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The transport equation for the joint probability density function of velocity and scalars is shown to provide a
good basis for modeling turbulent reactive flows. As in the equation for the probability density function of the
scalars alone, nonlinear reaction schemes can be treated without approximation. The advantage of
considering the joint probability density function equation is that convection (by both the mean and
fluctuating velocities) appears in closed form. Consequently, the gradient-diffusion assumption for turbulent
transport is avoided. Closure approximations are presented for the terms involving the fluctuating pressure
and viscous and diffusive mixing. These models can be expected to be reliable since they are compatibie with
accurate and proven Reynolds-stress models. The resulting modeled transport equation for the joint
probability density function can be solved by the Monte-Carlo method for inhomogeneous flows with

complex reactions.

{. INTRODUCTION

Many models of turbulent reactive flow invoive the
probability density function of one or more scalars.
For turbulent diffusion flames (where mixing is the
rate- controlling process), the instantaneous fluid com-
position can be determined from the mixture fraction
Sx, 0. Conseqyently, mean properties can be deter-
mined from p(f;x, ), the probability density function
of f!; if Q(f) is any function of £, its mean (Q(f)) is
given by

@)= | phreihia. 1)

Similarly for an idealized premixed turbulent flame,

all mean properties can be determined from p(@; X, £},
the probability density function of the progress vari-
able c(x, ). In general,?® the instantaneous composition
of a reacting mixture of gases can be determined from
the set of ¢ scalars comprising mass fractions and
enthalpy @(x,8)=¢,, ¢, * - ¢,. With p=9;, 4,9,
being the composition space corresponding to ¢, the
mean of any quantity (@(¢)) can be determined from the
joint probability density function p (y; x, ¢} by

(@) = fﬁ(#’)Q(w)le . @)

This fundamental property of probability density func-
tions [Eq. (2)] is useful in modeling reactive flows since
it provides a way of determining the means of highly
nonlinear quantities, specifically, reaction rates. Be-
fore Eq. (2) can be used, however, the probability den-
sity function must be determined. The most common
approach,?=® is to assume a parametric form for the
probability density function in terms of its first and
second moments, for which modeled transport equa-
tions are solved. Recently, several workers’™? have
used the direct approach of modeling and solving a
transport equation for the probability density function
itself. In the probability density function transport
equation, models of turbulent mixing and transport are
required, but the effects of reaction appear in closed
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form, however complicated the reaction scheme.

The direct approach of solving a modeled transport
equation for the joint probability density function was
restricted to simple cases because, by finite-dif-
ference means, the equation is difficult to solve. This
is mainly because the dimensionality of p(¢,, ¥y « * ¥g;
X, f) can be large, However, a Monte- Carlo method has
been devised” to solve the joint probability density func-
tion equation for the general case. The method has
been used!! to calculate the joint probability density
tunction of three species (C;H;, CO, and NO) in a
premixed propane/air flame, An essential feature of
the Monte-Carlo method is that, at any location, the
joint probability density function is represented by an
ensemble ¢ composed of N elements: the nth element
has properties ¢ M=¢ ", ¢,/ -« ¢!, The ensembie
average of an arbitrary function @(¢) is defined by

N
d9r=5 25 Q6™ « @)

The Monte- Carlo method provides a true simulation of
the probability density function equation since, as N
tends to infinity, the ensemble average converges to
the mean; that is,

LimQ(#)=((9)) . @)

The great advantage of basing a closure scheme on
the transport equation for p(; X, f) is that nonlinear
reactions can be handled without approximation. But
the method has weaknesses; gradient diffusion is as-
sumed; the effects of reaction on the turbulence are
ignored; and a separate turbulence model (e.g., the
k- € model'?) is needed to determine the velocity and
turbulence fields, In the present paper, the probability
approach is extended to the joint probability density
function equation of the velocity U= Uy, U,, U, and the
scalars ¢. This equation, which can be solved by the
Monte- Carlo method, does not suffer from the weak-
nesses of the equation for p@; x, #).
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The joint probability density function of U and ¢ is
f(V,¥;x,t), where V=V, V,, V, is the velocity space.
In the transport equation for f(V,¥), the reaction ap-
pears in closed form and so also does the convective
transport. Consequently, the gradient-diffusion as-
sumption is avoided. In addition, since f(V, $) con~
tains all the statistical information about the velocity
at each point, a turbulence model to determine the
Reynolds-stresses is not needed, However, since
f(V, ) is a one-point statistic, it contains no length-
scale information. This must be supplied, either di-
rectly or through the standard modeled equation for
the rate of dissipation €.

In the next section, the transport equation for
f(V,¥; %, 1) is derived for a general turbulent reactive
flow. This equation is examined to determine the ef-
fect that each term has on f(V, ). In the following sec-
tion, the equation is considered in more detail for
constant-density flows, and a model is provided for
each of the unclosed terms. The modeling can be ex-
pected to be reliable since it is compatible with ac-
curate and proven Reynolds-stress closures,

Previous work on modeling the equation for p(§; x, #)
has already been mentioned.”? Lundgren’3 has con-
sidered the transport equation for the probability den-
sity function of velocity f(V; x, ) and proposed simple
relaxation models for the unclosed terms. Ievlev!! de-
rived a general transport equation for the »n-point joint
probability density function of velocity and enthalpy. A
closure was proposed in which the » +1 point distribu-
tion is approximated in terms of »n point distributions.
The present modeling (which exploits recent advances
in Reynolds-stress closures) can be expected to be
more accurate than relaxation modeling and is more
tractable than Ievliev’s closure,

Il. THE JOINT PROBABILITY DENSITY FUNCTION
EQUATION

At any point in a turbulent reactive mixture of gases,
the state of the fluid can be characterized by the ve-
locity U, the pressure p, the specific enthalpy %, and
the mass fraction of each species m. Since the mass
fractions and the enthalpy obey the same form of
transport equation, it is convenient to define the set
of scalars ¢ =¢,, ¢, *+ * ¢, as

pa=m, , 0o=1,2+--0-1, (5)
b =h. ' (6)

Thus, with ¢~ 1 species there are ¢ scalars ¢, In a
low Mach number flow, the equations of conservatlon
of mass, momentum, and the scalars are

op 9

@ 9 7
Y +ax (pU,)=0, (1)
T, op
< - __u__ P ,
a (F’Uj)'F (PU Up= %, 3x +0g;, (8
and
(00 + 2 (pUb) == S +ps,, (9)
at ra 3%, ’
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where g is the gravitational acceleration, 7;; is the
viscous stress tensor, and J *is the diffusive flux of
¢,. The density p and S, (the rate of creation of ¢,)
can be expressed as functions of ¢,

Pp=p(®), %=5,).. (10)

The dependence of the density on pressure fluctuations
has been removed by virtue of the assumption of low
Mach number, .

The joint probability density function of the velocities
and scalars is defined in terms of Dirac delta functions
by

FV, 4, %, 8 =(f(V, ¥, %, 1)), (11)
where the angular brackets indicate an ensemble mean
and

3
F1V, 9%, t)z“lfI1 (U, (%, )= V;)

x II 5(0 (X, 1)— ) . (12)

The independent variables V=1V,, V,, V;, and ¥

=1y, ¥, * * ¥, form the velocity space and the composi-
tion space: a particular location V*, §* corresponds to
a fluid velocity U=V™* and a gas composition ¢ =y",
Infinitessimal hypervolumes in these spaces are de-
noted by

dv=dVv,dv,dv,, 13)
and
dp=dy,di,: - - dy,. 14)

From these definitions, the following basic properties
of the joint probability density function can be deduced:

ron=f s, wav, 5)
fw=[rv,pav, (16)
1= [ [ rv, wavas, a7)

and for any function Q(U, ¢},

@@, o) = [ [ rev, mewv, wavay. (t8)

f(V) and f ($) are the separate probability density func-
tions of velocity and scalars, and the integrations are
performed over the whole of the spaces.

The transport equation for f(V, ¥) is obtained from
the definition of f and from the transport equations for
U and ¢, Differentiating Eq. (12), we obtain

o __ AU ¥ 3¢,
at ~ av, at ap, ot ’ 19)

where summation is implied over repeated suffices
(j and @), With a similar expression for the spatial
derivative, substituting for 2U, /8t and a¢a/at from
Eqgs. (8) and (9) and averaging, we obtain the equation
for f:
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P+ Vi 5)

:_Vi« >-fp<m,+<f’aa‘;i">>
azp <fp(¢)S +<f,___|_>> (20)

Before examining Eq. (20) term by term, several
general comments can be made, First, it should be
remembered that f is a function of the independent
variables V, §, x, and #: thus, p(¥) is the local den-
sity; local, that is, in P space. Similarly, V is the
local velocity in V space. The derivative with respect
to V; of the first terms on the right-hand side of Eq.
(20) indicates that the terms represent transport of f
in V space; the terms disappear when the equation is
integrated over the whole of V space to form the equa-
tion for f(#). Similarly, because of the derivative
with respect to §,, the last terms represent transport
of f in P space. It will be seen that some of these
terms represent transport in more than one space,
Before Eq. (20) can be solved, the three terms in-
volving correlations with f’ need to be modeled, Each
of these terms can be re-expressed as a conditionally
expected value; for example,

<f’§7pl =fE<%2’-'U=V,¢=¢>. @1)

The first term in Eq. (20) is the local density times
the rate of change of f along a local particle path; that
is,

2 3 _° .
<5—Z—+ V|‘8'Z'>f(V, lP; X, t)_al‘ f[V,lP,Y(t),t] > (22)
where
dy _
ar=v. )

This term accounts for convection by both the mean and
fluctuating velocities. In moment formulations, con-
vection by the fluctuating velocity appears an an unknown
correlation that is usually modeled by gradient diffu-
sion, While the gradient-diffusion assumption for turbu-
lence has never had a firm foundation, recently both
theoreticall® and experimental!® studies have shown that
the assumption can be grossly in error for reactive
flows, In the present joint probability density function
formulation, the convective term appears in closed form
and so there is no need for a gradient-diffusion assump-
tion. This is a major reason for considering f(V, §)
rather than f ().

The usefulness of the equation for f (¥} in reactive
flows stems from the fact that the effects of reaction
appear in closed form, irrespective of the complexity
and nonlinearity of the reaction scheme. The same is
true in the equation for f(V, ¥): the term containing S,
in Eq. (20) shows that the effect of reaction (which ap-
pears in closed form) is to transport f in composition
space,

The final term in Eq. (20) also transports f in com-
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position space, in this case, as a result of molecular

diffusion. The form of the term is readily seen if, for
the single scalar ¢, we assume simple gradient diffu-
sion

J,=_r2%

e 24)

where T is the ditfusive coefficient,
be decomposed as

LI AN

¥ < ax,-> Tox ax
The first term on the right-hand side (which is neg-
ligible at high Reynolds number) is the molecular trans-
port of f, The second term is minus the second deriva-
tive of a positive correlation, It is simply shown?® that
such a term does not affect the mean (¢) but tends to
decrease the second moment (¢’%). Thus, the effect of
diffusion is to transport f in composition space so that
(¢) is unchanged while {(#’?) tends to decrease,

Then, the term can

<f ri¢ a¢’> @25)

3x; Ox

The effect of molecular viscosity (the term containing
7i;) is exactly analogous to the effect of diffusion; it
transfers f in V space, tending to decrease the turbu-
lent kinetic energy while not affecting the mean velocity.
The effects of diffusion and viscosity are discussed fur-
ther in the next section where models for the processes
are presented,

In addition to molecular viscosity, gravity and the
pressure gradient transport f in V space. The buoyan-
cy term (involving g;) is in closed form and needs no
further comment, The pressure gradient term, on the
other hand, is the major unknown in the equation, and
a consideration of its modeling occupies a large portion
of the next section, In order to examine the effects of
the term, we note that it can be re-expressed as

_of o,

___a_ ’ ap ’
v <f %, BV, ax; BIJBV, e
1 @ U, 3 >
= g2 + = 26
"3 8V,6V,<f p’ <8x, ax,,> 26)

where p’ is the fluctuating pressure
=p-{p) . @7)

The first two terms, having derivatives in both physi-
cal and velocity spaces, represent transport of f in
these spaces due to the mean and fluctuating pressure
gradients. Libby and Bray®® have attributed the cause
of counter-gradient diffusion to the mean pressure gra-
dient affecting different density fluids differently, In
this formulation the effect appears in closed form,
Transport of f due to the fluctuating pressure gradient
is discussed in the next section where a model for the
correlation {f'p’) is provided,

The final term contains the pressure-rate-of-strain
p'(@U,/dx, + 09U, /dx,) that is familiar to Reynolds-stress
modelers, Because of the second derivative, the term
does not affect the mean velocity. In constant-density
flow {(where U, /dx; is zero), the term also leaves the
turbulent kinetic energy unaffected. It serves therefore
to redistribute energy in velocity space. Again, the
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term is discussed at length in the next section where a
model is provided.

In summary, a transport equation for f(V, ¢; X, {) has
been derived, Eq. (20). Each term in the equation
represents transport of f in x, V, or § space. The
terms representing convection, the effect of gravity,
the mean pressure gradient and reaction appear in
closed form. In the next section, models are provided
for the unclosed terms which account for the fluctuating
pressure gradient and for molecular viscosity and dif-
fusivity.

i11l. MODELING

The joint probability density function equation for a
constant-property flow is considered in more detail in
this section and models for the unknown terms are pro-
vided. The constant density is set to unity (p=1) and
Newtonian viscosity and Fickian diffusion are assumed:

U,  aU
- it S | 2
T:] N(axj + axi> ( 8)
0
J:-':-r—a%‘—, 29)

where ¢ and I' are the viscosity and diffusivity. Since
there is no buoyancy effect in constant-density flow,
gravity is ignored (g=0).

It is convenient to decompose the velocity into its
mean and fluctuating components

=(U) +u, (30)

and to consider the joint probability density function of
uand ¢,g(v, ¥; x,t). This joint probability density func-
tion is defined by

gv, ¥; x, ) =(g’' v, ; %, ), (31)

where

g'(v’ lp; X, t) E’Iin a[uj(x’ t) - 1),]

-]
x II 8¢ o(x, 1) = ] (32)
P 5
The joint probability density functions f(V, ¥; x, f) and
gW,¥;x,t) are simply related by
v=V-(U), 33)

There are three reasons for preferring to model the
equation for g: correlations such as (g’ (v, ¥; X, {)u;(x
+r, 1)) tend to zero as r tends to infinity; g is invariant
under Gallilean transformations; and Reynolds stresses
and scalar fluxes are readily obtained from g by

(uu,) = ff 2, ¥; %, Do, dvdyp, (34)
and

ibqo) = ff g, b, x, hop,dvdy, (35)
After a modeled equation for g(v, §; x, f) has been ob-

tained, the equivalent equation for f(V, ¥; x,?) can
readily be recovered,
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A transport equation for g can be obtained either by
transforming the equation for f or directly from the
equations for u and ¢. In either case, the result is

2 3 %8
(3—t+<U‘> x )g Yiox,

%( (U - o )
LA ' ,.a_a
+ax,av (g7 >+av v, < >
2 /8T ,aJ 8
vl (o 32) - St + a5y, 6o

The main difference between this equation for g and that
for f [Eq. (20)] is the inclusion of the first term on the
right-hand side which represents transport of ginv
space due to mean-velocity and Reynolds-stress gradi-
ents, The terms on the left-hand side taken together
represent the rate of change of g along a local particle
path; or, taken separately, they represent the rate of
change of g along a mean streamline, and transport in
X space by velocity fluctuations. The four terms con-
taining correlations with g’ require modeling.

The transport equation for the Reynolds-stresses
(uu,) can be obtained by multiplying Eq. (36) by v,v,
and integrating over v and ¥:

(;7+<Ui) o )(u,u,> +2L (i)
(utuy> (U‘)

0
a’_’ (D' (us0;5 Tu3,4))

ou,  duy ou, ou
+{pr( L 4 b2 R |
<p (6x, ox )) Max Bx> %, “ax (ugny) .
i 1 9%, §

@7

<uiuu) (Uj ) -

Since this equation has been studied extensively and
models for the unknown terms are available,!”!8 it pro-
vides useful guidance in the modeling of the equation for
g. Consequently, we give here a brief description of the
terms in the equation and how they can be modeled, fol-
lowing for the most part, the work of Launder, Reece,
and Rodi.!”

The first term is the rate of change of {(»,u,) along a
mean streamline and the second represents transport
by the triple correlations. In a Reynolds-stress
closure, a model for the triple correlations is required
but, in the probability density function equation, the
corresponding term appears in closed form. Production
of the Reynolds stresses by mean velocity gradients ap-
pears in closed form in both the Reynolds-stress and
probability density function equations. The final term
in the equation represents the transport of the Reynolds
stresses by viscosity and is negligible at high Reynolds
number,

In both the Reynolds-stress and probability density
function equations, models for the remaining terms are
required. The viscous dissipation is presumed to be
isotropic
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duy odu,\ _ 2
61.—2ﬂ-< > =3 €0y

0x; Ox; (38)

where €, the rate of dissipation of turbulent kinetic en-
ergy, is given by
ou, ou
ol RS |
€= <ax ox; > ©9)
Throughout, it is assumed that ¢ is known, either from
the solution of another transport equation or from a
length-scale specification.

The two remaiaing terms involve correlations with the
fluctuating pressure p’. The divergence of the equation

for u is
du 2uu
v2 [ halad NS _.LJ_
p=-2 ax; Bx (U= ox 0%, (40)

which shows that there are two sources of pressure
fluctuations; one due to the interaction of turbulence
with the mean velocity gradients and the other solely
due to turbulence. These two contributions to p’ are
denoted by p’ and p'*’, respectively. The pressure
rate-of-strain correlation can therefore be considered
in two parts. The first part R}’ is generally modeled
by

ou
RJ(:) E<p(“('a—xf +a">> (A!Hm +Akllm <Ul> ’ (41)
where k& is the turbulent kinetic energy
k:1/2<uiui> ’ (42)

and A is a nondimensional tensor function of the Rey-
nolds stresses, There have been several suggestions
for the tensor A.!™!® The second part of the pressure
rate-of-strain correlatmn R/? is usually modeled as a
linear return to isotropy®

Rm <p (2)<21_‘.L +a_u.&>> ==C, 3 5 ((ujuk> kOIk)
Launder et al, suggest a value of 1,5 for the constant

8x; (43)
C,.

The remaining term represents transport due to the
pressure-velocity correlation and is generally ignored,
Lumley,? however, has suggested the following model
to account for the correlation of u; with p®:

(Pp'uy) =C

where the constant C, takes the value - 1/5.

1 Coytptiy) (44)

We now return to the transport equation for g(v, ¥;
X, t) and start by modeling the pressure transport term,
The correlation {g’p’) can be re-expressed as an ex-
pected value

(g'p"y=gE(p'lu=v, ¢p=y). (45)
Since the density is constant, the scalar field ¢ (x, ) has
no effect upon the velocity field and hence no effect upon
the pressure field: thus,

E(p'lu=v,¢=9)=E(p'|u=v). (46)

That p’ is a scalar and that (p’) is zero requires that
E(p’|u=v) be a scalar function in v space and that
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f ZE(p’ lu=v)dv=0. (47)

Subject to these conditions,
is

the simplest possible model

E(p' [u=v)=C,(wv; - 2k), (48)
When Eq. (48) is multiplied by v; £ and integrated to form

a model for ( p'u;), Lumley’s model [Eq, (44)] is ob-
tained,

The pressure-velocity correlation (p'u;) has not been
measured directly nor are such measurements likely to
be forthcoming, The correlation can be determined by
difference from measurements of the remaining terms
in the turbulent kinetic energy equation. By this method,
which clearly makes high demands on experimental ac-
curacy, Wygnanski and Fiedler?®:2® have determined
(P'u;) is a round jet and a plane mixing layer. For the
round jet, the pressure transport generally augments
the transport by the triple correlations suggesting a
positive value of C;, For the mixing layer, the con-
verse is the case. This is clearly a subject for further
investigation. But for the moment, we just note that
a simple model for E(p’ |u=v), Eq. (48), is consistent
with Lumley’s proposal for ( p’u;), Eq. (44),

Next, we consider the first part of the redistribu-
tive term

QP (v;x,1)= (49)

& () 08
81561},<g‘b _a—;;> ’
where the dependence upon ¥ has been removed by
arguments similar to those used here, We now develop
a model for @ ? for the case of homogeneous turbu-
lence, expecting that this contains the major contribu-
tion even in the inhomogeneous case. For the homo-
geneous case, @ can be re-expressed as

D ap a)
(X, £ =—om 50
Q% n=5 (s ) (50)
and from Eq. (40),
1)
ge 3 5 2ty UY (51)
ox; 0x;8%; Ox,
Thus, @’ can be determined from (g’(3pV/2x,))
which can be expressed as
61)‘“> Uy
’ ) = - 2
<g ax, axm gBmU’ (5 )
where
gB,,,:x,t)=(g'V? -a—z—”-n—> (53)
mifits 7 8,02,
and V7% is the inverse of the Laplacian, Alternatively,

by using Green’s theorem, we can express B in terms
of the conditionally expected value of u(x+r)

Bosv; %, )= ar,ar,
x E(u,(x +r)lu®)=v)|r[*dr. (54)

Since B has dimensions of velocity, it can be expected
to be independent of the length scale of turbulence. This
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expectation is confirmed by Eq. (54) from which it can
be shown that B is unchanged by an arbitrary normaliza-
tion of the separation vector r. This being the case, it
appears reasonable to model B as a function of v and
the Reynolds-stress tensor. It is expedient to assume
further that B is a linear function of v, since this leads
to a model that is compatible with Reynolds-stress
closures. Some support for these assumptions is pro-
vided by the observation that setting I=j in Eq. (53)
yields

B =V, (55)
The general form of the proposed model is
Bm” = Uchmlj . (56)

The nondimensional tensor ¢ (which may be a function
of the Reynolds stresses) can be determined from the
tensor A that appears in the modeling of the pressure
rate-of-strain correlation, Eq. (41), That modeling
gives

ou au
<P w a‘:‘> =—§—x‘:‘2 kAjp e (57)
while, in terms of ¢, Eqgs. (52) and (56) give
ou aUy
(o 5)=2 X2 (gt} C o) . (58)

A comparison of these two equations shows that ¢ and
A are related by

Apm= (2/k)<ukuq>cqmll ’ (59)
or
Comy =1/ 2k )" Appr e s (60)

Thus, for a given pressure rate-of-strain model (given
A) there is an equivalent model for ¢ and hence @
can be deduced,

Launder ef al. give a model for A which can be written
in terms of the normalized Reynolds-stress tensor

by, =<“1“1>/<“x"1> - 1/3511 »

and a single constant Cg for which the value 0.4 is sug-
gested, After much algebra, the corresponding tensor
C is found to be

Comis = 2/5+687)8,,5,,— (1/10 +9ay)
X (8430py + 04y61,) +[1/5~12av
+ 8V +2/8)B]b,,0;y = a(by; 8,y +D,,5;,)
+[1/10 - 9y(9a + B) - 33av]5,,0,,
+[~3/10 +9av-27y(a ~ B)] (5D py + 8osb1,)
= o+ B)boybi; +3(B = a)(0yyD s +besby)
- 28bl,8,, +3a(b25,,

+ @70 +3B)b2,5,,+9(a~ B)bLb,, +b0b,,), (61)

+b2,5,,)

where
a=(1-15C,)/(330u), (62)
=- (3+10C,)/(110v), 63)
y=1/3b3, , (64)
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and
v=1/2b% -3y~ 1/9. (65)

Although ¢ can be deduced from a model of A, there
are two reasons to prefer modeling ¢ directly. First,
a simpler expression than Eqs. (61)~(65) is likely to
result, Second, and more important, Eq, (59) shows
that A can always be determined from ¢, but Eq. (60)
shows that C can be determined from A only when the
inverse of the Reynolds-stress tensor exists, Physical-
ly, the Reynolds-stress tensor becomes singular when
the turbulence becomes two-dimensional, Then, it is
known?! that current models for A do not guarantee
realizability; that is, they do not guarantee that the
normal stresses remain non-negative. In the model by
Launder et al,, as the turbulence becomes two-dimen-
sional, v [Eq. (65)] tends to zero, and so a and B [Eqgs.
(62) and (63)] tend to infinity, The model for C then be-
comes infinite,

The direct modeling of C is left to a future study, We
note, however, that from such a model, the correspon-
ding tensor A can be determined [from Eq. (59)], which
leads to a pressure rate-of-strain model that guarantees
realizability.

Whether the tensor c is obtained from Egs, (61)~(65)
or by other means, the model for Q ¥ is

U,y @
Qm(v;x, B)==2C -?;"l'— SE(gv,). (66)

The second part of the redistribution term is

rp @) %>
<gp ) 67)

QV(v;x,8)= 52,90,
A model for this term has been constructed which is

best understood in terms of the Monte- Carlo method
used to solve the joint probability density function equa-
tion, The simulation corresponds to a random reorienta-
tion of g(v, ¥; x,1) in v space, In the Monte-Carlo
method, at given (x, ¢), the joint probability density
function g(v, $) is represented by an ensemble of N ele-
ments the nth of which has velocity and composition

u®, ¢, The simulation of @‘? is as follows; at a rate
C,Ne/k, pairs of elements (denoted by n and m) are se-
lected at random from the ensemble. The velocities of
the two elements are then replaced with the values

ufm =y* (uf,"’,uﬁ)"’, £, (68)
and

um —y* (u(()n)’ u(om)’ -8, (69)
where

v* (u(n)’u(m)’ £)=1/2(u"" +u(m)) ]

+1/2¢[u™ —u™ |, (70)
(n)

u;"’ is the initial value of u'™, and £ is a random vector
of unit length, uniformly distributed on the unit sphere,
(The same value of £ is used for both elements of the
pair, but different values are used for different pairs,)
This transformation of v, u™ to u", W™ corresponds

to a random rotation of the elements in v space around
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their mean position. Since neither their mean position
nor their separation is altered, the transformation con-
serves both energy and momentum; the effect of the ran-
dom reorientation is to decrease the anisotropy.

An analysis of this simulation shows that, as N tends
to infinity, the corresponding model for @ ® is

QB (v, s %, 1)
=26, (ffg(V',w)fg(V”,w”)dw”

i Lolv=v o v, olazaviav- g, w)), (71)

where [od¢ represents the integration over the surface
of the unit sphere. This expression is not as intractable-
as it appears; and, by multiplying by v,;v, and inte-
grating, the corresponding pressure rate-of-strain
model can be determined. The result is

R}P =—C,le/kY(u;uy) - 2/3k5,,) , (72)

which is just the same linear return to isotropy as
Rotta’s model, Eq. (43). In addition, computer experi-
ments show that the simulated probability density func-
tion tends, correctly, to a Gaussian,

In the viscous mixing term of Eq. (36), the correla-
tion can be re-expressed as the expected value

o7, ATl
v 2 1ig i
<g axi> =¥ <3

Again, the dependence upon ¥ can be removed because
the velocity field is independent of the scalar field, At
present, there is no completely satisfactory model for
this term, In spite of its known imperfections,?3 Curl’s
model? is most likely the best avajlable and is certain-
ly the simplest, His model, also known as the coales-
cence/dispersal model, is best described in terms of
the ensemble representation of the probability density
function. At location x, pairs of elements (denoted by n
and m) are selected at random from the ensemble at a
rate Ne/k, With the same notation as before, mixing
proceeds by

e
ox;

u=v, $= w) u=V). (73)

uM=u™ =L@ +um); (74)

that is, each element mixes by adopting the average
velocity of the pair. In terms of the probability density
function this model is

e )
vy ax;

:2% ( 8fg(v +v', 9) f gv=v, ¥ )dp'av’ - glv, z#)> .
(75)
An expression for the corresponding model for ¢, is
obtained by multiplying Eq. (75) by - v,v, and inte-
grating; the result is

€0 = S%Luﬁ i €5, - ((u,u,)— 2k6,,> (76)

It may be seen that as well as producing isotropic dis-
sipation, 2/366,,. Curl’s model also produces some

Rotta redistribution. Thus, in order that the modeling
asg a whole produce the desired result, the constant C,
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=1,5 in the model for redistribution is changed to C}
=C,~1=0.5. Then, Curl’s model produces the iso-
tropic dissipation plus two thirds of the redistribution,
and the remaining third of the redistribution is pro-
vided by the random reorientation simulation,

The final term in Eq, (36) to be modeled is the diffu-
sive mixing term that produces a transport of g in ¢
space, It is analogous to the viscous mixing term that
has just been considered. The correlation can be re-
expressed as the expected value

ad & aJ &

<g o, > =8E < ax,
In a turbulent reactive flow, the steep gradients of ¢
that make significant contributions to this expected
value can be caused by two agencies; turbulent velocity
fluctuations, and reaction, This term has previously"
been approximated by Curl’s model®; and, in proposing
its use, we must recognize that this model is appropri-
ate only when the effect of reaction on the microscale is
small, To deal properly with flows with very fast reac-
tions (such as premixed flames), an improved model is
required.

u=v,¢>=1p) . (77)

In the Monte- Carlo method, the implementation of
Curl’s model for diffusive mixing is precisely analogous
to its implementation for viscous mixing. At location x,
pairs of elements (denoted by » and ) are selected at
random from the ensemble at a rate C,N¢/k. Then,
mixing proceeds by the elements adopting their average
values of ¢;

¢(n) — ¢(m) L (¢(n) +¢(m)) (78)

An analytic expression for this simulation of mixing is

) oJ &
? I3
Y, <g x; >

¢, (2 [awurw)f sy v 1avay —g0,9).
{79)
From this expression, the effect of mixing on the vari-
ance of the single scalar ¢ can be shown to be

d 2 ¢ 2

. I - = 7 0
(9 == Cy 1 () . (80)
Thus, C, is identified as a standard turbulence-model
constant for which Spalding® suggests the value C,=2.0.

All the unknown terms in the transport equation for
g(v, ¥; %, f) in a constant-property flow have now been
modeled, Viscous and diffusive mixing are modeled by
Curl’s coalescence/dispersal model which also accounts
for two thirds of the Rotta redistribution. The re-
maining third is simulated by a random reorientation
of g in v space, The first part of the redistribution is
modeled as a flux of g in v space that is linear in g, v
and the mean-velocity gradient, and a tensor function
of the Reynolds stresses, This tensor function can be
determined from the equivalent tensor in Reynolds-
stress closures [see Egs. (60) and (61}]. A new model,
Eq. (48), has been proposed for the pressure transport,
A major advantage of the transport equation for
g(v, ¥; x, 1) is that no closure approximations are re-
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quired for the terms pertaining to convective trans-
port and chemical reaction,

of of 9

at 3x;  9Y, av, ox;  ‘ox,dV;

2
O v 2 s v - B2 o L (v, v, - (U, U] - 2C

The transport equation for f(V, §; x, t) corresponding
to the modeled equation for g(v, §; x,¢) is

amlJ aé;{ﬂ) 53_![f(vq—<Uq>)]

v s (f frorn fror v [ oLv-v (v, V", Dldtav ave - )

+2%<8ff(V+V’,lp)ff(V—V’,zp’)dzp’dV’—f) +C4%(2°ff(V,¢+¢’)ff(V',zp—zp’)dV’dzp’-f)_

The terms on the left-hand side of the equation are
exact, while those on the right-hand side are modeled.
It is interesting to note that if equations for the means
{U;) and (¢ ) are derived from Eq. (81), the right-hand
side, modeled terms make no contribution: their ef-
fect is on the second and higher moments. The first
two modeled terms are functions of f only while the
last three terms also depend on the turbulent frequency
¢/k, These three integral terms appear to be compli-
cated, but they represent very simple processes in the
Monte- Carlo simulation,

IV. DISCUSSION AND CONCLUSION

The transport equation for the joint probability den-
sity function of velocity and scalars has been shown to
provide an advantageous basis for modeling turbulent
reactive flows. The effects of reaction and convective
transport appear in closed form; and, because f(V, ¥)
contains simultaneous information of both velocity and
scalar fields, proper account can be taken of the two-
way interaction between turbulence and reaction. The
Monte-Carlo method can be used to solve the joint prob-
ability density function for inhomogeneous flows with
complex reactions,

In order to close the transport equation for the joint
probability density function, models are required for
the terms involving the fluctuating pressure and viscous
and diffusive mixing. Such models have been provided
for constant-density flows. The models pertaining to the
fluctuating pressure and viscous mixing are compatible
with current Reynolds-stress models, Consequently,
the Reynolds stresses calculated by the joint probability
density function equation can be expected to be more ac-
curate than those calculated by a Reynolds-stress mod-
el, since Reynolds-stress closures require additional
models for the triple correlations, As far as the scalar
field is concerned, reaction and convection (by both
mean and fluctuating velocities) appear in closed form,
only diffusive mixing requires modeling. Curl’s co-
alescence/dispersal model is suggested.

The modeling of the pressure terms can be expected
to be satisfactory. The terms pertain to the energy
containing motions which are well characterized by the
joint probability density function; the pressure transport
and the first part of the redistribution can be modeled
without a knowledge of the scale of turbulence. Indeed,
it appears that modeling the first part of the redistribu-
tion for the probability density function equation leads to
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(81)

—

an improved model for the Reynolds-stress equation,
one that guarantees realizability. The modeling of the
mixing terms is less satisfactory, Mixing occurs on the
microscale. The rate of mixing is deduced from the
dissipation rate ¢, and the modeled transport equation
for € is a major source of uncertainty. In addition, ex-
perimental evidence?”?8 shows that, in general, the rate
of diffusive mixing cannot be uniquely related to ¢, The
effects of reaction on the microscale have also been ig-
nored. (These criticisms, it should be remembered,
apply to all one-point closures, not just to the joint
probability density function equation.) The specific form
of Curl’s model can also be criticized,? since it can
produce unrealistic shapes for the probability density
function and it does not lead to a Gaussian as the limit
of decaying fluctuations,

It would be premature to consider in detail the mod-
eling of the joint probability density function equation
for variable-density flows, It can be noted, however,
that the effects of reaction, convective transport and
buoyancy still appear in closed form. In addition, be-
cause the joint probability density function provides
simultaneous information about the velocity and scalar
fields, it can be expected that the effects of density fluc-
tuations can be satisfactorily incorporated into the mod-
eled terms,
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