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Calculated flow properties are compared with measurements obtained in two- 
dimensional isothermal wakes with and without recirculation. The equations of 
continuity and momentum were solved numerically together with equations 
which formed a turbulence model. Calculations were made using three turbulence 
models : the first comprised transport equations for turbulence kinetic energy 
and the rate of turbulence dissipation; the second and third comprised equations 
for the rate of turbulence dissipation and two forms of Reynolds-stress equations 
characterized by different redistribution terms. The results show that, for wakes 
without recirculation, the particular turbulence model is less important than the 
boundary condition assumed in the plane of the trailing edge of the body; 
though the Reynolds-stress models do, of course, provide a better representation 
of the individual normal stresses. In  the case of wakes with recirculation, both 
the length of the recirculation region and the rate of spread of the downstream 
wake are underestimated. The second discrepancy is particularly evident and 
appears to stem from the form of the dissipation equation. A suggestion for 
improving the modelling of this equation is provided together with necessary 
justification. 

1. Introduction 
The efforts described in this paper stem from early attempts to calculate the 

flow properties downstream of turbulent blunt-body stabilized flames and the 
observation that, although the measurements and calculations were in disagree- 
ment, it  was impossible to decide which was incorrect. As a consequence, it was 
decided to examine the data available for isothermal wakes, with and without 
recirculating flow, and to attempt to determine the source of the disagreement: 
it was presumed that available measurements in isothermal flows were sufficiently 
more reliable than those in combusting flow to allow the assessment. The early 
calculations were performed with a two-equation turbulence model incorporating 
an isotropic-viscosity assumption. This formulation assumed that the aniso- 
tropy of the Reynolds stresses is determined locally and that the principal axes 
of stress and strain are coincident. Theoretical arguments and experimental 
evidence show that the fist assumption becomes progressively worse as the 
flow departs from homogeneity and the second is not appropriate to any real 
flow. As a result, the present calculations are based on a five-equation model 
incorporating separate transport equations for each of the non-zero Reynolds 
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stresses. They are compared with values obtained from a two-equation model to 
demonstrate the extent to which the inappropriate isotropic-viscosity assump- 
tion influences the results. 

A survey of experimental information in the literature relating to near-wake 
flows, with and without recirculation, showed that available data were in 
short supply. The papers by Chevray (1968) and Chevray & Kovasznay (1969) 
reported velocity and velocity correlation measurements obtained in the wakes 
downstream of an ellipsoid and a thin flat plate respectively: in both cases, the 
region of recirculation immediately downstream of the body was negligibly 
small but the axial velocity gradients were of the same order of magnitude as the 
radial gradients. Carmody ( 1964) reported similar measurements downstream 
of a disk. In  this case the region of recirculating flow was extensive and covered 
by the measurements. The recent measurements of DurZo & Whitelaw (1974) 
and Duriio (1975, private communication) are also helpful in this connexion 
since they relate to the wake downstream of an annular jet: they were obtained 
using a laser-Doppler anemometer, rather than the hot wires of previous authors, 
and this helps to remove any bias which might result from the consideration of 
hot-wire data alone. The calculation procedure solves differential equations in 
elliptic form. It requires, therefore, boundary conditions for each equation on the 
whole perimeter of the solution domain. As will be shown, the data reported in 
the above papers do not provide complete information on these boundary con- 
ditions, and consequently their influence must be quantified. 

The contributions of this paper are described in the following sections entitled, 
respectively, ‘Equations and turbulence models ’, ‘Solution algorithm ’, ‘ Pre- 
dictions ’ and ‘Discussion ’. The paper closes with a summary of the more im- 
portant conclusions. The section on equations and turbulence models is necessary 
to present and explain the models used for the present calculations: the basis 
for the turbulence models is not new but they have not all previously been pre- 
sented or explained in the form appropriate to recirculating flow and elliptic 
equations. The boundary conditions and wall functions are also presented and 
discussed in this section. Because of the use of a Reynolds-stress closure within 
the framework of a numerical scheme for the solution of elliptic equations, the 
algorithm of the numerical procedure of Patankar & Spalding (1973) had to be 
modified significantly; these modifications are described in the section on the 
solution algorithm. The results of the calculations are presented in the last 
major section and are compared with the results of the four experimental investi- 
gations referred to earlier. Thus the ability of the various turbulence models to 
represent near-wake flows with and without recirculation is established and the 
sensitivity to unknown boundary conditions quantified. 
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2. Equations and turbulence models 
Three sets of equations were solved to obtain the results presented in 0 4. They 

are quoted here in terms of Cartesian tensors and expanded in the appendix in 
Cartesian and cylindrical-polar co-ordinates. The continuity and momentum 
equations are common to each set, i.e. 

a(pui)/axi = o (1) 

and a ( p q  q + p w  +psi,)/axi = 0. (2) 

The equations which make up the three turbulence models are as follows. 
(I) Two-equation model: 

a 
axi axi rk axi a ( p eff ak ) + P - p s ,  -(pL$k) =- -- (3) 

The Reynolds-stress models used differ only in the redistribution term. Their 
common form is 

-aq - a q  p. = -pui'uI--pu.u -. 
a j  ax, 3 ax, 

The redistribution terms R €or the two models are as follows. 
(11) Reynolds-stress model, first redistribution term: 

- 
Rij = -pC$,e(ui~j/k - $Sij) - C$2(Gj - gP Sij). 

(111) Reynolds-stress model, second redistribution term: 

Rij - pC,, e(zc,uijk - Qt3ij)  - B,(P,j - gPSij) 
- ~ ~ p k ( a q / a x ~  + av,/axi) - B ~ ( G ~ ~  - gpsij), 

where Q~~ = -p-, aqjaxj - p v l  aqjaxi, 
&=id C $2 +8) ,  B2 = &(3oc$2-2), B3 = &(8C$2-2). 

The common part of the redistribution terms was proposed by Rotta (1951). 
The second parts were proposed by Naot, Shavit & Wolfshtein (1970) and by 
Launder, Reece & Rodi (1975) respectively. The constants used are given in 
table I.  
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Number 
of 

Model Cp a, 0, Cel C,, C$l C$a C, C, constants 

5 I 0.09 1.0 1.3 1.45 1.9 - - - - 
rr - - - 1.45 1.9 2.6 0.4 0.25 0-15 6 
rrr - - - 1.45 1.9 1.5 0-4 0.26 0.15 6 

TABLE 1 

The co-ordinate systems, either Cartesian or cylindrical polar, were orientated 
such that the plane or axis of symmetry was given by x2 = 0 and that a/ax3 = 0. 
The boundary conditions appropriate to these equations and the present 
calculations were 

all quantities specified function of x2 on x1 = 0, 

a/axl of all quantities = 0 as z1 -+ a, 

?I2 = F2 = 0, a/ax2 of all other quantities = 0 on x2 = 0, 

u1u2 = 0, all other quantities take free-stream values except U,, whose 
- 

gradient is known from the continuity equation, as x2 -+ 00. 

Where possible, experimental boundary conditions were used for the boundary 
x1 = 0 but, as will be seen, they were not always available. 

In  the near-wall region, the following functions were added to the equations 
and boundary conditions and precluded the need for fhe-grid calculations in that 
region : 

diffusion = 0 for all Reynolds stresses. 

7w is the wall shear stress and p the laminar viscosity. The subscript P refers to 
the grid node next to the wall and K and E are the wall-law constants, with 
values of 0.4 and 8-8. 

These three turbulence models have been examined, in boundary-layer form 
and in the context of free flows, by Launder et al. (1972) and further related 
explanations and discussion have been provided by Launder et al. (1975) and by 
Launder & Spalding (1972). Only the two-equation model has, to date, been 
applied to recirculating flows and then without a detailed assessment of its 
abilities (e.g. Khalil & Whitelaw 1974). It is known that the two-equation closure, 
incorporating an isotropic-viscosity hypothesis, is unable to represent the proper- 
ties of some boundary-layer flows, e.g. asymmetric channel flow, swirling flows 
and the flow in a square duct, and the same deficiencies may be expected in 
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FIGURE 1. Finite-difference grid. 

recirculating flows. The Reynolds-stress closure is probably as complete a set of 
equations as can be formulated and solved without resorting to guess work: it is 
particularly appropriate to recirculating flows because the Reynolds stresses are 
not related to local quantities but calculated from appropriate conservation 
equations. 

Of course, the dissipation, diffusion and redistribution terms in (3)-(6) are not 
calculated in their exact form and imprecisions undoubtedly arise from these 
sources. This point will be discussed further in $4. 

3. Solution algorithm 
Equations (1) and (2) and any one of the turbulence models together with 

boundary conditions and auxiliary relations form a closed set of equations. 
Equations (2)-(6) may be written in the common form 

where x = (x,y,z), U = (U, V ,  W )  while r = 1 for Cartesian co-ordinates and 
r = y for cylindrical-polar co-ordinates. Equations of this form were solved by 
finite-difference means as described below. 

Figure 1 shows part of a finite-difference grid where the values of # are assumed 
known at the nodes P, N ,  S, E and W .  Equation (7) may be integrated over the 
indicated control volume to give 

(8) 
The following finite-difference approximations may be made: 
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’t 
FIGURE 2. Juxtaposition of grid nodes. 

with A, = D,+ +C,+, A,  = D,, -C,- etc.;? substituting (9)-(11) into ( 8 )  gives 

h4AN +A,  + A ,  + A,) = A N $ N  +A,#, +A,$, + A,#, + W + ) Z P  vol. (12) 

If the pressure is known, then (12), written for each variable at each grid node, 
yields a closed set of algebraic equations. However, there is no guarantee that 
the resultant velocity field would satisfy the continuity relation (1). The two 
problems of determining the pressure and satisfying continuity are overcome 
by adjusting the pressure field so as to satisfy continuity. The details of this 
aspect of the procedure have been reported elsewhere (Patankar & Spalding 
1973) but it should be noted that it requires a specific juxtaposition of the velocity 
and pressure nodes; see figure 2. All other equations are normally solved at the 
pressure nodes. 

A significant modification of the numerical scheme of Patankar & Spalding 
(1973) was found necessary in the solution of the Reynolds-stress equations. In  
the case of model I the term a(p”izcj)/axi may be expressed as a diffusion term, 
i.e. rl: = ry = pefi in (7). With the solution of the Reynolds-stress equations, 
the strong link between the stress and rate of strain is not retained within the 
same equation and, to provide numerical stability, it  was found necessary to 
locate the shear-stress nodes in the manner indicated in figure 2. This arrange- 
ment helps to  preserve the link referred to  above. Thus a small increase in =, 
from its correct value results in increases in Up and V, and decreases in Us and Vw; 
as a consequence, aU/ay and aV/ax increase at the GP node. The effect of these 
increased velocity gradients is to decrease, through the source term in the uiuj 
equation, the value of ZZ, towards its correct value. 

- 

t The finite-difference coefficients me modified amording to a hybrid scheme (Gosman 
et al. 1968, p. 229). 
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In  the procedure described above, and unlike some alternative schemes, there 
are no special 'difficulties associated with axes of symmetry provided that the 
kite-difference approximations (9)-( 11) are altered to take account of the 
information that, in a region close to an axis, the shear stress is proportional to 
distance from the axis. In  the present scheme, (9) was replaced by 

and corresponding alterations made to (10) and (11). 
Since this procedure differed significantly from that employed for equations 

other than those for the Reynolds stress, tests were carried out to ensure that, for 
any grid size below some limit, the solutions were the same. Figure 3 shows calcu- 
lated values of the mean axial velocity and the corresponding normal stress 
along the centre-line of a wake similar to that of Carmody. The results show that 
the numerical accuracy is reasonable even with a 14 x 14 grid. The calculated 
values of Reynolds stresses at  other locations in the field showed similar accuracy. 

The finite-difference eqwtions were solved iteratively by a Fortran program 
on a CDC 6600 digital computer. The storage and time requirements of the 
program were 16 000 + 20 words per grid node and 0.0025 sliteration per grid 
node respectively. 

For a 20 x 20 grid this resulted in a storage requirement of 24 000 words and 
a time for each iteration of 1 s. The measure of convergence used was the maxi- 
mum of the mass sources required a t  each node to satisfy the continuity equation: 
for a converged solution this is zero. The maximum mass source was plotted 
against the number of iterations for a 10 x 10grid on figure 3. The performance 
of the procedure was virtually the same as that based on the isotropic-viscosity 
hypothesis except that the time required to obtain a converged solution increased 
by about 50 yo. This increase in time is due to the fact that the procedure solves 
for eight dependent variables rather than for five. 

4. Predictions 
The calculated values of the various dependent variables are presented 

together with the experimental data referred to in the introduction. It should 
be remembered, however, that both the calculated and measured values are 
subject to possible errors. 

The measurements of Chevruy (1968) included values of the mean axial and 
radial velocities and all the non-zero Reynolds stresses at various locations 
downstream of his ellipsoid. The inlet values of each dependent variable except 
dissipation were, therefore, available from experiment and the dissipation was 
assumed to be equal to the production of turbulent kinetic energy. 

The calculated profiles of UlU, are shown on figure 4 and those of UVlU& on 
figure 5. The figures show the results of calculations obtained with each of the 
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three turbulence models and demonstrate the effect of a 20% decrease in the 
initial values of e and of doubling the initial values of V. The experimental data 
are indicated on the figures for comparison purposes, 

It can be seen from figure 4 that each of the three models results in values of 
the mean velocity which are sensibly identical except in the vicinity of the sym- 
metry axis, where small differences occur. In  general, the non-dimensional 
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calculated velocity values are lower than the measurements : the comparison 
suggests that the mixing is too low in the vicinity of the symmetry axis and that 
this suppresses the development of the wake. However, the calculated shear 
stress is greater than the measured values, thus refuting this supposition and 
suggesting instead that the measurements do not satisfy the axial momentum 
equation. This discrepancy could stem from the measured values of V used as 
inlet conditions in the calculation : i t  is undoubtedly possible that these values 
are subject to errors, which could be as large as a factor of two. For this reason, 
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FIGURE 6. Flow of Chevray & Kovasznay (1969): U/U~vs .y .  0, measurements; ----, 
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FIGURE 7. Flow of Chevray & Kovasznay (1969): =/UE ws. y. Notation as in figure 6. (a) 
z = 5cm. ( 6 )  z = 20cm. (c) z = 50cm. 

the calculations-were repeated with initial V values which were twice the 
measured values. As can be seen, the U profiles at downstream locations became 
larger than the measured values. 

The comparison between measured and calculated values of the non- 
dimensional shear stress, shown in figure 5, again shows that all models result 
in similar trends to the measurements. In  the upstream region the shear stress 
predicted by model I is far less than that predicted by the Reynolds-stress models. 
This reflects the fact that model I takes no account of the convection of the 
individual stresses. Once again, the influence of the initial V profile is large and 

2-2 
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does not allow any quantitative assessment of the ability of the three models 
to predict shear stress. 

The measurements of Chevruy & Kovasznay (1969) were obtained downstream 
of a thin flat plate, and consequently the uncertainty in the V velocity at the 
trailing edge (assumed zero) and hence its influence can be expected to be 
significantly less than in the data of Chevray (1968). The reported data are for the 
mean axial velocity, u2, v2 and zlv and i t  can be anticipated that the precision of 
measurements in this later investigation will not be less than in the former. The 
inlet values of &were taken from the data of Klebanoff (1954) while, again, the 

- -  
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dissipation was equated to the production of turbulent kinetic energy. Figure 6 
allows a comparison between measured and calculated values of the mean axial 
velocity, shear-stress values being shown on figure 7 and normal stresses on 
figure 8. 

As was the case with the flow configurations of Chevray, the three models 
result in calculated values of the mean velocity which are virtually identical. 
On this occasion, however, the agreement between measurements and calcula- 
tions is excellent. The predictions of shear stress are adequate and, once again, 
do not allow any model to be identified as a clear improvement over any other: 
this is made particularly clear by the differences which result from a 20% 
increase in the assumed initial values of E .  The agreement between the measure- 
ments and calculations in figures 6 and 7 is certainly sufficiently good to provide 
confidence in the initial values used for the calculations. The differences between 
the measured values of 3 a n d 2  and those calculated with each of the models is, 
therefore, particularly significant. It can readily be seen that model I11 provides 
calculated values which are in good agreement with experiment; model I1 is 
slightly less satisfactory and model I is inadequate. The influence of the assumed 
initial e profile does not alter this conclusion. 

The measurements of Carmody (1964) are also extensive and are particularly 
relevant to blunt-body stabilized flames in that they were performed downstream 
of a disk (or radius R) in a free stream (with velocity UE). The separated nature 
of this flow provides a greater test of the present turbulence models than the 
flows of Chevray and Chevray & Kovasznay but it should be remembered that it 
also presents a more formidable measurement problem. Figures 9 and 10 give 
comparisons between measured and calculated mean values: figure 9 is concerned 
with the growth rate and centre-line velocity and figure 10 with velocity profiles 
at  downstream locations. Figure 11 presents shear-stress profiles and figure 12 
normal-stress profiles. 

The inlet value of the axial velocity was taken from the data. The radial 
velocity quoted by the author was evaluated from the continuity equation and 
consequently is subject to a large error. The values used were obtained by solving 
for the flow upstream of the disk, assuming it to be inviscid and using the measured 
axial velocity as a boundary condition. The validity of this approach was con- 
firmed by the observation that, at the inlet, the dynamic head calculated from the 
measured axial velocity and pressure and the predicted radial velocity was nearly 
constant. The inlet values of the normal stresses were set a t  0-002U%, while the 
dissipation was set through the length scale with EIR = 0-03. These nominal 
free-stream values may be expected not to influence the calculations very much 
as a great deal of turbulence is produced in the region immediately downstream 
of the disk. 

The results displayed on figure 9 show that, with the inlet conditions stated 
above, none of the models results in values of the half-width or of the centre-line 
velocity which are in close agreement with the measurements. The differences 
resulting from the three models and from doubling the inlet value of the dissipa- 
tion are small compared with those resulting from an 80 % decrease in the values 
of the radial inlet velocity or from an augmentation of the turbulence close to 
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the baffle tip. The decreased velocity corresponds to that suggested by Carmody 
while augmenting the turbulence close to the baffle tip by setting 

($)*/u, = (v2>*/uE = (w")*/u, = 0.14 and = 0.4 for 1.0 < Y/R < 2.0 

(i.e. 0 < U/U, < 0.95) is intended to simulate a thick shear layer in that region. 
As can be seen from figure 9, the decrease in V (from a maximum of 0.74 UE) and 
the increase in turbulence intensity have large influences on the predicted growth 
rates and centre-line velocity distribution. The poor agreement between the 
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measurements and the predictions with V decreased confkms that the present 
estimate is more reliable. The predictions with the higher turbulence intensity 
at the inlet give a spreading rate dg4/dx increased from 0.025 to 0.05. However, 
these values must be compared with the experimenta1 value of 0.1 and the 
difference cannot reasonably be attributed to uncertainties in the boundary 
conditions. The two Reynolds-stress models fare better than model I in the 
recirculation zone but, bearing in mind experimental difficulties in this region 
and the sizeable discrepancies downstream, no model may be distinguished as 
being better than the others. 

The shear-stress results in figure 10 demonstrate differences between the results 
of the three models but, once again, the influences of V and turbulence initial 
conditions are larger than those of the models. Clearly the augmented initial 
turbulence intensity and model I11 lead to results which are in remarkably good 
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agreement with experiment, particularly in the downstream region where the 
measurements are more accurate. 

The normal-stress results in figure 11 allow the same tentative conclusion as 
figure 10. In  addition, however, the measurements reveal inexplicable behaviour 
in the upstream region and must be considered suspect. Also, models I1 and I11 
will always be more successful for the calculation of normal stresses since they 
are not made equal in plane shear flow as with model I. 

The measurements of DurEo & Whitetaw (1974) pertain to an annular jet, the 
inner radius of the jet being 0.72 times the outer radius R. Close to the outlet of the 
jet a region of reversed flow occurred in the vicinity of the centre-line, thus initiat- 
ing a wake which decayed further downstream. The outer region of the flow 
resembled a decaying jet, and for x/R > 100, where the wake had vanished, the 
measurements show self-preserving jet profiles. Upstream of the nozzle there 
was a contraction to ensure that the turbulence intensity at the exit was small. 

Figure 13 shows measurements and predictions of the centre-line velocity and 
the velocity profde a t  x/R = 0.6. The predictions of the centre-line velocity are 
virtually the same for each turbulence model and show similar discrepancies to 
those encountered with Carmody’s data. The length of the recirculation zone is 
again underpredicted. The almost constant predicted value of U,,/l&, further 
downstream is due to a balance between the decay of the wake (tending to 
increase the velocity) and the spreading of the flow (tending to  decrease the 
velocity). Further measurements by Duriio (1975, private communication) show 
that the wake decays more quickly than is predicted, thus accounting for the 
different shapes of the two curves. 

The predicted velocity profiles are again virtually the same for each of the 
turbulence models and show a significant discrepancy with the measurements. 

5. Discussion 
The previous section shows that significant discrepancies exist between 

measurements and predictions and may be attributed both to inaccurate 
measurements, leading to erroneous boundary conditions, and to deficiencies 
in the turbulence models. 

An approach which would overcome the first problem would be to increase the 
size of the solution domain so that known boundary conditions could be applied 
upstream of the body. This approach is, in principle, advantageous but may 
present difficulties in practice. The correct representation of the boundary-layer 
flows around the solid body requires a finite-difference grid with a comparatively 
larger number of nodes. This is expensive in terms of computer time and may 
still not produce calculated values of flow properties at the downstream plane 
of the solid body which are more precise than the measurements available at 
present. The present calculations quantify the precision with which the flow 
around the solid body must be calculated. 

Two particular defects which result from the turbulence models are evident in 
the prediction of the recirculating flow. The length of the region of recirculation 
is underpredicted as is the rate at which the wake decays. The same defects have 
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been observed by Vasili6 (1975, private communication), who used model I to 
predict the two-dimensional flow over a thin obstruction mounted normal to 
a plane surface. 

In  order to understand the more serious defect, the underprediction of the 
spreading rate, i t  is necessary to consider the nature of round-wake flows, a useful 
discussion of which is given by Rodi (1972). Round wakes are potentially 
‘approximately self-similar ’, that is, as u@/uE + 1, appropriately normalized 
mean quantities and the spreading parameter S = UEl(UE - Uq) dygldx may 
become independent of x. Rodi (1972) considered nine sets of experimental data 
and concluded that round wakes do become self-similar. However, unlike all 
commonly encountered free shear flows, the profiles of mean quantities, and in 
particular the spreading parameter, are strongly dependent upon the way in 
which the flow is initiated. Of particular interest here are the values of S for 
the flows measured by Chevray (1968) and Carmody (1964), which are S = 0-106 
and S = 0-8 respectively. The non-uniqueness of self-similar round wakes may 
be attributed to the fact that they are weak-shear flows, that is the effect of local 
velocity gradients upon the Reynolds stresses is up to an order of magnitude less 
than the effect of dissipation. The consequences of these observations for the 
turbulence models are twofold. First, unless the flow around the recirculation 
zone is predicted accurately the downstream predictions are unlikely to be 
correct, and second, the dissipation equation will govern the spreadingrate almost 
entirely. 

Although the discrepancies in the predictions of the recirculation zones are not 
as great nor as well substantiated as those in the spreading rate, the above 
arguments indicate that great precision is required in the recirculation zone if 
the wake is to be correctly represented. In  the recirculation region the Reynolds- 
stress models offer the potential advantages over a two-equation model that the 
differential transport of Reynolds stresses is permitted and that the need for an 
effective-viscosity hypothesis is obviated. The effect of allowing for the differen- 
tial transport of the Reynolds stresses is difficult to assess. Certainly, the gross 
features of the flows considered here are not dependent on this transport in 
contrast to asymmetric channel flow or annular pipe flow for example. However, 
the results demonstrate that the Reynolds-stress closures are necessary to 
represent the different magnitudes of the stresses and that they result in slightly 
better predictions of the mean velocity. This advantage might also be obtained 
with an effective-viscosity closure if the transport of Reynolds stresses was 
assumed proportional to their magnitudes. Unlike the isotropic formulation, the 
effective-viscosity hypothesis deduced from the Reynolds-stress equation with 
the above assumption (Pope 1975) can provide a realistic modelling of all the 
Reynolds stresses and, in addition, makes C, a function of the rate of strain and 
rotation. 

The form of the dissipation equation is common to the three models, and since 
it is based on unproven assumptions, may be a source of error both in the near 
and far wake. It was developed and tested in two-dimensional near-equilibrium 
boundary-layer flows and free shear flows where only one velocity gradient was 
significant. Thus it is not surprising that the net source term was modelled as 
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a linear function of the only non-zero independent invariant of the velocity- 
gradient tensor. Since, in general, there are five independent invariants there is 
clearly scope for improvement. Bradshaw (1973) and Priddin (1975, private 
communication) have also criticized the form of the dissipation equation, 
particularly in relation to flows with streamline curvature, which will also be 
poorly represented by the present source term. In  the present context, the 
rotation invariant Q = (aq/axj - aq./axi)2 is of particular interest: in a two- 
dimensional shear flow without streamline curvature it is equal to the rate-of- 
strain invariant S 2 (aq/ax, + 8UJaxi)2. Thus the dimensionless parameter 
(Q - S)/(  Q + X), which is unity for solid-body rotation, zero for parallel shear 
flow and - 1 for plane strain, may be introduced into the dissipation equation 
without altering its performance in parallel shear flows. While the inclusion of 
this parameter may improve the prediction of the near wake, it will have no 
direct influence downstream. As was mentioned above, however, the spreading 
rate of the far wake will be largely determined by the dissipation equation. Thus 
a more general relation than the linearity assumed between the rate-of-strain 
invariant and the net source of dissipation may serve to improve the predictions 
throughout the flow. 

6. Conclusions 
The main conclusions which can be extracted from the text are as follows. 
(i) The elliptic form of the continuity equation and equations for two com- 

ponents of momentum and the rate of turbulence dissipation have been solved 
numerically together with equations for turbulence kinetic energy or the four 
Reynolds-stress equations: the solution algorithm can be arranged such that 
calculations with the five-equation turbulence model requires an increased 
computer run time of only 50 yo and little extra storage. 

(ii) For the round isothermal wake flows without recirculation considered, 
the turbulence model is less significant than the boundary condition assumed in 
the plane of the trailing edge of the solid body. The influence of the assumed V 
velocity profile is shown to be particularly large. 

(iii) The mean velocity profiles of the plane isothermal wake were predicted 
accurately with all three turbulence models. The normal-stress predictions show 
model I11 to have a slight advantage over model I1 while model I is unsatisfactory 
in this respect. 

(iv) For isothermal wake flows with recirculation, all models result in under- 
estimation of the length of the recirculation region and of the rate of spread of 
the downstream wake. The latter discrepancy is particularly serious and appears 
to stem from incorrect calculation of dissipation in the recirculation region. 

(v) For both wakes with and without recirculation, the Reynolds-stress 
closures provide reasonable predictions of the normal stress, but the advantages 
for the corresponding values of the mean velocity are small. 

(vi) An improvement to the dissipation equation, to remove the deficiency 
indicated in (iv), is suggested. It requires the incorporation of a term based on 
the rotation and rate-of-strain invariants. 
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Appendix 
The following conventions are introduced so that the equations in Cartesian 

and cylindrical-polar co-ordinates may be written in a common form: 

x = XI, y = x2, u = u,, v = u,, w = u,, 
1 for Cartesian co-ordinates, 

y for cylindrical co-ordinates. 
r = {  

Terms in curly brackets are to be included only in cylindrical co-ordinates. 

Continuity equation 
a i a  - ( p U )  +-- ( r p V )  = 0. 
ax r au 

Momentum equations 

a i a  a -  i a  aP - (pU2) + -- ( rpUV)  = -- (pu2) --- (rpzlv) -- 
ax r aY ax r aY ax 

Reynolds-stress models 
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-- - 

r2 I ' a i a  C,kW'(tP- w') - ( P U G )  +-- ( r p V 2 )  = D(Cs>) + e3 + R33 - Qps + { 2 p 7  
ax r aY 
a l a  
- (p U G )  + - - (rp V G )  = D(C,zCv) + P12 + R,, - 
ax aY 

a i a  E 
- ( ~ U E )  +-- (rp Ve) = D(C,s) + (CelP - C,,pe), 
ax 9- aY 

Model 11 
Rll = - C,,pek-'(G - 3k) - C,,(P,, - $P), 

R,, = - C,,pc;.k-l(> - 81%) - C,,(pZ, - gP), 

R33 = -C41p~k-1(W2-$k)-C,2(P33-$P), 

R12 = - C,,psk-liZ - C,, PI,. 
Hodel I I I  

Rll = - CdllpEk-l(S- gk) - B,(Pll- $P) 

R,, = - C,,pek-1(2 - gk)  - Bl(pZ, - gP) 
av 
aY 

- 2B2pk- + 2B3 

R33 = - C,,p~li-~(G - gk) - B1(P33 - 8P) 

- ( Z ~ , p l i ~ / r )  + 2~~ ({p?] + +P), 

au av R12 = - C,,p~k-~Uv - B, Plz - B2pk (% + z) 
+ B , p ( u 2 ~ + v 2 ~ + ~ v  -au - a v  - 
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