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Recently Pope and Chen [ Phys. Fluids A 2, 1437 ( 1990) ] developed a turbulence model based 
on the one-point Eulerian joint probability density function (pdf) of velocity and dissipation. 
The modeling is performed by constructing stochastic processes for the velocity and dissipation 
following fluid particles. In the original work, these models were constructed by reference to 
the known statistics of homogenous turbulence, and the applicability of the model was 
restricted to this narrow class of flows. In this paper the model is extended to inhomogeneous 
flows, and calculations are presented to demonstrate aspects of the model’s performance. The 
model equation admits a similarity solution corresponding to the log-law region of the 
turbulent boundary layer, and the principal statistics obtained from this solution are in good 
agreement with experimental data. Application of the model to the momentumless wake and to 
the plane mixing layer demonstrate its ability to represent turbulent/nonturbulent 
intermittency in these free flows: in the intermittent regions, the pdf of dissipation is bimodal, 
with a spike at zero corresponding to nonturbulent fluid. Fluid-particle paths in the turbulent 
mixing layer obtained from the model correspond to large-scale coherent motions, rather than 
to the small-scale incoherent motion characteristic of diffusive transport. 

I. INTRODUCTION 

There is a continuing need for turbulence models capa- 
ble of calculating the inhomogeneous turbulent flows that 
occur in engineering equipment and elsewhere.‘s2 Most 
models in current use are one-point closures, such as the k-e 
model,3*4 or Reynolds-stress models.5-7 In spite of some of 
the sophisticated modeling techniques that have been devel- 
oped, it should be recognized that at each point in a complex 
inhomogeneous turbulent flow, these models characterize 
the state of the turbulence by just a few numbers-by the 
values of k and E, or by the six Reynolds stresses and E. And 
at some level, turbulent transport is modeled as gradient dif- 
fusion. 

Probability density function (pdf) methods’ offer the 
possibility of a much more comprehensive description of the 
turbulence, and the complete avoidance of gradient-diffu- 
sion modeling, while still being tractable computationally. 
Recent applications of pdf methods (reviewed by Pope’ ) 
include calculations of two-dimensional recirculating 
fl~ws,~*‘~ and calculations of the two- and three-dimensional 
time-dependent flow in spark-ignition engines.“*‘2 

Until recently, the most comprehensive pdf model has 
been based on the one-point Eulerian joint pdf of velocity 
and composition. 13+* While this pdf describes the distribu- 
tion of velocities, its description of the turbulent motions is 
seriously deficient, in that it provides no information on 
their length or time scales. To remedy this deficiency, Pope 
and Chen14 recently developed a model based on the joint 
pdf of velocity and (the instantaneous) dissipation rate. This 
model was developed by reference to the known statistics of 
homogeneous turbulence, and in its original form it is re- 
stricted to homogeneous turbulence. In this paper the model 
is extended to the general case of inhomogeneous flows, and 
calculations are made to demonstrate its performance. 

As is in previous pdf studies,2,8*‘3,‘4 we adopt the La- 
grangian view in performing the modeling. Specifically, we 
construct stochastic models [U*(t) and e*(t) ] for the ve- 
locity and dissipation following a fluid particle. By defini- 
tion, the position of the fluid particle x*(t) moves with the 
velocity U*(t); while (by assumption) U*(t) and e*(t) 
evolve according to coupled diffusion processes.‘.” 

These stochastic models lead to an evolution equation 
for the one-point Eulerian joint pdf of velocity and dissipa- 
tion. This procedure effects a closure, since the coefficients 
in the joint pdf equation are Eulerian statistics of velocity 
and dissipation that can be deduced from the joint pdf itself. 
And the coefficients in the diffusion processes for U*(t) and 
e*(t) are functions of U*(t), e*(t) , and Eulerian statistics 
evaluated at x* ( t ) . 

In Sets. II and III the stochastic models for c*(t) and 
U*(t) are extended to inhomogeneous flows, and the corre- 
sponding joint pdf equation is presented in Sec. IV. Calcula- 
tions are presented in Sec. V for three flows: the log-law 
region of the turbulent boundary layer; the momentumless 
wake; and the plane mixing layer. The results demonstrate 
the quantitative accuracy of the model in strongly inhomo- 
geneous flows, including its ability to represent realistically 
turbulent/nonturbulent intermittent regions. 

The development of turbulence models involves many 
decisions-in particular, about the forms of constitutive re- 
lations. In making these decisions, the overriding criterion 
used here is simplicity. At the given level of closure, the 
model is designed to be as simple as possible, while being 
qualitatively correct and quantitatively reasonable. The 
model is aimed at moderate and high Reynolds number 
flows, but contains no Reynolds number dependence. There 
is no doubt that there is scope for improving the accuracy 
and generality of the modeling, including the incorporation 
of Reynolds number effects. But such improvements are best 

1947 Phys. Fluids A 3 (a), August 1991 0899-8213/91/081947-l 1$02.00 @  1991 American Institute of Physics 1947 

Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



made in the light of experience with the basic model present- 
ed here. 

il. STOCHASTIC MODEL FOR DISSIPATION 
A. Definitions 

We consider the turbulent flow of a Newtonian fluid of 
constant density p and kinematic viscosity v. At position x 
and time t, the Eulerian velocity is U(x,t) with mean (or 
mathematical expectation) (U(x,t)) and fluctuation 
U(W), 

U(x,t) = WW)~ + u(x,t). (1) 
The turbulent kinetic energy is 

k(x,t) = $(u(x,t)*u(x,t)). (21 
For reasons given by Pope and Chen,14 rather than the 

true dissipation, we consider the pseudodissipation defined 
by 

au. au. e(x,t)=v -2 , ( ) ax, axj (3) 

which henceforth is referred to as “dissipation.” 
For the development that follows, it is convenient to 

define dissipation-weighted means, which are denoted by a 
tilde; for example, 

hf) = W(XJk(W ~/(ow~ (4) 
and 

f(x,t) ~+lE)/(E). (5) 
Note that, in Eq. (5), the regular fluctuation u is used, rather 
thannELl--0. 

For homogeneous turbulence, the model of Pope and 
Chen14 yields a joint-normal solution: specifically the one- 
point, one-time Eulerian joint pdf of U and In E is joint nor- 
mal, with In E being uncorrelated with l-l. We refer to this 
solution as pertaining to Gaussian homogeneous turbulence 
(GHT), and we require the model developed here to revert 
to GHT in the appropriate circumstances. 

In GHT E( x,t) is independent of u( x,t) (because U and 
In E are uncorrelated and joint normal). Hence dissipation- 
weighted and regular velocity statistics are the same. For 
example, we have 

k(x,t) : k(x,t), (6) 
G 

where = denotes equality for Gaussian homogeneous tur- 

bulence. 
The position, velocity, and dissipation of a fluid particle 

aredenotedbyx+(t),U+(t),e+(t),andsimilarlyforany 
other property. By definition, the position evolves by 

dx+ (f) v=UC(f), (7) 
dt 

while the relationship between other Lagrangian quantities 
and the Eulerian fields is, for example, 

E*(t) = E(Xf [t ],t). (8) 
The stochastic models to be developed, U*(t) and 

e*(t), are models for the corresponding Lagrangian proper- 
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ties U + (t) and e + (t). The modeled particle’s position 
x*(t) then evolves by 

dx*(t) -u*(t) 
dt 

B. Relaxation rate 
The relaxation rate w( x,t) is defined by 

w(x,t) = E(X,tv&X,t), (10) 
which is a mixed variable in the sense that E is random, 
whereas R is not, As in Pope and Chen14 we use w( x,t) as a 
primary variable rather than E(x,t). The main reason is that 
(on dimensional grounds) it is possible to write a model 
evolution equation for w* solely in terms of w* itself: dw*/dt 
has the same dimensions as w*’ (or (w)“). On the other 
hand, an evolution equation for E must also involve statistics 
of u: d@/dt has dimensions of P’/k. 

The use of k rather than k in the definition ofw [Eq. 
( 10) ] has a purely pragmatic justification. In intermittent 
regions-such as the edge of free shear flows--k is consider- 
ably larger than k. Consequently, for given (w), Eq. ( 10) 
yields greater mean dissipation ((E) = (w)E) than if the 
unweighted kinetic energy were used. It is found that this 
enhanced dissipation significantly improves the model’s per- 
formance. 

It may be seen from Eqs. (4) and ( 10) that o-weighted 
means are identical to e-weighted means. 

C. Model for Gaussian homogeneous turbulence 

We review now the model for w*(t) developed by Pope and 
Chen14 for GHT . 

The relaxation rate w*(t) evolves according to the Ito 
stochastic differential equation” 

du* = - w*(w)dt(S, + C, [ ln(w*/(w)) - t”]] 

+w*(2C&~+?)“~dW, (11) 
where W(t) is a Wiener process. This equation is perhaps 
best understood in terms of the statistical properties of w* ( t) 
that it produces, or in terms of the statistics of 

X*(t)~ln[W”(t)/(w(t))l. (12) 
Equation ( 11) implies that x* ( t) is an Ornstein-Uhlenbeck 
process I5 with mean - $?, variance &, and time scale 

T\ = [C,(o)] --I. (13) 
That is, x*(t) is a Gaussian process with autocorrelation 
function exp( - It ]/TV ) . Thus w*(t) is lognormally dis- 
tributed. For the mean, Eq. ( 11) yields 

a’(o) -= - (w)?z,. 
dt 

The coefficients in Eq. ( 11) have now been identified: 2 
is the variance of In w*; C, is a proportionality constant 
between the time scale TX and (w) - ‘; and S,, is the normal- 
ized decay rate of (w). For reasons given by Pope and 
Chen,44 the values d? = 1.0 and C, = 1.6 are specified. A 
specification ofS, that is consistent with the standard model 
equation3b4 for (E) is 
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s, = (Cd - 1) - cc,, - l)P/(4, (15) 
where P is the production rate of k, and C,, and C,, are 
standard model constants. 

D. Model for inhomogeneous flows 

The model stochastic differential equation for w* (t) ap- 
plicable to inhomogeneous flows is first presented, and then 
contrasted to Eq. ( 11). The equation is 

da* = - w*(w)dt 

xb + +(-3 - (3 ed)ll 
+ (a)‘h dt + w*(2Cx(w)a2)“* dW. (16) 

Note that means [e.g., (w(x,t))] and coefficients [e.g., 
h (x, t) ] depend on both position and time. 

Comparing Eq. ( 16) to Eq. ( 11)) it may be seen that the 
diffusion coefficient (that multiplies d w) is unchanged. In 
the drift coefficient, $? [in Eq. ( 11) ] has been replaced by 

($$ln(-&)) 4 +d. (17) 

This is done so that, in the equation for the mean (w), the 
terms in CY vanish, irrespective of the distribution of w* (t). 

If the expression for the production P given by the k-e 
model”p4 is substituted into Eq. ( 15)) the result is 

s, = - c,,sijsij/(w)* + co*, (18) 

where S,, is the mean rate of strain: 

IJ,,=L a(ul) + a(uj) 
‘J 2 ( ax, -xy ) 

(19) 

and the constants C,, and C,, are related to the k-e model 
constants by 

c,*, =2CJC,, - 1) (20) 
and 

c,, = c,, - 1. (21) 
We use Eq. ( 18) to specify S,, with C,, = 0.9 (consistent 
with the standard value C,, = 1.9), and C,, = 0.04, which 
is significantly less than the value 0.081, consistent with 
C,, = 0.09 and C,, = 1.45. The choice of C,, is discussed in 
Sec. V. 

For several reasons, the specification of S, is regarded 
as being provisional. First, a combination of the mean rate of 
strain and the mean rotation may be more appropriate.6 Sec- 
ond, the expression [ Eq. ( 18) ] involves w* only through its 
mean. Since at this level of closure the distribution of w* is 
known, it is likely that more of this information could be 
used to produce a more accurate constitutive relation for S,. 

For Gaussian homogeneous turbulence, w*(t) is log- 
normally distributed, and hence there is zero probability of 
w*(t) being zero. For inhomogeneous flows, however, this is 
not the case, and the behavior of the model for w*(t) = 0 
needs careful consideration-and, it transpires, the intro- 
duction of the term in h in Eq. ( 16). 

Consider, for example, a fluid particle that is initially 
remote from a turbulent jet issuing into nominally quiescent 

surroundings. At first, the particle moves with the slow, irro- 
tational flow induced by the jet. The fluctuations (in veloc- 
ity, strain rate, etc.) are initially very small, but increase as 
the particle nears the jet.16 The particle is then entrained and 
becomes part of the fully turbulent motion within the jet. 

Remote from the turbulent jet (w(x,t)) is zero. This 
cannot be deduced from the definition (0) = (e)/k, since 
both (E) and k tend to zero with distance from the jet. But 
experimental data (see, e.g., Townsend” ) and theory’6**8 
both indicate that (E) decreases with distance from the jet 
more rapidly than does R. Thus the fluid particle considered 
starts with the value o* = 0, which increases to a strictly 
positive value as the particle is entrained into the turbulent 
flow. 

With this particle in mind, we examine now the behavior 
of Eq. ( 16) (with h = 0) with the initial condition w* = 0. 
The first observations is that the equation is well defined, 
since In w* only appears as o* In w* (which is finite for all 
finite w*)O). Second, with the initial condition w* = 0, the 
solution to Eq. ( 16) (with h = 0) is that w* remains zero for 
all time. It is clear, then, that a modification to the model for 
w* is needed to provide a mechanism by which o* can depart 
from zero as the particle is entrained into the turbulent flow. 

Two types of modifications are possible: a jump process 
could be added; or an additional drift term could be included 
in Eq. ( 16). Physical arguments can be mustered for both 
options, but our detailed knowledge of the entrainment pro- 
cess is insufficient to provide clear judgment between them. 
For simplicity, and to retain continuous sample paths w*(t), 
we choose the latter option, and add the drift term in h to Eq. 
(16). 

The additional drift coefficient H, say, [i.e., h (w)’ in 
Eq. ( 16) ] is required to satisfy the following conditions: 

( 1) H = 0 for Gaussian homogeneous turbulence (so 
the model reverts to that of Pope and Chen in GHT) [the 
requirement H = 0 is so that the lognormal solution for w* is 
recovered for GHT. But in fact, we require more: we require 
that the form of H does not make this solution unstable. See 
the discussion above Eq. (26) ] ; 

(2) H = 0 for (w) = 0 (so that w* remains zero in a 
region of fully nonturbulent fluid); and 

(3) H>Oforw* =Oand (w)>Oinnon-GHT (sothat 
w* increases from zero in intermittent regions). 
These conditions are satisfied by the chosen form 

H = (a)*/~, (22) 
where h is a non-negative mean quantity [independent of 
w*(t) ] that is zero in GHT. 

The specification of h is based on the fractional moment 
p,,* = (cB”*)/(m)“*, (23) 

which is bounded by zero and unity, and for Gaussian homo- 
geneous turbulence takes the value 

G 

h/2 =h/ZG = e 
- 02/S 

. (24) 

(With a2 = 1, ,u,,~~ ~0.8825.) 
To illustrate the significance of p,,*, we consider a re- 

gion of turbulent/nonturbulent flow with intermittency fac- 
tor y. Suppose that w* is zero with probability ( 1 - y), and 
that it is lognormally distributed (with parameter d?) with 
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probability y. Then it is readily shown that 

pk/2 = Y l/2 
p1/2G* (25) 

In general, then, we expect that in intermittent regions ,u,,* 
is less thany,,,,, and that it tends to zero as a fully nontur- 
bulent state is approached. The numerical calculations re- 
ported below confirm this expectation. 

Nevertheless, we need to consider the casep ,,* >p,,,*c. 
An effect of the term in h (for h > 0) is to increase ,u,,, as 
time evolves. Thus if h is positive for p 1L2 >,Y ,,2G, the efIect 
of the term is to drive the distribution yet farther away from 
the GHTsolution. In other words, the term makes the GHT 
solution unstable. To avoid this difficulty we simply specify 

h = 0, for Pi/2 >p1/2G- (26) 
And for the usual case we specify 

h=Cd -h1/2h%/2G)2s for ,%2~,41/2G~ (27) 
with C,, = 1. In Eq. (27) the expression in brackets (which 
is zero in GHT) is squared, first, to make h once continuous- 
ly differentiable with respect to ,u ,,,* ; and, second, to reduce 
the influence of the term near the GHT limit. 

While comprehensive systematic testing has not been 
performed, it nevertheless appears that the calculations re- 
ported below are insensitive to the precise specification of h, 
including the value of C,, . 

Finally, we mention an implicit assumption that has 
been made. The equation for w*(t) applicable to inhomo- 
geneous flows has been developed simply by extending the 
model for GHT with a minimum of modification. In particu- 
lar, no terms in Vk or V(w) have been added. An alternative 
approach would be to extend the model for e*(t), and then 
to use the definition of w* (t) [ Eq. ( 10) ] to derive the corre- 
sponding model for w*(t) . This latter approach would, in 
comparison to Eq. ( 16), produce an additional term of the 
form 

dw* = . . . - o*dtu**Vln,&*.+. (28) 
Since we do not include such a term, we are implicitly assum- 
ing that (in the absence of all other effects) w*, rather than 
E*, is conserved as the fluid particle moves through an inho- 
mogeneous I% field. 

In summary: for inhomogeneous flows, o*(t) evolves 
by the stochastic differential equation, Eq. (16), with S, 
given by Eq. ( 18)) and H given by Eqs. (26) and (27). The 
values of the constants are b? = 1.0, CX = 1.6, C,, = 0.04, 
C,, = 0.9, and C,, = 1.0. For Gaussian homogeneous tur- 
bulence the model reverts to that of Pope and Chen,14 ac- 
cording to which w*(t) is lognormally distributed, and 
x*(t) = In I: w* ( t)/( w) ] is an Ornstein-Uhlenbeck process 
with variance c? and time scale TX = [ Cx (co) ] - ‘+ The 
principal modification required for inhomogeneous turbu- 
lence is the addition of the drift term in h, which allows 
w*(t) to increase from zero. 

III. STOCHASTIC MODEL FOR VELOCITY 
A. General form 

We now develop a stochastic model U*(t) for the veloc- 
ity U+ (t) following a fluid particle. Both the stochastic 

model of Pope and Chen,14 and the generalization developed 
here can be written as 

dfJ*- s.w!?@) I - -dt + Di dt f (Cot*)“* dW;, 
P axi 

(29) 

where Di is the drift coefficient (discussed below), C, is a 
constant (ascribed the value C, = 3.5)) and W(t) is an iso- 
tropic Wiener process, with the properties 

(dWi} = 0, (dW, dWj) = dt6,. (30) 
Assuming that the mean viscous forcepvV*(U) is negli- 

gible, conservation of mean momentum requires 

(dU,) = ’ ‘k)& 
-pz ’ 

(31) 

which in turn requires that the drift coefficient be con- 
strained by 

(Di) = 0. (32) 
The diffusion term (involving E* = kw* ) models the 

fluid-particle acceleration on the smallest time scales. With 
the assumed local isotropy at high Reynolds number, the 
model developed for Gaussian homogeneous turbulence is 
applicable to inhomogeneous flows. 

B. Model for Gaussian homogeneous turbulence 

With the diffusion term unaltered, the development 
centers on the drift term D,. The extension of the model to 
inhomogeneous flows is performed by requiring that certain 
basic properties be preserved. These properties are described 
in this section. 

For Gaussian homogeneous turbulence, the primary ef- 
fect of the drift term D, is seen in the corresponding Reyn- 
olds-stress equation. From Eq. (29) (for GHT) we obtain 

-$ (up,) + (UjUl) F + (up,> -Y&y--- 
au.4) =R, 

‘/’ 
I I 

(33) 
where 

R, = (Diuj) + (Djui) + co(~)Sb* (34) 
The terms on the left-hand side of Eq. (33 ) represent the 
time rate of change and production. The terms on the right- 
hand side of Eq. ( 34) model the effects of the pressure-rate- 
of-strain and dissipation. Thus R, corresponds to the mod- 
eled terms in a Reynolds-stress closure. 

For GHT the model of Pope and Chen14 is 
D, = D (‘I + D !*’ f D !3) 

= - (4 + ~Co,(~)U? + G$,* 

- SC, (cd* - (w) )A &j” ‘u$ (35) 
where D (‘I, D f2), and D i3) are defined by the three terms on 
the second line of the equation. Here u* is the fluctuation 
relative to the local Eulerian mean: 

u*(t)EU*(t) - (U(x*(t),t)), (36) 
and G $ and A ,j: ’ are defined below. The contributions to R, 
made by D j “, D I”’ and D I”’ are now determined. 

We define R ii’ to be the contribution to R, from D I’), 
and from the diffusion term 
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R :,‘k (D yu,> + (DJ”U,) + C,(E)&. (37) 
Substituting D i” from Eq. (35) we obtain 

(I) _ 
R 0 - - (1 + ;C,)(w)(u,u,) + C&&j 

=- ( l + jcCJ l(U) ( ("iuj) - :k6Q 1 - :(E)8i,. 
(38) 

It may be seen, then, that this corresponds to isotropic dissi- 
pation ( - $( ~)a,, ), plus Rotta’s return to isotropy model.” 

On contracting Eq. (38) to obtain the trace R I”, the 
Rotta term vanishes, leaving 

tR I,” = - (E). (39) 
The second contribution to the Reynolds-stress evolu- 

tion is 

R ,+G;(u,u,) + G;(u,u,). (40) 
In general, G “, is a second-order tensor function of the Reyn- 
olds stresses and mean velocity gradients, constrained by the 
requirement 

AR b” = G;(uiuj) = 0. (41) 
In the calculations presented below we take G z to be zero, so 
that the corresponding Reynolds-stress equation [ Eq. (33) ] 
is just Rotta’s model. Alternatively, there is a choice of G “, 
corresponding to any (realizable) Reynolds-stress model. A 
specific form is given by Haworth and Pope.20*2’ 

In the third contribution D I” [Eq. (35)] A, is the nor- 
malized Reynolds-stress tensor 

A,, = (u,+(;k), 

= 3(u,uj)/(u/u[)9 (42) 

normalized so that in isotropic turbulence it is the identity 
A,, =S,. Then A,;’ is written for (A-‘),, i.e., the i-i 
component of the inverse of A. The term makes no contribu- 
tion to the Reynolds-stress evolution since (in GHT) 

R ;3’=(Dj3’uj) + (Dj3’u,) = 0. (43) 

(This follows from (wu,u,) z (w)(u,uj).) Even though it 
has no direct effect on ( uiuj ), the term in A 7 ’ is neverthe- 
less necessary to yield the required joint normality of u*(t) 
(in GHT).14 

Finally, we observe that the exact evolution equation for 
the kinetic energy k = &(uiui) requires 

iR,, = - (E). (44) 
Since the traces R :F’ and R I,“’ are zero [ Eqs. (41) and 
(43) 1, this requirement [ Eq. (44) ] is satisfied by R j/j [ Eq. 
(3911. 

C. Model for inhomogeneous flows 

In extending the model to inhomogeneous flows, no ad- 
ditional terms are introduced. The existing terms contribut- 
ing to D, [ Eq. (35) ] are modified to preserve the following 
properties: ( 1) (D,) = 0 (for consistency with mean mo- 
mentum conservation); (2) R i” [Eq. (37) ] corresponds to 
isotropic dissipation plus Rotta’s model [i.e., Eq. (38) 1; (3) 

R p’ is given by Eq. (40); and (4) and R i3’ [ Eq. (43) I is 
zero. 

Modifications are needed because for GHT the above 
properties follow from the definition of Di [ Eq. (35) 1, only 
because u* and w* are statistically independent. For the in- 
homogeneous case, on the other hand, (uw) is nonzero (in 
general), and the normalized Reynolds-stress tensor A, 
[ Eq. (42) ] differs from its w-weighted counterpart 

A,= (wuiuj)/(~(o>K, 

= 3(WUiUj)/(WU,U,). (45) 
The modified drift term, which has the four required 

properties, is 

Di = - (i+ ~C,)(~)(I;/k)u~ + G;uj@ 

-;C,[(k/j;)&y’(~*u~- (cq), 

-A,‘(w)uT]. (46) 

In the first term (D I”), the inclusion of the kinetic energy 
ratio is necessary so that, as in GHT, 

(&i/k = (c)/k. (47) 
The second term (D I”) involving G ; is unaltered. 

The third term (D ,‘“’ ) suffers more substantial modifi- 
cation. The mean (WU~) is subtracted to maintain (Di) = 0. 
In forming R r’ (which is zero), one contribution is 

(Uj(Ai;‘(u)U~))=(u)A,;‘(U,Uj) 

= Sk &)A i; ‘A, 

= jk (w&. (48) 
The term in 2, is constructed so that it cancels this contribu- 
tion: 

k 
z (uj[Ali;‘( WUl - b%) I] > 

= +” i; I(+ (o&l&) = -+ k to&. 

It may be observed that in GHT the vanishing of R r;.” is 
independent of the properties of A,. But here the properties 
of the inverses ofA, and Aii are exploited to effect the cancel- 
lation. 

[As discussed by Pope and Chen,14 the occurrence of 
the inverse A 0: ’ raises questions of ill conditioning for the 
limiting case of two-component turbulence, in which an 
eigenvalue ofA, tends to zero, and hence A i: ’ tends to infin- 
ity. To avoid such difficulties we replace A ; ’ and 2 ; ’ by 
their “modified determinant” counterparts, defined by Eq. 
(B3) of Ref. 14. Under normal circumstances this has a neg- 
ligible effect, but it ensures finite coefficients under all cir- 
cumstances. ] 

In summary, the stochastic model for velocity is modi- 
fied so that, for inhomogeneous flows, the forms of the Reyn- 
olds and Reynolds-stress equations are the same as in GHT. 
No new terms or parameters are added. The resulting sto- 
chastic differential equation is Eq. (29)) with the drift coeffi- 
cient given by Eq. (46). In the subsequent calculations G z is 
taken to be zero, so the only parameter in the model is the 
constant Co = 3.5. 
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IV. JOINT PDF EQUATION 

Having obtained stochastic models for U*(t) and 
o*(t), we now write down the corresponding model equa- 
tion for the one-point Eulerian joint pdfJ Then the equa- 
tions for the moments (Vi), (u,u,), and (w) are presented 
and discussed. 

Let V = { I’, , V, , I’, ) and ~9 be sample-space variables 
for velocity and relaxation rate, respectively. Then 
f( V,B;x,t) is defined to be the joint probability density of the 
compound event {U (XJ) = V, w (x,t) = 6). 

By standard techniques,* the evolution equation for f, 
obtained from the stochastic models [ Eqs. (9), ( 16), and 
(29)],isfoundtobe 

- (m)‘hT+ C,(w)a2 ” 
a0 

--+ cm. (50) 

Here Di (v) is the drift term [ Eq. (46) ] with u* replaced by 
VEV - (U(x,t)), (51) 

I 

and the coefficients S, and h are given by Eqs. ( 18), (26)) 
and (27). 

Before discussing the pdf equation [ Eq. (50) 1, we write 
down the corresponding model equations for mean continu- 
ity: the mean momentum (U,); the Reynolds stresses, 
(uiu,); and, the mean relaxation rate (0). These equations 
are obtained by multiplying Eq. (50) by 1, vi, uiuj, and 6, 
respectively, and integrating over all V and 6. The first two 
results are 

a(ui) o 
-= 

ax, 
(52) 

and 

a(ui) 
-Y&--f t”j) 

aw,1 1 JlP) 
,-+$(cQ = ---a 

I i P  axi 

(53) 
The mean continuity equation is, of course, exact, as is the 
mean momentum equation, save for the neglect of the vis- 
cous term. From these two equations we obtain the Poisson 
equation 

a”@ - a(uj) a(q> a2(UiUj) 
axi axi --p ax, ax, -lo ax, ax, ’ (541 

which (with appropriate boundary conditions) determines 
the mean pressure field. 

The modeled Reynolds-stress equation obtained from 
Eq. (50) is 

=-(I+$ o) ( C (0) (UiUj) -~ kS, + GP,(uju,) + GY,(u,u,) -4 ) MS,. (55) 

It may be observed that (on the left-hand side) the produc- 
tion and transport terms (involving (UiUjU, }) all stem from 
the exact term V, i?f /ax, in the pdf equation, and hence in- 
volve no modeling assumptions. As discussed above, the 
right-hand side of Eq. (55) corresponds to modeled terms 
for the pressure-rate-of-strain and dissipation. 

The modeled equation for (w) obtained from Eq. (50) 
is 

+ m& (up> = - (w)~(S,,, - h). 
I 

(56) V. CALCULATIONS 
Returning now to the pdf equation [ Eq. (50) 1, we em- In the next three subsections, calculations of three inho- 

phasize that this is a single, self-contained, model equation mogeneous turbulent flows are presented to demonstrate the 
for inhomogeneous turbulent flows: any solution f( V, 8; x,t) satisfactory performance of the joint pdf model. The mod- 
implies the satisfaction of all moment equations-mean con- eled joint pdf equation has been constructed so that it reverts 
tinuity, momentum, etc. Equation (50) is written as a partial to the model of Pope and Chen14 for Gaussian homogeneous 
differential equation in V-8-x-t space. But, in fact, it is an turbulence. That model, in turn, yields the same satisfactory 
integrodifferential equation. For most of the coefficients 
[e.g., (w( XJ)) and k(x,t) ] involve integrals of the joint pdf 

Reynolds-stress evolution as the Langevin model of 
Haworth and Pope. 20*2’ Consequently, here it is unnecessary 

over V-8 space. And the mean pressure field involves inte- to present again calculations of homogeneous turbulence, 
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I 
grals over x space-i-e., the Green’s function solution to the 
Poisson equation, Eq. (54). 

In spite of the onimous appearance of the joint pdf equa- 
tion, as illustrated in the next section, numerical solutions 
for inhomogeneous flows can be obtained by Monte Carlo 
methods8**’ In their simplest form, these methods amount 
to integrating the stochastic equations for x*(t), U*(t), and 
w*(t) for a large ensemble of particles. For further details on 
the Monte Carlo method the reader may consult Refs. 8-12 
and 22. 
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A. Constant-stress wall layer 

The first results presented are obtained from a similarity 
solution of the modeled joint pdf equation, corresponding to 
the logarithmic law of the wall. In the constant-stress log- 
law region, the mean velocity and mean dissipation vary 
strongly with distance from the wall. Hence, as well as being 
of intrinsic importance, this flow provides a good test of the 
model’s ability to treat strong inhomogeneities in (U), (E), 
and(w). 

Consider high-Reynolds-number, fully developed chan- 
nel flow, with the mean flow in thex, direction, and with the 
upper and lower walls being given by x2 = H and x1 = 0, 
respectively. Thus all one-point statistics depend on x2, but 
are independent of X, , x3, and t: the only nonzero mean 
velocity gradient is c? (U, )/ax,, which is positive for 
x1 < iH. With the wall shear stress being pu:, the viscous 
length scale is defined by 

1=%/U,. (57) 
Attention is focused on the constant-stress wall layer, 

which exists in the region defined by 

lo, <H. (58) 

The statistical properties of this region are well 
known:‘7*‘8*23 the shear stress is constant, 

- (u, u2) = id:; (59) 
the mean velocity gradient is 

where K = 0.40 is the von Kgrmiin constant; and the mean 
dissipation (which balances turbulence production) is 

(E) = U;/KX2. (61) 
Experimental data (see Refs. 17, 18, and 23) also indicate 
that (ui ), (u: ), and (u: ) are approximately constant in this 
region. 

In view of these known statistical properties, it is natural 
to seek a similarity solution to the joint pdf equation, in 
which the one-point joint statistics of 

ii(x,t) =u(x,t)/u, (62) 
and 

S(x,t) =O(X,t)X*/U,, (63) 
are independent of x and t. That is, definingj‘( 8,;; x, t) to be 
the joint pdf of B and 2, we s:ek a solution to the modeled pdf 
equation corresponding to f being independent of ]! and t. 

In order to derive the evolution equation for J; we re- 
write the joint pdf equation for f (V, 8; x1, t) [ Eq. (50) ] 
simply as 

$+v*-= af blJR ax2 (64) 

where the nondimensional quantity R (V, 8, x2, t) embodies 
all the terms on the right-hand side of Eq. (50). Formally 
transforming this equation-without any assumption of 
self-similarity-we obtain the corresponding equation for 
j-(‘(e, 6; 22, t): 

X2 ip 
---~+“2”2 

7 

&- (Tp!$] 

ax2 

xo a -A at- I ir 

' afi, 2 -jg VW = G2.k 

For a self-similar solution to this equation, the first ty.0 
terms are zero, since (by definition of such a solution) fa 

independent of t and x2. With the exception of the quantity 
in braces, none of the other terms depends on x2. Conse- 
quently, a necessary condition for the existence of a self- 
similar solution is that the term in braces be constant: that is, 

(66) 

which is simply the log-law [ Eq. (60) 1. 
Thus the self-similar solution was obtained (by Monte 

Carlo) as the stationary solution of the equation, 
A . A 

$--+02-g Qi, = (G)jR. (67) 

For a given model (i.e., given R), a solution to this equation 
is found for any (reasonable) value ofK. But there is a unique 
value of K for which the solution satisfies the consistency 
condition 

- (ii,i-i,) = 1, (68) 
which stems from Eqs. (59) and (62). Thus, for given R, the 
value of K is determined by Eqs. (67) and (68). However, 
we used these equations a little differently: the value K = 0.4 

was specified, then the particular value of C,, was deter- 
mined that yielded a solution to Eq. (67)) consistent with 
Eq. (68)-the result being C,, = 0.04. In other words, the 
value C,, = 0.04 was selected to yield K = 0.4. 

The principal results for the constant-stress wall layer 
are given in Table I. Compared to the experimental value, 
the kinetic energy k /u: is calculated to within 10%; but the 
distribution of the energy between the three components is 
less well calculated. This is a well-known deficiency of Rot- 
ta’s model that predicts the equality of ( LJ: ) and (u: ). The 
kurtosis of u, and u2 are calculated to be very close to the 
Gaussian value of 3, in accord with the data. 

TABLE I. Calculated and measured statistics in the constant-stress wall 
layer. 

Calculated Measured 

- (u, u2 j/k 
k/u: 
(u: )“2/u, 
(u:)“‘/u~ 
(u: ) ‘/2/u, 
Kurtosis of U, 
Kurtosis of u2 
CP 
De 

0.29 0.26” 
3.4 3.8” 
1.73 2.07 
1.40 1.0” 
1.40 1.55” 
3.04 2.8-3.0’ 
3.04 
0.075’ 
1 .05d 

a From the data compiled by Phillipsz4 at x2 /I = 100. 
b From Durst et ~1.~~ 
‘Evaluatedfrom: - (u,u,) =C,,(k2/(~))(a(rr,)/ax,). 
dEvaluatedfrom: - (u*E) = (C,/a,)(k*/(e))(~3(~)/1%,). 
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The values of the k-c model constants Cp and a, de- 
duced from the calculations can be compared to the standard 
values of 0.09 and 1.3, respectively. 

In summary, the modeled evolution equation for the 
joint pdf of velocity and dissipation yields a self-similar solu- 
tion corresponding to the log-law region of the constant- 
stress wall layer. The model constant C,, is specified to be 
0.04, so that the correct value of the von K&man constant is 
obtained (K = 0.4). The level of agreement between calcu- 
lated and measured quantities (Table I) is reasonable, and 
could be improved by incorporating a more sophisticated 
pressure-strain model, G $. 

8. Momentumless wake 

The momentumless wake provides a good test of the 
model’s ability to treat turbulent/nonturbulent intermittent 
regions, in the absence of mean velocity gradients. 

Experimentally, plane momentumless wakes have been 
studied by Townsend,26 Mobbs,27 and Cimbala and Park.‘* 
The flow is created in a wind tunnel by positioning a special- 
ly constructed cylinder normal to the uniform flow of non- 
turbulent air. The cylinder is symmetric about the plane 
x2 = 0, where x, , x, , and x3 are the streamwise, transverse, 
and spanwise directions. On the downstream side of the cyl- 
inder, air is forced through a slot that runs the length of the 
cylinder on the plane of symmetry. This air flow forms a 
plane jet, the flow rate of which is carefully controlled so that 
the jet’s momentum excess exactly equals the momentum 
deficit of the cylinder’s wake. 

In the turbulent flow behind the cylinder, the mean axial 
velocity (U, ) has a maximum on the plane of symmetry, 
and minima on either side. But the mean velocity profile and 
the shear stress profile (u, u2 > decay more rapidly than do 
the normal stresses, so that far downstream the mean veloc- 
ity gradients are negligible, as far as the turbulence is con- 
cerned. 

In the laboratory frame, this flow is statistically station- 
ary and two dimensional. Far downstream of the cylinder, in 
a frame moving with the free-stream velocity U, , the flow is 
(to an excellent approximation) statistically one dimension- 
al and evolving. In this frame the momentumless wake ap- 
pears as a statistically plane patch of turbulence, statistically 
symmetric about x2 = 0, that spreads into the nonturbulent, 
quiescent fluid on either side of it. The joint pdf model is 
applied to this one-dimensional transient problem, 

It is natural to question whether or not the flow attains a 
self-similar state. Let the characteristic velocity scale u’(t) 
be the rms axial velocity on the plane of symmetry, and let 
the characteristic length A(f) be the half-width of this rms 
velocity profile. It is readily shown that necessary conditions 
for self-similarity are that U’ and A evolve as 

u’(t) = u;,(t/t,) --(I (69) 
and 

A(t) = A, (t/t& (70) 

where u; and A, are the values at time to, and the positive 
constants a and b satisfy 

a+b= 1. (71) 

TABLE II. Self-similarity parameters for the momentumless wake. 

CI b t/t/A 

Townsend’* . . . 0.8 . . . 
Mobbs” ’ ’ ’ 0.3 . . . 
Cimbala and ParkZK 0.81 0.3 0.47 
Cimbala and Park” with 0.75 0.25 0.44 

virtual origin 
pdf calculation 0.64 0.36 0.71 

In all of the experiments it is found that U’ and A do 
indeed vary in time by power laws: the powers a and b are 
shown in Table II. While Townsend and Mobbs report only 
b, Cimbala and Park report both a and b, but their sum is not 
unity [see Eq. (71) 1. However, a reexamination of their 
data reveals that ifthe virtual origin is accounted for, slightly 
different values of a and b are obtained that do sum to unity. 
On this basis, and given the observed collapse of the scaled 
turbulence intensity profiles, we conclude that the flow does 
become self-similar. However, for this type of flow, it can be 
expected that the self-similar state is not unique, but rather is 
influenced by the initial conditions.29*30 

The pdf model equations are solved by Monte Carlo as a 
one-dimensional transient problem, and (almost inevitably) 
it is found that a self-similar solution is obtained. The calcu- 
lated spreading-rate exponent b = 0.36 is about 20% greater 
than the experimental values of Mobbs and Cimbala and 
Park, but much less than the high value b = 0.8 obtained by 
Townsend. The nondimensional measure of the turbulence 
intensity 

c=u’t/A, (72) 

is calculated to be about 60% greater than that measured by 
Cimbala and Park. 

The normalized turbulence intensity profiles are shown 
in Fig. 1. As may be seen, there is excellent agreement 
between the calculations and the measurements in the self- 
similar region (x, /d>5, say). 

<u2>tk2 I 
2 l/Z 

<“I’0 

FIG. 1. Profile of axial turbulence intensity for the momentumless wake: 
(u: ):I’” is the rms axial velocity on the symmetry plane; A is the half-width 
of the profile; d is the thickness of the cylinder. Solid line: joint pdf calcula- 
tions: symbols: experimental data.2* (Figure from Ref. 28, with permis- 
sion.) 
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We regard the level of agreement with the data as quite 
satisfactory. The momentumless wake is an extremely diffi- 
cult flow to realize, and the constants a, b, and c may well 
depend on the details of the experiment. 

C. Plane mixing layer 

We consider the statistically plane, two-dimensional, 
self-similar mixing layer formed between two uniform 
streams of different velocities. The dominant flow direction 
is x, ; the lateral direction is x,; and the flow is statistically 
homogeneous in the spanwise direction x3. The free-stream 
velocitiesare U, (atx, = to) and2U, (atx, = - CO),SO 
that the velocity ratio is 2, and the velocity difference is 
AU = U, . At large axial distances the flow spreads linearly 
and is self-similar.” Consequently, statistics of U( x,t)/A U 
depend only on x,/x, [where (x, ,x2 ) = (0,O) is the virtual 
origin of the mixing layer]. Lang3’ provides experimental 
data on this flow. 

The joint pdf equations are solved by a Monte Carlo 
method, which marches in the axial direction until the self- 
similar state has been attained. As a test of the model, this 
flow combines features found in the two flows considered 
above. There is mean shear and inhomogeneity in the Reyn- 
olds stresses and dissipation; and, on both sides of the flow, 
there are intermittent turbulent/nonturbulent regions. 

Figure 2 shows the calculated mean velocity profile 
compared to Lang’s experimental data.3’ The observed 
good agreement indicates, not only that the profile shape is 
well calculated, but that the spreading rate is accurate as 
well. The spreading rate can be defined as A/x,, where the 
width of the layer A is defined as the distance in x2 between 
the points where the mean velocity is 1.1 U, and 1.9 U, . The 
experimental”’ and calculated values of A/x, are 0.050 and 
0.047, respectively. 

The agreement of the spreading rates is by no means 
inevitable. In this type of flow, the calculated spreading rate 
is sensitive to the specified constants C,, and C,, in the w 
equation. The constant C,, is specified to be O.OAabout 
half that suggested by the k-c model-in order to yield the 
correct value of the von K&-man constant. It is reassuring to 
observe, therefore, that the same value of C,, also leads to an 

FIG. 2. Mean axial velocity profile for the self-similar plane mixing layer: 
line-joint pdf calculations; symbols-experimental data of Lang.3’ 

accurate calculation of the spreading rate for the mixing lay- 
er. 

Figure 3 shows the calculated rms lateral velocity pro- 
file, which agrees quite well with the data. The level of agree- 
ment for the axial velocity (not shown) is comparable. 

Of course the joint pdf calculations produce vastly more 
information than is contained in the first and second mo- 
ment profiles presented above. The next three figures illus- 
trate this point. 

Figure 4 is a scatter plot of the axial velocity and lateral 
position. In the Monte Carlo calculation, at each axial loca- 
tion (x, ), the joint pdf is represented by an ensemble of N 
particles (iv=:50 000). Each particle has a lateral position 
xr, a velocity U*, and a relaxation rate w*. Figure 4 consists 
of the (=:lOOOO) points with coordinates 
(x:/x,, UT/AU) corresponding to one-fifth of the parti- 
cles (selected at random). 

At large and small values of x:/x,, the points are dense 
at UT/AU = 1 and 2, respectively, and so appear as horizon- 
tal straight lines. These points correspond to fluid with the 
free-stream velocity. At the center of the layer (e.g., 
x:/x, = 0)) the points are broadly scattered in U y/A U, in- 
dicative of turbulent fluctuations with rms of order 0.2. To- 
ward the edges of the layer, biomodal behavior is evident: 
with increasing distance from the layer, a band of points 
tends to the free-stream velocity, while other points exhibit 
fluctuations of order 0.1, but with decreasing probability. 
This reflects the turbulent/nonturbulent nature of these re- 
gions. 

The intermittent nature of the edges of the mixing layer 
is yet more evident in Fig. 5, which is a scatter plot of relaxa- 
tion rate and lateral position. The relaxation rate is normal- 
ized by its maximum mean value (w) max (at the axial loca- 
tion considered) and is shown on a logarithmic scale. At the 
edges of the layer the bimodal nature of w* is clear: there is a 
diffuse band of points centered around w* -0.3 (w),,, , with 
a second denser band with w* values two or three orders of 
magnitude less. These bands correspond to turbulent and 
nonturbulent fluid, respectively. In the center of the layer, 
P,,~ [ Eq. (23) ] is observed to be very close to its Gaussian 
value, but it tends to zero at the edges indicative of a bimodal 

FIG. 3. rms lateral velocity profile for the self-similar plane mixing layer: 
line-joint pdf calculations; symbols-experimental data of Lang.” 
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FIG. 4. Scatter plot of axial velocity and lateral position from joint pdf cal- 
culations of the self-similar plane mixing layer. 

(nonlognormal) pdf of w in the intermittent region. VI. SUMMARY AND CONCLUSION 
The model developed here has been presented in the 

context of the one-point one-time Eulerian joint pdf of U and 
w. But the stochastic models used also provide closure to the 
multitime Lagrangian pdf equations. Figure 6 shows some 
Lagrangian information extracted from the Monte Carlo 
calculations-namely, the fluid particle paths of five parti- 
cles whose initial positions are selected at random near the 
center of the layer, once it has become self-similar. It may be 
observed that several of these trajectories traverse the layer 
monotonically, and that the trajectories are devoid of high 
wave number fluctuations. From this we conclude that the 
motion implied by the model is consistent with the large- 

The velocity-dissipation joint pdf model of Pope and 
Chen14 has been extended to inhomogeneous flows. The 
model is based on stochastic processes for the velocity U*(t) 
and relaxation rate w*(t) [ Eq. ( 10) ] following fluid parti- 
cles. 

The principal modification to the stochastic differential 
equation for w*(t) is the addition of an extra drift term that 
allows w* ( t) to increase from zero. For Gaussian homoge- 
neous turbulence, U*(b) and w*(t) are statistically indepen- 
dent. For inhomogeneous flows, the stochastic differential 
equation for velocity is modified so as to retain the same 
basic properties, even though U*(t) and o* ( t) are not inde- 
pendent. 

10 

1 

IO3 

ItI4 

FIG. 5. Scatter plot of relaxation rate and lateral position from joint pdf 
calculations of the self-similar plane mixing layer: o* is normalized by the 
maximum value of (0) across the profile. 
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FIG. 6. Fluid particle paths in the plane mixing layer according to the sto- 
chastic models: X, and x2 have arbitrary units. The dashed lines show the 
nominal edges of the layer, where the mean velocity differs from the free- 
stream veIocity by 10% of the velocity difference. 

scale coherent motions observed experimentally in mixing 
layers; and, conversely, it does not resemble the small-scale 
random motion associated with diffusion models. 

From the coupled stochastic differential equations for 
x* ( t), U*(t), and w*(t), several closed model pdf equations 
can be derived-both Eulerian and Lagrangian. In particu- 
lar, the one-point one-time Eulerian joint pdf of U(x,t) and 
w( x,t) is presented as Eq. (50). This is a single, closed model 
equation for inhomogeneous turbulent flows. 

The performance of the model has been demonstrated 
by calculations of three different inhomogeneous flows. In 
each case the modeled pdf equation is solved numerically by 
a Monte Carlo method. This consists, essentially, of solving 
the stochastic differential equations for an ensemble of (typi- 
cally 50 000) particles. 

A self-similarity solution is obtained corresponding to 
the log-law region of a turbulent boundary layer. With a 
model constant selected to obtain the correct value of the 
von Karman constant (C,, = 0.04, K = 0.4)) other numeri- 
cal characteristics are calculated with reasonable accuracy 
(see Table I). 

The calculations of the momentumless wake demon- 
strate the ability of the model to describe turbulent/nontur- 
bulent regions, without explicit modeling of intermittency. 
Particle paths for the mixing layer (Fig. 6) illustrate that the 
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model is consistent with large-scale organized motions. 
The model described here can readily be extended to 

include scalars representing the fluid composition.’ Conse- 
quently it can be applied to problems of mixing and reaction 
in turbulent flows. 
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