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In the modeling and simulation of mixing and reaction in turbulent flows using
probability density function (PDF) methods, a key component is the mixing model,
which represents the mixing effected by molecular diffusion. A new model, called the
shadow-position mixing model (SPMM), is introduced and its performance is illus-
trated for two test cases. The model involves a new variable—the shadow position—
and mixing is modeled as a relaxation of the composition to its mean conditional
on the shadow position. The model is constructed to be consistent with turbulent
dispersion theory, and to be local in the composition space, both to adequate ap-
proximations. The connections between the SPMM and previous mixing models are
discussed. The first test case of a scalar mixing layer shows that the SPMM yields
scalar statistics in broad agreement with experimental data. The second test case of a
reactive scalar mixing layer with idealized non-premixed combustion shows that the
SPMM correctly yields stable combustion, whereas simpler models incorrectly lead to
extinction. The model satisfies all required realizability and transformation properties
and correctly yields Gaussian distributions in appropriate circumstances. The SPMM
is generally applicable to turbulent reactive flows using different PDF approaches
in the contexts of both Reynolds-averaged Navier-Stokes modeling and large-eddy
simulation. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818981]

I. INTRODUCTION

The molecular mixing of different chemical species is of fundamental importance in numerous
applications including combustion, chemical processing, and environmental flows;1 and the treat-
ment of this mixing process is a central issue in all modeling and simulation approaches to the
turbulent flows in such applications. In the present work we introduce and examine a new model
of molecular mixing in the context of probability density function (PDF) methods,2–4 which are
used extensively for turbulent reactive flows in both Reynolds-averaged Navier-Stokes (RANS) and
large-eddy simulation (LES) frameworks.5–7

We take the Lagrangian viewpoint and consider modeling the evolution of the properties of a
fluid particle whose position, velocity, and composition at time t are denoted by X∗(t), U∗(t), and
φ∗(t). In general, the composition φ may be a set of species mass fractions and enthalpy, but we
also consider a single conserved passive scalar, denoted by φ. (In the standard notation used, φ(x, t)
denotes the Eulerian composition field, and φ∗(t) denotes a model for the composition following a
fluid particle.)

To introduce the principal ideas, we consider the simplest case of high-Reynolds-number,
homogeneous, isotropic turbulence. In this case, the velocity is quite accurately modeled by the
Langevin equation,8, 9 so that X∗ and U∗ evolve by
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dX∗

dt
= U∗, (1)

dU∗ = −U∗ dt

TL
+

(
2σ 2

TL

)1/2

dW, (2)

where σ is the rms velocity, TL is the Lagrangian integral time scale, and W(t) is an isotropic Wiener
process.

The simplest turbulent mixing model is the interaction-by-exchange with the mean (IEM)
model10 or, equivalently, the linear mean-square estimation (LMSE) model,11 according to which
φ∗(t) evolves by

dφ∗

dt
= − cφ

TL
(φ∗ − 〈φ∗ | X∗〉), (3)

where cφ is a model coefficient, and 〈φ∗ | X∗〉 denotes the mean of φ∗ conditional upon X∗. As
is appropriate to turbulent mixing at high Reynolds number, the rate of mixing is modeled to be
determined by the integral time scale, independent of the molecular diffusivity.

While the IEM model is widely used and indeed is useful, it has several deficiencies.3, 12, 13 In the
present context, the two most significant deficiencies—explained below—are that it is inconsistent
with turbulent dispersion theory, and it is non-local in composition space.

According to Taylor’s theory of turbulent dispersion,14 at high Reynolds number the mean
composition field 〈φ(x, t)〉 ≡ 〈φ∗(t) | X∗(t) = x〉 is determined entirely by the motion of the fluid,
and is unaffected by molecular diffusion. A consequence is that the scalar flux 〈Uφ〉 is unaffected
by molecular mixing, and so also therefore is its rate of change.15 It follows that a mixing model
that is consistent with dispersion theory satisfies〈

U∗ dφ∗

dt
| X∗

〉
= 0, (4)

which we refer to as the dispersion-consistency condition. Clearly the IEM model does not satisfy
this condition, but instead yields〈

U∗ dφ∗

dt
| X∗

〉
= − cφ

TL
〈U∗φ∗(t) | X∗〉. (5)

The interaction by exchange with the conditional mean (IECM) mixing model16, 17 was intro-
duced to overcome this deficiency, and it has indeed proven successful for dispersion problems for
which the IEM model is grossly inaccurate.18, 19 In the IECM model, the composition evolves by

dφ∗

dt
= −cU

TL
(φ∗ − 〈φ∗ | U∗, X∗〉), (6)

where cU is a model coefficient, so that the relaxation is towards the mean conditioned on velocity
as well as on position.

The second significant deficiency of the IEM model is that it is non-local in composition space.
From the usual continuum viewpoint, molecular diffusion is an exchange of composition between
neighboring fluid particles which are infinitesimally close in both position and in composition. In
contrast, in IEM the exchange (between φ∗ and its mean 〈φ∗ | X∗〉) is non-local in composition space
(although local in position). As discussed by Norris and Pope20 and below in Sec. V, this deficiency
can be very serious in combustion applications: it can, for example, erroneously cause extinction of
a non-premixed turbulent flame at infinite Damköhler number.

The Euclidean minimum spanning tree (EMST) mixing model13 was developed to remedy this
non-localness deficiency of the IEM model, which it does. In comparative tests of mixing models
applied to non-premixed turbulent flames,21 the EMST model is found to be the most accurate.
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However, the model has its own set of deficiencies, among which are the following:

1. It is a numerical method implemented for a set of N particles, and the convergence as N tends
to infinity is uncertain.

2. It violates the linearity and independence principles applicable to a set of conserved passive
scalars.22

3. It does not yield Gaussian PDFs in appropriate circumstances.
4. It is prone to “stranding” of particles in composition space (as described in Ref. 13).

The shadow-position mixing model (SPMM) introduced here is, to a good approximation,
consistent with dispersion theory and local in composition space. It draws on some of the ideas of
multiple mapping conditioning (MMC),23–25 in particular by introducing conditioning variables. As
described fully in Sec. II, we introduce the shadow position Z∗(t) as an additional particle property,
and then model mixing by

dφ∗

dt
= − c

TL
(φ∗ − 〈φ∗ | Z∗, X∗〉), (7)

where c is a model coefficient. In addition to (approximate) dispersion-consistency and localness,
favorable attributes of the shadow-position mixing model are that it satisfies linearity and indepen-
dence, it yields Gaussian PDFs in appropriate circumstances, and it completely avoids “stranding.”
(Like all the models mentioned above, it also satisfies the more basic requirements of preserving the
mean and the boundedness of the composition distribution, and causing the variance to decrease.)

While the SPMM has connections to IEM, IECM, MMC, and EMST, we also mention that other
mixing models used in PDF methods include Curl’s model,26 the modified Curl model (MC),27 the
binomial Langevin model,28 and the parameterized scalar profile (PSP) model.29–31

The outline of the remainder of the paper is as follows. The equations governing the shadow-
position mixing model are presented in Sec. II, with minimal explanation. Then, in Sec. III the
model is applied to the simple case of a uniform mean scalar gradient in homogeneous isotropic
turbulence. This serves to clearly reveal the important properties of the shadow-position mixing
model, and to provide a rational way to specify the model coefficients. In Sec. IV the SPMM is
applied to the scalar mixing layer in a mildly strained flow, which allows a direct comparison with
the mean obtained from dispersion theory, and a qualitative comparison with the experimental data
on the scalar variance, skewness, and kurtosis obtained by Ma and Warhaft32 in a slightly different
scalar mixing layer. In Sec. V mixing models are applied to a turbulent non-premixed flame test
case, based on that studied by Norris and Pope,20 and it is shown that the SPMM correctly yields
stable combustion, whereas both the IEM and IECM models incorrectly lead to extinction. Various
aspects of the model and its extensions are discussed in Sec. VI; and a summary and conclusions
are provided in Sec. VII.

An important issue is the accurate and efficient computational implementation of the shadow-
position mixing model. We use a mesh-free, near-neighbor implementation, which is briefly de-
scribed in Sec. VI D, and which will be more thoroughly described and tested in a forthcoming
publication. Suffice it to say that care has been taken to ensure that all of the results presented below
are numerically accurate.

In Sec. VI E we describe an extension—the velocity-shadow-position mixing model
(VSPMM)—which exactly satisfies dispersion consistency, and can satisfy localness either ex-
actly or approximately. Because of these favorable attributes, the model is of theoretical interest, but
it is less amenable than SPMM to numerical implementation for statistically inhomogeneous flows.

II. THE SHADOW-POSITION MIXING MODEL

To the general fluid particle with position X∗(t) we associate a shadow particle with position
Z∗(t). This shadow position Z∗(t) is defined to evolve by the stochastic differential equation (SDE)

dZ∗ = 〈U∗ | X∗〉 dt − a

TL
(Z∗ − X∗) dt + b(2σ 2TL )1/2 dW′, (8)
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where a and b are positive coefficients (whose values are considered in Sec. III), and W′ is an
isotropic Wiener process, independent of that in the Langevin equation (Eq. (2)). The three terms on
the right-hand side correspond to: movement with the local mean velocity; relaxation towards the
fluid particle position; and a random walk.

The name “shadow” is deserved based on two different meanings of the word. First, the shadow
particle is “an inseparable companion or follower” of the fluid particle. Second, for a given fluid
particle, Z∗ is random with a distribution resembling a penumbral shadow behind the fluid particle.
For example, for a fluid particle moving with velocity 〈U∗ | X∗〉 + V, for a fixed value of V, the
distribution of Z∗ is an isotropic joint normal, with its center displaced by −VTL/a from the fluid
particle, and with standard deviation σ TLb/

√
a.

It is convenient to introduce the shadow displacement defined by

R∗(t) ≡ Z∗(t) − X∗(t). (9)

It follows from Eqs. (1) and (8) that this evolves by

dR∗ = −aR∗ dt

TL
− (U∗ − 〈U∗ | X∗〉) dt + b(2σ 2TL )1/2 dW′. (10)

It is obvious from Eq. (9) that {Z∗, X∗} and {R∗, X∗} contain the same information, and hence
conditioning on one is identical to conditioning on the other. Hence, the shadow-position mixing
equation, Eq. (7), can be written as

dφ∗

dt
= − c

TL
(φ∗ − 〈φ∗ | R∗, X∗〉). (11)

We take the above two equations, Eqs. (10) and (11), to be the defining equations of the shadow-
position mixing model.

III. APPLICATION TO A UNIFORM MEAN SCALAR GRADIENT

A. Description of the flow

We consider statistically stationary, homogeneous, isotropic turbulence, characterized by the
rms velocity σ and the Lagrangian integral time scale TL. There is a single, conserved, passive
scalar denoted by �(x, t). There is a constant and uniform mean gradient ∂〈�〉/∂x = G, where x is
a coordinate in the direction of the gradient. Thus, with a suitable choice of origin, the mean scalar
field is given by

〈�〉 = Gx . (12)

The fluctuation in the scalar φ(x, t) is then

φ ≡ � − 〈�〉 = � − Gx . (13)

The specified initial condition (at t = 0) is that there are no scalar fluctuations, i.e., φ(x, 0) = 0.
This flow is statistically homogeneous, and it is sufficient to consider the single component of

velocity in the direction of the mean scalar gradient, which we denote by U. The primary statistics
of interest are the scalar variance 〈φ2〉 and the scalar flux 〈Uφ〉, which we express in normalized
form as

Vφ(t) ≡ 〈φ2〉
(Gσ TL )2

(14)

and

Fφ(t) ≡ 〈Uφ〉
Gσ 2TL

. (15)

This flow has been studied using Direct Numerical Simulation (DNS),33, 34 and there have been
experiments on the similar flow in decaying grid turbulence.35 The principal relevant observations
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from the DNS are as follows:

1. The one-point, one-time statistics of U and φ are joint normal.
2. For sufficiently large times the flow becomes statistically stationary.
3. In the statistically stationary state, the scalar flux correlation coefficient is

ρUφ ≡ 〈Uφ〉
σ 〈φ2〉1/2

≈ −0.55, (16)

with no discernible Reynolds-number dependence.

Application of Taylor’s theory of turbulent dispersion to this flow shows that the scalar flux is
given by

〈Uφ〉 = −�̂T (t)
∂〈�〉
∂x

, (17)

where the time-dependent turbulent diffusivity is given by8

�̂T (t) = σ 2
∫ t

0
ρL (s) ds, (18)

where ρL(s) is the two-time Lagrangian velocity autocorrelation function. In the statistically station-
ary state this yields

�T ≡ �̂T (∞) = σ 2
∫ ∞

0
ρL (s) ds = σ 2TL , (19)

where the last step follows from the definition of TL.
From Eqs. (15), (17), and (19), we observe that, in the statistically stationary state, the normalized

scalar flux is

Fφ(∞) ≡ 〈Uφ〉
Gσ 2TL

= −1. (20)

This equation is used in two ways. First, it is used to extract the value of TL from the DNS, based on
the reported values of G, σ , and 〈Uφ〉. Second, it provides the dispersion-consistency condition (in
the statistically stationary state). Furthermore, from Eqs. (14), (16), and (20), it follows that in the
statistically stationary state the normalized scalar variance is

Vφ(∞) = ρ−2
Uφ ≈ 3.3. (21)

B. Shadow-position model equations

For this flow, the relevant particle properties are velocity U∗(t), shadow displacement R∗(t),
and scalar fluctuation φ∗(t). The position of the particle is immaterial, since the flow is statistically
homogeneous. Note that U∗ and R∗ are the components of U∗ and R∗ in the direction of the mean
scalar gradient.

The evolution equations for these quantities are

dU ∗ = −U ∗ dt

TL
+

(
2σ 2

TL

)1/2

dW, (22)

d R∗ = −a R∗ dt

TL
− U ∗ dt + b(2σ 2TL )1/2 dW ′, (23)

dφ∗

dt
= −GU ∗ − c

TL
(φ∗ − 〈φ∗ | R∗〉), (24)

where W (t) and W ′(t) are independent, scalar-valued Wiener processes. The equations for U∗ and
R∗ are simply the scalar versions of Eqs. (2) and (10), with the mean velocity appropriately set to
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zero. The equation for φ∗ is derived from Eqs. (11) and (13): the term in G arises due to the changing
mean as the particle moves in x; and, in the term in c, the conditioning is on only R∗, again because
of statistical homogeneity.

The appropriate initial conditions are discussed below (in Sec. III F). For the moment, it is
sufficient to stipulate that {U∗(0), R∗(0), φ∗(0)} is joint normal with zero means. For then, the
solution to the above equations remains Gaussian for all time. This follows from two observations.
First, with R∗ and φ∗ being joint normal, the conditional mean in Eq. (24) is

〈φ∗ | R∗〉 = R∗ 〈R∗φ∗〉
〈R∗2〉 . (25)

Second, given this result, the evolution equations, Eqs. (22)–(24), form a set of linear stochastic
differential equations, which are known to yield Gaussian statistics.36

C. Statistically stationary state

Since the solution to the SDEs is Gaussian, the one-time joint PDF of the particle proper-
ties is completely determined by their means, which are zero, and by their second moments. In
Appendix A, the evolution equations for the second moments are derived from Eqs. (22)–(25), and
their solutions are obtained for the statistically stationary state. The principal observations (pertaining
to the statistically stationary state) are as follows:

1. The dispersion-consistency condition is satisfied if the correlation coefficients satisfy the
relation

ρUφ = ρU RρRφ, (26)

which requires R∗ to be more strongly correlated with both U∗ and φ∗ than the latter two
quantities are with each other. (The obvious notation is that ρUφ denotes the correlation
coefficient between U∗ and φ∗, Eq. (16), etc.)

2. The satisfaction of this dispersion-consistency condition is achieved with the specification of
the coefficient b as

b = 1

1 + a
. (27)

3. With this specification of b, and with a and c strictly positive, the normalized variances of R∗

and φ∗ are

〈R∗2〉
(σ TL )2

= 2 + a

a(1 + a)2
(28)

and

Vφ ≡ 〈φ∗2〉
(Gσ TL )2

= 1

c
+ 2 + a

a
. (29)

4. The correlation coefficients are

ρU R = −
(

a

2 + a

)1/2

, (30)

ρUφ = −
(

1

c
+ 2 + a

a

)−1/2

, (31)

ρRφ =
(

a

2 + a

)−1/2 (
1

c
+ 2 + a

a

)−1/2

. (32)
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D. Specification of the coefficients

There are three coefficients in the shadow-position mixing model: a, b, and c. As shown above,
b is determined in terms of a (Eq. (27)) by the dispersion-consistency condition. We use Eq. (29) and
the value of the normalized scalar variance Vφ ≈ 3.3 observed in the DNS (Eq. (21)) to determine c
in terms of a as

c = 1

Vφ − 1 − 2/a
. (33)

We observe from this equation that there is a minimum value of a,

amin ≡ 2

Vφ − 1
≈ 0.87, (34)

such that c is positive and finite for a > amin; and Eq. (33) can be re-expressed as

1

c
= 2

(
1

amin
− 1

a

)
. (35)

Similarly, there is a minimum value of c, corresponding to a → ∞, which is cmin = amin/2 ≈ 0.43.
For every value of a ≥ amin, the model is completely consistent with the DNS data in the

statistically stationary state in that the statistics of U∗ and φ∗ are joint normal, with the correct first
and second moments.

In order to show the dependence of the various correlation coefficients on the model parameter
a, in Fig. 1 they are plotted against α ≡ (a − amin)/a. As α increases from 0 to 1, a increases from
amin to infinity, |ρUR| increases from |ρUφ| to unity, ρRφ decreases from unity to |ρUφ|, while the
product of ρUR and ρRφ remains equal to the constant value of ρUφ .

For the limiting value a = amin, c is infinite, and the model yields no conditional fluctuations,
i.e., φ∗ = 〈φ∗ | R∗〉. In this case, the model is completely local in composition space. In general, we
define the degree of non-localness, N , by

N = std(φ∗ − 〈φ∗ | R∗〉)
std(φ∗)

, (36)

where std denotes the standard deviation. Given that R∗ and φ∗ are joint-normally distributed, this
expression for N is readily determined to be

N = (1 − ρ2
Rφ)1/2, (37)

FIG. 1. Correlation coefficients in the statistically stationary state as functions of the model coefficient a expressed in terms
of α ≡ (a − amin)/a: −ρUR (solid line); −ρUφ (dashed line); ρRφ (dashed-dotted line).
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FIG. 2. Degree of non-localness N (Eq. (36)) as a function of the model coefficient a: shadow-position mixing model (solid
line); IECM (dashed line); IEM (dashed-dotted line).

and Eqs. (32) and (33) show that in the statistically stationary state this is simply related to the
coefficient c by

N = (cVφ)−1/2. (38)

Figure 2 shows N as a function of the coefficient a. As may be seen, for a = amin, as previously
observed, the model is completely local, with N = 0 and c = ∞. As a increases from amin, N
increases, initially with infinite slope. Also shown are the values of N for the IECM and IEM
models, which are consistently defined by substituting 〈φ∗ | U∗〉 and 〈φ∗〉, respectively, for 〈φ∗ | R∗〉
in Eq. (36). Clearly, for sufficiently small values of a, the shadow-position mixing model achieves a
significantly higher degree of localness than IEM and IECM.

We now examine the transient behavior of the shadow-position mixing model for the mean
scalar gradient test case. The ordinary differential equations for the second moments are integrated
starting from the statistically stationary state for U∗ and R∗, and with φ∗ = 0. The resulting evolution
of the normalized scalar flux Fφ is shown in Fig. 3 for different values of a. By construction of the
model, specifically the satisfaction of the dispersion-consistency condition in the stationary state,

FIG. 3. Normalized scalar flux as a function of normalized time for different values of the coefficient a in the shadow-position
mixing model. From top to bottom, the values of a are 0.87, 1.0, 1.2, and 2.0, and ∞. With a = ∞ the result is the same as
that given by dispersion theory and by the IECM model.
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the scalar flux Fφ tends to −1 at large time for all values of a. For a = ∞ the model is consistent
with dispersion theory for all time, but as a decreases discrepancies during the transient emerge.

The specification of a therefore involves a compromise: as a increases from amin, the model
becomes less local, but more consistent with dispersion theory. As the results presented below in
Secs. IV and V show, a reasonable and simple specification of the coefficients is a = 1, which leads
to b = 1/2 and c = 3.27.

It should also be remembered that the dispersion-consistency condition applies only at large
Reynolds number. At moderate Reynolds number, DNS33 reveals that there is a significant correlation
between velocity and molecular mixing.

E. Reduction to other models

It is interesting to observe that, as now explained, with different limiting values of the coef-
ficients, the shadow-position mixing model reduces to the IEM model, to the IECM model, or to
generalized MMC.24

As mentioned above, in the limiting case a = amin, b = 1/(1 + a), c → ∞, there are no
conditional fluctuations so that (in the general case) we have

φ∗(t) = 〈φ∗(t) | X∗(t), R∗(t)〉. (39)

This can be viewed as a variant of deterministic generalized MMC,24, 25 with R∗ being the condi-
tioning variable. However, SPMM differs from MMC (as originally proposed23) in that conditioning
is not on all of the variables (U∗, R∗). Subsequent to the original MMC paper,23 Klimenko24 defined
the less restrictive “generalized” MMC in which the conditioning variables (here R∗) are allowed
to be a subset of the reference variables (here U∗ and R∗). For a ≥ amin, the SPMM is a form of
the stochastic generalized MMC model, termed MMC-IEM.24 (It should be noted that generalized
MMC is a broad definition, which includes IECM, which pre-dates MMC.)

The velocity-shadow-position mixing model described below (in Sec. VI E) is an MMC model
in the original sense.

The IECM model is obtained by taking the limit a → ∞, b = 1/(1 + a) = 0, and c = cmin =
cU. In this limit, R∗ and U∗ become perfectly correlated, so that conditioning on R∗ is identical to
conditioning on U∗, and the shadow-position mixing equation degenerates to the IECM equation
(Eq. (6)).

The IEM model is obtained by taking a → ∞, b = γ
√

a → ∞, and c = cφ for any positive
value of γ . In this limit, R∗ becomes independent of U∗ and φ∗, so that conditioning on R∗ has no
effect, i.e., 〈φ∗ | R∗〉 = 〈φ∗〉, so that the shadow-position mixing equation (Eq. (7)) degenerates to
the IEM equation (Eq. (3)).

F. Initial and boundary conditions

For the case considered of passive scalar mixing in statistically stationary, homogeneous,
isotropic turbulence, the only possible consistent initial condition for R∗ is that it is in the sta-
tistically stationary state. Any other condition would violate the independence principle.22 This is
most simply seen by considering two different scalars initialized in the same way, but at times t = t1
= 0 and t = t2 > 0. Clearly, the statistics of both scalars evolve in the same way, just with a shift in
time. With the shadow-position mixing model, this requires that the distribution of {U∗, R∗} be the
same at times t1 and t2, and this is achieved only if R∗(t1) is specified in the statistically stationary
state.

Another way of viewing this is that, in this example, t = 0 is a special time, i.e., the time
at which the first scalar is initialized. If a non-stationary specification is made for R∗(0), then the
statistics of the second scalar incorrectly depend on its initialization time t2. That is, the second
scalar is incorrectly affected by the first, in violation of the independence principle. More generally,
to adhere to the independence principle, initial and boundary conditions on R∗ must be independent
of the compositions.
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For more general flows than considered here, boundary conditions are required on the vector
R∗, or, equivalently, on Z∗. Appropriate boundary conditions are as follows:

1. For a non-turbulent inflow: R∗ = 0.
2. For a turbulent inflow: R∗ is Gaussian, with zero mean, covariance 〈R∗

i R∗
j 〉 = 〈R∗2〉δi j , and

with correlation coefficient between R∗
i and U ∗

j of ρURδij, where 〈R∗2〉 and ρUR are given by
Eqs. (28) and (30).

3. For a solid wall: reflective boundary conditions are applied to Z∗, so that the shadow position
remains within the flow.

G. Performance of the IEM and IECM models

For this flow, the IECM model (Eq. (6)) satisfies all the conditions considered above. Regardless
of the value of the coefficient cU in Eq. (6), U∗ and φ∗ are joint normal, and the scalar flux is
consistent with dispersion theory at all time. It follows simply from the second-moment equations
that the observed scalar variance in the statistically stationary state is obtained provided that the
coefficient is specified as

cU = 1

Vφ − 1
≈ 0.43. (40)

For the IEM model, the second-moment equations show that, in the statistically stationary state,
the observed scalar variance is obtained with the specification

cφ = 1

2

[(
1 + 4

Vφ

)1/2

− 1

]
≈ 0.24. (41)

However, instead of being equal to −1, the normalized scalar flux is

Fφ(∞) ≡ 〈Uφ〉
Gσ 2TL

= − 1

1 + cφ

≈ −0.80, (42)

i.e., 20% in error.

IV. APPLICATION TO THE SCALAR MIXING LAYER

A. Description of the flow

The scalar mixing layer provides a simple test case to study the transport and mixing predicted
by the shadow-position mixing model for a flow with a statistically inhomogeneous scalar field. This
flow yields a temporally evolving, statistically one-dimensional scalar field, and we denote by X∗,
U∗, and R∗ the components of X∗, U∗, and R∗, respectively, in the inhomogeneous x direction. As in
Sec. III, we consider a conserved passive scalar in statistically stationary, homogeneous, isotropic
turbulence, and the same evolution equations apply to U∗ and R∗, i.e., Eqs. (22) and (23).

In the present case, φ∗(t) denotes the scalar (not its fluctuation), which evolves by (the one-
component version of) Eq. (11) from the initial condition φ∗(0) = H(X∗(0)), where H(x) is the
Heaviside function.

In order to make the flow attain a statistically stationary state, the position equation is modified
to

d X∗

dt
= U ∗ − SX∗, (43)

where S is an imposed mean strain rate, which we take to have the relatively small value S = 0.1/TL.
Note that the model equations do not take into account the effect of straining on the turbulence.

Ma and Warhaft32 have studied experimentally the scalar mixing layer in grid turbulence, and
there have been DNS of the same flow.37 The differences compared to the test case considered here
are that the turbulence is decaying, and there is no mean straining. Nevertheless, useful comparisons
can be made between the measured and calculated statistics.
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FIG. 4. Normalized width of the scalar mixing layer as a function of time. Dashed line: dispersion theory, IECM, and SPMM
with a = ∞. Solid lines: SPMM with (from bottom to top) a = 0.87, 1.0, 1.2, and 2.0.

B. The mean scalar profile

The profile 〈φ(x, t)〉 of the mean scalar can be determined from turbulent dispersion theory, and
this is done in Appendix B. The profile is an error function (Eq. (B1)) of characteristic width σ X(t)
given by Eq. (B10).

Numerical simulations were performed first with the IECM model, and with no mixing model
(i.e., dφ∗/dt = 0), both of which are consistent with dispersion theory. These calculations produce
error function profiles of the correct width, which serves to verify the consistency between the
simulations and the theory.

Simulations using the shadow-position mixing model for a range of values of the parameter a
produce mean profiles which deviate from the error function by less than 1

2 %. The calculated widths
σ X(t) are compared to the dispersion result in Fig. 4. As may be seen, the width of the scalar mixing
layer increases from zero and eventually attains a constant value. The dashed line is the dispersion
result, which is also given by the IECM model, and the SPMM with a infinite. As may be seen, the
errors in the SPMM for finite values of a decrease as a increases. For the four values of a (0.87,
1.0, 1.2, and 2.0) the errors in the width in the statistically stationary state are 6%, 4%, 2%, and 1%,
respectively.

C. Second and higher moments

Figure 5 shows the statistically stationary profile of the rms scalar fluctuation. The coordinate x is
normalized by the half-width L1/2 (defined such that 〈φ(±L1/2))〉 = 1

2 ∓ 1
4 ) to facilitate comparison

with the experimental results presented by Ma and Warhaft.32 It is found that the peak of the rms of
φ∗ increases with STL, and the value used here (STL = 0.1) is chosen to match approximately the
experimental value. (Note that the statistics shown in Figs. 5–10 are conditioned on X∗ = x, but this
is not shown explicitly in the notation. Also, since the comparison between the two slightly different
flows is qualitative, the experimental data are not reproduced here, but instead the reader is referred
to the figures in Ma and Warhaft.32)

Figure 6 shows the profile of the (negative of the) scalar flux correlation coefficient, −ρUφ . The
shape of this profile and the peak value agree well with the experimental data.32 Both for the rms and
the scalar flux correlation coefficient, there is little dependence on the value of the model coefficient
a over the range investigated, except for the smallest value, a = 0.87, at the edge of the layer.

Figures 7 and 8 show profiles of the skewness Sφ and kurtosis Kφ of φ∗. Here, there is a
strong dependence on the model coefficient a. In the center of the layer, there is a linear variation
of Sφ , and the kurtosis is significantly below the Gaussian value of 3—in agreement with the
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FIG. 5. Profiles of the rms of the scalar φ∗ in the scalar mixing layer in the statistically stationary state according to the
SPMM for values of the coefficient a = 0.87, 0.91, 0.95, 1.0, 1.2, and 2.0. The lower line is for a = 0.87.

FIG. 6. Profiles of the negative of the scalar flux correlation coefficient in the scalar mixing layer in the statistically stationary
state according to the SPMM for values of the coefficient a = 0.87, 0.91, 0.95, 1.0, 1.2, and 2.0. The lower line is for
a = 0.87.

FIG. 7. Profiles of the skewness of φ∗ in the scalar mixing layer in the statistically stationary state according to the SPMM
for values of the coefficient a = 0.87, 0.91, 0.95, 1.0, 1.2, and 2.0. At the edges, the skewness increases in magnitude with
increasing a.
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FIG. 8. Profiles of the kurtosis of φ∗ in the scalar mixing layer in the statistically stationary state according to the SPMM
for values of the coefficient a = 0.87, 0.91, 0.95, 1.0, 1.2, and 2.0. The kurtosis increases with increasing a.

experimental data.32 At the edges of the layer, as is evident from the figures, there is considerable
statistical uncertainty, even though the statistics are averaged over 40 simulations, each made with
105 particles. Nevertheless, it is clear that, at the edges, these higher moments increase strongly with
a. For a greater than unity, it appears that the skewness and kurtosis tend to infinity at the edge,
whereas for a ≤ 1 they tend to zero. For a = 0.91 the peak values of the skewness and kurtosis are
about 3 and 20, respectively—similar to the peak values observed by Ma and Warhaft.32

Figure 9 shows the Gaussian estimate for the fluctuation in φ∗ about its mean conditional on R∗

std(φ∗ − 〈φ∗ | R∗〉)G ≡ std(φ∗)(1 − ρ2
Rφ)1/2 ≈ std(φ∗ − 〈φ∗ | R∗〉). (44)

As expected, decreasing a towards amin causes these conditional fluctuations to decrease; for a =
0.87, they are everywhere less than 0.04.

Figure 10 shows the corresponding Gaussian estimate for the degree of non-localness

NG ≡ std(φ∗ − 〈φ∗ | R∗〉)G

std(φ∗)
= (1 − ρ2

Rφ)1/2 ≈ N . (45)

FIG. 9. Profiles of the rms of the conditional fluctuation φ∗ − 〈φ∗ | R∗〉 (estimated by Eq. (44)) in the scalar mixing layer in
the statistically stationary state according to the SPMM for values of the coefficient a = 0.87, 0.91, 0.95, 1.0, 1.2, and 2.0.
The rms increases with increasing a.
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FIG. 10. Profiles of the degree of non-localness (estimated by Eq. (45)) in the scalar mixing layer in the statistically stationary
state according to the SPMM for values of the coefficient a = 0.87, 0.91, 0.95, 1.0, 1.2, and 2.0. In the center of the layer,
NG increases with increasing a.

In the center of the layer, where the Gaussian estimate can be expected to be accurate, the values of
NG are somewhat larger than the values of N observed in the mean-scalar-gradient case with the
same values of a (see Fig. 2). Also, the values of NG tend to unity at the edge of the layer, as the
correlation coefficient ρRφ tends to zero.

D. Performance of the IEM and IECM models

Calculations were also performed with the IEM and IECM models, using the values of the
coefficients given by Eqs. (40) and (41). The principal observations are as follows:

1. For IECM the width σ X(t) is consistent with dispersion theory at all times; whereas with IEM,
in the statistically stationary state, the width is low by 9%.

2. For both models the departures from the error function profile are less than 0.2%.
3. For both models the peak scalar rms is approximately 0.21—the same as with the SPMM.
4. For both models the skewness and kurtosis tend to infinity at the edge of the layer—in

qualitative disagreement with the experimental data.
5. The minimum value of the kurtosis is 1.8 for IEM and 2.1 for IECM (compared to 2.2 for

SPMM).

V. APPLICATION TO NON-PREMIXED COMBUSTION

A. Description of the flow

In order to test the shadow-position mixing model’s ability to represent non-premixed turbulent
combustion at high Damköhler number, we consider a model problem which is a combination of
the scalar mixing layer considered in Sec. IV and the simple but challenging combustion model
used by Norris and Pope.20 We refer to this as the reactive scalar mixing layer. The flow is again
constant-property, statistically stationary, homogeneous, isotropic turbulence, characterized by σ

and TL, with a small imposed mean strain rate S = 0.1/TL.
In this case the fluid composition is described by two passive scalars, which we denote alterna-

tively as {φ1, φ2} = {ξ , Y}: ξ is the mixture fraction and Y is the product mass fraction. The mixture
fraction ξ (x, t) is a conserved passive scalar, identical to φ considered in Sec. IV, for which the
boundary conditions are ξ = 0 for x → −∞ and ξ = 1 for x → ∞.
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FIG. 11. Sketch of (part of) the ξ -Y composition space showing the fully burnt line Yf(ξ ) and the reactive region R.

Figure 11 is a sketch of part of the ξ -Y composition space (which extends to ξ = 1). The product
mass fraction Y is bounded below by zero, corresponding to pure reactants, and bounded above by

Y f (ξ ) ≡ min

(
ξ

ξs
,

1 − ξ

1 − ξs

)
, (46)

corresponding to fully burnt mixture, where ξ s is the stoichiometric mixture fraction, specified to be
ξ s = 0.05.

The simple reaction model is that the reaction rate (i.e., the production rate of Y) is infinite
within the quadrilateral “reactive region” R shown in Fig. 11, and it is zero elsewhere. This reactive
region is defined by

R ≡ ({ξ, Y } | ξl < ξ ≤ ξr , YR ≤ Y < Y f (ξ )), (47)

where ξ l = 0.03 and ξ r = 0.07 are the specified lean and rich limits of the reactive region, and YR
is taken to be 0.6. The values of the four parameters (ξ s, ξ l, ξ r, and YR) are chosen by Norris and
Pope20 to be representative of methane/air and hydrogen/air combustion.

In the computations, this reaction model is simple to implement. Both particle compositions
are treated as conserved passive scalars, except that, if, due to mixing, {ξ ∗(t), Y∗(t)} moves into the
reactive region, then the product mass fraction immediately jumps to the fully burnt line, i.e., Y∗(t)
is reset to Y∗(t) = Yf(ξ ∗(t)).

The initial conditions are that: X∗(0) is uniformly distributed; U∗(0) and R∗(0) are in the
statistically stationary state; ξ ∗(0) is set deterministically (i.e., with no fluctuations) with its mean
being the error function profile, Eq. (B1), with the steady-state width σ X(∞) given by Eq. (B11);
and Y∗(0) is set to its fully burnt value Yf(ξ ∗(0)).

The “correct” solution for this test case is that Y∗(t) remains on the fully burnt line for all time.
Because of the infinite reaction rate, chemical reaction is confined to an infinitesimal neighborhood
of (ξ , Y) = (ξ s, 1), and elsewhere there is inert mixing between the fully burnt stoichiometric
composition (ξ s, 1) and the two stream compositions (0, 0) and (1, 0). This is the Burke-Schumann
limit38, 39 in which, in physical space, reaction is confined to the stoichiometric surface S(t) ≡
{x | ξ (x, t) = ξs}.

B. Performance of the IEM and IECM models

It is instructive first to examine the performance of the IEM and IECM mixing models applied
to this reactive mixing layer. For calculations using the IECM model, Fig. 12 shows scatter plots
of (ξ ∗(t), Y∗(t)) at successive times. Recall that the correct behavior for this test case is that the
composition (ξ ∗, Y∗) remains on the fully burnt line. At the earliest time shown (t/TL = 2), the
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FIG. 12. Scatter plots at successive times of product mass fraction against mixture fraction in the reactive scalar mixing
layer according to the IECM mixing model.

particles are predominately along the fully burnt line, and inevitably (for all times) the reactive
region R is void of particles. But there are some particles below the fully burnt line, most noticeably
immediately to the right of R. This trend of particles departing from the fully burnt line continues
to the last time shown (t/TL = 10), when nearly all of the particles have values of Y∗ less than 0.5.
Subsequent complete extinction with Y∗ → 0 is inevitable.

A quantification of the departures from the correct solution is provided by the conditional mean
〈Y | ξ 〉 ≡ 〈Y∗ | ξ ∗ = ξ 〉 (which is based on all of the particles, i.e., for all X∗). This is shown for
successive times in Fig. 13. The initial condition of course shows the correct behavior 〈Y | ξ 〉 =
Yf(ξ ). However, at the next time shown (t/TL = 2.2), departures are evident immediately to the right
of R. By the final time (t = TL = 50) there is essentially complete extinction.

The performance of the IEM model is qualitatively the same, and quantitatively similar.

FIG. 13. The conditional mean of the product mass fraction calculated by the IECM mixing model at times (from top to
bottom) t = 0, 2.2, 3.5, 5.4, 8.5, 13.2, 20.6, 32.1, and 50.



110803-17 Stephen B. Pope Phys. Fluids 25, 110803 (2013)

FIG. 14. The conditional mean of the product mass fraction calculated by the SPMM for a = 1.2 at times (from top to
bottom) t = 0, 3.1, 4.4, 6.2, 8.8, 12.4, 14.8, 17.6, 21.0, 24.9, 35.3, and 50.

C. The performance of the shadow-position mixing model

The predictions of the shadow-position mixing model for this test case depend qualitatively on
the value of the model coefficient a. Figure 14 shows the temporal evolution of the conditional mean
〈Y | ξ 〉 for the case a = 1.2. As may be seen, the behavior is similar to that of the IECM model,
and it shows complete extinction at large time, which is the wrong behavior. However, with the
slightly smaller value a = 1.15, the behavior, shown in Fig. 15, is completely different. There is
stable burning for all time, with some relatively small departures from the fully burnt line.

Figure 16 shows the temporal evolution of 〈Y | ξ 〉 for a particular value of ξ , namely ξ = ξ r + ≡
0.084, which is just to the right of the reactive region R. For a ≤ 1.15, stable burning is observed,
with the steady-state value of 〈Y | ξ r +〉 decreasing with increasing a. On the other hand, for a ≥ 1.2,
extinction occurs more rapidly as a increases.

To further quantify the departures from the fully burnt line, Fig. 17 shows the “product deficit”
at ξ r +, defined as Yf(ξ r +) − 〈Y | ξ r +〉. For the cases with extinction (a ≥ 1.2), this approaches
Yf(ξ r +) ≈ 0.96 at large times; whereas for the cases with stable burning (a ≤ 1.15), the steady-state

FIG. 15. The conditional mean of the product mass fraction calculated by the SPMM for a = 1.15 at times (from top to
bottom) t = 0, 3.1, 4.4, 6.2, 8.8, 12.4, 14.8, 17.6, 21.0, 24.9, 35.3, and 50.
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FIG. 16. The temporal evolution of the conditional mean product mass fraction for ξ = ξ r + = 0.084 calculated by the
SPMM for (from top to bottom) a = 0.87, 0.91, 0.95, 1.0, 1.1, 1.15, 1.2, 1.3, and 2.0.

value decreases towards zero (the “correct” value) as a decreases towards amin. For a = 0.87, 0.91,
and 1.15, the product deficit is less than 10−4, 0.006, and 0.1, respectively.

The decreasing product deficit as a decreases towards amin is a result of the increasing localness
of the shadow-position mixing model, as evidenced by the decrease in the conditional fluctuations
shown in Fig. 9.

In general, there is a critical value of a, acrit, above which the model predicts extinction, and
below which it predicts stable burning. For this test case, the results presented above show that acrit

lies between 1.15 and 1.2. The value of acrit can be expected to depend inter alia on the definition
of the reactive region R, in particular on its width in mixture fraction space �ξR ≡ ξr − ξl . For a
smaller value of �ξR, it can be expected that more localness is needed for stable burning, implying
a smaller value of acrit. Confirming these expectations, Fig. 18 shows results for a modified test case
in which �ξR is halved through the modified specifications ξ l = 0.04 and ξ r = 0.06. As may be
seen, for this case acrit is slightly reduced to between 1.0 and 1.1, and for a given value of a < acrit

the product deficit is larger. We note that the decrease in acrit is not great, and that �ξR = 0.02 is
a small value compared to those in typical combustion applications. It is expected, therefore, that

FIG. 17. The temporal evolution of the conditional product deficit for ξ = ξ r + = 0.084 calculated by the SPMM for (from
bottom to top) a = 0.91, 0.95, 1.0, 1.1, 1.15, 1.2, 1.3, and 2.0.
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FIG. 18. For the case with ξ l = 0.04 and ξ r = 0.06, the temporal evolution of the conditional product deficit for ξ = ξ r + =
0.084 calculated by the SPMM for (from bottom to top) a = 0.87, 0.91, 0.95, 1.0, 1.1, 1.15, and 1.2.

the shadow-position mixing model with a ≈ 1 is sufficiently local to yield, correctly, stable burning
when applied to turbulent non-premixed combustion at high Damköhler number.

While using a = amin achieves complete localness, it is not the best specification. This is because,
with a = amin, there are no conditional fluctuations, so that, in a statistically D-dimensional flow (0 ≤
D ≤ 3), the composition φ∗ is (locally) confined to a D-dimensional manifold. In contrast, it is well
known that, even in statistically one-dimensional flows, the compositions occurring in combustion
can lie on higher-dimensional manifolds (e.g., D ≥ 5).7 Thus, the best specification of a is between
amin and acrit, so that conditional fluctuations are allowed. (It is also the case that the numerical
implementation of SPMM becomes increasingly demanding as a decreases towards amin.)

VI. DISCUSSION

A. Application to general flows

The flows considered above are extremely simple, namely, constant-property, high-Reynolds-
number, homogeneous, isotropic turbulence. Nevertheless, the shadow-position model equations for
R∗ and φ∗ (Eqs. (10) and (11)) are quite general, and are directly applicable to variable-property,
inhomogeneous flows such as turbulent flames. The required initial and boundary conditions for
general flows are described in Sec. III F.

We have characterized the turbulence by σ and TL, which are the natural parameters for isotropic
turbulence. For inhomogeneous flows, it is more normal to characterize the turbulence by its kinetic
energy k(x, t) and the mean dissipation rate ε(x, t); or, in the velocity-frequency-composition PDF
method, by the mean turbulence frequency, �(x, t), which is analogous to ε/k. The relations between
these variables are

σ 2 = 2

3
k and TL = CT

k

ε
, (48)

where, according to the Langevin model, the constant CT relating the Lagrangian time scale to k/ε is

CT =
(

1

2
+ 3

4
C0

)−1

, (49)

and C0 is either taken to be a constant (e.g., C0 = 2.1) or a function of the Reynolds number.9 The
shadow-position model equations (Eqs. (10) and (11)) re-expressed in terms of k and ε are

dR∗ = −â
ε

k
R∗dt − (U∗ − 〈U∗ | X∗〉) dt + b̂k√

ε
dW′ (50)
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and

dφ∗

dt
= −ĉ

ε

k
(φ∗ − 〈φ∗ | R∗, X∗〉), (51)

with

â = a

CT
, b̂ = b

(
4

3
CT

)1/2

, ĉ = c

CT
. (52)

For the values a = 1, b = 1/(1 + a) = 1/2, c = 3.27, and C0 = 2.1, corresponding values are â = 2.1,
b̂ = 0.40, and ĉ = 6.8.

B. Composition PDF method

In Secs. I–V, we have presented and employed the shadow-position mixing model in the context
of the velocity-composition PDF approach, in which the particle moves with its own velocity U∗(t),
which evolves by a Langevin equation (Eqs. (1) and (2)). The shadow-position mixing model can
also be applied in the composition PDF approach, in which the particle velocity is not considered,
and instead the position evolves by the SDE8

dX∗ = (〈U〉 + ∇�T ) dt + (2�T )1/2 dW, (53)

where 〈U(x, t)〉 is the mean velocity field, and �T(x, t) is the turbulent diffusivity. For this case, the
shadow-position model equations are as before (Eqs. (7) and (8)), but for clarity we denote by ā, b̄,

and c̄ the model coefficients used in the context of the composition PDF approach.
In Appendix C, the shadow-position model with the composition PDF approach is examined for

the case of the uniform mean scalar gradient considered in Sec. III. It is found that, in the statistically
stationary state, the two different PDF approaches give identical results provided that a is in the
range amin < a ≤ 1, and that ā, b̄, and c̄ are given by Eqs. (C6)–(C8). It is argued that matching
the variance 〈R∗2〉 between the two methods is not essential, and, with this condition relaxed, the
choice of the two parameters ā and b̄ is constrained by a single relation, Eq. (C10). The simplest
such model has ā = 4a/(2 + a), b̄ = 0, and c̄ = c, with the only restriction on a being a ≥ amin.

C. Application in large-eddy simulations

Above we have considered the use of the shadow-position mixing model in different PDF
methods in the RANS context. Such PDF methods are also used in LES,4, 5, 7 and the SPMM is
directly applicable. (See Pope40 for a suitable definition of the PDFs used in the LES context.)

In the LES of a high-Reynolds-number flow, the motions larger than the resolution length
scale � are directly represented, while the effects of the smaller, residual motions are modeled,
usually via an eddy viscosity, νT. The appropriate shadow-position model equations for LES remain
Eqs. (11) and (10) or (C1), but with different coefficients (ã, b̃, and c̃, say), and with the turbulent
time scale and diffusivity re-defined as

1

TL
= νT

�2
and �T = σ 2TL = νT . (54)

D. Numerical implementation

For the SPMM to be useful in practice, it is essential to have an accurate and efficient compu-
tational implementation. At first sight, the prospects for such an implementation may appear bleak,
since it is notoriously difficult to estimate accurately statistics conditioned on multiple quantities
such as 〈φ∗ | X∗, R∗〉. However, an accurate and efficient method has been developed and will be
fully described in a forthcoming paper. The essence of the method is now described.

The method developed is a mesh-free, near-neighbor implementation. On each time step, the
N computational particles are ordered so that adjacent particles in the ordering are near neighbors
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in the conditioning (X∗, R∗) space. For the nth particle, with properties X(n), U(n), R(n), φ(n), the
SPMM mixing equation

dφ(n)

dt
= − c

TL
(φ(n) − 〈φ∗ | R(n), X(n)〉) (55)

is approximated by

dφ(n)

dt
= − c

TL
(φ(n) − 1

2
[φ(n+1) + φ(n−1)]). (56)

It may appear that the random quantity 1
2 [φ(n+1) + φ(n−1)] provides a poor, noisy approximation

to the non-random quantity 〈φ∗ | R(n), X(n)〉. The crucial observation is that the statistics given by
the SPMM are unaltered if, in Eq. (55), 〈φ∗ | R(n), X(n)〉 is replaced by a random composition φ̂(n),
providing that (1) it has the correct conditional mean, i.e., 〈φ̂(n) | R(n), X(n)〉 = 〈φ∗ | R(n), X(n)〉, and
(2) that φ̂(n)(t) is uncorrelated in time. Both of these conditions are satisfied as the number of
particles N tends to infinity, and the time step tends to zero. In these limits, the distance between near
neighbors tends to zero (so that (1) is satisfied), and the time taken for the nth particle to encounter
new neighbors also tends to zero (so that (2) is satisfied).

To illustrate the performance of the near-neighbor implementation of SPMM for finite N,
Fig. 19 shows results obtained for the non-premixed-combustion test case considered in Sec. V, with
ξ l = 0.03, ξ r = 0.07, and a = 1.1. This value of a is quite close to the critical value, and so numerical
errors can incorrectly lead to extinction. This is indeed observed for N = 4000, but for the larger
number of particles (N = 16 000–256 000) little dependence on N is evident. A computation of this
case with N = 16 000 takes 100 s on a 2.7 GHz MacBook Pro using an unoptimized Matlab script.

These results demonstrate that, for the statistically one-dimensional cases considered here,
the near-neighbor implementation of SPMM produces accurate calculations at a modest cost. A
quantification of the performance of the method and its application to more challenging cases is left
to future work. For these cases, it may be that conditioning on one or two components of R∗ may be
sufficient. For example, for two-stream mixing problems, conditioning could be performed based
on the component of R∗ in the direction of the mixture fraction gradient.

FIG. 19. The temporal evolution of the conditional mean product mass fraction for ξ = ξ r + = 0.084 according to the SPMM
with a = 1.1, computed using the near-neighbor implementation with N particles. From bottom to top: N = 4000, 16 000,
64 000, 256 000.



110803-22 Stephen B. Pope Phys. Fluids 25, 110803 (2013)

E. The velocity-shadow-position mixing model

An obvious extension of SPMM is to consider the velocity-shadow-position mixing model
(VSPMM) in which conditioning is performed on U∗, R∗, and X∗. Thus, the SPMM mixing equation
(Eq. (11)) is replaced by

dφ∗

dt
= − cv

TL
(φ∗ − 〈φ∗ | U∗, R∗, X∗〉), (57)

where cv is a model coefficient.
An analysis, similar to that performed in Appendix A, shows that the coefficient b is not

constrained by the dispersion-consistency condition. For specified b ≥ 0, there is a minimum value
of a, amin(b), for which cv is infinite, and there are no conditional fluctuations. For a > amin(b), the
finite value of cv is then determined by the scalar variance.

The principal virtue of VSPMM is that it satisfies the dispersion-consistency condition exactly
(for all b ≥ 0). It is exactly local for a = amin(b), and is approximately so for small a − amin(b).
However, the added conditioning variables compound the difficulties of developing an accurate and
efficient numerical implementation, and it is unlikely that this model is useful for PDF modeling of
inhomogeneous flows.

F. Determination of shadow-position conditioned statistics in DNS

The shadow position Z∗(t) and the shadow displacement R∗(t) ≡ Z∗(t) − X∗(t) are non-physical
quantities, and hence they cannot be measured in an experiment. They can, however, be determined
in a DNS, and hence statistics conditional on R∗(t) can be extracted. For example, for a single
composition with molecular diffusivity �, the conditional diffusion from DNS,

D(ψ, x, R̂, t) ≡ 〈�∇2φ(x, t) | φ = ψ, X∗(t) = x, R∗(t) = R̂〉, (58)

can be compared to the form supposed by the shadow-position mixing model

D(ψ, x, R̂, t) = − c

TL
(ψ − 〈φ(x, t) | X∗(t) = x, R∗(t) = R̂〉). (59)

Such conditional statistics can be extracted from DNS by both Lagrangian and Eulerian methods.
The straightforward Lagrangian approach is to solve Eq. (10) for a large number of particles to obtain
their values of R∗(t).

In the Eulerian approach, the probability distribution of R∗ is determined by solving Eulerian
transport equations for its mean and variance. For a given DNS, we regard the velocity U(x, t)
as deterministic, so that the only randomness is due to the Wiener process in the SDE for R∗(t),
Eq. (10). This is a linear SDE in the narrow sense, and hence the PDF of R∗ is Gaussian, determined
by its mean and covariance, which evolve by known Eulerian transport equations (see Sec. 8.2 of
Arnold36). These equations, written in Eulerian form for the mean 〈R(x, t)〉 ≡ 〈R∗(t) | X∗(t) = x〉
and the covariance denoted by 〈R′

i R′
j 〉 are

D〈R〉
Dt

= − a

TL
〈R〉 − (U − 〈U〉) (60)

and

D〈R′
i R′

j 〉
Dt

= −2a

TL
〈R′

i R′
j 〉 + 2b2σ 2TLδi j , (61)

where 〈U(X, t)〉 is the mean of U(x, t) over all realizations of the DNS.
For the case of homogeneous turbulence (and any other case in which the length scale σTL is

uniform), the covariance equation has the constant solution

〈R′
i R′

j 〉 = (bσ TL )2

a
δi j , (62)

and hence Eq. (61) does not need to be solved numerically.
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It is interesting to observe from Eq. (A7) that the normalized variance of R∗ (i.e., a component
of R∗) in this case is b2/a + 1/[a(1 + a)]−1; and that the first contribution is from 〈R′2〉, while
the second arises from the variance of 〈R〉 (over all positions, times, and realizations of the DNS).
(The result that the latter contribution equals 1/[a(1 + a)]−1 depends on the Lagrangian velocity
autocorrelation being exponential.)

G. Statistically homogeneous scalar mixing

In most practical flows involving turbulent mixing, the processes of convective turbulent trans-
port and molecular mixing are inexorably coupled. This is the case for flows in which the fluid enters
in streams of different composition, and for flows (such as the atmospheric boundary layer) in which
the inhomogeneity of composition arises from heat or mass transfer at a surface, with subsequent
turbulent convective transport into the interior. In both the IECM and shadow-position models, the
conditioning is based on the velocity responsible for the convective transport; either directly in
IECM, or indirectly in SPMM, through the influence of velocity on the shadow displacement (see
Eq. (10)).

Many previous studies of turbulent mixing models3, 13, 20 have included testing against DNS
of statistically homogeneous composition fields evolving from initial conditions, such as randomly
located blobs of fluid of different composition, corresponding approximately to delta-function PDFs.
Examples include the mixing of a single composition41 and of two compositions.42 We now argue that
these DNS are not good test cases for mixing models intended for application in the RANS context
to inhomogeneous flows, because they artificially separate the processes of convective transport and
molecular mixing. As these processes are disconnected, both the IECM model and SPMM in this
case reduce to the IEM model, which performs poorly in these tests: delta-function distributions
evolve by the locations (in composition space) of the delta functions moving towards the mean,
without any relaxation towards a Gaussian.3

Instead, here we consider the scalar mixing layer to be the simplest relevant test case because,
as in the intended applications, the inhomogeneity in composition arises from different streams
of different uniform composition. For this case, the results on skewness and kurtosis presented in
Sec. IV show that the SPMM yields distributions similar to those observed experimentally.

The above criticism of the statistically homogeneous DNS test cases applies only to RANS. In
LES applied to these flows, convective transport by the resolved scales is appropriately connected
to turbulent mixing.

VII. SUMMARY AND CONCLUSIONS

The shadow-position mixing model—a new model for turbulent mixing—has been presented
and its performance demonstrated. To a fluid particle with position X∗(t) we associate a shadow
particle with position Z∗(t), which is defined to evolve by the SDE Eq. (8). Correspondingly, the
shadow displacement R∗(t) ≡ Z∗(t) − X∗(t) evolves by Eq. (10). Mixing is modeled as a relaxation
of the particle composition φ∗(t) towards the conditional mean 〈φ∗(t) | Z∗(t), X∗(t)〉, which is the
same as 〈φ∗(t) | R∗(t), X∗(t)〉. The significance of conditioning on Z∗ (or, equivalently, on R∗) is
that fluid particles (from different realizations) with the same values of X∗ and Z∗ share a similar
history.

The shadow-position mixing model is related to previous models—IEM, IECM, and MMC—
and indeed, as discussed in Sec. III E, it reduced to these models for limiting values of the model
coefficients. The model is constructed to be consistent with turbulent dispersion theory and to be
local in composition space, both to an adequate approximation.

The model is applied (in Sec. IV) to a mildly strained scalar mixing layer, and it is shown to yield
statistics in broad agreement with the experimental data of Ma and Warhaft32 (which pertain to a
slightly different flow). The model is also applied (in Sec. V) to a reactive scalar mixing layer, and it
is shown to yield, correctly, stable burning for a test case of high-Damköhler-number non-premixed
combustion, for which the IEM and IECM models, incorrectly, yield extinction.
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A simple and reasonable specification of the model coefficient a is a = 1, which leads to b =
1/2 and c = 3.27. This value of a is small enough to yield, correctly, stable combustion (i.e., a <

acrit), but large enough to allow some level of conditional fluctuations (i.e., a > amin).
The shadow-position mixing model approaches the localness in composition space achieved by

the EMST mixing model,13 and it avoids the major shortcomings of EMST. Specifically, it avoids
“stranding”; it satisfies the linearity and independence principles; it yields Gaussian distributions
where appropriate; and it is free of numerical artifacts.

The shadow-position mixing model is developed here primarily for the velocity-composition
PDF method in the RANS context for simple flows. In Sec. VI, extensions to general flows, to the
composition PDF method, and to LES are described.

Computationally, the shadow-position mixing model has been implemented using a mesh-free,
“near-neighbor” algorithm, outlined in Sec. VI D.

An extension of SPMM is the velocity-shadow-position mixing model described in
Sec. VI E, which exactly satisfies the dispersion consistency condition, but is less amenable to
numerical implementation.

Needless to say, it is desirable in future work to evaluate the performance of the shadow-position
mixing model for a broader set of flows than has been considered here. Of particular interest is the
mixing of multiple compositions in grid turbulence,35 in DNS of multiple scalar mixing layers,43 in
co-axial jets,44 and in DNS of reactive flows.45 The model holds the promise of representing, more
accurately than previous models, turbulent mixing in a broad range of turbulent flows, including
turbulent combustion.
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APPENDIX A: SECOND-MOMENT EQUATIONS AND THEIR STATIONARY SOLUTIONS

From Eqs. (22)–(25), we can derive the evolution equations for the first and second moments.
Initially, the means 〈U∗〉, 〈R∗〉, and 〈φ∗〉 are zero, and their evolution equations show that they remain
zero.

The evolution equations for the second moments are

d〈U ∗2〉
dt

= −2〈U ∗2〉
TL

+ 2σ 2

TL
, (A1)

d〈U ∗ R∗〉
dt

= −(1 + a)
〈U ∗ R∗〉

TL
− 〈U ∗2〉, (A2)

d〈R∗2〉
dt

= −2a
〈R∗2〉

TL
− 2〈U ∗ R∗〉 + 2b2σ 2TL , (A3)

d〈U ∗φ∗〉
dt

= −〈U ∗φ∗〉
TL

− G〈U ∗2〉 − c

TL

(
〈U ∗φ∗〉 − 〈U ∗ R∗〉〈R∗φ∗〉

〈R∗2〉
)

, (A4)

d〈R∗φ∗〉
dt

= −a
〈R∗φ∗〉

TL
− 〈U ∗φ∗〉 − G〈U ∗ R∗〉, (A5)

d〈φ∗2〉
dt

= −2G〈U ∗φ∗〉 − 2c

TL

(
〈φ∗2〉 − 〈R∗φ∗〉2

〈R∗2〉
)

. (A6)
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The statistically stationary solutions to these equations are obtained by setting the left-hand sides
to zero. Inevitably and consistently, Eq. (A1) yields 〈U∗2〉 = σ 2. The solutions to Eqs. (A2) and (A3)
are

〈U ∗ R∗〉
σ 2TL

= −1

(1 + a)
,

〈R∗2〉
(σ TL )2

= 1

a

(
b2 + 1

1 + a

)
. (A7)

We require that the model satisfies the dispersion-consistency condition in the statistically stationary
state. This means that the term in c in Eq. (A4) must vanish, and then the equation is indeed consistent
with Eq. (20). Substituting the scalar flux given by Eq. (20) into Eq. (A5), we then obtain

〈R∗φ∗〉
Gσ 2T 2

L

= 2 + a

a(1 + a)
. (A8)

The condition that the term in c in Eq. (A4) be zero can be re-expressed as

〈R∗2〉〈U ∗φ∗〉 = 〈U ∗ R∗〉〈R∗φ∗〉, (A9)

and substituting the relations obtained above for the second moments, we obtain the following
condition that the coefficients must satisfy in order for the model satisfy the dispersion-consistency
condition in the statistically stationary state:

b = 1

1 + a
. (A10)

With this specification of b, we then obtain from Eq. (A7)

〈R∗2〉
(σ TL )2

= 2 + a

a(1 + a)2
. (A11)

Substituting the above results into Eq. (A6), we obtain that the stationary scalar variance is

Vφ ≡ 〈φ∗2〉
(Gσ TL )2

= 1

c
+ 2 + a

a
. (A12)

The correlation coefficients are readily obtained from Eqs. (20), (A7), (A8), (A11), and (A12),
and are given in the text as Eqs. (30)–(32).

APPENDIX B: THE MEAN PROFILE IN THE SCALAR MIXING LAYER

In this appendix, turbulent dispersion theory is used to show that, for the scalar mixing layer
considered in Sec. IV, the mean scalar 〈φ(x, t)〉 has the error-function profile

〈φ(x, t)〉 =
∫ x

−∞

1

σX

√
2π

exp

(
− z2

2σ 2
X

)
dz

= 1

2

[
1 + erf

(
x

σX

√
2

)]
, (B1)

where σ X(t) is given by Eq. (B10).
The particle position evolves by Eq. (43), in which S is the specified constant mean strain rate,

and U∗(t) is the solution to the Langevin equation, i.e., an Ornstein-Uhlenbeck (OU) process, with
mean zero, variance σ 2, and time scale TL. The straining has the effect of concentrating the particles
in x, and to account for this effect, it is necessary to include a particle weight m∗(t) which evolves by

dm∗

dt
= −Sm∗, (B2)

from the initial condition m∗(0) = 1, which has the deterministic solution

m∗(t) = exp(−St). (B3)
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We denote by f(x; y, t) the PDF of X∗(t) conditional on X∗(0) = y. Then the standard application
of turbulent dispersion theory yields for the mean profile

〈φ(x, t)〉 =
∫ ∞

−∞
H (y) f (x ; y, t)m(t) dy, (B4)

where the integration is over the source distribution H(y) at time t = 0. Or, equivalently, the integral
gives the probability that the particle at x at time t originated from x ≥ 0 at t = 0, and therefore (in
the absence of molecular diffusion) has the scalar value φ∗(t) = φ∗(0) = 1.

It is evident from Eq. (43) that the PDF f(x; y, t) is Gaussian, with mean

〈X∗(t) | X∗(0) = y〉 = y exp(−St), (B5)

and we denote by σ 2
X the variance of (X∗(t) | X∗(0) = y), which is the same as the variance of [X∗(t)

− X∗(0)], and is independent of y. The result that 〈φ(x, t)〉 has the error-function profile given by
Eq. (B1) is obtained by substituting into Eq. (B4) the known Gaussian for f(x; y, t) with mean y
exp (−St) and variance σ 2

X , with the substitution z ≡ exp ( − St) − x.
It remains to determine the width of the scalar mixing layer σ X(t), which is the standard deviation

of [X∗(t) − X∗(0)]. The particle position equation, Eq. (43), can be integrated to yield

X∗(t) − X∗(0) =
∫ t

0
exp(−S[t − t ′]) U ∗(t ′) dt ′, (B6)

and hence we obtain

σ 2
X = 〈[X∗(t) − X∗(0)]2〉 =

∫ t

0

∫ t

0
exp(−S[t − t ′]) exp(−S[t − t ′′]) 〈U ∗(t ′)U ∗(t ′′)〉 dt ′dt ′′.

(B7)
Substituting the known autocovariance

〈U ∗(t ′)U ∗(t ′′)〉 = σ 2 exp

(
−|t ′ − t ′′|

TL

)
, (B8)

and performing the integrations, we obtain the required result: for the case STL = 1 it is

σ 2
X = 1

2

(σ

S

)2 [
1 − (1 + 2St) exp(−2St)

]
; (B9)

and, for the case STL �= 1, with the definition η ≡ 1/(STL), it is

σ 2
X =

(σ

S

)2
(

2 exp(−St[1 + η]) − (1 + η) exp(−2St) + η − 1

(η2 − 1)

)
. (B10)

In the statistically stationary state, the width of the layer is

σX (∞) =
(σ

S

) 1√
1 + η

. (B11)

APPENDIX C: COMPOSITION PDF APPROACH

In the context of the composition PDF approach, the evolution equations for X∗(t), Z∗(t), and
φ∗(t) are Eqs. (53), (8), and (11) (with a, b, and c replaced by ā, b̄, and c̄). We consider here the
application of this model to the case of the uniform mean scalar gradient considered in Sec. III.

For the case considered, the turbulent viscosity is given by �T = σ 2TL (Eq. (19)). Because the
particle position evolves by the SDE Eq. (53), in place of Eqs. (23) and (24), the evolution equations
for R∗(t) and φ∗(t) are the SDEs

d R∗ = −ā R∗ dt

TL
+ (2�T )1/2(b̄ dW ′ − dW ) (C1)

and

dφ∗ = −c̄(φ∗ − 〈φ∗ | R∗〉) dt

TL
− G(2�T )1/2 dW. (C2)
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An analysis of the second-moment equations for 〈R∗2〉, 〈R∗φ∗〉, and 〈φ∗2〉, similar to that
performed in Appendix A, shows that their values in the statistically stationary state are

〈R∗2〉
(σ TL )2

= 1 + b̄2

ā
, (C3)

〈R∗φ∗〉
(σ TL )2G

= 2

ā
, (C4)

〈φ∗2〉
(σ TL G)2

= 1

c̄
+ 4

ā(1 + b̄2)
. (C5)

It is readily deduced that these moments for the composition PDF method are identical to those
given by the velocity-composition PDF method (Eqs. (A11), (A8), and (A12)), provided that the
coefficients ā, b̄, and c̄ are related to a and c by

ā = a

(
1 + a

1 + 1
2 a

)
, (C6)

b̄ =
(

1 − a

1 + a

)1/2

, (C7)

c̄ = c = 1

2

(
1

amin
− 1

a

)−1

. (C8)

It is evident from Eqs. (C7) and (C8) that these equations can be satisfied (for real, positive ā and c̄)
only for a in the quite narrow range amin < a ≤ 1.

It can be argued, however, that matching the variance 〈R∗2〉 may not be crucial or even necessary.
The shadow displacement R∗ enters the model solely through the conditional mean 〈φ∗ | R∗〉, and in
the Gaussian approximation this is

〈φ∗ | R∗〉 = R∗

〈R∗2〉1/2
〈φ∗2〉1/2ρRφ. (C9)

Thus, R∗ enters the model only in its standardized form R∗/〈R∗2〉1/2, and hence (at least to the Gaussian
approximation) the model is unaffected by the magnitude of the variance 〈R∗2〉. It follows from the
second-moment equations that matching 〈φ∗2〉 and ρRφ is achieved provided that the coefficients
satisfy c̄ = c and

ā(1 + b̄2) = 4a

2 + a
. (C10)

The simplest model consistent with this requirement is b̄ = 0, ā = 4a/(2 + a).
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