Consistency conditions for random-walk models of turbulent dispersion
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Random-walk models have long been used to calculate the dispersion of passive contaminants
in turbulence. When applied to nonstationary and inhomogeneous turbulence, the model
coefficients are functions of the Eulerian turbulence statistics. More recently the same random-
walk models have been used as turbulence closures in the evolution equation for the Eulerian
joint probability density function (pdf) of velocity. There are, therefore, consistency conditions
relating the coefficients specified in a random-walk model of dispersion and the Eulerian pdf
calculated using the same random-walk model. It is shown that even if these conditions are not
satisfied, the dispersion model does not violate the second law of thermodynamics: all that is
required to avoid a second-law violation is that the mean pressure gradient be properly
incorporated. It is also shown that for homogeneous turbulence the consistency conditions are
satisfied by a linear Gaussian model; and that for inhomogeneous turbulence they are satisfied

by a nonlinear Gaussian model.

I. INTRODUCTION

The Langevin equation has long been used to model the
dispersion of passive contaminants in homogeneous turbu-
lence (see Refs. 1-5, for example). The equatign is a stochas-
tic model for the position x(#) and velocity U(¢) of a fluid
particle

dz =Uds, (1)

dU= —Udt/T, +DV*dW. 2)

Here T} is the Lagrangian integral time scale, D is a positive
constant, and W is an isotropic Wiener process, with the
basic properties

(W) =0, (dW,dW,)=d:é,, (3)

where angled brackets denote means.

Since the beginning of this decade, extensions of the sim-
ple Langevin equation have been used in two different con-
texts. First, in pdf methods,*® from a generalization of Eq.
(2), a model equation is deduced for the one-point Eulerian
joint probability density function of velocity f{V;x,t). We
denote by f. (V;x,t) the solution of this equation, where the
subscript cindicates that the pdfis calculated from a general-
ized Langevin equation. The first two moments of £, are the
calculated mean Eulerian velocity

(U(x1)). = f V. f.(Vix)dV, @)

and the calculated Reynolds stresses

where fdV indicates integration over all velocities. In pdf
methods the essential extension to the simple Langevin
equation is to make the deterministic term [the first term on
the right-hand side of Eq. (2)] a general linear function of
U. We refer to this as the generalized Langevin equation, or
as the linear Gaussian model.

The second application of extended Langevin equations
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is to dispersion in inhomogeneous turbulence. The aim of a
dispersion calculation is to calculate the mean concentration
field (C(x,t)) of a passive contaminant originating from a
given source distribution. In this context modifications to
the Langevin equation have been made both to the determin-
istic term,’®!! and to the form of the random term.'*"'* The
coefficients in the modified Langevin equation depend upon
Eulerian statistics of the velocity field. In dispersion calcula-
tions, rather than being calculated, these statistics are speci-
fied, possibly from measurements. We denote by £, (V;x,?)
the specified Eulerian joint pdf of velocity, although in prac-
tice only some moments (e.g., (U, ), and (u,u,), ) are need-
ed.

This paper is concerned with the “thermodynamic con-
straint’ and with the consistency of dispersion models. Saw-
ford" introduced the thermodynamic constraint that an
“initially uniform distribution of material be maintained.”
That is, if {C(x,t)) is initially uniform, it remains so. We
introduce the following consistency condition for stochastic
models [e.g., Eq. (2) ] used in dispersion calculations: a dis-
persion model is completely consistent if the calculated pdf
f- (V;x,t) is equal to that specified f; (V;x,z). Usually, how-
ever, only a few moments of f; are specified. Thus we define a
dispersion model to be consistent to order » if the moments
of /., up to order n, are equal to those of f; .

The principal contributions of this paper are to show the
following.

(i) A necessary and sufficient condition for the satisfac-
tion of the thermodynamic constraint is that the calculated
mean velocity field (U), satisfy the continuity equation.
This, in turn, requires that the mean pressure gradient be
properly incorporated in the random-walk model.

(ii) The additional constraints deduced by Sawford'?
can be interpreted as consistency conditions. They are not
necessary to the satisfaction of the thermodynamic con-
straint.

(iii) In modifying the Langevin equation [Eq. (2)],
physical arguments favor leaving the random term unal-
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tered, and modifying the deterministic term.

(iv) A nonlinear Gaussian model can be completely
consistent.

(v) A linear Gaussian model (i.e., the generalized Lan-
gevin equation) is consistent to second order if the model
coeflicients satisfy an algebraic relation [Eq. (26) ]. For ho-
mogeneous turbulence this relation can always be satisfied
and then, if the turbulence is Gaussian, the model is com-
pletely consistent.

(vi) A model should not be regarded as being defective
if it is inconsistent when applied to an unphysical specified
turbulence field—for example, inhomogeneous Gaussian
turbulence.

Il. NONLINEAR GAUSSIAN MODEL

For definiteness we consider the turbulent flow of a con-
stant-property Newtonian fluid. The continuity and mo-
mentum equations are

v, =0 (6)
Ix; e
and
au, ay;
Lu, Sy, - L 2 %)
ot dx; p Ox;

where U(x,?) is the Eulerian velocity, p(x,t) the pressure,
and p and v are the constant density and kinematic viscosity,
respectively.

We consider the generalization of Eq. (2) to the nonlin-
ear Gaussian model

dU, =M, dt + H,(U)dt + D2 dw,. (8)

The coefficients M and D may depend on position and time,
but are independent of U. Since M represents a mean drift,
without loss of generality, we specify that the model function
H(U) has zero mean: to be precise, we specify

JH(V,X,t)ﬂ(V;x,t)dV:O. 9)

For the linear Gaussian model, or the generalized Lan-
gevin equatlon,("9 the function H(U) is specified to be
H(U) G; (U {U).), (10)
where the tensor coefficient G may depend on (x,?) but is
independent of U.
From Eq. (8) it is possible® to derive an evolution equa-
tion for the Eulerian pdf of velocity fc (V;x,t)
a a )
2 A
at ox, av;
1, 9%
—D—— (11)
+ 2 gv.avr,
From the solution to this equation (U), (%4, )., and other
calculated moments can be determined. Because of the im-
perfection of the model, these calculated moments may dif-
fer to some extent from the true values (U) and {(u;u; ).

aV [/eH: (V)]

A. The random term

We first discuss the physical justification for the form of
the random term in Eq. (8). This justification is based on
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Kolmogorov’s hypotheses of self-similarity and local iso-
tropy in the inertial subrange. Let D & i (5,%,1) be the Lagran-
gian structure function defined by

DL(sxty={(U,(t +5) — U (1))
X(0 (1 +5) — Ty0)&() =x).  (12)

This is the covariance of the velocity increment ﬁ(t + 5)—
U(#) of fluid particles passing through x at time . According
to Kolmogorov’s hypotheses,'® for times s that are much
larger than the Kolmogorov time scale, but much smaller
than the integral scale, to first order in s we have'”

D (s,x,1) = Coe(x,1)$8, (13)

where €(x,?) is the mean dissipation rate and C, is a univer-
sal constant. As first observed by Obukhov,'® the random
term in the Langevin equation is consistent with Eq. (13),
provided the coefficient D is chosen to be

D = Ce.
Anand and Pope® have estimated C, to be 2.1.

There may be many stochastic models for U (2) that are
consistent with Eq. (13) for intervals s corresponding to
inertial scales. But, to be consistent with the Kolmogorov
hypotheses (even the refined hypotheses'’), such models
must (for these time intervals) depend on the large scale
motions solely through the dissipation. The models of van
Dop et al.'* and Sawford'* do not conform to this require-
ment.

‘J’

(14)

B. Thermodynamic constraint

Using the simple Langevin equation [Eq. (2)] in inho-
mogeneous turbulence, Wilson ez al.'® observed that marked
fluid particles tended to become congregated in regions of
low turbulence intensity rather than becoming uniformly
distributed. Legg and Raupach'® correctly diagnosed that
the problem lay in the omission of the mean drift M due to
the mean pressure gradient. Subsequently the problem has
been studied by Thomson, ' van Dop et al.,'* and Sawford.'*

To address the problem Sawford, ' following Thomson,
introduced the “thermodynamic constraint” that an initially
uniform distribution of material be maintained. The same
principle can be phrased differently in terms of marked fluid
particles. Let g(x,¢) be the number density of marked fluid
particles. Then if, initially, ¢(x,?) is uniform, then it remains
uniform (in an unbounded flow, or with appropriate bound-
ary conditions on g).

This condition and its satisfaction are analyzed and dis-
cussed in detail in Sec. 4.7 of Ref. 9 (the analysis and discus-
sion are not repeated here). For a random-walk model, such
as Eq. (8), to satisfy this condition, it is necessary and suffi-
cient that the calculated mean velocity satisfy the continuity
equation

d
Uy, = (15)
o, (U)

Whether a random walk satisfies Eq. (15) depends on the
specification of M in Eq. (8). For consistency with the mean

of the Navier—Stokes equation [Eq. (7)], M should be
M = WX U), — (1/p)V{p).. (16)
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Pope® has shown that a necessary and sufficient condition
for Eq. (15) to be satisfied is that (p), be consistently deter-
mined from the Poisson equation

Vo). = —p =
© T TP ox, ox,

It is important to note that the source in this Poisson equa-
tion is based on calculated moments ({U), and (u,4;),).If,
instead, the specified moments are used, and if the consisten-
cy condition to second order is not satisfied, then the incor-
rect pressure gradient is obtained. As a consequence the
thermodynamic constraint may be violated. Conversely, if
the consistency condition is satisfied to second order, then
the specified pressure gradient can be used without the ther-
modynamic constraint being violated.

In summary, the satisfaction of Eq. (17) is a necessary
and sufficient condition for the satisfaction of Eq. (15) that,
in turn, is a necessary and sufficient condition for the satis-
faction of the thermodynamic constraint.

Sawford'* obtains conditions additional to those found
by Pope® and stated above to be sufficient. In fact, the addi-
tional conditions can be viewed as consistency conditions
and are not necessary for the satisfaction of the thermody-
namic constraint.

((UD AU + {uu;) ). (17)

IIl. CONSISTENCY CONDITIONS
A. Significance

The condition for complete consistency is that the calcu-
lated pdf, f.(V;x,t), be the same as the specified pdf,
£ (V;x,2). A third pdf we need to consider is f( V;x,f)—the
true pdf for the flow in question. This pdf can, in principle, be
obtained by error-free measurement, or from the exact solu-
tion of the Navier-Stokes equation.

If the true pdfis specified (i.e., f; = f ) then clearly it is
desirable to satisfy the consistency condition (i.e., f. =f,).
The more closely the consistency condition is satisfied, the
closer the calculated pdf ( £, ) is to the true pdf ( /). Hence
the more accurate is the dispersion calculation.

On the other hand, if the specified pdf f; is not the true
pdf, then there is no good reason to satisfy the consistency
condition. (Recall that satisfaction of the consistency condi-
tion is not necessary to the satisfaction of the thermodynam-
ic constraint.)

An example of an untrue pdf being specified is the test
case of inhomogeneous Gaussian turbulence.'>' In this
case, f; is specified to be joint normal everywhere, even
though the moments (U), and (u,u;), vary with position.
We maintain that such a specification is physically incorrect:
it does not occur in a turbulent flow governed by the Navier—
Stokes equations.

The justification for this assertion is that in inhomogen-
eous turbulence the triple correlation (u,u;u, ) is nonzero,
and hence the turbulence is not Gaussian. In the transport
equation for (uw,u;u,) there is a source term
(8 /9x,,){u,u;u, u,, ), which is nonzero for inhomogeneous
Gaussian turbulence. Thus even if the turbulence is Gaus-
sian initially it becomes non-Gaussian. Experimental evi-
dence clearly shows that in shear flows, ' and in inhomogen-
eous turbulence without shear®® the triple correlations are
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nonzero, and hence the turbulence is non-Gaussian.

In summary, if the true pdf is specified (i.e., f; =f)
then it is desirable to satisfy the consistency condition. Oth-
erwise ( f, #f ) there is no good reason to satisfy the consis-
tency condition. In particular, there is no reason to regard a
model as being defective if it violates the consistency condi-
tion for the unphysical test case of inhomogeneous Gaussian
turbulence.

B. Nonlinear Gaussian model

It is shown here that the model function H(ﬁ) can be
chosen to make the nonlinear Gaussian model [Eq. (8)]
completely consistent.

If the complete consistency condition ( f, = f; ) is satis-
fied at a general time 7, and if at that time df, /dt equals
df./dt, then the consistency condition is satisfied for all time.
Consequently, the complete consistency condition is satis-
fied if Eq. (11) is satisfied by £, (in place of £, ). This can be
achieved by a suitable choice of H(V).

Since H(V) appears in Eq. (11) as the divergence (in V
space) of the vector f, H, the rotational component of f,H is
irrelevant. Hence we can write

d
H(V)= ——®(V),
JH (V) 37 (V)

where ®(V) is a scalar. Substituting this relation into Eq.
(11), with f; replacing f,, we obtain the Poisson equation

a2 ( 1 ) af, af, I,
v, v, 3 . ot ™ v,

i i

(18)

(19)

As |V| tends to infinity, f. approaches zero rapidly, and
hence ® approaches a constant (zero, say). The Poisson
equation [Eq. (19)] uniquely determines ¢ with this
boundary behavior. The right-hand side of Eq. (19) tends to
zero as | V| tends to infinity, and its integral over all V is zero.
[1In principle f, can be identically zero in some region where
@ is not uniform. Hence a finite value of H cannot satisfy Eq.
(18). But for f, corresponding to the pdf of velocity in a
turbulent flow, this circumstance is ruled out. ]

In summary, the nonlinear Gaussian mode! [Eq. (8)]
can be completely consistent. Indeed, for given /;, the part of
H that affects the evolution of the pdfis uniquely determined
by this condition.

In our view, if the consistency condition is to be satis-
fied, it is better to do so by modifying the deterministic term
rather than the random term. That the random term is Gaus-
sian is not the key issue. The important point is that (in view
of Kolmogorov’s hypotheses) the mean dissipation rate € is
the only physical parameter on which the random term
should depend. Suggested modifications to the random
term’>'* have not been in accord with this principle.

C. Linear Gaussian model

The linear Gaussian model (or the generalized Lange-
vin equation) [Egs. (8) and (10)] contains three coeffi-
cients. The coefficient D of the random term is determined
from consistency with Kolmogorov’s hypothesis, Eq. (14);
while the mean drift M is determined from consistency with
the mean of the Navier-Stokes equation, Eq. (16}, and (co-
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incidentally) from the requirement that mean continuity
equation be satisfied, Eq. (17). We now consider the choice
of the remaining coefficient G—a second-order tensor.

An evolution equation for the calculated Reynolds
stresses is obtained by substituting Eq. (10) into Eq. (11),
multiplying by (V; — (U;).)(V, — (Uy).), and integrat-
ing:

duwuy ).
ot

+ <Ui>c J (ujuk>c + d <uiujuk)c
Ix; Ix;

8(U).
—<3—1>_+ <uiuj>c

d(U,).
i ox;

= Gy luu) . + Gyuwuy ), + Coedyy. (20)
By comparing Eq. (20) with the exact Reynolds stress equa-
tion, some constraints on the tensor G are obtained.®’ But
these constraints fall far short of uniquely determining G.
Instead, Haworth and Pope”® have constructed models for
G and assessed their performance in homogeneous turbu-
lence with mean velocity gradients,” and in free shear flows.?

In the pdf approach, the generalized Langevin equation
can be used to calculate the one-point joint pdf of the Euler-
ian velocity f. in inhomogeneous flows. In a dispersion
study, on the other hand, we may use the generalized Lange-
vin equation to calculate the trajectories of fluid particles
through a specified turbulent field. The field may be speci-
fied by the dissipation €(x,¢) and the specified Eulerian pdf
of velocity £, (V;x,t), or some of its moments. The question
then is: can G be chosen so that the calculated pdf £, is the
same as that specified f,?

It is clear that there is no choice of G that can yield an
arbitrarily specified evolution of the Eulerian joint pdf. {At
given (x,r), G is comprised of nine numbers, whereas the
Eulerian joint pdf f, is a function of three independent vari-
ables. ] But we now show that it may be possible to choose G
so that the generalized Langevin equation yields the re-
quired evolution of the mean velocity and Reynolds stresses.
Then the consistency condition is satisfied to second order.

It is assumed that the moments of f, are consistent with
the Navier-Stokes equations. So (U}, and (u,u;, ), satisfy

+ <uiuk )c

a
—(U;), =0, 21
axi( s (21)
—‘7;—+—£((Ui>s<(]j>s+<uiuj>s)
d
_ vy, — L 98 (22)
p 0x;
and
82
Vip),= —p (U AUp)s + (1) ). (23)
dx, dx;

These equations are identical to those satisfied by (U)_ and
(uiuj)c [Egs. (15), (17), and the mean momentum equa-
tion obtained from (11)]. Given (u,u,), at all (x,7), and
given initial and boundary conditions on (U),, then Egs.
(21)-(23) determine the evolution {U) . Hence if the con-
sistency condition is satisfied for the second moments, i.e.,

<uiuj>s = <uiuj>c9 (24)
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then the evolution of (U), is the same as that of (U), (with
the same initial and boundary conditions). In other words, if
the consistency condition is satisfied for the second mo-
ments, it is satisfied for the first moments also.

To determine the consistency condition for second mo-
ments, we examine the evolution equation for the calculated
Reynolds stresses, Eq. (20). Clearly, with the initial condi-
tion {u;u, ), = (u;u, ),, if the equation

a(“j“k)c _ a(“j”k)s
ot ot

is satisfied everywhere, then (u;u,). equals (u;u,), and
hence (as argued above) (U), equals (U),. Thus from Eq.
(20) a necessary and sufficient condition for the consistency
of the first and second moments is

Gk1<u1uj>s + Gjl(”luk>s = Oy, (26)
where

(25)

a<ujuk>x 3 {ujuy) 3 (uuuy )
U ' s i%j ¢

ot + <G Ox M Ix,

Uy, d(U,)

+ Cuguy ), T‘f’ <uiuj>s ' > — C065jk.

ij =

i

(27

It is important to note that Q is determined by specified
quantities (¢ and moments of f;) except for the term in
(uyuuy ).

In homogeneous turbulence the triple correlations are
zero, and then Q is known in terms of specified quantities.
The consistency condition is then satisfied to second order if
the tensor G satisfies Eq. (26). It is shown in the Appendix
that a tensor G can always be found that satisfies Eq. (26).
More precisely, Eq. (26) removes six degrees of freedom in
the choice of the nine components of G. Thus in homogen-
eous turbulence there are choices of G for which the general-
ized Langevin equation is consistent to second order.

For Gaussian homogeneous turbulence the generalized
Langevin model is completely consistent (with an appropri-
ate choice of G). This follows because a Gaussian distribu-
tion is uniquely determined by its first and second moments,
and because for homogeneous turbulence the generalized
Langevin equation yields a Gaussian distribution. [In prin-
ciple non-Gaussian homogeneous turbulence can exist, at
least as an initial condition. But experiments on homogen-
eous turbulence (e.g., Ref. 21) strongly suggest Gaussian-
ity.]

For inhomogeneous turbulence, Eq. (26) remains the
consistency condition. But to deduce simple algebraic con-
straints on G is less straightforward since Q depends on G
through (w,u;u,).. In practice one might expect that
(u,u;u, ), would be a good approximation to (u,u;u; )., and
hence a choice of G that approximately satisfies Eq. (26)
could be obtained. In principle this choice could be refined
iteratively, by evaluating (u,u,u,), based on the current
choice of G, and then using Eq. (26) to obtain an improved
choice. The convergence of this iteration is not established.

In summary, in the generalized Langevin equation, if
the coefficients G are chosen to satisfy Eq. (26), then the
consistency condition is satisfied to second order. For homo-
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geneous turbulence such a choice always exists; and if,
further, the turbulence is Gaussian, then the consistency
condition can be completely satisfied. For inhomogeneous
turbulence Eq. (26) remains the consistency condition, but
it has not been proved that G can be chosen to satisfy it.

V. SUMMARY AND CONCLUSIONS

For turbulent dispersion models, we have examined the
thermodynamic constraint and introduced consistency con-
ditions. For a given flow, it is essential to distinguish between
three turbulent fields: f(V;x,#) is the true one-point Eulerian
pdf that in principle can be determined by error-free mea-
surement or from exact solutions to the Navier-Stokes equa-
tions; f; (V;x,t) is the pdf specified in the dispersion calcula-
tions; and f,(V;x,r) is the pdf calculated from the
random-walk model. A dispersion model is completely con-
sistent if the calculated pdf /. equals that specified f;. Or, it
is consistent to order m if the moments of f,, up to order m,
are equal to those of £ .

The main conclusions to be drawn from this work are
now summarized.

(i) A necessary and sufficient condition for the satisfac-
tion of the thermodynamic constraint is that the calculated
mean velocity (U), satisfy the continuity equation. This, in
turn, requires that the mean pressure gradient be properly
incorporated in the random-walk model. The appropriate
mean pressure gradient is that of the calculated field: this is
the same as the specified mean pressure gradient only if the
dispersion model is consistent to second order.

(ii) The additional constraints deduced by Sawford'*
can be interpreted as consistency conditions. They are not
necessary to the satisfaction of the thermodynamic con-
straint.

(iii) According to Kolmogorov’s hypotheses,'*>'? for
time intervals s corresponding to the inertial subrange, the
Lagrangian structure function D (s) is given by Eq. (13).
Irrespective of the deterministic term the nonlinear Gaus-
sian model [Eq. (8)] is consistent with Kolmogorov’s hy-
potheses, whereas some models with a generalized random
term'>'* are not. Whether the random term is Gaussian or
not is not the key issue: what is important is that the mean
dissipation rate € is the only parameter on which it depends.

(iv) The nonlinear Gaussian model [Eq. (8)] can be
made completely consistent. For given f;, the part of the
model function H that affects the evolution of the pdf is
uniquely determined by this condition.

(v) The linear Gaussian model (i.e., the generalized
Langevin equation) is consistent to second order if the coef-
ficients G satisfy an algebraic relation, Eq. (26). For homo-
geneous turbulence this relation can always be satisfied: its
satisfaction removes six degrees of freedom from the choice
of the nine components of G. For homogeneous Gaussian
turbulence, complete consistency is possible.

(vi) A dispersion model should not be regarded as de-
fective if it is inconsistent ( £, £/, ) when applied to an un-
physical turbulent field ( f; £/ ). The previously used test
problem of inhomogeneous Gaussian turbulence is an exam-
ple of an unphysical specification.
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APPENDIX: DETERMINATION OF THE TENSOR G TO
SATISFY EQ. (26)

In this Appendix we employ matrix notation. Let R be
the matrix of Reynolds stresses with components

R; = <uiuj>s' (Al)
Since R is symmetric, there is a real unitary matrix L, and a
diagonal matrix A such that

R=LTAL. (A2)

The components of A are the eigenvalues of R—A Y, 12,
and A ®. Itis assumed that the turbulence is three dimension-
al so that the eigenvalues are strictly positive.

Equation (26) can be rewritten

GR + RG? =Q, (A3)
or

GLTAL + LTALGY = Q. (A4)

Now premultiplying by L and postmultiplying by L” we ob-
tain

(LGLMA + A(LGTLT) =LQL7, (AS)
or

GA +AGT =Q, (A6)
where

G=LGLT, (A7)

and Q is defined similarly. Now, in component form (with-
out an implied summation convention) Eq. (A6) is
G, + 4Gy = Q.

j (A8)
In order to satisfy Eq. (A8),the diagonal components of

G must be
G, =1Q,/4, (A9)
(no summation). The upper-triangular components

(G ik »k >J) can be chosen arbitrarily, but then to satisfy Eq.
(A8) the lower-triangular components must be

Gi = (Qy —4,G,))/4 (k<))
(no summation).

In summary Eq. (26), or equivalently Eq. (A3), is satis-
fied by any tensor

G=L"GL, (Al1)

where the diagonal components of Gare given by Eq. (A9),
and the lower-triangular components are related to the up-
per-triangular components by Eq. (A10). Thus the con-
straint [Eq. (26) ] removes six degrees of freedom from the
choice of the nine components of G.
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