The motion of the core has to be considered. Asympto-
tic decay of the core flow during spindown to rest can
be represented by 2(t)=12,[1+ 0.69(2R /H)(v{2,/
R %)"/2¢ 172, where £2 is the angular velocity. '° It follows that
the core has slowed down by about 9% by the time of Fig.
2(d). No coupling is observed in the cross-sectional view
between the circular waves and the motion of the core.
Therefore, it is concluded that the wave phenomenon is a
property of the disk boundary layer. The number of observa-
ble cycles is limited by the size of the apparatus and the
Reynolds number.

Observations made in a Bédewadt-type boundary layer
occurring during impulsive spindown to rest in a cylindrical
cavity show that a new class of circular waves are excited.
These waves occur deep in the boundary layer and move
toward the center. At sufficiently high Ekman numbers the

well-known waves of type I are also excited along with the
circular waves.
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A Lagrangian two-time probability density function equation

for inhomogeneous turbulent flows
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An exact equation for the Lagrangian two-time velocity joint probability density function (pdf) is
derived from the Navier-Stokes equation. The pdf equation contains as an unknown the
conditional expectation of the fluid acceleration. A linear Markov model is proposed which leads
to a modeled equation that is consistent both with Kolmogorov’s theory in the inertial subrange
and with Reynolds-stress models. The dissipation rate is obtained from the joint pdfin a way that
is consistent with the modeled dissipation equation. A Monte Carlo method can be used to solve
the modeled two-time pdf equation for inhomogeneous turbulent flows.

Several turbulent flow calculations have been reported
based on one-point pdf methods.'~ In these methods a mo-
deled transport equation is solved for the joint probability
density function (pdf) of the three components of velocity
U(x, ) at position x and time ¢. This approach has the advan-
tage (compared to Reynolds-stress closures*°) that convec-
tive transport appears in closed form and hence gradient-
diffusion modeling is avoided.

The one-point joint pdf f(V;x,t ) (where V|, V5, and ¥V,
are the independent velocity variables) provides a complete
statistical description of the velocity at each point and time,
but it contains no joint information at two or more points.
Consequently a time or length scale of turbulence cannot be
deduced from fand (as with Reynolds-stress closures) scale
information must be provided separately. This can be done
either explicitly’~ or indirectly through the solution of a

modeled transport equation for the rate of dissipation €.*°

The direct specification of scale information is only possible
in simple flows, and the validity and accuracy of the modeled
dissipation equation has often been called in question (for
example Ref. 6).
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Multipoint pdf equations have been derived and mo-
deled™® but solutions have been obtained only for homogen-
eous isotropic turbulence.” The Monte Carlo methods,”!° by
which the one-point pdf equations can be solved for inhomo-
geneous flows, cannot be simply extended to multipoint
equations.

Here we consider a Lagrangian two-time pdf equation.
This pdf contains both time-scale and length-scale informa-
tion and its transport equation is amenable to solution by a
Monte Carlo method. A simple model is proposed that is
consistent both with Kolmogorov’s theory in the inertial
subrange and with Reynolds-stress models.

We consider a constant property turbulent flow (with
unity density and viscosity x) in which the Eulerian velocity
Ul(x,? ) satisfies the Navier—Stokes equation

ay; ay; — T2 dp

a YU =V U5 M
where p(x,? ) is the pressure. At time ¢ the fluid particle at x
has the Lagrangian position %(r)=x and velocity
U{r) = U(x,t ). Atan earlier time s (s < t ) the same fluid parti-
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cle has position £(s) and velocity ﬁ(s). We define the Lagran-
gian two-time pdf

8V, W,y;x,1,5)
to be the probability density of the joint events
Uity =v, O =W, 269 =y. @)

Many important properties can be deduced from the
definition of g: we note just two. The one-point joint pdf
f(V;x,t) is recovered by integrating g over all W and y; and
the Lagrangian two-time velocity correlation is obtained
from

@ueyon = [[[v.wgavaway, )

where integration is over all values V, W, and y. The Lagran-
gian integral time scale T can then be determined from
(U, {t)U;(s)).

An exact evolution equation for g can be derived from
the Navier-Stokes equation by standard methods.'®!' The
result is

% . g 3 , ‘ )
%2, py%_ _ vy, — 92 4
o T s, av, ( (" > @

where, for any quantity, Q, (Q |Z) denotes the expectation
conditional upon the events (2). That is

(Q12) = (Q[U(r) =V, Uls) = W, &is) = y). (5)

The terms on the left-hand side of Eq. (4) represent the rate of
change and convection. They appear in closed form and
hence no closure approximation is required. The right-hand
side of the equation involves the conditional acceleration for
which a model is required.

We now describe a simple model that is consistent both
with Reynolds-stress closures and with Kolmogorov’s iner-
tial-range scaling laws. We do so via stochastic equations for
the fluid particle properties that are similar to the Langevin
equations. '?

The first assumption is that g evolves by a Markov pro-
cess. This allows us to replace the condition Z in Eq. (4) with
the lesser condition Ut ) =V, since the conditions on Ufs)
and &(s) refer to the past. Next the right-hand side of Eq. (1) is
decomposed into mean and fluctuating components

o0, - L vy - S8y, ©)
where
g, = puVu, — g—il U

and u, and p’ are the fluctuating components of velocity and
pressure. The evolution equation for g can now be written

Jg ap)
ErvE ax; )aV

at ax,. ( VAU) -
= 5‘,7['(8(0.|V>)- (8)

All the terms on the left-hand side are known in terms of g
and hence require no modeling. It remains to model (a|V)—
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the expectation of the fluctuating acceleration conditional
upon U(x,t) =V

Inasmallinterval of time 4¢ the position and velocity of
the fluid particle at (¢ ) change by

&(r + At) = &(t) + U(e)As, (9)

and
f+ I

a(t')dr’,
(10)

where d(r’) = a[%(t '), ']. By analogy to Langevin's equation
we model i by a random contribution (isotropic white noise)
and a deterministic contribution that is linear in the fluctuat-
ing velocity. Thus

Ot + 4r) = Or) + @wVHU) — V(p))ar + f

fH ,&i(t')dtlz-Glj(aj - <Uj))At+(Co€A’)”2§n (1)

where G;; is a function of local mean quantities, C, is a uni-
versal constant, and § is a joint normal random vector with
(€) =0 and (£;&;) =6, (The specific form of G is dis-
cussed below.)

Equations (9}—(11) describe a random walk in position
and velocity space. The corresponding pdf equation for
8(V,W,y;x,1,5) can be derived'?:

ag+V3g+( V<U>_3<P>)3g

Fz) ox a av.
- a‘; ( [ .,(V,—<U,>)~%c ‘9;;3]). (12)

By comparing Egs. (8) and (12) it may be seen that the term in
square brackets [in Eq. {12)] is the corresponding model for
the conditional acceleration (a;|V).

The model equation [Eq. (12)] is consistent with Kol-
mogorov’s theory of local isotropy in the inertial subrange.
For small time differences ¢ ‘=t — s, the structure function
obtained from Eq. (12) is (to first order in t ')

([Ofs + 1) = T9)] [Dyls + 1) = D9)]) = Coet '8,

(13)
This result (first obtained by Obukhov'?) is in accord with
Kolmogorov’s theory and identifies the universal constant
C, (see Ref. 14, Eqs. 21.28-21.30’).

A modeled transport equation for the Reynolds stresses
(u;u,) is obtained by multiplying Eq. (12) by
(V; — (U)) (Vi — (Uy)) and integrating over all values of
V, W, and y. The result is

a(“j“k) a(“juk) Iu,u;u,)
i el SRV 4
o T Ut
AL + (u,‘u,-)(?(Uk>
X ox;

= Gy u ;) + Gy uu) + Coeby, . (14)

i

+ (uuy)

The tensor G can be chosen to make Eq. (14) [and hence Eq.
(12}] consistent with any modeled Reynolds-stress equation.
For example, for consistency with the model of Launder,
Reece, and Rodi?, G is given by
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a(U;) 1 € -
G; = 2ijHT - TCR?(SU — C*e(uu;) ™, (15)

where Cy is the Rotta constant, C* = 9Cy/2 — 3(Cx — 1),
the tensor C is defined by Eq. (61) of Ref. 11, (u,u;) ™' are
the components of the inverse of the Reynolds stress tensor,
and the turbulent kinetic energy is k = (u,u,)/2.

The modeled equation for g [Eq. (12)] with the specifica-
tion of G [Eq. (15)] does not comprise a complete model since
€ is as yet undetermined. There are many possible ways of
extracting scale information from g(V,W,y;x,t,s). A promis-
ing way is to relate the time scale

T=k/e, (16)
to a damped Lagrangian time scale

=2 e - [ B8 s

where a and 8 are constants and

() = ufk(),2]- (18)
[It may be noted that with no damping (8 = 0) and no decay
{(dk /dt =0), Eq. (17) reduces to a constant relationship
between 7 and Lagrangian integral time scale: 7 = 2a 7]

For the hypothetical case of homogeneous isotropic
turbulence with isotropic energy production at the rate P,
the model yields

(19)

where C,, is an adjustable constant and C,, =1.5. This
equation is identical to the empirical model equation for €*
for which the constant values are chosen to be C,, = 1.44
and C, = 1.92.

The damping in Eq. (17) is added for computational
reasons. It allows 7 to be evaluated from

it) = (a/k )@, (e )F (), (20)
where £t ) is the solution of the Lagrangian equation

ﬂ =i — ﬂ (21)

dt T

An exact equation for the Lagrangian two-time velocity
joint pdf has been derived from the Navier-Stokes equation.
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A multitime equation can readily be derived in the same way
and the result is similar to Eq. (4).

A simple linear Markov model is proposed that is con-
sistent both with Kolmogorov’s theory in the inertial sub-
range and with Reynolds-stress closure schemes. The dissi-
pation rate can be obtained from the joint pdfin a way that is
consistent with the modeled dissipation equation.

The model equation can be solved by a Monte Carlo
method '’ for inhomogeneous turbulent flows. The essence of
the method is to solve Egs. (9)<(11) and (21) to determine the
properties X(¢ ), U(t ), and (¢ ) of a large number of representa-
tive particles.

While a Markov model is presented here, the two-time
pdf equation and the Monte Carlo method can accommo-
date non-Markovian models that may be more appropriate
to inhomogeneous, nonstationary turbulent flows. A simple
non-Markovian model results from making the tensor G a
function of (%7, and (?;4;) (as well as of (u,u;), (U;)/
dx;, and €).
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