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Direct numerical simulation is used to study the curvature of material surfaces in isotropic
turbulence. The Navier—Stokes equation is solved by a 64° pseudospectral code for constant-
density homogeneous isotropic turbulence, which is made statistically stationary by low-
wavenumber forcing. The Taylor-scale Reynolds number is 39. An ensemble of 8192
infinitesimal material surface elements is tracked through the turbulence. For each element, a
set of exact ordinary differential equations is integrated in time to determine, primarily, the
two principal curvatures k; and k& ,. Statistics are then deduced of the mean-square curvature
M =1(k} + k%), and of the mean radius of curvature R = (k3 + k3) ~ /% Curvature
statistics attain an essentially stationary state after about 15 Kolmogorov time scales. Then the
area-weighted expectation of R is found to be 127, where 7 is the Kolmogorov length scale.
For moderate and small radii (less than 10%) the probability density function (pdf) of R is
approximately uniform, there being about 5% probability of R being less than %. The
uniformity of the pdf of R, for small R, implies that the expectation of M is infinite. It is found
that the surface elements with large curvatures are nearly cylindrical in shape (i.e., |k, |> |k, |
or |k, |> |k |), consistent with the folding of the surface along nearly straight lines.
Nevertheless the variance of the Gauss curvature K = k, k, is infinite.

I. INTRODUCTION

In the study of mixing'? and reaction’ in turbulent
flows, there are several phenomena that can be usefully de-
scribed in terms of surfaces. For example, in the flamelet
regime of turbulent combustion,* reaction is confined to the
flame sheet—a surface that can be highly wrinkled and pos-
sibly disconnected.

Three types of surfaces have been considered. The most
basic, and that studied here, is the material surface. By defin-
ition, a material surface moves with the fluid: every point of
the surface is a fluid particle. For premixed combustion (in
the flamelet regime) the flame sheet is a propagating surface:
each point on the surface moves (relative to the fluid) at the
local flame speed in the direction normal to the surface. For
nonpremixed reaction, the reaction sheet is a constant-prop-
erty surface: at each point on the surface the mixture is stoi-
chiometric. In the appropriate limits (vanishing flame speed
or diffusivity ) both propagating surfaces and constant-prop-
erty surfaces become material surfaces.

We consider an infinite, initially plane material surface
in statistically stationary, constant-density, homogeneous,
isotropic turbulence. As time evolves, the turbulence con-
vects, stretches, and bends the surface. Material-surface
stretching has been considered theoretically by Batchelor, '
Cocke,” and Orszag.® In a recent study,” we have used di-
rect numerical simulations (DNS) of isotropic turbulence to
quantify the statistics of material-surface stretching.

As the surface is stretched and bent, its topology does
not change.® The surface cannot intersect itself; holes are not
created; and a singularity (infinite curvature) cannot devel-
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op in finite time. (These results depend on the assumption
that the second spatial derivative of the velocity field is
bounded.)

To provide a complete statistical description of the ge-
ometry of the surface is a massive task—as it is to provide a
complete description of a turbulent velocity field. As in the
latter case, a natural starting point for providing a partial
description is the study of single-point statistics. At each
point on the surface the local geometry is described by the
two principal curvatures k, and k, (k,>k,) and by the ori-
entation of the surface.?® In isotropic turbulence, the orien-
tation of the surface is statistically isotropic and independent
of the curvatures. Consequently, the joint probability den-
sity function of k, and k, provides a complete one-point sta-
tistical description of the local geometry of the surface. In
this work the joint pdf of &, and k, is determined from a
direct numerical simulation, and various statistics deduced
from it are presented.

The distribution of curvatures provides, of course, only
a partial description of the statistical geometry of the sur-
face. There has been considerable interest'®!! in the fractal
nature of surfaces in turbulence. Since curvatures describe
the surface only on an infinitesimal scale, they contain no
fractal information.

Little has hitherto been known about the curvature of
material surfaces. Pope® derived ordinary differential equa-
tions for &k, and k,, which show that the second spatial de-
rivative of the fluid velocity causes the surface to bend. The
curvature thus generated can be amplified (or attenuated)
and reorientated by the straining of the fluid. An open ques-
tion is whether the curvature, characterized by the mean-
square curvature

M=k} +k3), (1)

remains bounded, or whether as a result of straining it in-
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creases (presumably exponentially) with time. It has been
shown® that if straining is uncorrelated with the orientation
of the curvature then strain causes M to decrease; while on
the other hand persistent straining can cause exponential
growth. In fact, since M is a random variable, the question
needs to be stated more precisely. And our results produce a
somewhat subtle answer: the distribution of M becomes es-
sentially stationary, even though its mean (M ) increases ex-
ponentially with time.

In the next section we describe the direct numerical sim-
ulation performed to generate the velocity field U(x,t?). The
Navier-Stokes equation is solved on a (64)* grid, for iso-
tropic turbulence (made stationary by low-wavenumber for-
cing).The Taylor-scale Reynolds number is R; = 39.

The method of determining material surface curvature
statistics is described in Sec. II1. A large number (I = 8192)
of infinitesimal surface elements® are considered, each with
its own position X (¢), infinitesimal area dA (), unit normal
vector N(¢), principal curvatures k , (¢), %, (¢) and principal
directions e} (),e¥(t). For each element these properties
evolve in time according to a set of exact ordinary differen-
tial equations.® These equations contain the velocity and its
first two spatial derivatives following the surface element,
which are obtained from the direct numerical simulation.
The resulting 7 = 8192 time series of k, (¢), k, (2), etc. are
used to estimate statistics such as the joint pdfof k, and &, .

For the present purposes, the above method (based on
infinitesimal surface elements) has distinct advantages. An
alternative approach would be to represent the whole surface
discretely in terms of I nodes (i.e., fluid particles), which are
tracked. Another approach'>'® is to identify the material
surface with a constant-property surface of a nondiffusive
convected scalar G(x,?). [That is, the surface is the set of
points X (#) for which G(X(#),?) = 0.] The convection equa-
tion is then solved for G(x,¢) numerically. Both of these
approaches have the disadvantage that the whole surface has
to be represented, and resolved, numerically. Since the sur-
face area increases exponentially on the Kolmogorov time
scale, and since radii of curvatures less than a millionth of
the Kolmogorov length scale are experienced, the demands
of resolution soon exhaust any computer’s capabilities.

In the present approach representative surface ele-
ments, rather than the whole surface, are described numeri-
cally. And the curvatures are computed by solving ordinary
differential equations, not by differentiating the surface.
Consequently, while the velocity field must be well resolved,
elements with radii of curvature far less than the grid spacing
can be tracked without significant numerical error.

The results of the simulation are presented in Sec. IV,
and conclusions are drawn in the final section.

Il. DIRECT NUMERICAL SIMULATION

A modified version of Rogallo’s pseudospectral code'*
is used to solve the Navier—Stokes equation in a cubic do-
main with periodic boundary conditions. Low-wavenumber
forcing, similar to that of Eswaran and Pope, ' is used to add
energy, so that the turbulence is stationary in spite of viscous
decay. A 64° grid is used (with uniform grid spacing Ax),
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and the kinematic viscosity is chosen to yield good spatial
resolution. This is characterized by k,,,, 7 = 1.5, where 7 is
the Kolmogorov length scale and k., is the magnitude of
the largest resolved wavenumber. The resulting Taylor-scale
Reynolds number is R; = 39. A constant time step Af is
used, corresponding to a Courant number of about  or
At/ 7, = 0.052, where 7, is the Kolmogorov time scale. The
principal numerical parameters and Eulerian statistics are
given in Table I. The conditions of the simulations are statis-
tically identical to the 64° R 38 run reported by Yeung and
Pope,'® where further details of the simulations and of the
Eulerian and Lagrangian velocity statistics obtained can be
found.

Prior to the release of the material surface (atr = 0), the
velocity field is allowed to evolve for some time so that at
t = 0 the turbulence is statistically stationary. Then, from
t = 0, a total of 2000 time steps are taken to reach the final
time = T'=1047,,.

At = 0atotal of I = 8192 fluid particles are positioned
on the nodes of two uniform (16)° meshes (of spacing
4 Ax), displaced relative to each other by 2 Ax in each direc-
tion. The fluid particles are tracked using the algorithm of
Yeung and Pope,'” in which the velocities of the fluid parti-
cles are obtained by cubic-spline interpolation.

In order to integrate the surface curvature equations,
the first and second spatial derivatives of velocity are re-
quired at the fluid particle locations. The nine first deriva-
tives are formed in wavenumber space and transformed into
physical space. Cubic splines are then fitted to these first
derivatives; and second derivatives are obtained by differen-
tiating the splines. (It is found that the alternative practice of
differentiating the splines of velocity twice to obtain the sec-
ond derivatives introduces unacceptable numerical errors. )

I1l. SURFACE ELEMENT PROPERTIES
A. Definitions and evolution equations

The definitions, properties, and equations for infinitesi-
mal surface elements are given by Pope.® Here, for com-
pleteness, the essential results are given.

The location of each surface point considered is defined
by its initial value X(0), and by the fact that it moves with
the fluid:

TABLE I. Numerical parameters and Eulerian statistics.

Grid size N 64
Length of solution domain L, 27
Kinematic viscosity v 0.025
Turbulence intensity u' 1.60
Dissipation rate (e) 2.69
Longitudinal integral length scale .¢, L /3L ) 0369
Dissipation time scale 7, = u'>/(€) T, 1.43
Eddy turnover time T, = ., /u’ T,/T. 0.507
Kolmogorov time scale 7, T/ Te 0.067
Duration of simulation T’ /T, 13.8
T/, 104.
Time step At At/T, 0.052
Kolmogorov length scale 9 WL, 0.042
Maximum resolved wavenumber X, Kenax 7 1.48
Taylor microscale A A1, 0.521
Taylor-scale Reynolds number R, 38.7
Pope, Yeung, and Girimaiji 2011
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LX) = UXI[11,0). 2)
dt

For each element, a time-dependent Cartesian coordi-
nate system is introduced, with its origin at X(¢), and with
orthonormal basis vectors e, (¢) (i = 1,2,3). The unit vector
e, (1) is coincident with the normal, i.e.,

e, (1) = N(1), (3)

and consequently ¢, (¢) and e, (#) are in the tangent plane of
the surface at X(#). Initially (# = 0)e, (0) is specified arbi-
trarily in the tangent plane and e, (0) is determined by or-
thogonality. Subsequently, e, (#) and e, (¢) rotate with the
fluid. These specifications lead® to the following evolution
equations:

au, au,\° aU; \°
ieazieﬁ( ’3———————) +e3( 3), 4
dt 2 aya 3y,3 aya

AU \°
ie3——ea( ’). (5)
dt y,

Here y, and y, are coordinates in the e, and e, directions;
Greek suffices take the values 1 or 2; the summation conven-
tion applies; and, the superscript O indicates that the quanti-
ties are evaluated at the origin.

The infinitesimal area of the surface element is denoted
by dA(t), and the area amplification factor A(¢) is defined
by
dA(1)
dA(0)

Note that A(0) is unity. The area increases as a result of
straining, according to

A= (6)

A = Aa, (7
where
a(I)E(aUa)O (8)
.

is the rate of strain in the tangent plane.

Let A(y, .y, ,t) denote the height of the surface above the
tangent plane. For sufficiently small distances r
=(y,y,)"?, hisasingle-valued function with bounded de-
rivatives. Derivatives of 4 at the origin are denoted by, for
example,

2 4]

hoy= (_ﬂ_) . )
Wa W

Since the tangency of the surface at the origin implies A° = 0

and 2% = 0, a Taylor series expansion yields

h(piy2) =Lyayshop + OF). (10)

That is, the geometry of the surface near the origin is de-
scribed (to second order) by the symmetric, second-order,
two-dimensional tensor 4 04 (2).

The principal curvatures &, (¢) and &, (¢) are defined as
the eigenvalues of 4 {4 (¢), with the convention k | >k, . And
the corresponding eigenvectors e} and e¥ are the principal
directions of curvature. With y¥* and y¥ denoting coordinates
in the principal directions, Eq. (10) can also be written,
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Ry =1yPk +1y¥k, + O(F). (11)

The evolution equation for 4 2 op () is derived by Pope.8 For
incompressible flow it is

. aru, \°
243:(—3—) —ahlp —
o g

where

1 (aUa dU, )"
Sop =— +
2 \ dy,g ay,,
is the strain-rate tensor in the tangent plane. (Note that

a=s,,.)
Corresponding to Eq. (12), the equation for &, is

(syﬁh gr + s hlir)’
(12)

(13)

. 3, \° AU*  JU*\°
klz( j) —k1(3 Ly 2), (14)
¥ aF ¥
where
U*=e*-U. (15)

A complete set of equations has now been presented for
the surface properties X, N = e;, e,, 4, and 4 2,3 [Egs. (2),
(4), (5), (7), and (12)], respectively. From given initial
conditions, these can be integrated, given the time series of
U, dU,/3x;, and 3*U,/dx; dx, following the fluid particle.
Hence the curvatures k£, and k, are determined as the eigen-
values of 405

Since the turbulence is isotropic, the initial condition
N(0) is arbitrary. For convenience we specify e; (0) to be
coincident with the axes used in the direct numerical simula-
tion. The infinitesimal surface elements are specified to be
plane initially: that is,

h%;(0) =0. (16)

The equations are integrated numerically by a second-
order Runge-Kutta method. It is found that the time-step-
ping errors are negligibly small if a time step of 2 At~ 7, is
used. This practice—as opposed to using the DNS time step
Ar—provides a computational saving, since the velocity de-
rivatives and their splines need be formed only on alternate
DNS time steps.

B. Determination of statistics

The integration of the surface equations yields the time
series of curvature, etc. for I = 8192 surface elements. For a
surface property ¢(#), its mean over the elements (#(z)) can
be estimated by

FIGE =7 Z . (1),

i=1

(17)

where ¢, (2) is the value of ¢(¢) for the ith element. But for
most purposes, the relevant mean is the surface mean®
{6(8)) 4, which is area weighted. This can be estimated by

I
AE% 3 w080, (18)

where the weights w, (¢) are

Pope, Yeung, and Girimaji 2012
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A;(8) _A4,(0)
(/DEI_\A4,() 4G
The statistical error in approximating (#(z)), by

$(1)* is proportional to 7 and also to the standard devi-
ation of ¢, (£)w; (). As discussed at length by Yeung, Giri-
maji, and Pope,” the standard deviation of w, (¢) (initially
zero) grows exponentially on the Kolmogorov time scale,
and consequently so does the statistical error.

For quantities that become statistically stationary (after
a time ¢, say), this statistical error is reduced by two tech-
niques. First, in the definition of the weights [Eq. (19)],
A; (t)isreplacedby A, (£)/A;(t —t’) (fort>t"). Thiscorre-
sponds to considering the surface at age ¢'. (The legitimacy
and efficacy of this technique is fully described in Ref. 7.)
Second, the statistic is time averaged from ¢ = ¢’ to the end of
the time series 1 = T.

w; (1) = (19)

C. Numerical accuracy

The numerical accuracy depends on the spatial resolu-
tion (indicated by Ax/7 being small) and on the temporal
resolution (indicated by Az /7, and the Courant number be-
ing small). For the Eulerian simulation, it has been demon-
strated in previous studies'>'7 that good resolution is
achieved with &k, ,, 7= 1.5 (corresponding to Ax/7=2) and
C=~]. However, the resolution required depends on the
quantity studied. Of the quantities required to determine the
surface curvature (U,, dU,/dx; and d*U,/dx, dx, ), the sec-
ond derivatives impose the most stringent resolution re-
quirements.

The resolution of the velocity gradients is examined
through their spectra. With E(k) being the energy spectrum
function, k> E(k) and k* E(k) represent the spectra of the
first and second spatial derivatives, respectively. Figure 1
shows these spectra, both for the 64> simulation used (solid
symbols) and also for a statistically identical 128° simula-
tion with twice the resolution (k. 7~3).

0.15 T T T T T T

012

0.09

K2E(k), k*E(k)

0.03

:__‘E‘.:
250 300 350

FIG. 1. Spectra of first and second spatial velocity derivatives. Circles,
k2 E(k); squares, k* E(k); full symbols, 64° simulations; open symbols,
128? simulations.
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The peak of k2 E(k) is at kn=1, and clearly there is
negligible spectral content beyond the resolution of the 643
simulation (i.e., beyond k7 =1.5). (The small differences
between the spectra from the two simulations is due to statis-
tical variability.)

In comparison, the spectrum k* E(k) is shifted to high-
er wavenumbers—peaking at k7 =l-—and decays more
slowly. From the 128* result it may be seen that k* E(k) is
discernibly nonzero at k7 = 2, and there is a bump centered
at ki = 2.75. This is certainly a numerical artifact, due ei-
ther to finite resolution or to residual aliasing errors. In any
event, its contribution to the integral of X * E(k) is less than
4%. Except for a small statistical variation, the spectra
k* E(k) from the two simulations are in agreement for wave-
numbers up to kn = 1.3. Then there is an upturn and bump
in the spectrum from the 64° simulation. Wavenumbers be-
yond kn = 1.3 make a 6% contribution to the integral of the
true spectrum k*E(k) (i.e., the 1287 spectrum excluding
the bump). Therefore we take 6% as our estimate of the
errors in the second derivatives as a result of finite spatial
resolution.

The results show that surface radii of curvature R less
than a millionth of the Kolmogorov scale 7 are observed.
Since both Ax/R and the Courant number based on R can be
very large (~10°), careful consideration needs to be given
to whether numerical accuracy for the radii of curvature
can, nevertheless, be claimed.

The sources of numerical error in determining &, (¢)
and k, (¢)—beyond those incurred in the Eulerian simula-
tion—are threefold. First there is the time-stepping error in
integrating the surface-element ordinary differential equa-
tions. Inspection of Eq. (12) or (14) suggests that the time
scale of change of &, is no smaller than the Kolmogorov
time scale 7,,: this is confirmed by the results. Hence the time
step 2 Atz {47, is sufficiently small, as tests verify.

Second, there is some error involved in interpolating for
the velocity derivatives. As the tests performed by Yeung
and Pope'” show, with the current resolution (k,,,, 7=~ 1.5)
and using cubic-spline interpolation, this error is less than
1%.

Third, there is a numerical error (again investigated by
Yeung and Pope'”) in the integration of Eq. (2) to deter-
mine the element location X (¢). Given the dispersive nature
of turbulence, for ¢ large compared to Ty» this error could be
large—certainly large compared to 10~ ¢ 7. But the error in
X (1) can, alternatively, be viewed as a small error in the
initial condition. That is, the numerically determined parti-
cle position X (#) is the exact position of the particle originat-
ing from X (0) + 6X, where |6X]| is small (compared to 7).
And the time series of the velocity gradients of the particles
originating from X (0) and X(0) + 6X differ little. Since we
are interested in the statistics of a statistically homogeneous
surface, the precise initial condition of the surface elements
considered is unimportant.

In summary, in the current method of tracking infinites-
imal surface elements, good resolution of the Kolmogorov
length and time scales is sufficient for the accurate calcula-
tion of surface statistics. Resolution on the scales of the sur-
face radii of curvature is not required. This conclusion is in

Pope, Yeung, and Girimaji 2013
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marked contrast to that for other methods in which the
whole surface is represented numerically.

IV. RESULTS
A. Stationarity

The results reported in subsequent subsections are sta-
tistics of the surface curvature in the statistically stationary
state. The purpose of this subsection is to demonstrate that
this state is achieved after about 15 Kolmogorov time scales.

For each surface element the normalized mean-square
curvature is defined by

M*() =’M(t) =’ [k, ()* + b, (0)*], (20)
and we define .7 as its logarithm:
L)=InM*(1). 21

Figures 2 and 3 show the temporal evolution of the area-
weighted mean (.¢’), and variance 0% of .¢, which are
estimated by Egs. (18) and (19). It may be seen that station-
arity is, plausibly, reached at about z = 157, : but there are
large statistical fluctuations. (The statistical errors grow ex-
ponentially with time; see Sec. I11. B.) Because of the statis-
tical error, the evidence of Figs. 2 and 3 may be regarded as
inconclusive. A further piece of evidence is based on the
probability density function (pdf) of .#. Let p* (/) be the
area-weighted pdf of .# [i.e., p* () is the area-weighted
probability density of the event .#" = /]. The standardized
random variable .% is defined by

F = (& — (L)) /0, (22)
and its pdf is denoted by p* (1), where

D =o', (23)
and the standardized sample-space variable / is

I=(— (L)) /0, (24)

(LYa

P S U TN S TS TP R SR S B
-9

0 10 20 30 40 50 60 70 80 90 100
/s

FIG. 2. Area-weighted mean of the logarithm of the normalized mean-
square curvature against time normalized by the Kolmogorov time scale.
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FIG. 3. Area-weighted variance of the logarithm of the normalized mean-
square curvature against time normalized by the Kolmogorov time scale.

(By definition, p* has zero mean and unit variance. )

Standardized pdf’s p* (/) are shown in Fig. 4, and the
means (.¢’) , and variances ¢ are given in Table II. These
are obtained by time averaging, using different surface ages ¢’
(see Sec. III. B). A necessary and sufficient condition for
stationarity is that the statistic [i.e., p* (/)] becomes inde-
pendent of ¢’ for sufficiently large ¢ '. It may be seen from the
figure that with ¢'/7, =0, 5.2, and 10.3, there are discern-
ible differences compared to the pdf’s with ¢'/7, = 15.5,
20.6, and 25.8. But these latter pdf’s differ among them-
selves only by small statistical errors. The same conclusions
can be drawn from means and variances given in Table II.
(Results are not reported for ¢'/7, >25.8 because of the
large statistical errors.)

Based on this evidence, we conclude that the pdf of

logyo[pA(1))

25F

30f

-35 ; !

4ot

L
1 2

FIG. 4. Standardized area-weighted pdf ’s of .£° = In M * for different sur-

face ages, t'. Here t /7, =0, A;5.2,0; 10.3,0; 15.5, 4;20.6,®; 25.3, B
(The dashed line corresponds to a Gaussian pdf.)
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TABLE II Area-weighted mean and variance of .2° = In M * for different
surface ages ¢ .

'/ (L) 7z,
0 —2.09 16.4
5.2 — 4.09 9.92

10.3 — 4.66 5.82
15.5 —4.77 4.74
20.6 —4.78 4.45
25.8 — 4.80 4.14

In M * is most likely stationary after 15 Kolmogorov time
scales. The statistics presented in the following subsections
are obtained by time averaging with 1" = 15.57,,.

B. Mean-square curvature

In this subsection we present statistics of the normalized
mean-square curvature M*(¢) [Eq. (20) ], and of the direct-
ly related mean radius of curvature defined by

R*=R/n=1/(32M ) = 1/\2M*. (25)
The significance of R is that if the element is cylindrical
(k;>0,k, =0;0r,k, =0, k, <0) then R is the radius of
curvature (1/k, or 1/]k, ).

We define p3 (r) and pj, (m) to be the area-weighted
pdf’s of R * and M *, respectively. These are related to the
pdf of .#° by

PR =22 expUDp*(D), r=1/\2exp(—1i]) (26)
and
prm)y=e p*), m=eé' 27)

Figure 5 shows the standardized pdf of .&, " (?). The
mean and standard deviation of .¥ are (), = —4.77
and o, = 2.18: the skewness and flatness factors are 1.5 and

A0)

20fF

logyo

25k

30F

400

o~

FIG. 5. Standardized area-weighted pdf of .#° = In M *. Dashed line corre-
sponds to lognormal distribution for M *: straight line corresponds to
p? (1) =0.0172 exp( — 0.550).
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7.1, respectively. The dashed line on the figure is the parabo-
la corresponding to the pdf if M * were lognormally distrib-
uted. Clearly the lognormal distribution does not, even qual-
itatively, describe the shape of the pdf.

It appears from the figure that for large curvatures the
pdf has the asymptotic form

i) ~be=“, (28)

with b = 0.0172 and ¢ = 0.55. An immediate consequence of
this behavior is that the expectation of the mean-square cur-
vature is infinite. For (if the integrals converge) (M *) is
given by

(M*) =_r mph, (m)dm, (29)
0
or [from Eq. (27)]
(M*) =F elp*(D)dl. (30)

It is clear from Eq. (30) that, with the asymptotic form of
Eq. (28), the integral converges only for ¢ > 1—which is not
the case here.

In fact, the evolution equation for k, [Eq. (14)] shows
that &, (and hence M *) can grow at most exponentially
with time (assuming that the velocity gradients are bound-
ed). As an illustration, Fig. 6 shows the time series of M *
for the surface element that attains the largest value of M *. It
may be seen thatbetween? /7, = 49and¢ /7, = 57itexperi-
ences a rapid rise in M*, at the approximate rate
dZ/dt=18/7,.

The picture that emerges from these considerations is as
follows. Aftera dexelopment time (=157, ), for all but very
high curvatures (£ < 5, say), the pdfof .#° = In M * adopts
the stationary distribution shown in Fig. 5, which has the
asymptotic form Eq. (28). For larger and larger curvatures,
it takes longer and longer for the pdf p” (/) to rise from zero
(its initial value) to the stationary asymptotic value. Conse-

10 1
ot | '
107 §
10° |
00 |
10¢ |

M*(t)

10° |
10% §
e
00 |
107§

1072

10—3:AI|InlAIAlnl:lnInlnI:
0 10 20 30 4 S50 60 70 80 90 100

t/m,

FIG. 6. Normalized root-mean-square curvature against time normalized
by the Kolmogorov time scale for a typical element (O), and for the element
that attains the greatest curvature (A).
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quently, while the distribution is essentially stationary (for
& <5, say), nevertheless the mean (M *) , continually in-
creases, presumably exponentially with time. In view of this
behavior, we refer to p* (/) as being quasistationary.

The occurrence of very small radii of curvatures (e.g.,
R =10"87) raises the question of their significance. If the
material surface is used as a model for a layer of small but
nonzero thickness 8, then the model most likely breaks down
in regions where R /6 is small. Consequently, in this context,
radii of curvature much smaller than § have no significance.
But on the other hand if, as here, the fluid is considered to be
a continuum, and the mathematical definition of a material
surface is used, then there is no lower bound on the values of
R that can exist.

We now examine the pdf p7 (7) of the normalized mean
radius of curvature [ Eq. (25)]. [ This contains the same in-
formation as p* (/), but emphasizing different features.] The
pdfis shown in Fig. 7: the mean (R *) , is 12.0 and the stan-
dard deviation is 12.9. It may be seen that the pdf is almost
uniform for 7 < 10. This is consistent with the asymptotic
form Eq. (28), which implies (for small r)

PA(r) ~22b(2r)* !, (31)
~0.051/°1, (32)

Thus, even though the mean curvature (M *) , tends to in-
finity, only about 5% of the surface has a mean radius of
curvature R less than the Kolmogorov scale 7.

Themean (R ) , is quite large: 12 Kolmogorov scales, or
alittle more than half the integral scale L. From this simula-
tion at a single Reynolds number, it is not possible to deter-
mine whether (R ), and indeed pjg (r), scale with 7.

The unweighted pdf of R, pg (7)), is also shown in Fig. 7.
It may be seen that there are great differences between the
weighted and unweighted pdf ’s, especially at the origin. The
implication is that highly curved elements tend to have less
area than more mildly curved elements.

The difference can also be understood in terms of the
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FIG. 7. Area-weighted (O) and unweighted (A) pdf of normalized mean

radius of curvature.
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asymptotic slope ¢, of the pdf p* (/) [Eq. (28)]. In Fig. 4,
t'/r, == 0corresponds to the unweighted pdf, and its asymp-
totic slope is less than that for the area-weighted pdf
(t '/’r,7 = 15.5). Itisevident from Eq. (31) thataslope c less
than J results in the pdf increasing as 7 tends to zero.

C. Surface element shape

The shape of the surface at each point is determined by
the relative values of the two principal curvatures. We define
the shape parameter 8 by

0=k/k, (33)

where k, and k, are the smaller and larger of k; and k&, in
absolute magnitude.

Possible values of  lie between — 1 and 1. The value
6 = 1 correspondstoasphericalelement (k, = k, );theval-
ue @ = 0 corresponds to a cylindrical element (k, =0 or
k, = 0); and the value of @ = — 1 corresponds to a pseudo-
spherical element (k, = — &, ).

Figure 8 shows the area-weighted pdf of 8, p3(¢4). It
may be seen that there is a sharp peak at 8 = 0 (cylindrical
elements), while negative values are more likely than posi-
tive ones (Prob {8 <0} ~0.6). In particular, the pdf is zero
atf=1.

The peak at @ = Ois investigated further in Fig. 9, which
shows a contour plot of the unweighted joint pdf of
.# = In M * and 0. The ordinate is standardized by the mean
(.¢) and standard deviation o. (The area-weighted joint
pdfis similar in shape but contains too much statistical error
to be presented.) It is evident from the figure that the more
curved the element, the more nearly is it cylindrical.

To quantify the shape of the highly curved elements,
Figs. 10 and 11 show the area-weighted mean and variance
of 8 conditional on .¥" = /. For / greater than unity, the con-
ditional variance decays exponentially as e ~ %>, while the
conditional mean is essentially zero—certainly much less
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FIG. 8. Area-weighted pdf of the shape parameter 6.
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FIG. 9. Contour plot of the (unweighted) joint pdf of .¥ =1In M * and 6.

than the conditional standard deviation. Three related ob-
servations stem from the observed behavior of the condition-
al variance.

First, highly curved elements (R €7) might have been
expected to have a self-similar distribution of shapes. This is
clearly not the case since the variance of the shape parameter
6 depends strongly on the curvature .%.

Second, although the elements tend to be more closely
cylindrical (ie., |@|=|k,/k;| decreases) as the mean-
square curvature increases, nevertheless the conditional
variance of the smaller curvature k, increases. From the
definitions of M *, ., and & [Eqgs. (20), (21), and (32),
respectively] we have

(nk,)>=2[0%/(1+6%]e”. (34)
Hence for large .# (and 62 €1) we obtain

((nk)*|L =1), =2(0%.% =1) ¢, (35)

~e——0.73lel=e0.27l- (36)
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FIG. 10. Area-weighted mean of the shape parameter conditional on mean-
square curvature.
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FIG. 11. Area-weighted variance of the shape parameter conditional on
mean-square curvature. Straight line corresponds to
var, (6| =1) =0.0057 exp( — 0.73)).

Third, the variance of the Gauss curvature K,
K* =Ky’ =k, k,7?, 37

is infinite. From the given definitions, K is related to 6 and
M * by

K*=20M*/(1+6%). (38)

It is curious that although K * is zero for a cylindrical ele-
ment, the mean-square (K **) , is infinite—or,rather, tends
to infinity as the surface evolves. From Eq. (38) we have

(K*)>(0°M**) = Jm (6%.% =1)e¥p*(Dydl.
- (39)

Now for large /, the conditional variance decays as e ~ %"

and pdf as e ~ %, Evidently these decay rates are insuffi-
cient for the integral in Eq. (39) to converge.

V. DISCUSSION AND CONCLUSION

Surface curvature statistics have been obtained from a
direct numerical simulation of isotropic turbulence by the
method of tracking an ensemble of infinitesimal surface ele-
ments. The method allows the accurate calculation of very
small radii of curvature—less than a millionth of the Kolmo-
gorov scale 7—even though the grid spacing is of order 7.
The principal numerical error is the statistical error result-
ing from the finite size (8192) of the ensemble.

The results obtained are different statistics of the princi-
pal curvatures, k , and k , . Some care is needed in stating the
main results since, superficially, they appear paradoxical.
Thepdfof £ = In M [where M = (k] + k3) isthe mean-
square curvature] is essentially statistically stationary after
about 15 Kolmogorov time scales: similarly for the pdf of the
mean radius of curvature R=1/2M . The (area-weighted)
expectation of R is large compared to the Kolmogorov scale
({R )4 =~127). But for small radii, the pdf of R is approxi-
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mately uniform, with about 5% probability of R being less
than 7.

Although (R ), is large compared to 7, the results
strongly suggest that (M ) , tends to infinity presumably ex-
ponentially with time. (The extreme tail of the pdf of In M is
not stationary.)

The shape of the surface elements has been investigated
through the shape parameter 8 = k, /k;, where k, and &, are
the smaller and larger principal curvatures in absolute mag-
nitude. The pdf of & is zero for & = 1, indicating that spheri-
cal elements (k, = k, ) are very improbable. There is a pro-
nounced peak at =0, corresponding to cylindrical
elements (k, =0 or k, = 0). It is found that the highly
curved elements (large M) are very close to cylindrical. For
example, for M = 50/9” (i.e., R = 1/10) the conditional
standard deviation of 8 is 0.06. (The conditional mean is
zero, to within statistical error.)

For an exactly cylindrical element the Gauss curvature
K =k, k, is zero. Nevertheless it is found that the expecta-
tion (K?) , tends to infinity.

From the one-point statistics of curvature it is not possi-
ble to deduce the shape of the material surface as a whole.
However, the results obtained are consistent with the follow-
ing conventional picture. Over most of the surface the strain-
ing tends to stretch the surface and reduce its wrinkling. For
this reason the mean radius of curvature is large
({R )4 =12%).Butin particular regions the surface is folded
over, and subsequent straining increases the curvature at the
fold.

The line of the fold is curved (k) much less than curva-
ture of the fold itself (k,), thus yielding nearly cylindrical
surface elements (k,/k;, = 6=0).

This study leaves open the question of how the pdf of the
mean radius of curvature R scales with Reynolds number.
The evolution of curvature [Eq. (14)] depends solely on
velocity gradients, which, to a first approximation, scale

2018 Phys. Fluids A, Vol. 1, No. 12, December 1989

with the Kolmogorov scales. It is reasonable to conjecture,
therefore, that R scales with 7: that is, that p (r)—the pdf of
R /n—is independent of Reynolds number. This conjecture
can be tested by a future simulation at a higher Reynolds
number.

ACKNOWLEDGMENTS

This paper was written while the first author was a visi-
tor at Cambridge University Engineering Department. The
support and encouragement of Professor K. N. C. Bray is
gratefully acknowledged.

This work was supported by the U. S. Air Force Office
of Scientific Research (Grant No. AFOSR-88-0052). Com-
putations conducted during the research were performed on
the Cornell National Supercomputer Facility, which is sup-
ported in part by the National Science Foundation, New
York State, the IBM Corporation and the members of the
Corporate Research Institute.

' G. K. Batchelor, Proc. R. Soc. London Ser. A 213, 349 (1952).

2G. K. Baichelor, J. Fluid Mech. 5, 113 (1959).

*N. Peters, in The 21st International Symposium on Combustion (The
Combustion Institute, Pittsburgh, 1986).

*S. B. Pope, Annu. Rev. Fluid Mech. 19, 237 (1987).

*W. J. Cocke, Phys. Fluids 12, 2488 (1969).

®S. A. Orszag, Phys. Fluids 13, 2203 (1970).

"P. K. Yeung, S. S. Girimaji, and S. B. Pope, Combust. Flame (in press).

8S. B. Pope, Int. J. Eng. Sci. 26, 445 (1988).

°M. P. Do Carmo, Differential Geometry of Curves and Surfaces (Pren-
tice-Hall, Englewood Cliffs, NJ, 1976).

19B. B. Mandlebrot, J. Fluid Mech. 72, 401 (1975).

'F, C. Gouldin, Combust. Flame 68, 249 (1987).

"2F. A. Williams, Combustion Theory (Benjamin, New York, 1985).

3S. Osher and J. A. Sethian, J. Comput. Phys. 79, 12 (1988).

“R. 8. Rogallo, NASA Tech. Memo 81315, (1981).

'SV. Eswaran and S. B. Pope, Comput. Fluids 16, 257 (1988).

'“P. K. Yeung and S. B. Pope, J. Fluid Mech. 207, 531 (1989).

'7P. K. Yeung and S. B. Pope, J. Comput. Phys. 79, 373 (1988).

Pope, Yeung, and Girimaji 2018

Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



