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Abstract

A method of determining the statistically-mostlikely probability distribution of scalar quanti-
ties in turbulent flows has been described in previous works [2, 5]. The method is applicable
to the joint probability density function (pdf) of any number of reactive or non-reactive sca-
lars, and any number of moments can be incorporated. This paper reports, first, a comparison
of most-likely pdf’s with measured pdf’s of passive scalars in turbulent shear flows. Secondly,
the paper reports calculations of the evolution of the most-likely pdf of a reactive scalar in
homogeneous turbulence. It is found that (with a single exception) the most-likely pdf based
on the first three moments is in excellent quantitative agreement with the pdf’s measured in
shear flows. With only two moments, the most-likely pdf’s are unable to adopt the sometimes-
observed bimodal shapes. The calculations of reaction in homogeneous turbulence show that
the pdf’s are dominated by spikes at the two bounds. In addition it is found that, as the in-
stantaneous reaction rate tends to infinity, the mean reaction rate tends to a universal func-
tion; this function is well represented by a simple empirical formula, Eq. (18).

Nomenclature
A, Coefficient in Eq. (1) Greek Symbols
D Jet diameter
H Entropy (Eq. 7) a Turbulent time scale/reaction
p(¥) Probability density function of ¢ time scale, Eq. (17)
p(¥) Density-weighted pdf of ¢ r Molecular diffusivity
q(y) A priori probability of ¢ A Number of moments
Q(y) Arbitrary function Un nth central moment, u; ={¢>
r Radial distance p Density
S(¢), S*(¢) Creation rate of ¢, normal- T Time scale Eq. (12)
ized creation rate ¢,{(¢> Scalar, mean of ¢
t, t* Time, normalized time ¢ Fluctuating or rms value of ¢
T, T. Temperature, ambient temperature Y Independent scalar variable
X Position



Introduction

Since the work of Hawthorne et al. [1], probability density functions have proved useful in
the theoretical treatment of turbulent reacting flows. The representation of the pdf of a pas-
sive scalar as a function of its first and second moments has attracted much attention. Various
authors have suggested a Gaussian, a beta-function distribution, a “clipped-Gaussian” and a
double-delts function distribution (see [2] for references). In the model of Bray and Moss [3]
a pdf for a single reactive scalar is prescribed and Donaldson and Varma [4] implicitly assume
the joint pdf of reactive scalars to be comprised of delta functions. All these distributions are
determined as functions of their first and second moments.

In previous work [2, 5] the author proposed a general method of determining single or
joint pdf’s of passive or reactive scalars in turbulent flows. The method is based on the as-
sumption that the pdf is the statistically-most-likely distribution. An alternative view of this
assumption can be based on the fact that the statistically-most-likely distribution contains a
minimum of information. Consequently any other distribution contains more information,
and the extra information is spurious. Thus, the assumption that the pdf is the statistically-
most-likely distribution is the only assumption that excludes spurious information.

The method, which is described in the next section, is applicable to any number of scalars
and any number of moments can be prescribed.

In the third section of the paper, the most-likely pdf’s are compared with measurements
made in turbulent shear flows. The data of LaRue and Libby [6] are of pdf’s of temperature
in the wake of a heated cylinder: the data of Birch et al. [7] are of pdf’s of concentration in
a turbulent methane jet in an atmosphere of air. Many of these pdf’s are bimodal and, with a
single exception, they are well represented by the most-likely distribution based on the first
three moments. (Two moments are insufficient to describe bimodal distributions.)

Calculations of reaction in homogeneous turbulence are reported in the fourth section.
These calculations are based on the solution of the differential equations for the mean and
variance of a scalar which corresponds to the concentration of reaction products. An Arrhenius
reaction rate is used and the mean reaction rate and rate correlations are determined from the
assumption that the pdf adopts its most-likely value. The results show the evolution of the pdf
which is dominated by spikes as the two bounds. For large reaction rates it is found that the
mean reaction rate is a universal function for which an empirical formula is provided, Eq. (18).

Theory

In this section the results of previous work [2, 5] relevant to the present study are reported.
If the first A moments of the pdf p(y/) are known, then the most-likely value of p is

A
pa(¥) = q(y) exp ( z Anxb")- (1

n=0

q(¥) is the a priori probability which, for nonreactive scalars, is a constant. g(y) for a reactive
scalar is given below, Eq. (8). The A + 1 coefficients 4 in Eq. (1) are uniquely determined from
the A moments and from the condition that p,(y) integrates to unity.

Let ¢(x, ¢) denote a scalar that obeys the conservation equation
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where I is the molecular diffusivity and S(y) is the rate of creation of ¢. In a turbulent flow,
the probability density function p(y; x, ¢) is defined so that the probability of ¢ being in the
range ¥ <¢ <y +dy is p(Y)dy. From this definition it follows that, if Q(¢) is any function,
then its expected value (denoted by angled brackets) is

QIo(x, O = [ p(¥:x, HQW)AY. 3)

By substituting, ¥ and (¢ —{($>)" for Q(¢) in Eq. (3), we obtain

Jp(W)dy =1, (4)

Syp(W)dy = ($) = (3)
and

JW—=@)'p()dy = ¢ = p,. (6)

Thus, u, is the mean of ¢ and u,,(n > 1) is the nth central moment.
The most-likely pdf maximizes the entropy H subject to available information:

H=— [In [p(¥)lq(V)]q(y)dy. (7)

For a non-reactive scalar [S(¢) = 0], the transport Eq. (2) is linear in ¢: from this it follows
that the a priori probability g(¥) is a constant (unity, say). For a single reactive scalar, the
expression given by Pope [2] reduces to

q(¥) = [1+SW)r/e'], ®)

where ¢' is the rms fluctuation (¢’ = u3/?) and 7 is the time scale of dissipation of ¢' [see Eq.
(12) below].

If the available information is the first A moments of p(y/), then the calculus of variations
can be used to show that the distribution that maximizes A is

A
pa(¥) = q(¥) exp (EO Anw") . ©)

The (A + 1) coefficients 4 are uniquely determined from the A moments and from the condi-
tion that p, () integrates to unity. The subscript A indicates that p,(¢) is the most-likely
distribution based on a knowledge of the first A moments.

In the next section p;(¢) (2 < A <5) is compared with experimental data of pdf’s of a
non-reactive scalar in shear flows. The moments u,, were either taken directly from the data
or were determined by numerical integration of the pdf. Then Eqgs. (4—6) and (9) were solved
using Newton’s method in order to determine the coefficients 4 and hence p; (V).

The penultimate section reports calculations.of the evolution of p, (i, £) for a reaction in
homogeneous turbulence. In those calculations the first two moments were determined from
their conservation equations. For constant-density flow in homogeneous turbulence these are:

— = (S(p 10



and

7
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The last term in Eq. (11) accounts for the destruction of fluctuations of ¢ and it can be used
to define the time scale of decay 7:

= {(¢'? 06 03¢ 2
T = (¢ )/<F o i) (12)

The time scale 7, which is presumed to be constant, is used to normalize ¢ and S(¢):
t*=t/r and S*(p)=S(¢)r. (13)

Then, Egs. (10) and (11) can be written,

d{¢>
- 14
R O (14)
and
1 d<¢'2) — torx . 12 5
L T ety ™. (15)

With the assumption that the pdf of ¢ is p,(¢), (S*(¢)) and (¢'S*(¢) can be determined from,
for example

(9'S*(0)) = [ (¥ —(@NS*(VIp(¥)dy. (16)

Thus, with given initial conditions for (¢} and (¢'2) and a given normalized rate of creation
S*(¢), Egs. (14) and (15) can be integrated in normalized time. This integration was perform-
ed numerically to produce the results reported in the final section.

Comparison with Experiment

In this section the most-likely pdf’s are compared with measurements of passive scalars in tur-
bulent shear flows. The measurements of pdf’s of temperature reported by LaRue and Libby
[6] were obtained in the far wake of a heated cylinder; and the measurements of Birch et al.
[7] are of pdf’s of concentration in a methane jet.

Plane Wake

LaRue and Libby’s data were obtained at an axial distance of 400 diameters downstream of
the cylinder. At this location, the maximum observed temperatures are well below the tem-
perature of the cylinder. Consequently the only effective bound on the temperature is the



lower bound of the ambient temperature 7.,. The passive scalar is chosen tobe ¢ =7 — T_
and hence ¢ > 0.

Figures 1—5 show plots of p() at increasing distances from the centre-line of the wake.
The plots are normalized with the standard deviation of ¢, ¢'. The measured values of the
moments were used to determine the most-likely pdf’s based on the first two and three mo-
ments, p, () and p5 (). These are shown as dashed and full lines, respectively, and the ex-
perimental data are shown as circles.

Close to the centre-line (Figs. 1 and 2) the pdf’s have a Gaussian shape except at the lower
bound ¥ = 0. However, the most-likely pdf based on the first two moments p, () does not
follow the data; p3(y) does. Further away from the wake centre-line (Figs. 3—5) the pdf’s be-
come bimodal. Since p,(¥) does not have sufficient degrees of freedom to adopt such a shape,
it provides a poor representation of the measured pdf. On the other hand, the most-likely dis-
tribution based on three moments still follows the data closely. Indeed, at all five locations,
discrepancies between p3() and the data are most likely less than experimental error.

From this comparison it can be concluded that, with a knowledge of only two moments,
the most-likely distribution has a different shape from that measured. With a knowledge of
three moments, not only is the shape correct, but also the quantitative agreement is excellent
— at least for this flow.

b}

Axisymmetric Jet

Birch et al. used laser Raman spectroscopy to measure the pdf of concentration ten nozzle
diameters downstream of the exit of a methane jet. In this case the passive scalar ¢ is taken
simply as the methane concentration: ¥ = 1 corresponds to pure methane and ¥ = 0 to pure
air.

For variable-density flows (oethane = 0.55 pajr) it has been argued [8, 2] that it is ap-
propriate to consider density-weighted quantities. The density-weighted pdf p(y) is given by
the relation

pp(Y) = p(V)p(Y).

This relation was employed to determine p(y) from Birch et al.’s measurements of p(y/), and
the density-weighted moments were obtained by numerical integration of p(y).

Figures 6—9 show p,(¥) and p3() compared with the measurements at increasing dis-
tances from the jet axis. As before, near the axis (Figs. 6 and 7) the pdf’s are Gaussian shaped
but 5, () is evidently discrepant. The curve of p3(y) passes through the data points. At r/D
= 1.49 (Fig. 8) the measured pdf is bimodal and the shape appears to be similar to that of
LaRue and Libby’s data. However, since neither 7, () nor p;(i) are bimodal they provide
poor representations of the measured pdf. Why this is so is discussed further below, but a clear
answer is not evident. At the furthest radius measured (Fig. 9), the distribution ceases to be
bimodal and is well represented by 73(¢). As before, there is a noticeable difference between
DP2(¥) and the data.

The distribution at #/D = 1.49 (Fig. 8) was investigated further. Figure 10 shows the data
compared with the most-likely distributions based on four and five moments, ps () and ps ().
It may be seen that 7, () is bimodal but a quantitative discrepancy remains. On the other
hand, the curve of j5() passes through the data points. This confirms that with sufficient
moments the most-likely distribution fits the data, but a five-parameter fit to fifteen data
points can be expected to succeed.



Figs. 1—5. Comparison of most-likely distributions with data of LaRue and Libby [6]. Axial
distance x = 400 d: radial distance y is normalized with I, = (x — x,) 2d"/?, where the virtual

originxy = —40d.
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Table 1. Skewness of distributions, data of [7]

Skewness atr/D =1.3

Weighted Unweighted
Experimental 0.0572 0.0865
Most-likely distribution 0.2330 0.2620
Difference —0.1758 -0.1755

Skewness at r/D = 1.49

Weighted Unweighted
Experimental 0.468 0.508
Most-likely distribution 0.690 0.741
Difference 0.222 0.233

Perhaps, contrary to the opinion expressed above, the unweighted pdf p(y/) should be con-
sidered rather than the density-weighted pdf (). In order to investigate this question, the
skewness of p, () and p,(¥) were compared with the experimental values for 7/D = 1.3 and
r/D = 1.49. The results are shown in Table 1.

The difference between the experimental skewness and that given by p, (i) and Dr(Y)is
a measure of the disagreement. It may be seen that, at both locatiors, the disagreement is
nearly the same for weighted and unweighted pdf’s. Consequently, the use of density-weighted
pdf’s cannot be deemed the cause of the observed discrepancy at r/D = 1.49.

In summary, for both the plane wake and the axisymmetric jet, in general there is excel-
lent agreement between experimental data and the most-likely distribution based on three
moments. The significant disagreement in one case remains unexplained. With only two mo-
ments prescribed, the most-likely distribution does not adopt observed bimodal shapes. Even
where the pdf is not bimodal, there are discernible quantitative differences between p2(Y)
and the data.

Reaction in Homogeneous Turbulence

The evolution of the pdf of a reactive scalar in homogeneous turbulence was calculated by
numerical integration of Eqs. (14) and (15) for (¢ and ¢’ with the assumption that p(y) is the
most-likely distribution p, (). The scalar ¢ is taken to represent the mass fraction of com-
bustion products — =0 and ¥ = 1 corresponding, respectively, to unburnt and fully burnt
mixtures. Reaction proceeds according to the Arrhenius expression

S*(¢)=a6.11 x 107 ¢(1 — ¢) exp [—30,000/(300 + 1,800 ¢)]. (17)

The parameter « can be regarded as the ratio of the turbulent time scale to the reaction time
scale. The multiplier 6.11 x 107 is chosen so that the maximum value of S§*(¢) is a: this maxi-
mum value occurs at ¢ = 0.933.

For all the calculations reported, the initial conditions correspond, approximately, to the
pdf p,(y) being a double-delta function distribution. The initial value of {¢) is chosen so that
reaction starts and continues at a reasonable rate.



Figure 10 shows the mean (¢) and standard deviation ¢' as a function of the normalized
time ¢*, for a = 5. The mean increases monotonically (as it must) whereas ¢’ increases to a
maximum of 0.47 before decaying. Since diffusion tends to decrease ¢', the observed rise in
¢’ is due to reaction.

Figure 11 shows three pdf’s taken from the same calculation (i.e. @ = 5). The arrows on
the figure indicate the values of (¢) for each pdf: these are (¢) = 0.3, 0.5 and 0.7. It may be
seen that for each pdf there are spikes at zero and one with a relatively low value of p(y/) in
between. This shape is precisely the one assumed in the models of Bray and Moss [3] and
Pope [8]. The width of the spike at zero decreases as time (and hence {¢?) increases. The be-
haviour of the two spikes is more clearly seen on Fig. 12 where p(0) and p(1) are plotted
against (¢). The value at the upper bound p(1) increases rapidly from its initial value of 15 to
well over 100. The value at the lower bound p(0) first falls, then rises to a maximum, and then
falls again, ultimately to zero. In fact it can be shown from the pdf transport equation [10]
that p(0) must decrease monotonically. Ironically, the slight increase shown on Fig. 12 repre-
sents a violation of the second law.

It is generally held that as the instantaneous reaction rate S(¢) becomes large (compared
with the turbulent frequency 1/7) the mean reaction rate {S(¢)) becomes independent of S(¢).
In the present notation this implies that (S*(¢)? is independent of « for large «. This tenent
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was investigated by integrating equation (14) and (15) for various values of a: the computed
values of (§*(¢)) are plotted against (¢) on Fig. 13.

For the smallest instantaneous reaction rate (a = 1), the reaction cannot be sustained un-
less the initial value of (¢) is greater than 0.5. Then the mean reaction rate starts at a value of
0.2, rises to 0.4 at (¢> = 0.85 and then falls rapidly. For the next two values of « (2 and 5) the
same trend is observed but the higher maximum of (S*(¢)) = 0.6 is reached sooner (at{¢)=0.7
and 0.5 respectively). For these three cases (S*(¢)) is clearly a strong function of a. The inde-
pendence of (S*(¢)) from a becomes evident for the larger values, a = 10, 100 and 500. Al-
though the three curves differ slightly where (¢) is less than 0.5, over the other half of the
range the three curves coincide. The curve for & = 5 also joins this apparently universal curve
at(¢>=0.7.

The existence of a universal curve of (S*(¢)) against (¢} supports the tenent that the mean
reaction rate becomes independent of S(¢) for large S(¢). In addition, the universal relation-
ship between (S*(¢)) and (¢) can be used as a model of premixed turbulent combustion. It
is fortunate then that the simple empirical formula

(S*(#)>=2.2(p> (1 — <)) (18)

provides an excellent representation of the curve (see the dotted line on Fig. 13).

To conclude: for reaction in homogeneous turbulence, the differential equations for (¢)
and (¢'?) are closed by the assumption that p(y) adopts its most-likely value. These equations
have been solved numerically to produce the results reported in this section. The results con-
firm the expectations that the pdf is approximately a double-delta function distribution, and
that the mean reaction rate becomes independent of the instantaneous rate. Equation (18)
provides an empirical formula for the mean reaction rate {S*(¢)) which is in excellent agree-
ment with the calculated dependence of (S*(¢)) upon (¢).
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