions [16,19,4], due to the fact that no modeling is required for the
chemical source term, which is highly non-linear. Originally used as turbulence–chemistry interaction models in Reynolds-
averaged Navier–Stokes (RANS) simulations of turbulent flow, PDF methods for turbulent reactive flow are now increasingly
used in conjunction with Large Eddy Simulation (LES) turbulence models [14]. The resulting LES/PDF methods, which were
first introduced in [17], have been highly effective in simulating laboratory-scale reactive flows [1,22,26,12].

In a typical LES/PDF simulation, the sample space of the PDF of chemical compositions has a high dimension, which
makes standard, finite-difference-based methods for evolving the PDF prohibitively expensive. This necessitates the use of
Monte Carlo methods for approximating the composition PDF. In this paper, we focus on the Lagrangian particle Monte Carlo
approach for approximation of the composition PDF, in which an ensemble of particles, each with its own composition, is
advected in physical space according to the LES Favre-averaged velocity and turbulent diffusivity, i.e., the diffusivity used to
model the unresolved turbulent motions. Other Monte Carlo approximation approaches are available [15,23], each with its
advantages and disadvantages over the Lagrangian particle approach.

Here, we focus on particle mass consistency (PMC), which is an important requirement in order for the Lagrangian
particle ensemble to be a valid Monte Carlo approximation of the composition PDF. First identified in [11], PMC means that
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the expected mass of particles in a given region should equal the mass of fluid in that region as implied by the resolved
density of the finite-volume (FV) solver.

Previous work on the PMC problem has included the introduction of Cartesian velocity interpolation schemes designed to
give accurate values for the velocity divergence [6,10], as well as the use of a corrective velocity in the advection of particles
[11,27], which reduces discrepancies in the particle mass consistency condition that accumulate due to numerical errors.
Here, we extend these results by adapting the Cartesian velocity interpolation scheme of [10] to cylindrical coordinates
(which are more often used for the simulation of statistically axi-symmetric canonical laboratory flames), introducing a new
scheme for scalar interpolation of the turbulent diffusivity, and testing the degree of satisfaction of the PMC condition in a
turbulent reactive flow representative of typical LES/PDF applications. We also employ a corrective velocity scheme, which
is conceptually similar to those of [11,27], but optimized to keep mass consistency errors down to an acceptable level while
minimizing the magnitude of the corrective velocities. Additionally, we examine the influence of the particle tracking SDE
time integration scheme on the satisfaction of PMC.

The rest of this paper is organized as follows: in Section 2, we introduce the governing equations for an LES/PDF La-
grangian Monte Carlo simulation, and define the PMC condition. Section 3 describes the turbulent reactive flow simulation
which is used to test, in conditions representative of a typical LES/PDF simulation, different schemes for the preservation of
PMC. In Section 4, we compare the performance (with respect to how well PMC is satisfied) of the Euler SDE time integra-
tion scheme with that of a second-order scheme introduced by Kloeden and Platen [7]. Section 5 introduces the corrective
velocity scheme for reducing PMC errors once they have accumulated due to numerical error, and determines its optimal
implementation, in terms of satisfying an appropriate PMC criterion with the least possible corrective velocity magnitude.
Finally, Section 6 introduces the new interpolation schemes, and tests their performance in the PMC context. Conclusions
are drawn in Section 7.

2. LES/PDF equations and the PMC problem

2.1. Governing equations and the PMC condition

We begin by defining the LES/PDF governing equations. We denote by p̄ and ρ̄ the LES resolved pressure and density,
by ũ j , ν̃ and D̃ the Favre-averaged resolved velocity, molecular viscosity and molecular diffusivity, and by S̃ i j the resolved
strain rate.

For the test case considered here, the molecular viscosity and diffusivity are evaluated by the power law

ν̃ = ν0

(
T̃

300 K

)1.69

,
ν̃

D̃
= σ , σ = 0.82, ν0 = 1.42 × 10−5

[
m2

s

]
, (1)

where the exponent in the power law is based on a curve fit to a CHEMKIN laminar flame calculation [26], ν0, σ are
based on the properties of a stoichiometric fuel/air mixture at 300 K, and T̃ denotes the resolved temperature. The resolved
density is defined later in this subsection.

A turbulent viscosity and a turbulent diffusivity, ν̃T and D̃T respectively, are used to model the unresolved motions. The
turbulent viscosity and diffusivity are evaluated by the Dynamic Smagorinsky procedure, with � denoting the filter size.

With these definitions, the equations of motion solved by the LES component of an LES/PDF algorithm take the form:

∂ρ̄

∂t
+ ∂ρ̄ũ j

∂x j
= 0, (2)

∂(ρ̄ũ j)

∂t
+ ∂(ρ̄ũi ũ j)

∂xi
= − ∂ p̄

∂x j
+ 2

∂

∂xi

(
ρ̄(ν̃ + ν̃T )

(
S̃ i j − 1

3
S̃kkδi j

))
. (3)

The LES component also evaluates the scalar mixing frequency, Ω , defined as

Ω = Cφ

D̃T + 2D̃

�2
, (4)

which is used in the equations solved by the PDF component (defined below) to evaluate turbulent mixing by the IEM
(Interaction by Exchange with the Mean) [25] mixing model, with the mixing constant set as Cφ = 2.0. The IEM mixing
model is one of the simplest turbulent mixing models, working on the assumption that the difference between a particle
composition and the local (i.e., cell-averaged) mean decays exponentially in time – this results in the first term on the
right-hand side of Eq. (11).

We note that, in an LES/PDF simulation, the LES component solves only for the continuity and momentum equations,
unlike a standalone LES turbulent reactive flow simulation, which also needs to solve scalar evolution equations for the fields
used to determine the chemical composition: in the LES/PDF context the evolution of the composition fields is performed
by the PDF component, as described below.

In the present work material properties are a function of the composition vector, φα , which is either one-dimensional,
consisting only of the mixture fraction, ξ , when a flamelet model is used, or it consists of a set of species’ specific mole
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values, plus enthalpy. The particular flamelet model used here (referred to from here on simply as the “flamelet model”) is
the fast-chemistry flamelet model defined in [28], which is a function only of the mixture fraction and its subgrid variance,
with the implicit assumption that the chemistry is much faster than the mixing processes.

The PDF component of an LES/PDF algorithm is a Monte Carlo approximation of the mass-weighted PDF of chemical
compositions, f (ψ;x, t), conditional on the resolved velocity field [2,20]. Here ψα denote points in the sample space of the
composition vector φα . Using φ̃α(x, t) to denote the sample space mean of φα at (x, t), the evolution equation for f (ψ;x, t),
is modeled to have the form [25]

∂ f

∂t
+ ∂

∂xi
( f ũi) = ∂

∂xi

(
D̃T

∂ f

∂xi

)
+ ∂

∂ψα

(
f Ω(ψα − φ̃α)

)

− ∂

∂ψα

(
f

1

ρ̄

∂

∂xi

(
ρ̄ D̃

∂φ̃α

∂xi

))
+ ∂

∂ψα

(
f Sα(ψ)

)
. (5)

In the above equation, the left-hand side accounts for transport in physical space due to the velocity and diffusivity
gradients, whereas the first three terms on the right-hand side of Eq. (5) represent respectively turbulent diffusion using
the turbulent diffusivity hypothesis, turbulent mixing using the IEM mixing model, and molecular diffusion, and Sα(ψ) is
the reaction source term (Sα(ψ) = 0 when a flamelet model is used). The advantage of modeling chemistry by using a
mass-weighted composition PDF which evolves by Eq. (5) is that the source term, which is highly non-linear as a function
of ψ , requires no modeling. Additionally, in the DNS limit, when D̃T = 0, the results yielded by the present specification of
the PDF are consistent with an exact solution of the Navier–Stokes and chemical transport equations [9].

With this definition of the mass-weighted PDF, the resolved specific volume, ṽ , is defined by

ṽ(x, t) =
∫

v(ψ) f (ψ;x, t)|dψ |, (6)

where v(ψ) is the constitutive relation for specific volume as a function of the composition variables. Finally, the resolved
density is defined as

ρ̄ = 1/ṽ. (7)

An additional scalar which we solve for is the transported specific volume, v̂ , whose role in the coupling of the LES and
PDF components is elaborated on in Section 2.2, and which is defined to evolve by the equation

∂(ρ̄ v̂)

∂t
+ ∂(ρ̄ũ j v̂)

∂x j
= ∂

∂x j

(
ρ̄ D̃T

∂ v̂

∂x j

)
+ S v + ωv , (8)

where S v and ωv are source and relaxation terms [21]. In particular, introducing a relaxation time τ (which is in this study
set to 4�t) the relaxation term is defined as

ωv = ρ̄
ṽ − v̂

τ
, (9)

which insures that v̂ tends to ṽ in the limit when τ goes to zero and the number of particles per cell goes to infinity.
In order to efficiently calculate the evolution of Eq. (5), without having to perform a discretization on the high-

dimensional composition space, we perform a Monte Carlo approximation [16]. An ensemble of Lagrangian particles are
initialized throughout the computational domain and evolve by a set of stochastic differential equations (SDEs). Throughout
this work, we shall use the superscript ∗ to denote particle quantities, as opposed to Eulerian fields (such as ũ j and ρ̄); we
shall also use it to denote Eulerian fields interpolated at a given particle’s current location.

Thus, each particle has a mass m∗ , determined at its initialization to correspond to the mass of fluid in the region taken
up by the particle, a location X∗

j which evolves according to the LES velocity and turbulent diffusivity, and a composition
vector, φ∗

α . The evolution equations for the particle position and composition vectors are as follows:

dX∗
j =

[
ũ j + 1

ρ̄

∂(ρ̄ D̃T )

∂x j

]∗
dt + [

2D̃∗
T

]1/2
dW ∗

j , (10)

dφ∗
α = −Ω∗(φ∗

α − φ̃∗
α

)
dt +

[
1

ρ̄

∂

∂x j

(
ρ̄ D̃

∂φ̃α

∂x j

)]∗
dt + Sα

(
φ∗)dt, (11)

where the term dW ∗
j in Eq. (10) denotes a Wiener increment, and the three terms on the right-hand side of Eq. (11) denote

respectively turbulent mixing (in this case represented by the IEM model [24]), molecular diffusion, and chemical reaction.
Using the notation 〈·〉 to denote expectation over all possible initial particle locations and all possible realizations of the

Wiener process, we define the particle mass-weighted PDF, f ∗(ψ;x, t) by:

f ∗(ψ;x, t) = 〈m∗δ(X∗(t) − x)δ(φ∗(t) − ψ)〉
∗ ∗ , (12)
〈m δ(X (t) − x)〉
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and, in the absence of numerical errors, Eqs. (10), (11) imply that f ∗ evolves by Eq. (5), so that, provided that f = f ∗
initially and at the boundaries, the particle mass-weighted PDF f ∗ is equal to the mass-weighted PDF:

f (ψ;x, t) = f ∗(ψ;x, t), (13)

due to the fact that both PDF functions have the same evolution equation, initial and boundary conditions.
An additional quantity which we introduce at this point is the particle mass density, q, which is defined as the expected

mass density of particles at x,

q(x, t) ≡ 〈
m∗δ

(
X∗(t) − x

)〉
. (14)

The main focus of this paper is in the preservation of the consistency,

q = ρ̄, (15)

between particle mass density and LES resolved density: we shall refer to Eq. (15) as the PMC condition. As pointed out by
[11,27], Eq. (15) is one of the essential conditions for the correspondence between the PDFs f and f ∗ which we use in our
Monte Carlo approximation. In the absence of numerical errors the consistency condition of Eq. (15) is an identity because
Eq. (2) can be simply rearranged to yield

D̃ ln(ρ̄)

D̃t
= −∂ ũ j

∂x j
, (16)

where D̃
D̃t

denotes a convective derivative with velocity ũ j , whereas Eq. (10) implies that q evolves by

D∗ ln(q)

Dt∗ = −∂ ũ∗
j

∂x j
, (17)

where D∗
Dt∗ denotes a convective derivative with velocity ũ∗

j . Therefore, in the absence of numerical errors, the evolution
equations, Eqs. (16), (17) imply q = ρ̄ for all time provided that q = ρ̄ at t = 0 and at inflow boundaries.

2.2. Numerical implementation

The LES equations are solved on a finite volume (FV) grid, with x, r, θ denoting respectively the axial, radial and azimuthal
coordinates [13]. The domain is also divided into a set of PDF cells, each of which contains approximately npc particles,
where npc is a specified parameter. The PDF cells are identical to the LES cells away from the centerline; close to the
centerline, one PDF cell consists of several LES cells, concatenated in the azimuthal direction [26].

The ensemble of particles evolving by Eqs. (10), (11) is used to determine local cell values as mass-weighted sums. More
specifically, let B(x) be a given cell basis function: in the present work, B(x) are continuous tent functions, piecewise linear
in each of the x, r, θ coordinates, which form a partition of unity. For a particular cell, we have:

B(x) = Bx(x)Br(r)Bθ (θ), (18)

where, denoting by x0 the axial location of the cell’s midpoint, and denoting by x1, x−1 the axial locations of its axial
neighbors, Bx(x) is defined as

Bx(x) = max

(
0,min

(
x − x1

x0 − x1
,

x − x−1

x0 − x−1

))
, (19)

and Br(r), Bθ (θ) are similarly defined.
For a specific particle property y, the Favre mean of y at the location of a given LES/PDF cell is approximated as

ỹ ≈
∑

cell m∗ y∗B(X∗(t))∑
cell m∗B(X∗(t))

, (20)

where the summation on the right-hand side is over all particles which are currently in the support of B(x), which consists
of the cell on which B(x) is centered, and parts of its immediate neighbors in each of the x, r, θ directions.

This methodology for cell value estimation is used to communicate information from the PDF to the LES component of
the LES/PDF algorithm. For example, a straightforward method for evaluating the resolved density, ρ̄ , used in Eqs. (2), (3),
is to just take the inverse of the Favre-averaged specific volume, ṽ . In the present work, ρ̄ is estimated by another method,
called the transported specific volume approach, which reduces the amount of statistical error (see [21] for more details).
In that approach, we use the additional transported scalar v̂ , which is solved for by the LES code (see Eq. (8)), and use the
inverse of that specific volume as an approximation of the resolved density:
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ρ̂ ≡ 1

v̂
≈ ρ̄. (21)

As previously pointed out, Eqs. (8), (9) imply that, for the present choice of τ = 4�t , v̂ tends to ṽ in the limit as �t
goes to zero and the number of particles per cell goes to infinity, and hence using Eq. (21) to obtain the resolved density
yields a valid numerical approximation to the system of equations defined in the previous subsection.

In the present work, q is approximated on LES/PDF cells by the formula

q ≈
∑

cell m∗B(X∗)∫
cell B(x)|dx| , (22)

where
∫

cell is an integral over the support of B(x).
As previously noted, in the absence of numerical error q = ρ̄ exactly. However, in a practical LES/PDF simulation, differ-

ences between q and ρ̄ will develop, and need to be kept at a low level so that the combination of the LES (Eqs. (2), (3))
and PDF (Eqs. (10), (11)) components of the code yields a valid approximation to the mass-weighted composition PDF.

Here, we introduce a PMC error variable εc , defined by

εc = q/ρ̄ − 1, (23)

to quantify the difference between q and ρ̄ , and we rank the performance of different PMC preservation schemes by the
approximate L1 and L∞ measures of εc , defined by

∥∥εc
∥∥

1 =
∑

i,m |εc
i (tm)|V i�t∑

i,m V i�t
(24)

and ∥∥εc
∥∥∞ = max

i,m

∣∣εc
i (tm)

∣∣ (25)

where i is the index of a given LES cell, tm denotes the midpoint of a given time step in the second half of the simulation,
and εc

i (tm) and V i denote respectively the value of εc for a given cell at time tm , and the volume of that cell.
Our use of the L∞ and L1 norms of the error variable, εc , stems from the fact that they are respectively the strictest and

the least strict measures of error: for any function f on a domain of volume 1 (which applies to the present case, since
in Eq. (24) we divide by the domain’s volume), it is identically true that ‖ f ‖1 � ‖ f ‖p � ‖ f ‖∞ for any 1 < p < ∞. While
we could use this fact to limit our attention to the L∞ norm only, that norm has little physical significance and for certain
applications may prove to be overly restrictive. As the results in Sections 4 through 6 indicate, however, this is not the case
in the present simulation.

3. Description of the bluff-body jet simulation

Here, we describe the turbulent reactive flow simulation used as a test case for different PMC preservation schemes.
We simulate the Sandia–Sydney Bluff-Body Flame HM1, a detailed description of which can be found in Masri and Bilger

[8]. The flame consists of a jet of diameter 3.6 mm inside a bluff body of diameter 50 mm, which is itself located inside
a square wind tunnel whose sides are 150 mm. The jet is a 1 : 1 by volume mixture of CH4 and H2 at a temperature of
300 K, and leaves the outlet at a bulk velocity of 118 m/s – the Reynolds number, based on the jet velocity and diameter, is
29,900. The coflow consists of air, also at 300 K, with a bulk velocity of 40 m/s. The computational domain is x ∈ [0,20R B ],
r ∈ [0,3.39R B ], where R B is the bluff-body radius. There is a wall boundary at r = 3.39R B , which yields the same hydraulic
diameter as the wind tunnel used in the experiment. The grid size is 96 × 64 × 48, which is not sufficient for an accurate
simulation of the bluff body, but allows us to test the PMC preservation properties of a number of different numerical
schemes in a flow representative of LES/PDF applications.

In the present simulation, we use the GRI 1.2 chemical mechanism with chemical composition being advanced either
by flamelet modeling, for which the composition vector φ∗

α consists only of the mixture fraction ξ , or via integration in
the full composition space, in which case φ∗

α is 33-dimensional – we shall use the abbreviation FC from now on to refer
to the full composition space simulations. In FC simulations, in situ adaptive tabulation (ISAT) [18] is used for speed up of
the integration of the chemical source term. The number of particles per cell is either npc = 30 or npc = 50, and the time
step is �t = 8.48 μs. The reason for the flamelet model in addition to FC, which is typically used in LES/PDF simulations, is
that the former has considerably lower computational cost which makes it suitable for parameter studies and simulations
with a larger number of particles. The flamelet model simulations provide an accurate approximation, where PMC error
is concerned, to the FC simulations that we are mainly interested in, due to the fact that the density variation over the
entire composition space is comparable between the two – this is supported by the results in Section 4, which show almost
identical PMC errors in a comparison between flamelet and FC solutions with the same number of grid cells and particles.

The simulations are run for 12 flow-through times based on the coflow velocity (which amounts to 20,000 time steps),
by the latter half of which period the flow has reached a statistically stationary state: the results presented are based on
statistics collected during the second half of the simulation interval.
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Fig. 1. Instantaneous contour plots at the end of an FC simulation of the HM1 test case. Left: axial velocity, normalized by the jet bulk velocity. Middle:
radial velocity, normalized by the jet bulk velocity. Right: temperature (K).

Figs. 1–4 show contour plots of the Favre means of the velocity and temperature fields, as well as plots of the instanta-
neous fields at the end of the simulation. As can be seen, the flow is highly non-trivial, with a recirculation region extending
up to a distance 2R B downstream from the bluff body, and considerable fluctuations about the mean. This makes it a good
test case to study the problem PMC, which depends considerably on the evolution of particles in physical space.

In the subsequent sections, we present results for this test case with different implicit and explicit schemes of preserva-
tion of PMC.

4. SDE time integration as an implicit scheme for PMC preservation

First, we examine the effect on PMC of the numerical scheme used to integrate the position advection SDE, Eq. (10). The
standard Euler SDE time integration scheme is most commonly used [3,5] in particle/FV algorithms for turbulent reactive
flows; those studies which use an SDE integration scheme with a higher order of accuracy [26] have detected little improve-
ment in the overall solution, for test cases which are representative of typical LES/PDF turbulent flows. Here, we compare
the performance of the Euler scheme with that of the weakly second-order accurate derivative-free SDE integration scheme
introduced by Kloeden and Platen [7], from here on referred to as the KP scheme, for the sake of brevity.

Table 1 gives a PMC error comparison between simulations using Euler and the KP time integration schemes. The simu-
lation is as described in Section 3 – both the flamelet and FC calculations are used. The value of npc used is npc = 30, and
the interpolation scheme for the velocity and scalar fields is standard multilinear interpolation; no explicit PMC correction
algorithms are used. Also given is the computational cost, in overall simulation wall clock time per particle per step – the
total number of particles is approximated as npc times the number of grid cells.

As can be seen on the table, in both the flamelet and FC simulations, the use of the KP scheme instead of Euler reduces
both the L1 and L∞ errors by approximately 30%, for a modest increase in computational cost, especially for the FC sim-
ulations. Thus we see that, in contrast to previous experience (in which PMC errors were not examined) with particle/FV
methods, it is advantageous to use a higher-order SDE integration scheme. It can also be seen from Table 1 that, with
respect to PMC errors, there is little difference between the flamelet and FC simulations.

Fig. 5 gives a detailed look at the PMC error variable, εc , throughout the domain, for the FC simulation with Euler time
stepping – the results for the other simulations are similar, the main difference being in the magnitude of εc . As can be
seen on Fig. 5, while there is considerable noise in the instantaneous values of εc , there is also a deterministic component
in the εc field, which can be seen on the time-averaged contour plot. At both the jet and coflow shear layers, we see a
region with positive 〈εc〉T , i.e. a greater mass density of particles than there should be, on the bluff-body side of the shear
layers, and a region with negative 〈εc〉T at the inlet sides of the shear layers.
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Fig. 2. Instantaneous contour plots (enlarged view of the recirculation region) at the end of an FC simulation of the HM1 test case. Left: axial velocity,
normalized by the jet bulk velocity. Middle: radial velocity, normalized by the jet bulk velocity. Right: temperature (K).

Fig. 3. Contour plots of time-averaged fields in the FC simulation of the HM1 test case. Left: axial velocity, normalized by the jet bulk velocity. Middle:
radial velocity, normalized by the jet bulk velocity. Right: temperature (K).
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Fig. 4. Contour plots (enlarged view of the recirculation region) of time-averaged fields in the FC simulation of the HM1 test case. Left: axial velocity,
normalized by the jet bulk velocity. Middle: radial velocity, normalized by the jet bulk velocity. Right: temperature (K).

Table 1
L1 and L∞ measures, ‖εc‖1 and ‖εc‖∞ , of the instantaneous PMC error, L1 and L∞ measures, ‖〈εc〉T ‖1 and ‖〈εc〉T ‖∞ , of the time-averaged error 〈εc〉T ,
and computational cost in wall clock time per particle per step per core, for simulations with multilinear interpolation and no explicit mass correction.

Chemistry/SDE scheme Flamelet/Euler Flamelet/KP FC/Euler FC/KP

‖εc‖1 1.54 × 10−1 1.09 × 10−1 1.67 × 10−1 1.16 × 10−1

‖εc‖∞ 5.78 × 10−1 3.97 × 10−1 5.82 × 10−1 3.95 × 10−1

‖〈εc〉T ‖1 1.88 × 10−2 1.05 × 10−2 2.32 × 10−2 1.03 × 10−2

‖〈εc〉T ‖∞ 2.12 × 10−1 1.22 × 10−1 2.14 × 10−1 1.20 × 10−1

cost/ptcl 10.2 μs 13.3 μs 81.7 μs 84.2 μs

Table 1 also provides L1 and L∞ measures of these time-averaged values, denoted by 〈εc〉T , for the four simulations.
As we can see, the KP scheme yields approximately a 45% reduction in the time-averaged, deterministic components

of PMC error. Also, we note again that, with respect to PMC errors, there is little difference between flamelet and FC
simulations.

The mechanism for accumulation of deterministic PMC errors is replicated in a simple 2D numerical test case, described
in Appendix A. In that test case, the only source of error is due to the time-stepping scheme, which allows us to isolate
the PMC errors due to time stepping, and evaluate the performance of different SDE integration schemes, apart from the
other components of an LES/PDF solution. The 2D test flow described in the appendix is a model for the bluff-body shear
layer: it contains an interface between regions of high and low axial velocity; this interface coincides with a region of
increased turbulent diffusivity, similarly to the flow features seen on Fig. 6. The results are shown on Figs. 7 and 8; as can
be seen on these figures, there is a buildup of deterministic mass consistency errors, with positive 〈εc〉T in the region of
low axial velocity, and negative 〈εc〉T in the region of high axial velocity. This distribution is similar to the distribution
of deterministic errors seen on Fig. 5, which suggests that the latter are in large part caused by time-stepping error. This
explains the reduction of deterministic PMC error seen on Table 1, as it can be seen on Figs. 7 and 8 that the KP scheme
greatly reduces the deterministic PMC errors due to time stepping.

From the above results we conclude that, despite the modest increase in computational cost, from a PMC standpoint it
is advantageous to use an SDE time integration scheme with a higher order of accuracy than the Euler scheme. Note that
while it is intuitive that using a higher-order integration algorithm will improve computational accuracy, in the LES/PDF
context it is generally accepted that the Euler scheme is sufficiently accurate [26], due to the small time steps which are
necessitated by the chemical source terms, and hence it is the Euler scheme that is used in most LES/PDF studies [3,5]. The
importance of the results in this section lies in the finding that the PMC error, which has previously not been examined
as a function of the time-stepping scheme, is reduced significantly by the use of the second-order KP scheme. This is the
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Fig. 5. Contour plots of the PMC error, εc for an FC simulation with multilinear interpolation, npc = 30 and no explicit PMC correction. Left: contour plot of
εc averaged in time over the second half of the simulation. Right: contour plot of εc at the last simulation time step.

Fig. 6. For the test case described in Appendix A. Left: contour plot of 〈ũx〉t/U J , the time-averaged axial velocity normalized by the jet bulk velocity. Right:

contour plot of 〈D̃T 〉t
�2/τ J

, the time-averaged turbulent diffusivity normalized by the LES filter size, �, and the jet characteristic time scale τ J = 2R B/U J .
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Fig. 7. Results from the 2D PMC test case described in Appendix A. Left: plots of V (x) and DT (x). Right: plots of time-averaged PMC error, 〈εc〉T for the
region 0.3 < y < 0.45, and for �t = 0.0125.

Fig. 8. Results from the 2D PMC test case described in Appendix A. Maximal value of εC plotted against the time step.

first time that a second-order accurate time-stepping scheme has been shown to have superior performance to Euler in an
LES/PDF context: in particular, a comparison was made between the first- and second-order accurate time-stepping schemes
in an LES/PDF context by Wang and Pope [26] and in that study no advantage was found in using the higher-order scheme.
In the following sections, unless otherwise specified, it is implicit that the KP scheme is used.

5. Explicit PMC preservation schemes: Velocity correction

In this section, we describe and test a scheme for the reduction of PMC errors once they have accumulated due to
numerical error.
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5.1. Determining the desired maximum level of PMC error

Before we describe the explicit PMC correction schemes used here, let us consider the desired level, εc
0, of PMC error

which we wish to enforce. Due to the stochastic nature of LES/PDF codes, it is undesirable to completely reduce εc to zero –
for a given value of npc (which is typically in the range of 20 to 50 for most practical simulations) the error εc will contain

a component proportional to n−1/2
pc , which is due to the finite sample size in the approximation of q and does not in itself

imply a discrepancy between q and ρ̄ . This is true even with perfect integration of the SDE in Eq. (10), which occurs for
example when we have constant velocity and no turbulent diffusivity, so that the interpolation and SDE integration schemes
contain no numerical errors; in this idealized case, q = ρ̄ is satisfied exactly, and εc contains only sampling error which
should be ignored.

Therefore, we shall set εc
0 to be equal to the maximal rms εc error for a case with perfect integration of Eq. (10). For

simplicity, let us consider a uniform Cartesian grid whose grid cells have volume 1, assume that the velocity is constant
throughout the domain, that there is no diffusivity and that the basis functions B(x) used for evaluation of cell means are
the indicator functions of a given cell. Also, let us assume that the density ρ̄ is constant, and that all particles have the
same mass, so that q/ρ̄ for a given cell can be evaluated as the number of particles in that cell, divided by npc .

At the beginning of a simulation, exactly npc particles are initialized with their position having uniform probability in
each cell, so that q/ρ̄ = 1, hence εc

0 = 0. However, as the simulation progresses and the particle distribution shifts with
respect to the FV grid, each FV grid cell will cover a region of particles which were initialized in 8 separate grid cells (i.e.
23 grid cells for the 3D case considered). Let us consider a given cell, C , and denote by V 1 through V 8 the volumes of
the intersections between that cell and the Lagrangian mappings for the present time of the 8 cells, C1 through C8, whose
particles currently reside in C . Due to the uniform initialization of particles and the fact that we have chosen all cells to have
volume 1, we have that the probability that a particle initialized in Ci currently lies in C is equal to V i , with

∑8
i=1 V i = 1.

Therefore, if we denote by N the number of particles currently in C , we get that N the sum of 8 binomial random variables
with parameters npc and V i , respectively. Hence, since

∑8
i=1 V i = 1, the expectation of N is E(N) = npc , and the variance of

N is

Var(N) = npc

8∑
i=1

V i(1 − V i). (26)

Given the constraint
∑8

i=1 V i = 1, for a fixed npc the right-hand side of Eq. (26) attains its maximum for V 1 = V 2 = · · · =
V 8 = 1/8 (from the inequality between arithmetic and quadratic means), which gives us that the maximal value for Var(N)

is Var(N) = 7/8npc , and so the maximal possible standard deviation for q/ρ̄ = N/npc for this simplified case is

max

(
std

(
q

ρ̄

))
=

(
7

8npc

)1/2

. (27)

Based on this, we set

εc
0 =

(
7

8npc

)1/2

(28)

as the maximal allowable consistency error, i.e. we require that ‖εc‖∞ < εc
0. For a criterion on ‖εc‖1, we define εc

1 to be
the expectation of |N/npc − 1|:

εc
1 = E(N/npc − 1), (29)

which is the L1 counterpart of the variance-based (i.e., using an L2 norm) criterion of Eq. (28), and we require that
‖εc‖1 < εc

1. For npc = 30,50, εc
1 has the values 0.136,0.105 respectively (obtained numerically). As we shall see below

‖εc‖∞ < εc
0 is a more restrictive criterion than ‖εc‖1 < εc

1.

5.2. Corrective schemes for the reduction of εc

As seen in the previous section, even though using the KP time integration scheme reduces the magnitude of the PMC
errors, those errors are still considerably higher than the desired level εc

0 introduced in Eq. (28) of the previous subsection –
for npc = 30 we have εc

0 = 0.1708, whereas the smallest value of ‖εc‖∞ obtained in the previous section is ‖εc‖∞ = 0.397.
This necessitates the use of a correction algorithm to reduce PMC errors down to a desired level. Such correction algorithms
typically take the form of velocity correction algorithms [27,11]. In this work, we also use a velocity correction algorithm
similar to that of [27].

In particular, we introduce a corrective velocity, uc
j , as a discrete FV field, and we set

ũ∗ = ũ j + uc . (30)
j j



P.P. Popov, S.B. Pope / Journal of Computational Physics 257 (2014) 352–373 363
Then, making the assumption that ‖uc
j‖ 
 ‖ũ j‖ and that interpolation errors are small, we get that D̃

D̃t
≈ D∗

Dt∗ , and so
Eqs. (16), (17) yield that

D̃ ln(q/ρ̄)

D̃t
≈ D∗ ln(q)

Dt∗ − D̃ ln(ρ̄)

D̃t
= −∂uc

j

∂x j
. (31)

Then, assuming that εc 
 1 (the results to follow validate this assumption when a corrective scheme is used), so that
q
ρ̄ ≈ 1, we get that

D̃ ln(q/ρ̄)

D̃t
= ρ̄

q

D̃(q/ρ̄)

D̃t
≈ D̃εc

D̃t
, (32)

and hence

D̃εc

D̃t
≈ −∂uc

j

∂x j
, (33)

which means that setting
∂uc

j
∂x j

to be proportional to εc will enforce a decay of εc toward zero. More specifically, we introduce

a velocity potential, ζ , so that

uc
j = ∂ζ

∂x j
, (34)

and we require ζ to satisfy the Poisson equation

∂uc
j

∂x j
= ∂2ζ

∂xi∂xi
= F (εc)

τ c
, (35)

where on the right-hand side of the above equation: F (·) is an operator acting on the εc field, the simplest example being
F (εc) = εc ; and where τ c is a control parameter with units of time, which manifests as the time scale of the decay of εc

toward zero.
A similar definition of the corrective velocity uc

j has been introduced previously, by Zhang and Haworth [27], in which
the authors use F (εc) = εc , and vary the value of τ c . The main contribution of this work in the area of explicit mass
correction algorithms is in testing alternative definitions of F (εc), and establishing which are optimal for the purpose of
maintaining the consistency error below the desired level εc

0, while keeping the magnitude of the corrective velocity to a
minimum.

We use three different definitions of F (εc). The first, denoted F1(ε
c) is the straightforward choice

F1
(
εc) = εc. (36)

In the second choice, spatial smoothing is applied to the field εc : the algorithm used is the implicit 3-point smoothing
algorithm, described in Viswanathan et al. [25], in which the amount of spatial smoothing performed on fields is controlled
by a parameter α, which is defined so that the amount of the resultant implicit smoothing is equivalent to explicit smooth-
ing over α cells in each direction (in particular α = 1 implies that no smoothing is performed). Using the operator Sα[·] to
denote the smoothing procedure, we define F α

2 (εc) as

F α
2

(
εc) = Sα

[
εc]. (37)

This choice of F α
2 (εc) is motivated by the reasoning that, by ignoring the highest wavenumber components of εc , the

resulting correction algorithm will yield, for the same values of the control parameter τ c , lower magnitudes of the corrective
velocity uc

j , thus allowing us to use smaller values of the decay parameter τ c .
Finally, we also consider a definition, F3(ε

c) which aims to reduce the amount of corrective velocity by only correcting
PMC errors when they become significant compared to εc

0. In particular, F3(ε
c) is defined by

F3
(
εc) =

⎧⎪⎪⎨
⎪⎪⎩

0, for |εc| < εc
0/2,

εc sin2(
π(|εc |−εc

0)

εc
0

), for εc
0/2 � |εc| < εc

0,

εc, for |εc|� εc
0,

(38)

that is, between |εc| = εc
0/2 and |εc| = εc

0, F3 varies smoothly between F3 = 0 (for |εc| � εc
0/2) and F3 = εc (for |εc |� εc

0).
The overall performance of the three corrective strategies is shown on Table 2. The first three rows show results for a

simulation with npc = 30, the last three for a simulation with npc = 50. The table compares L1 and L∞ measures of the
corrective velocity, respectively denoted as ‖εU ‖1 and ‖εU ‖∞ (where εU is a dimensionless velocity error normalized by the
maximal flow velocity), with the PMC errors produced by each scheme. The control parameter τ c is set to have the largest
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Table 2
Comparison between the three corrective schemes, for flamelet simulations with npc = 30 and npc = 50.

Corrective scheme τ c/�t npc ‖εc‖1 ‖εc‖∞ ‖εU ‖1 ‖εU ‖∞
F1 8 30 4.4 × 10−2 1.53 × 10−1 9.1 × 10−2 1.58 × 10−1

F3 8 30 5.1 × 10−2 1.60 × 10−1 8.1 × 10−2 1.49 × 10−1

F α=3.0
2 4 30 4.6 × 10−2 1.52 × 10−1 4.5 × 10−2 9.7 × 10−2

F1 10 50 3.5 × 10−2 1.29 × 10−1 7.4 × 10−2 1.22 × 10−1

F3 10 50 4.4 × 10−2 1.31 × 10−1 6.7 × 10−2 1.19 × 10−1

F α=3.0
2 6 50 3.7 × 10−2 1.31 × 10−1 3.8 × 10−2 7.9 × 10−2

Table 3
L1 consistency and corrective velocity errors for npc = 30 – a parameter study for α and τ c .

τ c ‖εc‖1|/‖εU ‖1

α = 1.0
‖εc‖1|‖εU ‖1

α = 2.0
‖εc‖1|‖εU ‖1

α = 3.0
‖εc‖1|‖εU ‖1

α = 4.0

2.0 0.027 0.246 0.034 0.120 0.038 0.070 0.041 0.060
4.0 0.033 0.139 0.040 0.065 0.046 0.047 0.049 0.039
6.0 0.039 0.102 0.049 0.056 0.051 0.036 0.056 0.035
8.0 0.044 0.091 0.057 0.048 0.059 0.032 0.065 0.027

possible value while still maintaining ‖εc‖∞ < εc
0 and ‖εc‖1 < εc

1, where εc
0 = 0.171, εc

1 = 0.136 and εc
0 = 0.132, εc

1 = 0.105,
respectively for npc = 30 and npc = 50. Due to the large number of simulations required to explore the parameter space for
τ c and α, all of the results presented in this section are obtained from simulations with flamelet chemistry modeling.

As we can see on the table, the criteria ‖εc‖1 < εc
1, ‖εc‖∞ < εc

0 can be enforced by all three schemes; also note that,
as mentioned above ‖εc‖∞ < εc

0 is the more restrictive criterion. Contrary to expectations, the F3 corrective scheme does
not yield considerable improvement over F1: the L1 measure of the PMC error increases by approximately 20%, while the
L1 measure of the corrective velocity decreases by approximately 10%, and the difference in the L∞ error measures is even
less.

In contrast, the F2 scheme with α = 3.0, and a smaller value for �t gives considerable improvements over F1 – the
consistency errors are similar, whereas the corrective velocity errors are reduced by approximately 50% in the L1 sense and
35% in the L∞ sense. The choice of α = 3.0 was arrived at by varying α from 1.0 to 4.0, and τ c from its F1 value down to
τ c = 2�t . The L1 results of this parameter study are shown on Table 3, for npc = 30.

As we can see α = 3.0, τ c = 4�t yields the least corrective velocity for the same (or less) consistency error as in the
F1(·) case with τ c = 8�t , which is the greatest value of τ c such that the criterion of Eq. (28) is satisfied. The results are
similar for npc = 50 – the optimal combination is α = 3.0, τ c = 6�t . Henceforth, we shall use F2 with these parameters as
our explicit PMC correction algorithm.

Note that in a different LES/PDF simulation the value of the control parameter τ c required to maintain ‖εc‖1 < εc
1,

‖εc‖∞ < εc
0 may be different; as the test case in Appendix A shows for example, the PMC errors are a function of the tur-

bulent diffusivity magnitude. Therefore, when applying the F α=3.0
2 corrective scheme to a new flow, the user is encouraged

to monitor the levels of ‖εc‖1, ‖εc‖∞ in the initial stages of the simulation, and adjust τ c accordingly – reduce it if the
PMC errors are above the desired level, increase it if they are below the desired level.

6. Velocity and scalar interpolation schemes as implicit methods for preserving PMC

In this section, we introduce new interpolation schemes for the velocity and scalar fields in Eq. (10), which are designed
to reduce PMC errors, both in terms of reducing εc for simulations without explicit PMC correction, and in terms of reduc-
ing the corrective velocity imposed by the correction algorithms discussed in the previous section. We then compare the
performance of these new schemes with that of standard multilinear and fourth-order Lagrangian interpolation.

6.1. Velocity interpolation: the polar parabolic edge reconstruction method

The Polar Parabolic Edge Reconstruction Method (PPERM) is an adaptation for cylindrical grids of a previous velocity
interpolation scheme, called the Parabolic Edge Reconstruction Method (PERM), introduced by McDermott and Pope [10].
As noted by the authors of that paper, the combination of the evolution equations for ρ̄ and q, respectively Eq. (16), (17),
implies that, with ρ̄ = q at the beginning of the simulation (which is always the case, provided the particles are initialized
correctly), the magnitude of the differences between ρ̄ and q is proportional to the magnitude of the differences between

ũ j and ũ∗
j , and between

∂ ũ j
∂x j

and
∂ ũ∗

j
∂x j

. Therefore, a velocity interpolation scheme must yield accurate values for the velocity

ũ∗
j and its divergence,

∂ ũ∗
j

∂x j
, in order to maintain PMC.

To this end, PERM, which is an extension of multilinear interpolation with additional polynomial terms, is a second-order
accurate (with respect to the grid spacing) velocity interpolation scheme, with second-order accurate values for the diver-
gence for the interpolated velocity. This is an advantage over multilinear interpolation, whose divergence of the velocity is
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Table 4
Comparison of the performance of different interpolation schemes for an FC simulation with npc = 30, without PMC correction.

Simulation FC, npc = 30, multilinear FC, npc = 30, PPERM/MLG FC, npc = 30, 4th order

‖εc‖1 1.16 × 10−1 7.92 × 10−2 9.67 × 10−2

‖εc‖∞ 3.95 × 10−1 2.54 × 10−1 3.17 × 10−1

μs/ptcl · step 84.2 91.1 102.3

Table 5
Comparison of the performance of different interpolation schemes for a flamelet simulation with npc = 50, without PMC correction.

Simulation Flamelet, npc = 50, multilinear Flamelet, npc = 50, PPERM/MLG Flamelet, npc = 50, 4th order

‖εc‖1 1.03 × 10−1 6.77 × 10−2 8.91 × 10−2

‖εc‖∞ 2.73 × 10−1 1.88 × 10−1 2.27 × 10−1

μs/ptcl · step 13.3 19.5 29.2

only first-order accurate. An additional advantage of PERM over multilinear interpolation is that for an FV discrete velocity
field ũ j which is discretely divergence-free (i.e., the total velocity flux through the faces of each FV cell is 0), the PERM
interpolated velocity is divergence-free at all points in the domain.

The new interpolation scheme, PPERM, is an adaptation of PERM to cylindrical coordinate grids which retains these
properties. A detailed description of PPERM, the process for its evaluation, and numerical tests of its convergence properties
are given in Appendix B.

6.2. Diffusivity and density interpolation: the multilinear gradients method

The new Multilinear Gradients Method (MLG) introduced here is a third-order accurate interpolation scheme for scalar
fields – in this work, it is applied to ρ̄ D̃T and ρ̄ in Eq. (10). The MLG-interpolated fields are piecewise polynomial in
x, r, and θ . The 20 polynomial terms used are of up to fourth degree, and comprise the minimal set necessary so that
the gradient of the MLG reconstructed field has the same functional form as when the gradient is itself interpolated by a

multilinear velocity interpolation scheme. This is done so that the value of ∂(ρ̄ D̃T )
∂x j

used in Eq. (10) is second-order accurate

with respect to the grid spacing.

Note that second-order accuracy of ∂(ρ̄ D̃T )
∂x j

can also be achieved by performing multilinear interpolation of ∂(ρ̄ D̃T )
∂x j

as a

vector field, separately from the interpolation of the scalars ρ̄ , ρ̄ D̃T . The advantages of using MLG is that the additional
computational work performed in obtaining second-order accurate values for the gradient is also utilized in obtaining third-

order accurate scalar fields, and that the interpolated value for ∂(ρ̄ D̃T )
∂x j

is in fact the gradient of the interpolation of ρ̄ D̃T .

A detailed description of the functional form of MLG, the process for its evaluation, and numerical tests of its convergence
properties are given in Appendix C.

6.3. PMC performance of PPERM/MLG in an LES/PDF context

In this subsection, we compare the PMC performance of the combination of PPERM and MLG interpolation schemes with
that of standard multilinear and fourth-order Lagrangian interpolation. First we consider simulations without explicit PMC
correction. Tables 4 and 5 present results from two types of simulations, respectively an FC simulation with npc = 30 and
a flamelet model simulation with npc = 50. As mentioned previously, the SDE integration scheme used is the second-order
KP scheme.

As we can see on both tables, using fourth-order accurate Lagrangian interpolation provides an advantage over standard
multilinear interpolation, and PPERM/MLG provides an even greater advantage – L1 consistency errors are decreased by ap-
proximately 30%, and L∞ consistency errors are decreased by approximately 35%, relative to the simulation with multilinear
interpolation. Furthermore, the added computational cost of using PPERM/MLG is lower than that of using fourth-order La-
grangian interpolation, and lower than 10% of the overall computational cost for a simulation with full chemistry modeling
using the FC mechanism. For flamelet calculations, the added computational cost of using the higher-order interpolation
schemes is considerable, but the FC test case is more representative of a typical LES/PDF simulation.

Note that, even with fourth-order Lagrangian and PPERM/MLG interpolation, we still need to perform explicit PMC cor-
rection in order to meet the target values for εc

0 – 0.171 and 0.132 for npc = 30 and npc = 50, respectively. For this reason,
we perform another set of simulations with the optimal explicit corrective scheme from Section 5: F (εc) = F α=3.0

2 (εc), with
τ c = 4�t and τ c = 6�t for npc = 30 and npc = 50, respectively – since this choice of parameters yielded ‖εc‖∞ < εc

0 in
Section 5, where multilinear interpolation was used, it is to be expected that for PPERM/MLG and fourth-order Lagrangian
interpolation the resulting consistency errors will be even lower.

Tables 6 and 7 present the simulation results, again for FC simulations with npc = 30 and flamelet simulations with
npc = 50. Time histories of the L1 and L∞ norms of the corrective velocities are also shown on Fig. 9, on which we can
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Table 6
Comparison of the performance of different interpolation schemes for an FC simulation with npc = 30, with PMC correction.

Simulation FC, npc = 30, multilinear FC, npc = 30, PPERM/MLG FC, npc = 30, 4th order

‖εc‖1 4.8 × 10−2 4.0 × 10−2 4.3 × 10−2

‖εc‖∞ 1.55 × 10−1 1.20 × 10−1 1.33 × 10−1

‖εU ‖1 4.7 × 10−2 2.6 × 10−2 3.6 × 10−2

‖εU ‖∞ 9.6 × 10−2 4.2 × 10−2 6.5 × 10−2

Table 7
Comparison of the performance of different interpolation schemes for a flamelet simulation with npc = 50, with PMC correction.

Simulation Flamelet, npc = 50, multilinear Flamelet, npc = 50, PPERM/MLG Flamelet, npc = 50, 4th order

‖εc‖1 3.7 × 10−2 2.9 × 10−1 3.2 × 10−2

‖εc‖∞ 1.31 × 10−1 1.06 × 10−1 1.09 × 10−1

‖εU ‖1 3.8 × 10−2 2.2 × 10−2 2.9 × 10−2

‖εU ‖∞ 7.9 × 10−2 3.8 × 10−2 6.0 × 10−2

Fig. 9. Time histories of the corrective velocity for an FC PPERM/MLG simulation with npc = 30, and an F α=3.0
3 (εc) correction scheme with τ c = 4�t . Left:

L1 measures of the corrective velocity. Right: L∞ measures of the corrective velocity.

see that while there is some fluctuation of the corrective velocity magnitudes over the simulation time span, the overall
magnitude of the fields does not change considerably (the fluctuation is on the order of 20% of the mean value). Finally,
Fig. 10 displays instantaneous contour plots of the consistency error and axial component of the corrective velocity at the
end of the FC, PPERM/MLG simulation. We can see on this figure that the PMC error field has length scales much smaller
than those of the corrective velocity, which is to be expected due to the smoothing in the PMC corrective scheme.

As we can see, with the addition of PMC correction, the PPERM/MLG simulations again give a reduction in the consistency
errors, though not as great as in Tables 4 and 5 – for example, PPERM/MLG interpolation yields a reduction of approximately
20% in ‖εc‖∞ over multilinear interpolation, compared with the 35% reduction obtained previously. However, we also see
a considerable decrease in corrective velocities when PPERM/MLG and fourth-order Lagrangian interpolation are used –
based on the L1 measures of corrective velocity, PPERM/MLG reduces the corrective velocities by approximately 45%, and
fourth-order Lagrangian interpolation reduces them by approximately 25%.

Based on these tests, we conclude that, from a PMC standpoint, the PPERM/MLG interpolation schemes have an advantage
over both multilinear and fourth-order Lagrangian interpolation. Moreover, we note that the overall performance of the
PPERM/MLG schemes with KP SDE integration, and PMC correction enforced by the optimal scheme from Section 5 is quite
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Fig. 10. Contour plots, at the azimuthal location θ = 0, of consistency error and corrective velocities for an FC PPERM/MLG simulation with npc = 30, and
an F α=3.0

3 (εc) correction scheme with τ c = 4�t . Left: consistency error at the end of the simulation. Right: axial component of the normalized corrective
velocity at the end of the simulation.

satisfactory – the desired PMC criteria are achieved with corrective velocities of approximately 2.5% relative magnitude in
the L1 sense, and approximately 4% relative magnitude in the L∞ sense.

7. Conclusions

This paper addresses the issue of particle mass consistency (PMC) in hybrid LES/PDF methods for turbulent reactive flows.
The particle mass consistency error is defined as the departure from one of the ratio between particle mass density and LES
resolved density. A set of new implicit and explicit PMC preservation and correction schemes is introduced. A second-order
SDE integration scheme, in itself an implicit PMC preservation scheme when compared to Euler SDE integration, is shown
to decrease the instantaneous PMC error of the simulation by 30% and the time-averaged, deterministic PMC error by 45%.
Explicit PMC correction is optimized by employing a smoothed version of the consistency error field; compared to a standard
explicit PMC scheme, the variant using the smoothed consistency error field decreases the corrective velocity necessary
for attaining the desired accuracy criterion by 35% in the L∞ sense and by 50% in the L1 sense. The implicit schemes
also include new velocity and scalar interpolation algorithms designed for this issue, which yield an overall reduction of
up to 45% in the corrective velocity necessary for maintaining PMC, relative to standard multilinear interpolation, and
which moreover perform better than the standard 4th order Lagrangian interpolation scheme. Using the optimal explicit
and implicit schemes, the overall performance of the simulation is shown to be quite satisfactory, meeting the desired
consistency criterion while using a corrective velocity of relatively low magnitude.
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Appendix A. A model for the development of mass consistency errors in the shear layer

In this section of the appendix, we describe a simple 2D analytic test case which reproduces the deterministic (time-
averaged) PMC errors observed in Section 4. Particles of equal mass are initialized uniformly on the domain x ∈ [0,1] × y ∈
[0,1], with a density of 106 particles per unit area, and evolve by the SDE
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dX∗ = ∂ DT

∂x

(
X∗)dt + DT

(
X∗)dW ∗

1 , (39)

dY ∗ = V
(

X∗)dt + DT
(

X∗)dW ∗
2 , (40)

for

V (x) = 3
(
0.1 + erf

(
(x − 0.5)/0.05

) − erf
(
(x − 0.85)/0.05

))
(41)

and

DT (x) = 0.02 + exp
(−(

(x − 0.5)/0.05
)2)

(42)

which, from Eq. (17) implies that D∗q
Dt∗ = 0, hence in the absence of numerical errors the particle distribution should remain

uniform. The velocity and diffusivity fields defined in Eqs. (41), (42), which are plotted on Fig. 7, are qualitatively similar
to the velocity and drift fields in the bluff-body flame: there is a shear layer at x = 0.5, in which region the diffusivity is
considerably higher than everywhere else in the domain. Another shear layer is located at x = 0.85, for the sake of having
the fields be approximately periodic in x (with a negligible discontinuity at x = 1), but we shall see that this shear layer
does not influence the particle distribution as much, because it is located in a region of low diffusivity.

All particles are advected by either the Euler or KP SDE time integration schemes, with a time step of �t = 0.0125 × p,
for 400/p time steps, where p = 1,1/2,1/4,1/8 is a time step refinement parameter. A periodic boundary condition in
the x-direction is enforced. In the y-direction, we impose inflow boundary conditions by deleting, after each time step, all
particles in the region y ∈ [0,0.3] ∪ [0.7,1.0], and initializing new particles in that region, with a uniform density of 106

particles per unit area. Thus, the inlets are the lines y = 0.3 and y = 0.7.
The results for p = 1 are plotted on the right-hand side of Fig. 7. The figure shows values of εc , averaged over time and

over the y-coordinate, from y = 0.3 to y = 0.45, plotted against x. We see a region of increased particle density (positive
εc) at the low-velocity part of the shear layer, 0.0 < x < 0.4, and a region of decreased particle density at the high-velocity
part of the shear layer, 0.4 < 0 < 0.7. Qualitatively, this agrees well with the deterministic PMC error fields observed in
Section 4. Fig. 8 plots values of max(εc) against the time step. As can be expected, we see that max(εc) converges in a
second-order fashion for the KP scheme, and in a first-order fashion for the Euler scheme.

This test case demonstrates that considerable deterministic PMC errors can develop even when the only source of nu-
merical error is the error due to the SDE integration scheme. It also illustrates the advantage of using a higher-order SDE
integration scheme: even for the largest time steps, the PMC error is reduced by a factor of 3 when the second-order KP
scheme is used instead of the Euler scheme.

Appendix B. The PPERM velocity interpolation scheme

In this section of the appendix, we describe in detail the functional form of the PPERM velocity interpolation scheme,
and the algorithm for its evaluation. Consider a given cell x ∈ (x0, x1), r ∈ (r0, r1), θ ∈ (θ0, θ1) in cylindrical coordinates, and
denote �x = x1 − x0, �r = r1 − r0, �θ = θ1 − θ0.

Here, we use the subscript index 1 to denote a positive cell face (e.g., {(x, r, θ) | x = x1}) and the subscript index 0 to
denote a negative cell face (e.g., {(x, r, θ) | x = x0}). We shall also use subscript index pairs to denote cell edges (e.g., for
a radial edge, the subscript index 01 denotes {(x, r, θ) | x = x0, θ = θ1}), and subscript index triples to denote cell vertices
(e.g., for a radial edge, the subscript index 101 denotes {x = x1, r = r0, θ = θ1}): in addition to the 8 cell vertices, we shall
also use the subscripts i 1

2 k, for i,k ∈ {0,1} to denote the midpoints of the four radial cell edges. This is illustrated on Fig. 13.
Introducing the local coordinates

a1 = x − x0

x1 − x0
, b1 = r − r0

r1 − r0
, c1 = θ − θ0

θ1 − θ0
,

a0 = 1 − a1, b0 = 1 − b1, c0 = 1 − c1, (43)

and the coefficients U [l]
jk, V [m]

ik , W [n]
i j , for i, j,k ∈ {0,1}, l,n ∈ {0,1,2}, and m ∈ {0,1,2,3} (where the superscripts correspond

to the degree of the respective polynomial term), we define the PPERM-interpolated velocity I(u)(x, r, θ) in cylindrical
coordinates as

I(u)x =
1∑

j,k=0

b jck
(
U [0]

jk + (a1 − 0.5)U [1]
jk + (

(a1 − 0.5)2 − 0.25
)
U [2]

jk

)
, (44)

r I(u)r =
1∑

i,k=0

aick
(

V [0]
jk + (b1 − 0.5)V [1]

jk + (
(b1 − 0.5)2 − 0.25

)
V [2]

jk

+ b1(b1 − 0.5)(b1 − 1)V [3])
, (45)
jk
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I(u)θ =
1∑

i, j=0

aib j
(
W [0]

i j + (c1 − 0.5)W [1]
i j + (

(c1 − 0.5)2 − 0.25
)
W [2]

i j

)
. (46)

Note that instead of interpolating for ur , we interpolate for rur – this is done so that the divergence formula, which has the
cylindrical coordinate form

r(∇ · u) = r
∂ux

∂x
+ ∂rur

∂r
+ ∂uθ

∂θ
, (47)

yields the following result for the interpolated divergence:

r
(∇ · I(u)

) = r
1∑

j,k=0

b jck
(
U [1]

jk + 2(a1 − 0.5)U [2]
jk

)
/�x

+
1∑

i,k=0

aick
(

V [1]
jk + 2(b1 − 0.5)V [2]

jk + (
3(b1)

2 − 3b1 + 0.5
)

V [3]
jk

)
/�r

+
1∑

i, j=0

aib j
(
W [1]

i j + (2c1 − 0.5)W [2]
i j

)
/�θ. (48)

Also note that we are using an additional 3rd degree polynomial in the interpolation of rur . We do this so that we can get
r(∇ · I(u)) to be quadratic in b and linear in a, c – this enables us to obtain 3rd order accurate values of r(∇ · I(u)) near the
centerline (i.e., in the limit as r ↓ 0), which is needed for 2nd order accurate values of r(∇ · I(u)) near the centerline.

Next, we describe the algorithm for the evaluation of the coefficients U [l]
jk, V [m]

ik , W [n]
i j .

1. Interpolation of FV velocity and divergence onto cell corners and radial edge midpoints: Using standard linear interpo-
lation, evaluate second-order accurate approximations of ux, ur, uθ at the corners of the present cell and its neighbors:
denote these as ux,i jk, ur,i jk, uθ,i jk respectively, for i, j,k ∈ {−1,0,1,2}. Also, evaluate second-order accurate approxima-
tions of (∇ · u) at the 8 cell corners and 4 radial edge midpoints of the present cell: denote these as dijk , for i,k ∈ {0,1},
j ∈ {0, 1

2 ,1}.
2. Get provisional values for the 0th and 1st order PPERM coefficients: Set

U [1]
jk = ux,1 jk − ux,0 jk, U [1]

jk = (ux,1 jk + ux,0 jk)/2, (49)

V [1]
ik = r1ur,i1k − r0ur,i0k, V [1]

ik = (r1ur,i1k + r0ur,i0k)/2, (50)

W [1]
i j = uθ,i j1 − uθ,i j0, W [1]

jk = (uθ,i j1 + uθ,i j0)/2. (51)

Since the second and third degree PPERM terms vanish at the cell corners, Eqs. (7)–(9) ensure that at this point in the
interpolation process the corner values of ux, ur, uθ are exactly equal to the second-order accurate approximations from
Step 1.

3. Flux correction for the 0th and 1st order PPERM coefficients: For the 6 cell faces, subtract the face averages of the
interpolated velocity, implied by the coefficients obtained in Step 2, from the FV face-average velocities. Denote these
differences respectively �ux,1 and �ux,0 for the positive and negative x-faces, �ur,1 and �ur,0 for the positive and
negative r-faces, and �uθ,1 and �uθ,0 for the positive and negative θ -faces. Using ũx,i, ũr,i, ũθ,i , for ı ∈ {0,1} to denote
the FV face average, this calculation takes the form

λ1 = (1/2)2r0 + (1/6)(r1 − r0)

r0 + r1
, λ0 = 1 − λ1, (52)

�ux,i = ũx,i −
1∑

j,k=0

λ j
(
U [0]

jk + (i − 0.5)U [1]
jk

)
/2, (53)

�ur, j = ũr, j −
1∑

i,k=0

(
V [0]

ik + ( j − 0.5)V [1]
ik

)
/(4r j), (54)

�uθ,k = ũθ,k −
1∑

i, j=0

(
W [0]

i j + (k − 0.5)W [1]
i j

)
/4. (55)

Note that this calculation can be performed at this stage, as the velocity flux through the cell faces depends only on
the 0th and 1st order PPERM coefficients. Next, perform the corrections:
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U [0]
jk ← U [0]

jk + (�ux,1 + �ux,0)/2, U [1]
jk = U [1]

jk + (�ux,1 − �ux,0), (56)

V [0]
ik ← V [0]

ik + (r1�ur,1 + r0�ur,0)/2, V [1]
ik = V [1]

ik + (r1�ur,1 − r0�ur,0), (57)

W [0]
i j ← W [0]

i j + (�uθ,1 + �uθ,0)/2, W [1]
i j = W [1]

i j + (�uθ,1 − �uθ,0). (58)

This ensures that the face averages of the interpolated velocity are identically equal to the FV face-average velocities,
and hence that the total flux of interpolated velocity through the cell is equal to the FV cell flux.

4. First estimate for the 2nd and 3rd order PPERM coefficients: From the cell corner values of velocity obtained in Step 1,
calculate 4-point approximations of the second derivatives of ux, rur, uθ along the cell edges parallel to the respective
velocity component, and set U [2]

jk , V [2]
ik , W [2]

i j so that the edge-averages of second derivatives of the interpolated velocity
match the approximated FV second derivatives. For a uniform grid, this calculation reduces to

U [2]
jk = 1

4
(ux,2 jk − ux,1 jk − ux,0 jk + ux,−1 jk), (59)

V [2]
ik = 1

4

(
(r1 + �r)ur,i2k − r1ur,i1k − r0ur,i0k + (r0 − �r)ur,i−1k

)
, (60)

W [2]
i j = 1

4
(uθ,i j2 − uθ,i j1 − uθ,i j0 + uθ,i j−1). (61)

Next, calculate 4-point approximations of the third derivatives of rur along the radial cell edges, and set V [3]
ik so that

the edge-averages of third derivatives of the interpolated velocity match the approximated FV second derivatives. For a
uniform grid, this calculation reduces to

V [3]
ik = 1

6

(
(r1 + �r)ur,i2k − 3r1ur,i1k + 3r0ur,i0k − (r0 − �r)ur,i−1k

)
. (62)

5. Divergence correction for the 2nd and 3rd order PPERM coefficients: Subtract from the second-order approximations of
the divergence, dijk , calculated in Step 1, the divergence of the interpolated velocity, with the present PPERM coefficients,
denoted by [∇ · I(u)]i jk , at the respective locations. Denote the resulting differences as δdijk , for i, j ∈ {0,1}, j ∈ {0, 1

2 ,1}.
Let A be the 12 × 16 matrix (calculated from Eqs. (44)–(46)) which relates a change in the 16-component vector
(U [2]

jk , V [2]
ik , V [3]

ik , W [2]
i j ) to a change in the 12-component vector [∇ · I(u)]i jk:

δ
[∇ · I(u)

]
i jk = A

(
δU [2]

jk , δV [2]
ik , δV [3]

ik , δW [2]
i j

)
. (63)

Correct the 2nd and 3rd order PPERM coefficients by setting

U [2]
jk ← U [2]

jk + δU [2]
jk , (64)

V [2]
ik ← V [2]

ik + δV [2]
ik , V [3]

ik = V [3]
ik + δV [3]

ik , (65)

W [2]
i j ← W [2]

i j + δW [2]
i j , (66)

where the 16-component vector (δU [2]
jk , δV [2]

ik , δV [3]
ik , δW [2]

i j ) is the least squares-minimal norm (LSMN) solution of the
linear system

A
(
δU [2]

jk , δV [2]
ik , δV [3]

ik , δW [2]
i j

) = δdijk. (67)

This concludes the PPERM evaluation procedure. We note that the 12 × 16 matrix A has rank 11, and its kernel corre-
sponds to the constraint

1∑
i,k=0

1

r0
δ
[∇ · I(u)

]
i0k + 4

r0 + �r/2
δ
[∇ · I(u)

]
i 1

2 k + 1

r1
δ
[∇ · I(u)

]
i1k = 0, (68)

or equivalently, to the fact that altering the 2nd and 3rd degree PPERM coefficients does not change the total velocity flux
through the cell.

For a discretely divergence-free FV velocity field, the correction procedure of Step 3 ensures that the total flux through
the cell is zero. Due to the fact that r(∇ · I(u)) is linear in a, c and quadratic in b by design (from Eqs. (44)–(47)), this
implies that

1∑ 1

r0
δ
[∇ · I(u)

]
i0k + 4

r0 + �r/2
δ
[∇ · I(u)

]
i 1

2 k + 1

r1
δ
[∇ · I(u)

]
i1k = 0, (69)
i,k=0
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Fig. 11. Convergence plots for the PPERM interpolation scheme when applied to the analytic test flow described at the end of Appendix B. Left: L∞ errors
for the interpolated velocity. Right: L∞ errors for the divergence of the interpolated velocity.

and so for this case the LSMN solution of Eq. (67) is an exact solution. Therefore, for a discretely divergence-free FV velocity
field, the divergence of the interpolated velocity is zero at the cell corners and the midpoints of the 4 radial cell edges.
Again, since r(∇ · I(u)) is linear in a, c and quadratic in b, r(∇ · I(u)) = 0 at the above-mentioned locations implies that
r(∇ · I(u)) = 0 everywhere in the cell, which establishes the divergence-free property of the PPERM-interpolated velocity,
when applied to a discretely divergence-free FV velocity field.

A numerical test of the convergence properties of PPERM is performed on the cylindrical domain x ∈ [0,1] × r ∈ [0,1] ×
θ ∈ [0,2π ] discretized on an N × N × 2N cylindrical grid, so that �x = 1/N . An analytic velocity field, with non-zero
divergence, is specified in Cartesian coordinates:

ux(x, y, z) = sin
(
2π(x − 0.57)

)
cos

(
2π(y + 0.23)

)
,

u y(x, y, z) = − cos
(
2π(x − 0.57)

)
sin

(
2π(y + 0.23)

)
,

uz(x, y, z) = − cos
(
2π(z + x + 0.57)

)
sin

(
2π(y + z + 0.23)

)
. (70)

Fig. 11 is a log–log plot of the L∞ velocity and divergence errors, plotted against �x. As we can see on the figure, both
the velocity and divergence errors fall closely to a line of slope 2, which verified the second-order spatial convergence of
the PPERM velocity and divergence.

To verify the divergence-free property for discretely divergence-free FV fields, we perform a separate test simulation, in
which we make the modification uz = 0 in Eq. (70), which yields a divergence-free velocity field. Then, for the 20 × 20 × 40
cylindrical grid, the maximal divergence in the domain has magnitude 1.37 × 10−13, which can be attributed to roundoff
error.

Appendix C. The MLG scalar interpolation scheme

In this appendix, we present the functional form of the MLG scalar interpolation scheme. Similarly to Appendix B,
consider a given cell x ∈ [x0, x1], r ∈ [r0, r1], θ ∈ [θ0, θ1] in cylindrical coordinates, and denote �x = x1 − x0, �r = r1 − r0,
�θ = θ1 − θ0. Define

xC = x0 + x1

2
, rC = (r0)

2 + (r1)
2

r0 + r1
, θC = θ0 + θ1

2
, (71)

and set the local coordinates a,b, c so that

a = x − xC , b = r − rC , c = θ − θC . (72)

Then, the MLG scalar interpolation of a scalar ϕ has the functional form of a truncated Taylor series in (x, r, θ) about the
point (xC , rC , θC ):
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Fig. 12. Convergence plots for the MLG interpolation scheme when applied to the analytic test flow described at the end of Appendix C. Left: L∞ errors for
the interpolated scalar. Right: L∞ errors for the gradient of the interpolated scalar.

I(ϕ) = Φ + abc(Φabc + aΦa2bc + bΦab2c + cΦabc2)

+ a
(
Φa + bΦab + aΦa2 + abΦa2b + b2Φab2

)

+ b
(
Φb + cΦbc + bΦb2 + bcΦb2c + c2Φbc2

)

+ c
(
Φc + aΦac + cΦc2 + acΦac2 + a2Φa2c

)
, (73)

where the quantities Φ are scalar coefficients. Using cell-average FV values of ϕ from the current cell and its closest
neighbors, we set Φ0 to equal the cell average of ϕ in the current cell, which ensures that the cell average of the interpolated
I(ϕ) equals the FV cell average, and we determine all other Φ coefficients by numerically approximating the respective
derivative of ϕ at (xC , rC , θC ).

The truncated Taylor series of Eq. (73) contains all first- and second-order terms of the full Taylor series expansion, and
hence the interpolated I(ϕ) is third-order accurate with respect to the grid spacing. Moreover,

∂(I(ϕ))

∂a
= bc(Φabc + 2aΦa2bc + bΦab2c + cΦabc2) + Φa + bΦab + aΦa2

+ b2Φab2 + 2abΦa2b + cΦac + c2Φac2 + 2acΦa2c, (74)

which contains all first-order terms in the Taylor series expansion of ∂(I(ϕ))
∂a , and so ∂(I(ϕ))

∂a , and analogously ∂(I(ϕ))
∂b and

∂(I(ϕ))
∂c , are second-order accurate with respect to the grid spacing.
Similarly to Appendix B, a numerical test of the convergence properties of MLG is performed on the cylindrical domain

x ∈ [0,1] × r ∈ [0,1] × θ ∈ [0,2π ] discretized on an N × N × 2N cylindrical grid, so that �x = 1/N . The analytic scalar field
is specified in Cartesian coordinates:

ϕ(x, y, z) = 0.5 + 0.35 sin
(
2π(x + y + z + t)

)
cos

(
2π(x − y + z − t)

)
. (75)

Fig. 12 is a log–log plot of the L∞ scalar and scalar gradient errors, plotted against �x. As we can see on the figure, the
scalar errors fall closely to a line of slope 3, whereas the scalar gradient errors fall closely to a line of slope 2, which verifies
MLG’s convergence properties.
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Fig. 13. Illustration of the PPERM indexing notation. Single-subscript quantities, color-coded in teal, denote face-averaged information such as the face-
average velocities ũx,0 and ũx,1 shown on the schematic. Double-subscript quantities, color-coded in black, denote PPERM edge coefficients, such as the 0th

order axial velocity coefficients U [0]
10 and U [0]

01 shown on the schematic. Triple-subscript quantities, color-coded in crimson, denote pointwise information at
the 8 corners of the cell plus the 4 midpoints of the radial edges. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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