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Abstract— Progress is reported in the integration of
two methodologies to enable the efficiency application
of realistic combustion chemistry in computational fluid
dynamics. These methodologies are ICE-PIC (invariant
constrained-equilibrium edge manifold using the pre-image
curve method) for dimension reduction, and ISAT (in situ
adaptive tabulation) for tabulation of the reduced system.
New results are reported on the tangent vectors of the
constrained-equilibrium and ICE manifolds, which are im-
portant quantities in ICE-PIC/ISAT. The test case of a
partially-stirred reactor with methane combustion is used
to demonstrate the accuracy and efficiency of the combined
approach.

I. INTRODUCTION

Dimension reduction is essential to the use of detailed
chemical kinetics in computations of combustion and
many other reactive flows. Modern chemical mechanisms
for hydrocarbon fuel may contain of order 1,000 species
[1], and it is clearly impracticable to use this detailed
information directly in multi-dimensional computational
fluid dynamics (CFD) calculations. A combination of
three approaches that enables the use of detailed chem-
ical information consists of: (1) reduction to a skeletal
mechanism [2], [3], [4] involving of order 100 species;
(2) dimension reduction (DR) to reduce the number of
degrees of freedom to of order ten; and (3) tabulation to
significantly reduce the cost of expensive evaluations, e.g.,
the integration of ordinary differential equations (ODEs).
In this work we consider the integration of two successful
techniques, namely, the invariant constrained-equilibrium
edge pre-image curve (ICE-PIC) method for dimension
reduction [5], [6], [7], and in situ adaptive tabulation
(ISAT) [8], [9].

In the next section we briefly review the ICE-PIC
method as implemented in conjunction with ISAT. Then
we derive expressions for the tangent vectors of the
constrained-equilibrium manifold (CEM) and the ICE
manifold, which are needed by ISAT. Finally, at the
Workshop results will be given for the test case of
a partially-stirred reactor, showing the accuracy of the
dimension reduction and the efficiency gains achieved by
ISAT.

II. THE ICE-PIC METHOD

We give here a succinct overview of the ICE-PIC
method, as it is implemented in conjunction with ISAT.
More details can be found in [5], [6], [7].

We consider a gas-phase mixture of ns chemical
species composed of ne elements. The thermochemical
state of the mixture (at a given position and time) is
completely characterized by the pressure p, the species
enthalpy h, and the ns-vector z of the specific moles of
the species. To simplify the exposition, we take p and h
to be given constants, and so the state is given by z.

Due to chemical reactions, the composition evolves by

dz
dt

= S(z), (1)

where S is the ns-vector of chemical production rates.
The “reaction mapping” R(z, t) is defined to be the
solution to (1) after time t from the initial condition z.
And the mapping gradient A(z, t) is the ns × ns matrix
with components

Aij = ∂Ri/∂zj . (2)

In practice R and A are obtained together using the ODE
solver DASAC [10].

In the ICE-PIC method, the species are decomposed as
z = {zr, zu}, where zr is an nrs vector of “represented”
species, and zu is an nus-vector of “unrepresented”
species (with nrs + nus = ns and nrs < ns − ne).
At the present stage of development of the methodol-
ogy, the represented species are specified: ultimately, the
methodology should identify the optimal specification.
The “reduced representation” of the species used in ICE-
PIC is r ≡ {zr, zu,e}, where zu,e, is an ne-vector giving
the specific moles of the elements in the unrepresented
species. Thus r is a vector of length nr = nrs + ne,
and the dimensions of the system is reduced from ns to
nr < ns. This dimension reduction process can be written

r = BT z, (3)

where B is a known constant ns × nr matrix.
The fundamental issue in dimension reduction of com-

bustion chemistry is “species reconstruction” that is,
given r, define an appropriate full composition z. We
denote by zICE(r) the species reconstruction given by
the ICE-PIC method. We also consider zCE(r) which is
the constrained-equilibrium (maximum-entropy) compo-
sition, as used in the rate-controlled constrained equilib-
rium method (RCCE, [11], [12], [13]). This is readily
computed using the constrained-equilibrium code CEQ
[14].



In the nr-dimensional reduced space, the “realizable
region” is the convex polytope in which each component
of r is non-negative. Its boundary consists of at most
nr facets on which one component of r is zero. The
“constrained equilibrium edge” is defined as zCE(r) for
all r on the boundary. The ICE manifold is defined as
R(zCE(r), t) for all r on the boundary and all t ≥
0. Thus the ICE manifold is the trajectory-generated
manifold originating from all the constrained equilibrium
compositions on the boundary. Some important properties
of the ICE manifold are:

1) existence: for all realizable r there exists a manifold
point zICE(r)

2) invariance: the ICE manifold is invariant with re-
spect to (1)

3) continuity: the ICE manifold is continuous
4) smoothness: the ICE manifold is piecewise smooth,

and is the union of smooth manifolds generated by
the facets

5) uniqueness: for a reasonable specification of the
represented species, the manifold is not “folded”,
so that for given r there is a unique manifold point
zICE(r).

Provided that the manifold is not folded, given a realizable
value of r, there is a unique “generating boundary point”
rg , and time τ such that

zICE(r) = R(zCE(rg), τ). (4)

The pre-image curve method is used to identify rg (given
r). Of course, consistency conditions are

BT zICE(r) = BT zCE(r) = r. (5)

At the Workshop, the presentation will focus on an
exposition of the ICE-PIC/ISAT methodology and on its
performance for the test case described in Sec.V. In the
next two sections, we present some new theoretical results
which provide quite simple means of determining the
tangent vectors of the constrained-equilibrium and ICE
manifolds.

III. THE CEM TANGENT VECTORS

An important quantity in the ICE-PIC method is the
ns × nr matrix TCE whose columns span the tangent
space of the CE manifold, and which relates infinitesimal
changes in zCE to those in r by

dzCE = TCEdr. (6)

We have obtained a new, simple expression for TCE .
It is presented here for the case of fixed pressure and
temperature, from which the corresponding result for
fixed p and h is readily obtained.

For the case considered, the constrained equilibrium
composition is given by [14]

zCE = N̄ exp (−g̃ + Bλ) , (7)

where N̄ =
∑ns

i=1 z
CE
i are the specific moles of all

species; g̃ are normalized Gibbs functions; and λ are
constraint potentials (or Lagrange multipliers).

Considering infinitesimals, we obtain from (7)

dzCE = zCEd ln(N̄) + ZBdλ, (8)

where Z is the diagonal matrix formed from zCE . Sum-
ming (8) over all the species leads to the constraint

0 = zT Bdλ = rT dλ. (9)

Equation (8) can be re-expressed as

dzCE = Mdλ̂, (10)

with

dλ̂ ≡ dλ +
rdN̄
|r|2N̄

, (11)

and

M ≡ zrT + ZB
(
I− rrT

|r|2

)
. (12)

We observe from (10) that the columns of M span the
tangent space. Let W denote any ns × nr matrix with
span(W) = span(M) = span(TCE). Then there exists
a non-singular nr×nr matrix D such that TCE = WD.
From (5) we obtain

BT dzCE = dr = BT TCEdr = BT WDdr, (13)

and hence
BT TCE = I, (14)

D = (BT W)−1, (15)

and finally
TCE = W(BT W)−1. (16)

In practice W is best taken as an orthonormal basis for
span(TCE), obtained from the SVD or QR decomposi-
tion of M.

It is interesting to observe that TCE is solely deter-
mined by zCE and B, and does not otherwise depend on
any thermodynamic information (such as p, T or g̃).

IV. THE ICE MANIFOLD TANGENT VECTORS

Also important in combining ISAT with ICE-PIC is the
matrix of ICE manifold tangent vectors TICE defined
such that

dzICE = TICEdr. (17)

We are considering now the relevant case of constant
pressure and enthalpy, so that (6) and (17) are at fixed
p and h. (This implies a re-definition of TCE .)

From (4), considering infinitesimal changes drg and
dτ , we have correspondingly

dzCE = TCEdrg, (18)

and

dzICE = A(zg, τ)TCE(rg)drg + S(zICE)dτ. (19)

Let k denote the index of the component of rg which is
zero on the boundary facet, i.e. rg

k = 0. Since we require
rg + drg to be on the boundary, it follows that drg

k is
zero. This consideration and (19) show that the tangent
space of the ICE manifold is spanned by S(zICE) and



the nr − 1 vectors obtained from ATCE , with the k-th
column omitted. Then, by the same argument that leads
to (16), we have

TICE = Ŵ(BT Ŵ)−1, (20)

where Ŵ is an ns × nr matrix (obtained from S and
ATCE) which spans the ICE manifold tangent space.

V. RESULTS

At the Workshop, results will be presented for the test
case of a partially-stirred reactor (PaSR) with methane
combustion [9]. The results quantify the dimension reduc-
tion errors in the ICE-PIC and RCCE as functions of the
number of represented variable, nr. Also, the efficiency
of the ISAT implementation is characterized in terms of
table size and retrieve time.

VI. CONCLUSIONS

The combination of ICE-PIC and ISAT offers accurate
dimension reduction and efficient tabulation. Advances
have been made both in the theory (e.g., in the accurate
and efficient evaluation of the tangent vectors) and in the
computational implementation.
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