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Lagrangian microscales in turbulence 

B Y  S. B. P O P E  

Xibley School of Mechanical and Aerospace Engineering, Cornell University; Ithaca; 

New York 14853; U.S.A.  


Though difficult to obtain experimentally, lagrangian quantities are readily 
extracted from direct numerical simulations (DNS) of turbulence. Results from recent 
DXS studies on the temporal nature of lagrangian acceleration and strain rate are 
reviewed and analysed. Contrary to the long-accepted paradigm, it is found that 
turbulent straining is not persistent. Both for acceleration and strain rate, directional 
information is lost in a matter of one or two Kolmogorov timescales: whereas the 
amplitudes of acceleration and strain rate have longer timescales. that increase with 
Reynolds number (relative to the Kolmogorov timescale). I t  is shown that the 
lagrangian time series of dissipation (i.e. straining amplitude) can be reasonably 
approximated as the product to two independent random functions; the first is 
universal and scales with the Kolmogorov scales: the second has a longer timescale 
and accounts for internal intermittency. 

1. Introduction 

Over the years, a body of theories has evolved that aim to describe different aspects 
of turbulence (Monin & Yaglom 1975; Lesieur 1987). These theories are based on 
conjectures. assumptions and approximations, most of which have not been tested, 
mainly because of extreme experimental difficulties. The fraction of the theories' 
predictions that have been tested experimentally is also very small, for the same 
reason. 

Particularly difficult to obtain experimentally are lagrangian quantities, since 
these require measurements following the giddy trajectories of fluid particles. 
Severtheless, theories of several phenomena are most naturally constructed in the 
lagrangian frame; examples are turbulent dispersion (Taylor 1921; Batchelor & 
Townsend 1956) and the deformation of material elements by turbulence (Batchelor 
1952). In  this context, for forty years an accepted paradigm has been 'the persistence 
of strain' (Townsend 1951: Batchelor & Townsend 1956). according to which the 
local strain rate of the turbulent velocity field following a fluid particle changes little 
over time intervals of order the Kolmogorov timescale 7, (which is the characteristic 
timescale of the straining itself). 

m7ith the advent of direct numerical simulations (DNS) of turbulence (Rogallo & 
Monin 1985) much more comprehensive testing of assumptions and predictions is 
possible. In DNS there are, essentially. no measurement difficulties (although the 
flows that can be realized are restricted in their complexity and Reynolds number). 
In  particular, fluid particles can readily be tracked through the computed flow field. 
and hence lagrangian quantities can be obtained (Riley & Patterson 1974; Yeung & 
Pope 1989). 
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In this paper we use the results of recent DNS studies to examine the temporal 
behaviour of the acceleration A(t) and strain rate S,,(t) following fluid particles in 
homogeneous isotropic turbulence. The results show (among other things) that strain 
is not persistent, and that predictions based on ' the persistence of strain' are in error, 
typically by a factor of three. 

Precise definitions of the lagrangian acceleration A(t) and strain rate S,,(t) are nonr 
given in terms of the eulerian velocity field u(x.t) of the turbulent flow under 
consideration. The position X(t) of a fluid particle is defined by the condition that it 
moves with the fluid 

X(t) = u(X(t). t). (1) 

and by its initial condition X(0) = X,, (which, in homogeneous turbulence, is 
immaterial). The lagrangian velocity and acceleration (i.e. the velocity and 
acceleration of the fluid particle) are then 

and A(t) = O(t). (3)  

With s,,(x, t )  being the eulerian strain rate field, 

the lagrangian strain rate is 
#,,(t) = 8ij(X(t), t). 

The lagrangian acceleration has the obvious significance that its integral over a 
time interval is the change in fluid-particle velocity over that interval: 

The lagrangian strain rate accounts for the deformation of infinitesimal material 
elements. For example, let l(t) be the infinitesimal length of a material line element 
that is aligned with the unit vector b(t). Then the change in the length 1 over a time 
interval is given by 

Both acceleration and strain rate are small-scale quantities in the sense that they 
are dominated by contributions from the smallest scale motions; their eulerian 
spectra increase with wavenumber, and peak in the dissipative range. Consequently, 
in view of the near universality of the small scales, much can be learned by studying 
A(t) and S,,(t) for the simplest case of homogeneous isotropic turbulence. 

The timescales of A(t) and S,,(t) are of great significance. In  isotropic turbulence 
the means (A(t)) and (S,,(t))are zero. and hence there is no contribution from these 
means to the integrals in equations (6) and (7). If the time series of A(t) and S,,(t) were 
like white noise -with no correlation between successive times - then the integrals in 
equations (6) and (7) would be zero. (This conclusion requires that the variances of 
A and Stjbe finite, as is the case.) Thus non-zero temporal autocorrelations of A(t) 
and S,,(t) are essential to lagrangian velocity increments and to material line 
stretching. 
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In  $ 2  the conventional paradigm of the 'persistence of strain' is reviewed. 
According to this paradigm, the strain rate changes slowly compared with the 
timescale of straining itself. Recent ~ x sresults bearing on the persistence of strain 
are then reviewed. I t  is abundantly clear from these results that the lagrangian strain 
rate is not persistent. 

In  3 3 in place of the 'persistence of strain ', a new paradigm (suggested by the ~ w s  
results) is offered; small-scale quantities containing directional information (e.g. A,. 
S,,. b,b,S,j) have short timescales, of order one or two Kolmogorov timescales; 
whereas amplitudes (e.g. IAl, SijS,,)have longer timescales that increase relative to 
r1 as the Reynolds number increases. 

In  $4 the lagrangian time series of dissipation 

is examined in more detail to investigate the Reynolds number dependence of its 
timescale. (Here u is the kinematic viscosity.) 

2. The persistence of strain 

The persistence of strain is a convenient hypothesis. for it  allows analyses to be 
performed with a fixed strain rate Stj,rather than with the randomly varying time 
series S,,(t). Such analyses are usually performed in the principal axes of S,,.. In 
general. let a( t) .  P(t) and y(t) denote the principal strain rates (i.e. the eigenvalues of 
Stj)with the ordering cr 3 ,I3 3 y. And let P(t) .  I(t),  N(t) be the corresponding unit 
eigenvectors (corresponding to the positive (a) .  intermediate (P) and negative (y) 
principal strain rates respectively). 

Townsend (1951) analysed the decay of temperature a t  the centre of a heat spot 
in a steady, uniform straining field, and obtained analytic solutions in terms of the 
principal strain rates. Measurements were then made of the peak temperature of heat 
spots in decaying grid turbulence. Townsend (1951) argued that the experimental 
data are consistent with analytic solutions, with the assumption of the persistence of 
strain, and with values of (a) .  (p) and (y) consistent with the measured mean 
dissipation rate (s). Further, persistent straining leads to a maximum cooling rate. 
and hence, if strain were not persistent, higher peak temperatures would be observed. 

Monin & Yaglom (1975) describe this evidence for the persistence of strain as 
'indirect (and not very convincing)'. But nevertheless, perhaps because of its 
convenience, the paradigm of the persistence of strain has lasted for forty years 
without further quantitative support. 

I t  is interesting that. in his 1952 paper on material element deformation. Batchelor 
does not invoke the persistence of strain. But, in dealing with the same topic in their 
1956 review, Batchelor & Townsend do so, and elaborate on the consequences. 

One consequence is that a material line element becomes aligned with the 
direction P of maximum extensive strain rate, a .  In  other words, the acute angle 
r (0< r 6 in)between b and P is zero. I t  follows from this alignment that the mean 
strain rate [ on a material line is (a) .  For we have: 

= (Y,Y,Su)= (a). 
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Table 1 Stntlstics fionl the n\. dntn oj Ehzlng 4. Pope (1989) 

r a r  (InE )  0.828 0.910 0.966 
Aatrless factor of Ine 3 12 3.15 3.14 
T,/T,, 5.15 0 8.36 

(The first line in this equation is true in general, while the second depends on the 
persistence of strain.) Batchelor & Townsend then provide the estimate 

(a) z 00.43/7,, (10) 

which is accurate. 
Since. in inviscid flow, vortex lines move as material lines, there is a tenuous 

analogy between the behaviour of these lines in (viscous) turbulent flow. If this 
analogy is accepted, then the first hint that straining is not persistent came from the 
DXS study of Xshurst et al. (1987). For these authors found (in isotropic turbulence) 
the \-orticity vector to be preferentially aligned with the intermediate strain 
direction I ( t ) ,rather than with P ( t ) .  

Direct evidence is provided by the DSS results of Girimaji & Pope (1990). As 
mentioned. if straining is persistent. the angle r between P and b is zero. If. on the 
other hand, b is randomly oriented relative to P then (T) is unity. The DXS result 
is ( r )= 0.91. much closer to random orientation than to perfect alignment. 

In  the same simulations, the mean of the maximum extensive strain rate is found 
to be (a) = 0.40/7,. within 10 % of Batchelor & Townsend's estimate (equation (10)). 
but the mean strain rate on a material line is found to be 6 = 0.14/~,, .smaller than 
the persistence-of-strain value (i.e. (a)) by a factor of 3. 

3. Lagrangian timescales 

In  this section we present and discuss the lagrangian timescales of acceleration A(t) 
and strain rate S,,(t) obtained from the DSS studies of Girimaji & Pope (1990) and 
Yeung & Pope (1989). In  both cases. the flows simulated are homogeneous isotropic 
turbulence. made statistically stationary by artificially forcing the large-scale 
motions. Taylor-scale Reynolds numbers R, in the range 38-93 are obtained. n hile 
excellent spatial and temporal resolution is achieved on the 64, and 12g3 grids used. 

The quantities considered are.  a component of acceleration, Al(t) (A, and A, are 
statistically identical): the acceleration magnitude A(t) = IA(t)l; a component of 
normal strain rate S,,(t) ; the strain rate on a material line Xl(t) = b, b, X,, ; the strain 
rate on a material surface Xa(t) : and the dissipation rate s(t) = vX,, X,,.After an initial 
transient period (of about 10 Kolmogorov timescales). all these quantities are 
stationary random functions. Their one-time statistics are comprehensively described 
in the original works. For the present purposes. the important observations are that  
the one-time distributions of T,X, and r7Xa appear to be independent of Reynolds 
number. and that  1nA and In 6 are approximately normally distributed n-ith their 
variances increasing weakly n-ith R, (see table 1) .  

Taking ~ ( t )  as an example. autocorrelations are defined by 
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Figure 1. Ratio of lagrangian velocity integral timescale T, to the Kolmogorov scale 7, as a function 
of Taylor-scale Reynolds number. Prom ~ r ; sdata of Yeung & Pope (1989).Line is least-squares fit. 

where the denominator is the variance. Then lagrangian timescales are defined by 

Thus we define TA. T,,,. TSl1. TsL, T,,, 7: and T,,, and also the lagrangian velocity 
integral timescale T,. For all these quantities, the autocorrelations decrease 
monotonically with s (more rapidly than s-l for large s). and hence equation (12) 
provides a good definition of a timescale. 

The component acceleration A,(t), being the derivative of a stationary random 
function (i.e. A,(t) = dL;(t)/dt), has an autocorrelation function pAl(s) with a large 
negative loop. whose integral (cf, equation (12)) is zero. In place of equation (12) then, 
we define the lagrangian timescale TA1 to be the smallest positive time a t  which pAl(s) 
is zero. 

These lagrangian timescales are presented below. normalized either by the 
Kolmogorov timescale r, ( ( t ) /v ) - i  (characteristic of the small-scale dissipative 
motions) or by the lagrangian velocity integral timescale Tu (characteristic of the 
large-scale energy -containing motions). 

Figure 1 shows T,/rl. i.e. the ratio of characteristic large-scale to small-scale times, 
for the different Reynolds numbers of the simulations. Here, and for all the figures 
in this section, the straight line is a least-squares fit to the data. I t  may be seen from 
figure 1 that there is a modest separation of scales Tu/rl = 5-8.5, and that this 
separation increases by about 70 % over the Reynolds number range. Of course one 
would like to achieve a larger separation and a larger range. but clear conclusions can 
nevertheless be drawn from the data. 

Figure 2 shows the acceleration timescales normalized by 7,. A striking 
observation, which presumably contains a measure of chance, is that TA1 is within 
2 % of 2 . 2 ~ ~  dofor each of the five simulations. I t  is equally clear that TA and T,,, 
not scale with 7,. Figure 3 shows the same data. but this time with normalization by 
T,. I t  may be seen that TA/T, and T,,,/T, decrease slightly with R,. and that there 
is some scatter in the data. 

From figures 2 and 3 we draw the conclusion that the timescale of the component 
acceleration TA1 scales with rl. while TA/r7 and qnA/r7increase with R,. 

I t  may, a t  first sight. appear inconsistent that TA1 and TA scale differently. We now 
elaborate on the explanation for this difference. first given by Yeung 8: Pope (1989). 

The lagrangian acceleration can be written 
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Figure 2 Figure 3 

I 
 0.2-


1 

' 4 0 '  60 80 100 O' 40 60 80 100 


RA RA 
Figure 2. Lagrangian acceleration timescales normalized by T ,  against Reynolds number. e. T,,/T,; 
m ,  TA/7,:A. TnA/7,.From DXS data  of Yeung & Pope (1989). 

Figure 3. Lagrangian acceleration timescales normalized by T, against Reynolds number. Same 
data  and symbols as figure 2. 

where e(t) is a unit vector (containing the directional information) while A(t) is the 
amplitude. With the plausible approximation that e( t ) and A(t) are independent. the 
autocorrelations are related by. 

where V - var(A/(A)) x 0.6. Given the general condition on autocorrelations 
IpA(s)l< 1%it follows from equation (14) that 

Thus irrespective of p,(s) (however large TA/rq) the timescale T,, can be no larger 
than that of pel(s); and it  is found that this timescale scales with r,,. 

In summary, directional information is lost in a time of order r, and hence TA1 
scales with 7,. On the other hand, as figure 2 shows. the timescale of the amplitude 
T, increases relative to 7, as RAincreases. These observations are consistent with the 
relation between the autocorrelations, equation (14). 

The same conclusion appears to hold for the lagrangian timescales of straining. The 
component X,, contains directional information, whereas s E vS,,X,, is a measure of 
straining amplitude. I t  may be seen from figures 4 and 5 that TSl1 scales with r,, 
whereas z,,/r, increases with RA. 

The rate of strain S,  on a material line, and that on a material surface S,, also 
depends on directional information. namely the orientation of the element. I t  may 
be seen that their timescales Tsl and Tsa scale with rq,consistent with the previous 
results. 

The lagrangian strain rate timescales can be used directly to test the notion of 
persistence of straining. Taking r,,,,,, = l/(a) x 2.57, as the characteristic strain 
timescale, and rehang,= TSl1 as the characteristic time of the rate of change of strain, 
we obtain rchange/rstrain a =x 0.9. Alternatively, for material line, taking rstrain 
1/[ x = x 0.2. By either measure. it  is 7rq and rehang, TS1. we obtain rcha,ge/rstra,, 
clear that the persistent-of-strain criterion rcha,ge/rstra,,% 1 is far from satisfied. 
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Figure 4 Figure 5 

Figure 4. Lagrangian strain rate timescales normalized by T ,  against Reynolds number. e. TsI l / r , ;  
A.TS1/r,,;a.TS,/r,,:m ,  q,,c/~,.From DXS data  of Yeung & Pope (1989)and Girimaji & Pope (1990).  

Figure 5. Lagrangian strain rate timescales normalized by T,against Reynolds number. Same data  
and symbols as figure 4. 

Figure 6 Figure 7 

817, 
817 ,, 

Figure 6 .  Autocorrelatlons of In s ( t )for R, = 38,63 and 93. From DNS data  of Yeung & Pope (1989). 

(p,,,(s) increases ~71th R,.) 

Figure 7. Sa tura l  logarithm of p,,,. Same data  as figure 6 .  


4. Lagrangian dissipation 

We now examine more closely the temporal structure of the lagrangian 
dissipation. 

Figures 6 and 7 show the autocorrelation functions of In ~ ( t )  = 38. 63 obtained a t  R, 
and 93. Figure 7 shows. for large SIT, ,  an approximately exponential decay 

PI,, = "XP ( - S I T * ) .  (16)  

with the timescale T* increasing with R,. On the other hand, for small SIT,, figure 6 
suggests that the autocorrelations have a similar shape. with little dependence on R,. 
Phil.Trans R. Soc. Lond. A (1990)  



316 S.B. Pope 

These observations. together with conventional notions of internal intermittency, 
suggest that  e(t) can be approximated by the decomposition: 

where s, and e, are independent. positive, stationary random functions. By 
assumption e,, is universal (independent of R,) and, without lack of generality. its 
mean is taken to be unity. The similarity of the autocorrelation functions a t  small 
time is attributed to the universality of s,. The second random function s, is not 
universal. and accounts for the intermittency of dissipation. I t  also accounts for the 
different observed behaviour of the autocorrelations a t  large s/r,. ( I t  follows from the 
above that  (s,) is also unity.) 

I t  is convenient to work in terms of logarithms, and hence we define the stationary 
random functions 

~ ( t ' )= ln s,(t'). (18) 

and $(t')  = In sL(t'), (19) 

where t'denotes a non-dimensional time variable. Again, ~ ( t ' )is universal whereas $(t') 
is not. The variances of Q(t') and $(t') are denoted by V$ and J$. and their 
autocorrelation functions are p$(s") and p$(s"). 

With these definitions, from equation (17) the relation between the variances is 
found to  be 

var (In s) = V$+ Vv. (20 

I n  view of the assumed universality of s, and hence Q. V4 is a constant. Thus the 
observed weak increase of var (In s) with RA (see table 1) is attributed to a similar 
increase of V$. Also from equation (17). the autocorrelation functions are found to be 
related by 

pl,,(s) = +~J~$P$(s/T,).* ~ $ P $ ( s / ~ , )  (21) 

where .If,+- V4/(V$+V$). All$- Vv/(V4+V$). (22) 

To determine whether equation (21) can account for the observed autocorrelations 
we need specific forms for p$ and p$. To this end we introduce the generic 
autocorrelation function. defined in terms of a parameter p, 

This is, perhaps. the simplest analytic expression that  is symmetric about s = 0, and 
that  yields exponential decay for large s (cf. equation (16)). We then specify 

and 

where pi ,pg . rp/rTand rp/T, are supposed to be constants. 
Ll'ithout systematic optimization. we find that  a reasonable approximation to the 

observed autocorrelation functions is obtained with 

(Values of var (lne) and T,/r, are taken from DNS (see table 1) to complete the 
specification.) The comparison between the observed and modelled autocorrelations 
is 8hou.n on figures 8 and 9 for the three lieynolds numbers R, = 38, 63. 93. 
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Figure 8 Figure 9 

5/7,, 5 / 7 ,  

Figure 8. Autocorrelations of lnc(t) for R, = 38, 63, 93 both from DNS and according t o  the model 

(equation (21)).  


Figure 9. Natural logarithm of p,,,. Same data  as figure 8. 


Figure 10. Autocorrelations of lnc(t) for R, = 38. 63 and 93. Cpper three curves, DNS d a t a ;  middle 
three curves (a t  s = 0), model contribution ,W4p4; lower three curves (at  = 0), model contribution 
from M@pi. At s = 0, ,Mipi increases with R, while 'Ifd pd decreases. 

Figure 10 shows the observed autocorrelations together with the modelled 
contributions from q5 and +, namely lK4p4 and 1W$p$ (see equation (21)).It may be 
seen that a t  the origin decreases and ,!Ii increases with R,, because of the increase 
of the variance T$. At these Reynolds numbers about 60 % of the variance (and hence 
of p,,,(O)) is due to the universal. small-scale component #. But for large times, 
SIT?> 8 say, the autocorrelation is due entirely to the large-scale contribution $. 

I t  is observed that 1ne is approximately normally distributed (see table 1 and 
Yeung & Pope 1989). I t  is consistent, then, to assume that # and $ are normal, and 
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0 10 20 3 0  40 0 1 0  20 3 0  40 
t /T1  t / T 1  

Figure 11 .  Sample time series of In e ( t ) .  ( a )  From DM data of Yeung & Pope ( 1 9 8 9 ); ( b ) according 
to the gaussian model In E = q5 +@ ; ( c )contribution $ ( t )to  the gaussian model ; ( d )contribution k ( t )  
to  the gaussian model. For ( a ) and ( b ) the horizontal lines show (lne) for each of the eight series 
shown, and the tick marks are a t  unit standard deviation intervals. ( c )and ( d )are on the same scale. 
The time series on ( b ) are the sums of those on ( c ) and ( d ) .  

we further suppose that  they are gaussian processes. This last, rather strong 
assumption is made so that sample time series of Ins can be reconstructed from the 
modelled autocorrelation. (Yeung & Pope 1989 find that lns(t) is not a gaussian 
process; for example. the flatness factor of its derivative is 11, rather than the 
gaussian value of 3.) 

For R,= 93, figure 11 a-d shows, respectively: 
(a) sample time series of In s(t) from DNS ; 
(b) sample time series of In s(t) constructed from the modelled autocorrelation. 

with the assumption that $(t) and @(t) are gaussian processes; 
(c) the modelled small-scale contribution #(t) : 
(d) the modelled large-scale contribution $(t). 

The one-time distributions and the autocorrelations of the DXS and modelled time 
series (figure l l a ,  b) are essentially the same, as is plausible by observation. But 
nevertheless the eye is capable of detecting a qualitative difference between the time 
series which, presumably, is due to the non-gaussianity of the process In s(t). In  spite 
of this limitation of the gaussian model, it is informative to observe the very different 
contributions ma,de by $(t) and $( t )  (figure 11 c. d) .The relatively long timescale and 
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small variance of the latter is clearly evident; it is this contribution that accounts 
entirely for the tail of the autocorrelation. 

In summary, a gaussian model has been constructed for the process lne(t) which 
reasonably accounts for the Reynolds number dependence of var (lne) and p,,,(s) 
(over the R, range considered). According to the model, In e has a universal small- 
scale contribution #(t) (of timescale r7)and an independent large-scale contribution 
$(t) (of timescale T,). 

The extrapolation of the model to high Reynolds number is interesting, but 
requires several caveats. The model's prediction is that  the variance of y? increases 
with RA,while that of 4 remains constant. Thus a t  sufficiently high Reynolds 
number, the large-scale contribution y? dominates, and the small-scale contribution 
4 is negligible. It would be rash to suppose, however, that a t  high Reynolds number 
the autocorrelation of lne can be characterized by the single timesoale T,. 

I am grateful to Professor J. L. Lumley and Dr D. C. Haworth for discussions concerning 
dissipation time series. The assistance of Dr P .  K .  Yeung and A. T.  Korris with the DKS data is also 
gratefully acknowledged. 
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