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Stochastic Lagrangian models provide a simple and direct way to model turbulent flows and the
processes that occur within them. This paper provides an introduction to this approach, aimed at the
nonspecialist, and providing some historical perspective. Basic models for the Lagrangian velocity
(i.e., the Langevin equation) and composition are described and applied to the simple but revealing
case of dispersion from a line source in grid turbulence. With simple extensions, these models are
applied to inhomogeneous turbulent reactive flows, where they form the core of probability density
function (PDF) methods. The use of PDF methods is illustrated for the case of a lifted turbulent jet
flame. Lagrangian time series are now accessible both from experiments and from direct numerical
simulations, and this information is used to scrutinize and improve stochastic Lagrangian models. In
particular, we describe refinements to account for the observed strong Reynolds-number effects
including intermittency. It is emphasized that all models of turbulence are necessarily approximate
and incomplete, and that simple models are valuable in many applications in spite of their

limitations. © 2011 American Institute of Physics. [doi:10.1063/1.3531744]

I. INTRODUCTION

For more than a century, researchers have been grappling
with the challenges posed by turbulent flows. The research
has been motivated and sustained not only by scientific cu-
riosity and the intellectual challenges posed, but also by the
ubiquity of turbulent flows in the natural world and in engi-
neering devices, and by the importance of turbulence in en-
hancing the rates of transport and mixing, typically by many
orders of magnitude.

There can be several different objectives in studies of
turbulent flows including developing an understanding of
particular flows and the processes that occur within them,
developing methodologies to design engineering devices and
to control the turbulent flows involved to achieve objectives
such as reducing drag or promoting mixing, and—the focus
of this paper—developing theories, models, and simulation
techniques. The latter objective is of particular importance,
as the methodologies developed often can be used to achieve
the other objectives.

From the perspective of theory, modeling, and simula-
tions, we may ask: How and when will the turbulence prob-
lem be solved? The ideal solution would be to have a trac-
table quantitative theory, based soundly on the underlying
physics, as described by the Navier—Stokes equations. In the
middle of the last century, such a solution may have seemed
a realistic prospect. The theory proposed by Kolmogorov1 in
1941 postulated that the small scales of turbulence are statis-
tically universal and simply parametrized by the viscosity
and the mean dissipation rate. If this picture were accurate,
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then there would be a realistic hope for a successful statisti-
cal theory. But subsequent investigations have shown that the
small scales are significantly affected by the flow-dependent
large scales. It appears now that this “ideal solution” is un-
realistic and unattainable. The fundamental difficulty is the
nonlinear and nonlocal (in space and scale) interactions of
the turbulent motions over the large range of scales present
in turbulent flows.

Instead of the unattainable ideal, a realistic goal, of great
practical value, is the development of tractable models and
simulation approaches for the diverse range of turbulent
flows encountered in engineering, oceanography, meteorol-
ogy, astrophysics, and elsewhere. There is not one “turbu-
lence problem” but a wide variety of problems of varying
difficulty, dependent on the geometry of the flow and the
additional processes involved (e.g., chemical reactions and
multiple phases). Some of these turbulence problems have
been “solved” in the sense that current models or simulations
are adequately accurate for the application involved. And as
progress is made over time, a greater fraction of the turbulent
problems will in this sense be solved.

As the title implies, this paper focuses on simple models,
and one of the morals (due to the statistician G. E. P. Box) is
that “All models are wrong, but some are useful.” Within the
turbulence research community, there is a tendency toward
more complex models. All models are incomplete and inac-
curate to some degree, which naturally motivates the devel-
opment of increasingly more complete and more accurate
models. But such advanced models are inevitably more com-
plicated and less tractable. On the other hand, researchers
and practitioners outside of turbulence research seek simple,
tractable models for their turbulent flow, which may be but
one aspect of their larger complex problem. There is, there-
fore, an important role for simple models, in spite of their
flaws and limitations, and an important role for the turbu-
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lence research community is to develop and understand such
models.

The simple models considered here are called ““stochas-
tic Lagrangian models.” Within the turbulent flow of interest,
we consider a fluid particle, i.e., a mathematical point mov-
ing with the local fluid velocity. As a function of time ¢, the
fluid particle has position X*(z), velocity U*(z), acceleration
A*(7), and thermochemical properties ¢*(¢) such as tempera-
ture and the mass fractions of chemical species. Such quan-
tities are called Lagrangian trajectories or Lagrangian time
series (when sampled at discrete times in experiments or
simulations). The fluid-particle properties are, by definition,
the fluid properties at the moving particle’s location. Hence,
with U(x,f) being the Eulerian velocity field, the fluid-
particle velocity is

U™ () = U[X"(2).1]. (1)

Stochastic Lagrangian models are stochastic processes de-
signed to mimic the behavior of Lagrangian trajectories in
turbulent flows.

In the three major sections of this paper, we examine
different related aspects of stochastic Lagrangian models ap-
plied to three different flows. In Sec. II we introduce the
Langevin model for velocity, and apply it to study the dis-
persion of heat from a line source in grid turbulence. The
ideas involved go back to Langevin2 and Taylor,3 and the
ability of the model to describe turbulent transport (revealed
through the mean temperature field) was demonstrated over
25 years ago.4 To study turbulent mixing (revealed through
the temperature variance) we introduce a simple stochastic
Lagrangian model for a conserved passive scalar. Only re-
cently has a satisfactory model for the scalar been developed
and demonstrated for the line source.™®

The simplicity of the stochastic Lagrangian models, de-
veloped by reference to dispersion in homogeneous isotropic
turbulence, belies their potency. In Sec. III, we show that
(with minor extensions) the same stochastic Lagrangian
models lead to a complete turbulence closure for inhomoge-
neous turbulent reactive flows. This closure takes the form of
a modeled transport equation for the joint probability density
function (PDF) of velocity and composition. This PDF
method, and its computational implementation as a particle/
mesh Monte Carlo method, is demonstrated for the case of a
lifted turbulent jet flame.

While the Langevin model is clearly very useful—as
demonstrated by the results presented in Secs. II and III—a
more detailed examination of its properties in Sec. IV shows
that it has fundamental shortcomings and inaccuracies—*“All
models are wrong, but some are useful.” We describe more
advanced models, which account for Reynolds-number
effects’ and intermittency.8 The development of such models
has been made possible by the recent investigations of La-
grangian properties using direct numerical simulations
(DNS) and experiments with modern diagnostics. The paper
concludes with some thoughts on the current challenges and
future prospects for the modeling and simulation of turbulent
flows.

This paper is intended primarily for nonspecialists, with
the aim to provide an introduction to stochastic Lagrangian
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FIG. 1. (Color online) Sketch of Warhaft’s experiment on a line source in
grid turbulence showing the x’-y-z-coordinate system with origin at the
middle of the heated wire (which is the line source of temperature) and the
(Gaussian) mean excess temperature profile of width o(x’).

models and their use in PDF methods. The reader is encour-
aged to use the on-line version in order to access the anima-
tions and color figures.

Il. STOCHASTIC MODELING OF TURBULENT
DISPERSION

In this section, we consider one of the simplest and most
basic turbulent flow problems—the dispersion of a conserved
passive scalar from a line source in grid turbulence. Starting
in the 1950s, there have been numerous experimental inves-
tigations of this flow:""? here we focus on that of Warhaft."
While this flow is relatively simple, it can nevertheless be
used to study two of the most fundamental turbulent pro-
cesses: convective transport by the turbulent velocity field
and turbulent mixing.

A. Dispersion from a line source: Experimental
observations

As sketched in Fig. 1, the experiment of Warhaft'' was
conducted in a wind tunnel in which a uniform flow passes
through a turbulence-generating grid of mesh spacing M. A
Cartesian coordinate system is introduced with origin at the
center of the grid, with x being the direction of the mean
flow, and y and z being normal to the mean flow. The mean
velocity (U) is in the x-direction, while the fluctuating ve-
locities in the x,y,z directions are denoted by u,v,w or al-
ternatively by u;,u,,us. To an approximation, the turbulence
is isotropic, and the velocity variances decay with the down-
stream distance as power laws of the form

@) _ (1)""
wp ~MNu) ®

where A and m=1.32 are obtained from the measurements.
At a distance x, downstream of the grid, a fine heated wire is
stretched across the center of the wind tunnel in the
z-direction (at y=0). The distance downstream of wire is
denoted by x’'=x—x, so that the coordinate system (x’,y,z)
has its origin in the center of the wire. The wire is suffi-
ciently fine that it has a negligible effect on the turbulent
velocity field. Because of the electrical heating of the wire,
the air passing very close to the wire is heated. Thus, to an
approximation, the wire is a continuous line source of heat.
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To a good approximation, the (suitably normalized) tempera-
ture excess—denoted by ¢(x’,y,z,f)—is a conserved pas-
sive scalar.

Of interest in this flow is the behavior of the passive
scalar as it is swept downstream and affected by the turbu-
lence. Away from the side walls, statistics such as the mean
(¢(x",y)) depend solely on x’ and y.

The measurements show that the lateral profiles of the
mean are Gaussian, i.e.,

(B y)y = —— ( =il ) 3)
T e 20t

where o(x') is the characteristic width of the mean profile.
All theories and models predict the Gaussian shape: the chal-
lenge is to predict the downstream spreading, i.e., the depen-
dence of o(x’) on x’.

In the laboratory frame considered, the flow is statisti-
cally stationary and two-dimensional, with statistics varying
only in the x" and y directions, and spatial gradients of sta-
tistics are dominantly in the y-direction. It is also convenient
to consider a frame moving with the mean velocity. Thus, we
define

f=x"-(U)t, (4)

and consider the scalar ¢(£,y,z,7) in this frame. Now, to a
good approximation, statistics depend only on y and ¢, and
the wire (which is a continuous line source in the laboratory
frame) appears as an instantaneous plane source at y=0, ¢
=0. Thus, in this frame, the flow is decaying homogeneous
isotropic turbulence (with zero-mean velocity), and the phe-
nomenon under study is the evolution of ¢(%,y,z,f) from the
initial condition of a heated plane sheet [i.e., ¢(X,y,z,0)

=dy)]

B. Turbulent diffusion model

The simplest models for turbulent flows are those based
on the concepts of turbulent viscosity and turbulent diffusiv-
ity. The basic notion is that the mean fields in turbulent flows
behave similarly to fields in laminar flows, but with en-
hanced “effective” viscosity and diffusivity. Specifically, the
molecular diffusivity I" is enhanced by a turbulent contribu-
tion I'; to yield the effective diffusivity

Feff=F+FT‘ (5)

The turbulent diffusivity I'z(x,7) represents the effects of the
turbulent motions, and hence can depend on the local char-
acteristics of the turbulent velocity field. On the other hand,
since the velocity field is (by definition) unaffected by pas-
sive scalars, in a consistent model, I'; is independent of any
passive scalar field that may be present.

The most widely used turbulent viscosity model is the
k-& model,"* and it is instructive to apply it to the line source
problem. In the moving frame, the flow is decaying homo-
geneous turbulence, for which case the k-& model reduces to
the pair of ordinary differential equations,

dic _

a0 ©
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de &’
=G (7)

Equation (6) is exact and shows that turbulent kinetic energy
k= %(uiu,) decays at a rate given by the viscous dissipation
e. Equation (7) is a model, which correctly yields the ob-
served power law decay of the form

(1)
k(ty) \ty) ®)

where the model constant C,, and the exponent m are related
by

1+m

CsZ = (9)

m
Thus, the k-& model is successful for this simplest of turbu-
lent flows in correctly describing the decay of the turbulence.

According to the k-& model, the turbulent diffusivity is

k2
I'y=Cr—, (10)
€

where Cr is a constant, and indeed this relation is inevitable
once k and € are taken to represent the turbulence.

In the moving frame, the exact conservation equation for
the mean scalar is

X 2 (o)
a_rza_y(r Jy _<U¢>)'

(11)
The right-hand side represents the divergence of two fluxes:
that due to molecular diffusion and that due to turbulence
convection. The term (v¢) is called the (turbulent) scalar
flux, and it is the covariance of the scalar and the y-direction
velocity v.

The turbulent diffusion model amounts to approximating
the scalar flux by

HP)

<U¢>2—FT§—, (12)
y
so that Eq. (11) becomes

M_i< M)

o oy Lot ay ) (13)

For the homogeneous turbulence considered, I'; is indepen-
dent of y, and varies with ¢ as a known power law. Hence,
Eq. (13) is readily solved analytically to show that the k-&
model correctly yields a Gaussian profile for (¢), and that
the predicted width o(z) is given by

(T(t)2=f 2T (1")dt' . (14)

0

This prediction for o(z) is compared to the experimental data
in Fig. 2 (shown in the laboratory frame). As may be seen,
for small times (i.e., small x’/x;) the model displays very
significant errors and appears to be qualitatively incorrect.
This is confirmed by the theory presented in Sec. II C, which
also shows that the agreement between the model and the
data for large times (i.e., large x'/x;) is not fortuitous, but
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FIG. 2. (Color online) Width o of the thermal wake (normalized by L

=k>?/¢ at the source) against distance from the source x’ normalized by the

distance x, of the source from the grid: symbols, experimental data (Refs. 11
and 12); line, from the k-& model.
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instead the turbulent diffusion model is valid in this region.

C. Diffusion by continuous movements

Fifty years before the k-e turbulence model, Taylor3
tackled the problem of turbulent dispersion in his famous
1921 paper “Diffusion by continuous movements.” For the
line source problem, the equation governing the mean (¢)
[Eq. (11)] is derived from the instantaneous equation,

D¢

_ 2
o =TV (15)

Taylor argued that at high Reynolds number, the molecular
flux in Eq. (11) is negligible compared to the turbulent flux.
With the molecular term neglected, the equation for the mean
then rises from the instantaneous equation,

D¢

Dr 0, (16)
i.e., the scalar ¢ is conserved following the fluid. This ob-
servation transforms the problem into that of describing the
motion of fluid particles. For the line source problem in the
moving frame, the mean {¢(y,1)) is proportional to the PDF
(at y, 1) of the position of fluid particles originating from the
source (y=0) at time 7=0.

We denote by X*(z,Y) the position at time ¢ of the fluid
particle which is at position Y at time 0. By definition, the
fluid particle moves with its own velocity [denoted by
u*(¢,Y)], which is the local Eulerian fluid velocity,

&;’Y) =u*(1,Y) = U[X*(1,Y),1]. 1

Focusing on the line source problem, we are interested in
fluid particles which originate from y=0 at =0, i.e., those
with Y,=0, and, furthermore, we are interested only in their
motion in the y-direction. Consequently, we simplify the no-
tation to consider X*(r) and u*(¢) to be the y-components of
position and velocity of such particles.

Phys. Fluids 23, 011301 (2011)

For given #, X*(¢r) is a random variable (because of the
randomness of the turbulent velocity field), and we can con-
sider its mean (X*(¢)), its variance, and its PDF. The mean is
zero, since the problem is statistically symmetric about y
=0. As mentioned, according to this theory, the mean
(¢(y,1)) is proportional to the probability density of the
event X*(r)=y, since (¢) is proportional to the probability
that the fluid at y, ¢ originates from the source. In accord with
experimental observations, all theories and models lead to a
Gaussian PDF of X*(z), and hence to a Gaussian profile of
(¢(y,1)). The characteristic width o(z) of this profile is the
standard deviation at X*(r),

a(1)* = (X*(1)%). (18)

The equation for the fluid-particle motion dX*/dt=u" can be
integrated to yield

t
X*(2) =f ut(t')dt', (19)
0
and hence Eq. (18) can be reexpressed as
13 t
o(1)? = f f (¢ )ut ())dr' dr”. (20)
070

This is Taylor’s principal result, showing that the dispersion
o(t)? is known in terms of the two-time Lagrangian velocity
autocovariance.

Further deductions are most simply made for the case of
statistically stationary turbulence (as opposed to decaying
grid turbulence). In the stationary case, the autocovariance
can be reexpressed as

("t (1") = wp(|e’ = 1)), 21

where (u?) is the velocity variance and p(s) is the Lagrangian
velocity autocorrelation function. DNS (Ref. 15) shows that
p(s) is well approximated by the exponential

—ls|
p(s) =exp<— , (22)
T,
where T} is the Lagrangian velocity integral time scale
T, = f p(s)ds. (23)
0

[The approximation equation (22) is scrutinized in Sec. IV.]
Using Eq. (21) and a nontrivial manipulation (see, e.g.,
Ref. 16), Eq. (20) can be reexpressed as

o(1)? = 2(142)] (t—s)p(s)ds. (24)
0

Several important deductions (due to Taylor) can be made
from Eq. (24) without invoking Eq. (22):

(1) For very small time (s/T;<<1), p(s) is very close to

unity, so that Eq. (24) yields
o(ty=u't, for t/T, <1, (25)

where u’ =(u?)""? is the rms velocity. This corresponds
to straight-line, ballistic motion.
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(2) For very large time (¢/T;>1), Eq. (24) yields
o(0)? = 2(u®)T,, for /T, > 1. (26)

(3) The evolution of o(f)? can be represented in terms of a
time-dependent diffusivity,

A

_4(1 _ t
I')= dt(ZU(t)2> = <u2>JO p(s)ds

~ (u*)t,

=~ <u2>TL’

for t/T; <1
for /T, > 1. (27)

The last result establishes the validity of the turbulent diffu-
sion model at large times with I'7=(u?)T;. But for smaller

times, f‘(t) depends on the time ¢ since the release of the
source, contrary to the notion that I'; depends solely on
properties of the turbulent velocity field.

We could proceed to obtain a prediction for o(z) for the
line source in grid turbulence by substituting into Eq. (24) a
model for the Lagrangian velocity autocovariance in decay-
ing turbulence. But, instead, we proceed by the more power-

ful and general route of considering a stochastic model for
u*(1).

D. The Langevin model

In an appendix to his papelr,3 Taylor proposed a stochas-
tic model for the position X*(¢) of a fluid particle. According
to this model, over successive small time intervals At, the
position increments [X*(t+Ar)-X*(r)] and [X*(r)-X*(¢
—Ar)] are highly correlated. In fact, this model is identical to
the stochastic model for velocity u*(r) proposed a decade
earlier by Langevin2 to model the velocity of a particle un-
dergoing Brownian motion.

For the case of statistically stationary homogeneous tur-
bulence, the Langevin model can be written as the stochastic
differential equation (SDE),

12\ 12
dmm=-u%ﬁ$+(%}> AW (o), (28)
L L

where W(r) is a Wiener process. The reader unfamiliar with
SDEs can understand this equation through its finite-
difference analog,

124\ 12
At (214 At) ‘. (29)

+ +(4) — +() —

ut(t+ Ar) —ut(r) = u(t)TL+ T
where £ is a zero-mean, unit-variance Gaussian random vari-
able (independent for each time step). The stochastic process
generated by the Langevin equation is called the Ornstein—
Uhlenbeck (OU) process, which is readily analyzed (see,
e.g., Ref. 16). The OU process corresponding to Eq. (28) is
fully characterized by the fact that it is a continuous statisti-
cally stationary Gaussian process with mean (u*(r))=0, vari-
ance {(u*(t)*)=u'?, and exponential autocorrelation p(s)
=exp(—|s|/T,). The mean and variance are [by construction
of Eq. (28)] consistent with the given properties of the tur-
bulence, and, as mentioned above, the exponential autocor-
relation is supported by DNS data.
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FIG. 3. (Color online) Samples of fluid-particle paths X*(¢) for short times
(t/T, =1, top) and for long times (z/T; =100, bottom) obtained from the
Langevin model. The dashed lines show *o(r), the standard deviation of
X*(r). Normalization is by the Lagrangian integral time scale 7; and the rms
velocity u'.

Realizations (or sample paths) of u*(r) can be generated
from Eq. (28) and then integrated to yield corresponding
sample paths of X*(¢). Figure 3 shows such sample paths at
short times (top) and long times (bottom). The ballistic and
diffusive regimes identified by Taylor are clearly evident.

In order to apply the Langevin equation to the case of
decaying grid turbulence, we rewrite it as

du* = — w,u*dt + bdW, (30)

and we seek to relate the relaxation rate w, and the diffusion
coefficient b to properties of the turbulence, which is char-
acterized by the kinetic energy k and the dissipation rate €.
Two pieces of information are required to determine these
two coefficients. The first is that the variance (u*?) equals the
variance of the Eulerian velocity, which (assuming isotropy)
equals %k. Thus, the variance decays as

d, ., d (2 ) 2
— =—|-k|]=-—e. 31

dt<u ) dr\3 3° 31
The second piece of information comes from Kolmogorov1
theory. This pertains to the second-order Lagrangian velocity
structure function defined by

D(s) = ([u*(t+5) - u* (1)), (32)

which is simply the variance of the velocity increment over a
time interval s. According to Kolmogorov, at high Reynolds
number, and for s in the inertial range (i.e., 7,<s<T,
where 7, is the Kolmogorov time scale), D(s) is uniquely
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FIG. 4. (Color online) Width o of the thermal wake (normalized by L
=k%?/ & at the source) against distance from the source x’ normalized by the
distance x, of the source from the grid: symbols, experimental data (Refs. 11
and 12); dashed line, from the Langevin model for fluid particles; solid line,
from the Langevin model for Brownian particles.

determined by s and . Dimensional analysis then leads to

D(s) = Cyes, for 7,<s<Ty, (33)

where C is a universal Kolmogorov constant. (Since this
relation is linear in g, it also holds according to Kolmogor-
ov’s refined similarity hypotheses17 in the presence of inter-
mittency.)

The Langevin equation is consistent with Eq. (33) pro-
vided that b is taken to be (Cye)'’?. Then Eq. (31) requires w,
to be (% + %Co)s/ k. Thus, for decaying turbulence, the Lange-
vin equation can be written as

1 3
du* =~ (‘ - zco) Cutdi+ (Cos) W, (34)

(The same equation applies to the stationary case, but with
the % omitted from the drift coefficient.)

The dispersion o(f)?=(X*(1)*) given by the Langevin
equation (34) can be determined analytically:*'® it depends
solely on the decay exponent m (known from the experi-
ment) and the constant C,. Figure 4 compares the experimen-
tal data for o(¢) with the Langevin-model prediction for C
=2.1—the value determined by reference to these data. As
may be seen, there is excellent agreement, except for very
small times. This discrepancy is due to the complete neglect
of molecular diffusion, which is not justified in this
moderate-Reynolds-number flow (R, = 50). This deficiency
is readily remedied by redefining the particles considered to
be Brownian particles, moving both with the local fluid ve-
locity and by molecular diffusion. Thus, X*(¢) evolves by the
SDE

dX*(6) = ut(t)dr + 2T)V2aw’, (35)

where W' (z) is a Wiener process [independent of W(z) in the
Langevin equation]. With this modification, as may be seen
from Fig. 4, the Langevin model is in excellent agreement
with the data.

As indicated in Fig. 4, the theory identifies three re-
gimes: at very early times molecular diffusion dominates and
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yields o= Vﬁ; at intermediate times there is ballistic tur-
bulent motion with o= u't; and at long times there is turbu-
lent diffusion with o~ 1> —the power being less than 3
because of the decay of the turbulence.

Comparing the poor performance of the turbulent diffu-
sion model (Fig. 2) with the excellent performance of simple
Langevin model (Fig. 4), one is reminded of Einstein’s ex-
hortation to make things as simple as possible, but no sim-
pler. Clearly, for this simple flow, the turbulent diffusion
model is too simple.

The Langevin model, in particular its short-time behav-
ior and the specification of C, is further examined in Sec. IV

E. Scalar variance

The success of stochastic Lagrangian models based on
the Langevin equation to describe the mean temperature field
was well established 25 years ago. Only recently, however,
has the same success been achieved for the temperature vari-
ance.

For the temperature variance, which reveals the extent of
turbulent mixing, there are two distinct modeling ap-
proaches. The first is based on pair dispersion in which one
models the motion of a pair of Brownian particles: see Ref.
18 for a recent review. We follow the second approach in
which the stochastic Lagrangian model is extended by add-
ing composition ¢*(¢) as a particle property. Furthermore, we
consider particles uniformly distributed throughout the flow
domain, rather than just those originally from the location of
the source.

An important aspect of this approach is the estimation of
mean fields from particle properties. For example, the mean
scalar field (in a general flow) is obtained as

(¢(x,0) = (" (D[X*(1) =x), (36)

i.e., the mean Eulerian field (¢(x,1)) is the expectation of the
particle composition ¢*(z), conditional upon the particle be-
ing located at x at time 7. (In Sec. III C, we explain how such
means are estimated in practice, in a numerical implementa-
tion of the method.)

For the case considered of a single conserved passive
scalar, the simplest Lagrangian model for the scalar is the
interaction by exchange with the mean (IEM) model,'"*’

W0 o [0~ O] (37)

where the composition relaxation rate w,, is taken to be
|
w,=—Cs—, 38

where Cy is a model constant. Thus, according to this IEM
model, the particle composition ¢*(¢) relaxes to the local
mean (¢*(¢)|X(¢)) at the rate w,),

Despite its apparent simplicity, the line source in grid
turbulence contains features that are challenging to over-
simple models, and the IEM model is found to be deficient in
predicting the variance. Close to the heated wire, the instan-
taneous structure of the temperature field is that of an un-
steady laminar thermal wake that is flapped around by the
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FIG. 5. (Color online) Axial profile of the ratio of the rms temperature
fluctuation to the mean temperature excess on the centerline downstream of
the line source: symbols, experimental data (Ref. 11); line, calculations us-
ing the IECM model (Ref. 6).

turbulent motions. As a consequence, in this early region, the
direct effects of molecular diffusion to broaden the thermal
wake are important, and the temperature field is highly cor-
related with the velocity (in the y-direction).

A refined model® which accounts for these effects is
given by

d(Zt(t) =—w,[¢"(t) = (T (DX (1),u" ()]
T &2<¢+(r)lx+2(r),u+(z)> | o)
dy

The term in w,, is similar to the IEM model, but now the
relaxation is to the mean conditioned on the particle velocity
(in addition to its position). This part is called the interaction
by exchange with the conditional mean (IECM) model.*'**
The term in I'" implements the direct effects of molecular
diffusion in the evolution of the composition, instead of
through a random walk in the position equation, Eq. (35).
Analysis shows that while the use of Brownian particles, Eq.
(35), is valid for studying the mean (¢, it introduces a spu-
rious source of composition variance.

Figures 5 and 6 show axial and radial profiles of the
normalized rms temperature fluctuations ¢’ for Warhaft’s
line source experiment. As may be seen, there is excellent
agreement between the model calculations and the measure-
ments. The calculations are obtained from the stochastic La-
grangian model for fluid particles (dX*/dt=u"), in which the
velocity u*(r) evolves by the Langevin equation [Eq. (34)],
and the composition ¢*(¢) evolves by the IECM model [Eq.
(39)1.

This stochastic Lagrangian model has been applied to
the ingenious experiment by Warhaft'' on pairs of line
sources. Instead of a single heated wire at x’ =0, y=0, there
are two wires, separated by a distance d, located at x'=0,
y==* %do. Conceptually, and in the modeling, we can con-
sider the two wires to be sources of different conserved pas-
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FIG. 6. (Color online) Radial profiles of the rms temperature fluctuation
normalized by its centerline value at axial locations (from top to bottom)
x'/M=0.36,0.62,1.0,100: symbols, experimental data (Ref. 11); line, cal-
culations using the [ECM model (Ref. 6).

sive scalars, denoted by ¢, and ¢,. As functions of x’ and y,
in addition to the means {¢,) and (¢,), and variances <¢{2)
and <¢£2>, we can consider the covariance (¢|¢3) and the
correlation coefficient

S Y (40)

P e
The covariance and the correlation coefficient are important
quantities, as they reveal the rate of mixing of different sca-
lars, which is clearly relevant to reactive flows. In the experi-
ment, Warhaft deduced the covariance using a superposition
principle based on three separate measurements of the tem-
perature variance: one with the wire at y=%d0 heated, one
with the wire at y=—%d0 heated, and one with both wires
heated.

Figure 7 shows the axial evolution of the correlation
coefficient p;, on the centerline (y=0, z=0) for different
wire separations d,. As may be seen, this evolution is highly
nontrivial and strongly dependent on the value of d,. The
stochastic Lagrangian model is completely successful in rep-
resenting these observations.

lll. PROBABILITY DENSITY FUNCTION METHODS

With straightforward modifications and extensions, the
simple stochastic Lagrangian models for position, X*(z), ve-
locity, u*(z), and composition, ¢*(z), can be used to produce
a closed modeled equation for inhomogeneous turbulent
flows, including reacting flows. Specifically, the models pro-
vide a closure for the transport equation for the one-point,
one-time Eulerian joint PDF of velocity and composition. In
practice, this modeled PDF equation is solved by a particle/
mesh Monte Carlo method, the core of which is a large num-
ber of particles, each evolving according to the stochastic
Lagrangian models.

In this section, this PDF method is described, along with
its associated particle-mesh method, and its application to a
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FIG. 7. (Color online) Axial profiles on the centerline of the correlation
coefficient between the scalars from a pair of line sources: symbols, experi-
mental data (Ref. 11); lines, calculations using the IECM model (Ref. 6).
The separation between the sources is (from top to bottom downstream)
dy=1.2,8,14,25,35 mm.

turbulent lifted jet flame. First, we contrast the Eulerian sta-
tistical approach and the stochastic Lagrangian approach for
obtaining turbulence closures.

A. Eulerian statistical and stochastic Lagrangian
approaches

1. The Eulerian statistical approach

The Eulerian statistical approach, which goes back to
Reynolds’ paper,24 consists of the following stages:

(1) The starting point is the set of exact, instantaneous con-
servation equations for the flow variables considered.

(2) We then derive the exact (but unclosed) equations gov-
erning a chosen set of statistics (e.g., means, variances),
which are called “knowns.”

(3) We provide models for other statistics arising in these
equations (referred to as “unknowns”) in terms of the
knowns.

(4) The result is a set of closed, modeled equations for the
knowns.

As a simple example, we consider a constant-property flow
involving a single reactive scalar ¢(x,t), whose conservation
equation is
Dé (9 . .v)perv?
Di _((%+U V)qb_FV o+ S(P), (41)
where U(x,?) is the Eulerian velocity field, I' is the molecu-
lar diffusivity, and S is the chemical source term, which is a
known, highly nonlinear function of the local value of ¢.
In the simplest “mean flow” closure, the set of statistics
considered consists of the mean velocity (U), the mean pres-
sure {(p), and the mean scalar (). Conservation equations for
(U) and (p)—the Reynolds equations—are derived from the
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Navier—Stokes equations; but here we focus on the mean
composition equation obtained from Eq. (41), which is

<%+<U>-V><¢>=V-(FV<¢>—<u¢>)+<S(¢)>, 42)

where the Reynolds decomposition has been used to express
the velocity as

U=(U)+u. (43)

In Eq. (42), since (U) and (¢) are knowns, the left-hand side
and the term in I" are in “closed form,” i.e., they are known
in terms of the knowns. The remaining quantities—the scalar
flux (u¢)) and the mean source term (S(¢))—are unknowns
for which models or closure approximations are required.
The simplest model for the scalar flux is a turbulent diffusion
model (as discussed above) which is

(ug) =-T'7V(¢), (44)

where I'; is the turbulent diffusivity (which is obtained
through an additional model). At this level of closure, the
only information about the composition is its mean ().
Hence, for the mean source term, the only available closure
approximation is

(S()) = S((¢)). (45)

While this relation is exact if S(¢) is a linear function, for the
highly nonlinear functions encountered in combustion, for
example, this approximation can be in error by orders of
magnitude. With the models [Egs. (44) and (45)] substituted
into the exact mean equation [Eq. (42)], we obtain the final
result—the closed, modeled conservation equation,

(gt+<u>-v)<¢>=v([r+rTW<¢>)+s<<¢>>. (46)

This Eulerian statistical approach, described here for the
means, can be applied to means, variances, and covariances
(to yield a “second-moment” closure) or to higher statistics.
In particular, it can be applied to the Eulerian one-point one-
time joint PDF of velocity and composition. This quantity,
denoted f(V,#;x,1), is the joint probability density of the
event {U(x,)=V, ¢(x,t)=¢}, where V and i are the corre-
sponding sample-space variables. In this case, the unknowns
to be modeled are conditional statistics, such as the condi-
tional diffusion

DV, ;x,1) = (TV2p[U=V,d= ). (47)

2. The stochastic Lagrangian approach

In the stochastic Lagrangian approach, we select a set of
fluid properties to be considered. For definiteness, we con-
sider the velocity U and composition ¢. As in the Eulerian
statistical approach, the starting point is the instantaneous
conservation equations for the quantities considered. In the
case considered, these are the Navier—Stokes equations for
U(x,1),
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DU 1
—=--Vp+wWU, V.U=0 (48)
Dt p

(where p and v are the constant density and kinematic vis-
cosity and p(x,) is the pressure), and Eq. (41) for ¢(x,1).
The end result of the approach is a closed modeled conser-
vation equation for the one-point, one-time Eulerian joint
PDF of the properties considered; here f(V,i;x,1), the
velocity-composition joint PDF.

We consider the joint PDF f to be “known” and hence
any quantity that can be deduced from f is also a known.
Consequently, moments such as (U),(¢), uu;),(u;p) are
known, as is the mean pressure field (p), since it can be
obtained from a Poisson equation of known source.

The second step in the stochastic Lagrangian approach is
to write down the fluid-particle evolution equations, which
follow directly from the Eulerian conservation equations.
Thus, for the case considered, the fluid-particle properties
X*(2),U*(¢), ¢* () evolve by

+

" -U*(n =0, (49)
dU++|:1V<p>:|+=|:—lvp’+VV2U:|+, (50)
dt p p

d +

WS (0) = (V) (s1)

where [ ]* indicates that the quantity is evaluated at (x,f)
=[X*(z),1]. These equations are written with known terms on
the left-hand side and unknown terms on the right. As men-
tioned, the mean pressure (p) is known, whereas the pressure
function p’ is unknown.

In addition to statistics deduced from the joint PDF, the
knowns include the fluid-particle properties. Hence, impor-
tantly, the source term S[ ¢*(¢)] is known directly in terms of
the particle composition.

In the statistical Eulerian approach, the unknowns to be
modeled are statistics which, in statistically stationary flows,
are independent of time. In contrast, in the stochastic La-
grangian approach, the unknowns [the right-hand sides of
Egs. (50) and (51)] are time-dependent random processes.
The right-hand side of Eq. (50) is the random force due to
the fluctuating pressure gradient and viscous stresses,
whereas the right-hand side of Eq. (51) represents the rate-
of-change of composition due to molecular diffusion.

The third stage in the stochastic Lagrangian approach is
to provide models— either stochastic or deterministic—for
the unknown random processes. Thus, using the IEM model,
Eq. (51) is modeled as

do*
dt

S[¢* (0] = - w,[$*(1) =($)"], (52)

where ,, is the turbulent mixing rate (specified by another
aspect of the modeling) and (¢)* is the mean composition at
the particle location. Similarly, using the Langevin equation
to model the random force, Eq. (50) is modeled as
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dU* + [lp \Y <p>]+dz =— o [U" = (U)*]dt + (Cye)?dW,

(53)

where again the relaxation rate w, and the mean dissipation
rate € are specified as another aspect of the modeling. The
determination of w,, w,,, and & is discussed in Sec. III B.
Note that for the inhomogeneous flows considered, the ap-
propriate drift term in the Langevin equation causes U* to
relax to the local mean velocity. Also, if the effects of mean
diffusion and mean viscous stresses are important, then these
terms (which are known) can be included.

The final stage is to derive from the model particle equa-
tions a modeled conservation equation for the joint PDF
S(V,:x,1). By design, this equation is closed.

3. Comparison of approaches

A significant difference between the Eulerian and La-
grangian approaches is in the form of the quantities to be
modeled. In the Eulerian approach, it is statistics which re-
quire modeling, and their complexity increases with the level
of closure considered. In the stochastic Lagrangian approach,
to be modeled are the instantaneous, time-dependent physi-
cal processes affecting the fluid-particle properties. Thus, the
modeling is very direct.

A second-moment closure and a PDF model can be com-
pared in terms of the processes requiring modeling. To this
end, we rewrite the governing equations as

U 1 1
— +(U)+@) - VU+-V{p)=vVU--Vp', (54
p p

‘;—‘:’+(<U> +) V- =TV2¢. (55)

In both approaches, the processes represented by the terms
on the right-hand side require modeling (although their
means are in closed form in both approaches). In the PDF
approach, all the processes represented by the terms on the
left-hand side are in closed form and do not require model-
ing. In contrast, in a second-moment closure, the terms in
boxes—representing convection by the turbulent velocity
and the chemical source term—do need to be modeled.

B. Joint PDF of velocity, composition, and turbulent
frequency

For application to turbulent reactive flows, the stochastic
Lagrangian models and PDF methods described above are
generalized and extended in three ways.zs’26 First, the single
composition variable ¢*(7) is replaced by a set of n, compo-
sition variables ¢*(¢), which completely describe the thermo-
chemical composition of the fluid. For low-Mach-number
flows involving n, chemical species, typically ¢*(¢) is taken
to be the n, species mass fractions and the enthalpy (or tem-
perature): as far as the thermochemistry is concerned, the
pressure is adequately represented by its mean at a reference
location (usually atmospheric pressure). For high-speed
flows, the pressure needs to be included as an additional
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variable.?” Second, the “turbulent frequency” w*(7) is added
as a (modeled) property of a fluid particle.'®*® Roughly,
() can be thought of as the instantaneous dissipation rate
£*(r) divided by the local turbulent kinetic energy k, so that
(w™) corresponds to the quantity w=g/k in the k- model,
and, similarly, k{w*) corresponds to ¢ in the k-& model. This
turbulent frequency is added to the model in order to deter-
mine the relaxation rates w, and w,, (appearing in the Lange-
vin and IEM models) and the mean dissipation rate & [ap-
pearing in the diffusion term of the Langevin model, Eq.
(53)]. A stochastic process is used to model the evolution of
wt(1).19%

Third, the assumption of constant density is removed. In
its place there is an equation of state giving the density p*(z)
of the fluid particle as a function of its composition ¢*(z)
(and of the pressure).

The result is a set of stochastic Lagrangian models for
the fluid-particle properties: X*(¢), U*(z), ¢*(¢), and w™ (7).
From these one can deduce a closed modeled conservation
equation for the velocity-composition-frequency joint PDF,
(V. b, :x,1), where V, ¢ and 7 are the sample-space vari-
ables corresponding to U*, ¢* and w*.

Thus, the simple stochastic models for fluid-particle
properties lead to a general and powerful result: a single

closed modeled equation for the joint PDF f, describing in-
homogeneous turbulent reactive flows.

C. Particle/mesh method

In order for the modeled PDF equation to be useful, we
need methods for its solution. Only for the simplest of cases
in homogeneous turbulence are analytical solutions feasible;
and, inevitably, for inhomogeneous flows, numerical meth-
ods are required. The PDF equations present an insurmount-
able challenge to conventional grid-based methods because
of the high dimensionality of the PDF. For example, for a
statistically stationary and two-dimensional flow involving
just  three  chemical species, the joint PDF
FVL Vo, Vi s thy by, m5x1,%,)  is ten-dimensional.
Even with an extremely coarse grid with ten nodes in each
direction, 10'° grid nodes are required, which is challenging,
to say the least.

The most widely used method to solve the PDF equa-
tions is a particle/mesh method,zs‘29 outlined below, which is
based directly on the stochastic Lagrangian models. Other
methods that have been developed (especially for the com-
position PDF) include grid-based particle methods,*® sto-
chastic field methods,*'* and approximate methods based
on the direct quadrature method of moments (DQMOM).*

We illustrate the operation of the particle/mesh method
for the highly simplified case (sketched in Fig. 8) of a statis-
tically stationary and two-dimensional lifted turbulent flame.
There is a central plane jet of cold fuel and hot quiescent air
on each side. As shown in the sketch, a rectangular solution
domain is selected and covered by a uniform Cartesian mesh.

The fundamental representation of the flow is in terms of
a large number N of computational particles, which model
fluid particles (on different realizations of the flow). At time
t, the nth particle has the following properties: position
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‘.‘ '.'
\ v
\ ]
Hot co-flow Hot co-flow
£+=0, Yp*=0 &+=0, Yp*=0

Cold fuel jet &+=1,Yp*=0

FIG. 8. (Color online) Sketch of a highly simplified, plane, lifted flame
formed from a cold fuel jet issuing into hot quiescent air. Also shown are the
domain and the mesh used in the particle/mesh method.

X(I")(t), X(Z")(t); velocity U(I")(t), U(Z")(t), Ug")(t); frequency
"(f); and composition d)(l")(t) , d)(z")(t). In this highly simpli-
fied illustration, the two composition variables are taken to
be mixture fraction ¢ and the product mass fraction Y, i.e.,
{d)(]”)(t),gb;")(t)}:{g(”)(t), Y;")(t)}. The particle properties
evolve in time according to stochastic Lagrangian models.
The particles move with their own velocity, which evolves
by the Langevin equation. The compositions evolve by the
IEM model, and the mass fraction of product increases due
to a chemical source term.

Figure 9 shows the motion of the particles and (via color
coding) their mixture fraction (left) and product mass frac-
tion (right). As may be seen, particles emanate from the jet
exit, and particles in the coflow are entrained into the jet.
New particles enter at the side boundaries of the domain, and
particles exit at the downstream boundary. The (expected)
number density of the particles is uniform: this is a conse-
quence of the uniform number density of the initial particle
distribution and of the inflowing particles, and of the mean
continuity equation (V-(U)=0, for this constant-density
flow).

The particles entering the domain from the jet have
gn=1, YI()")=O, while those in the coflow have &"=0, Y;")
=0. The intermediate values of &” (i.e., 0<&"<1) arise
solely due to the [EM mixing model (because mixture frac-
tion is a conserved scalar and so has no chemical source
term). The chemical source of product S(¢,Y,) is appropri-
ately specified to be zero for ¢=0 (pure air) and for &=1
(pure fuel). Hence, mixing to intermediate values of ¢ pre-
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FIG. 9. (Color online) Scatter plots of particles in the x-y solution domain
for the lifted jet flame. The particles are grayscale-coded (color-coded on-
line) by mixture fraction (left) and by product mass fraction (right) (en-
hanced online). [URL: http://dx.doi.org/10.1063/1.3531744.1]

cedes reaction, and consequently significant values of Yl()">
are observed only downstream of y=1, corresponding ap-
proximately to the base of the lifted flame.

Several important observations can be made about the
ensemble of particles within a given mesh cell, for example,
a cell around x=0, y=4, in the center of the flame. First, it is
possible for two particles to have the same position but sig-
nificantly different velocity and composition. This is because
the computational particles model fluid particles on different
realizations of the flow. For the same reason, it is not pos-
sible to extract two-point turbulence statistics from the par-
ticles. Second, within a cell there is a distribution of particle
properties, reflecting the distribution of fluid properties in the
turbulent flow: in the particle/mesh method, the PDF is not
represented directly, but the joint PDF of particle properties
within a cell models the same joint PDF in the turbulent flow.
Third, ensemble averages of properties (e.g., U*, ¢*, w*) of
particles within a cell provide estimates of the corresponding
means (i.e., (U),{(¢®),(w)) at cell centers.

Figure 10 illustrates that instantaneous cell means con-
tain significant statistical fluctuations, which are here larger
than normal because of the relatively small number of par-
ticles used in this simple simulation. However, as illustrated
in the right-hand frame, for this statistically stationary flow,
the statistical fluctuations can be reduced at will by time
averaging to yield stable estimates of means.

The stochastic Lagrangian models governing the par-
ticles’ evolution contain both particle properties
[X*(r),U*(r), ¢* (1), *(¢)] and also means evaluated at par-
ticle locations (e.g., (U)*,(#)*). In particle/mesh methods,
the mesh is used in mean estimation (most simply by en-
semble averaging over cells) and also in the interpolation of
means onto the particles (most simply by multilinear inter-
polation). In practice, more sophisticated techniques may be
used for mean estimation and for interpolation.34
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FIG. 10. (Color online) Cell means of product mass fraction obtained from
the particle/mesh method applied to the simple lifted flame. Left: contour
plot of instantaneous cell means. Right: lateral profile at y~3.2 of the in-
stantaneous [circles (red)] and time-averaged [squares (blue)] cell mean (en-
hanced online).[URL: http://dx.doi.org/10.1063/1.3531744.2]

D. Application to turbulent flames

As described above, the particle/mesh method, based on
stochastic Lagrangian models, amounts to a numerical solu-
tion to the modeled joint PDF transport equation. Based on
this approach, there have been numerous PDF-method stud-
ies of turbulent flames, which have recently been reviewed
by Haworth.? Among the demonstrated successes of the
approach35’36 is its ability to account quantitatively for the
local extinction and reignition observed in the Sandia series
of piloted jet diffusion flames.?” Here, we illustrate the per-
formance of the PDF method for the single case of a lifted jet
flame in a heated coflow—a laboratory flame, qualitatively
similar to that considered in Sec. IIIC. The flame
considered®™* consists of a central fuel jet (of diameter D)
of an H,/N, mixture at 300 K surrounded by a hot coflow
consisting of the products of lean H,/air combustion at tem-
perature 7, around 1000 K. A striking observation is that the
lift-off height H of the flame increases rapidly as the coflow
temperature is decreased in the narrow range from 1010 to
1050 K.

PDF calculations of this flame have been performed by
Cao et al*' and Wang and Pope42 using the method de-
scribed above, based on the particle/mesh method and sto-
chastic models for velocity, composition, and frequency. The
11 composition variables are the enthalpy and ten chemical
species, which react according to a detailed chemical
mechanism.* Figure 11 compares the measured and calcu-
lated normalized lift-off height H/D as a function of coflow
temperature. As may be seen, there is excellent agreement
(especially considering the =25 K experimental uncertainty
in the absolute temperature). The calculated profiles of mean
and rms temperature and species41 are also in excellent
agreement with the experimental data.

Insight into the flame stabilization mechanism can be
gained by examining particle properties in the PDF calcula-
tions. Specifically, we examine the evolution of the particles’
mixture fraction &*(¢) and temperature T*(¢) as they move up
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FIG. 11. Lift-off height H (normalized by the jet diameter D) against coflow
temperature 7,: symbols, experimental data (Ref. 39); line with symbols,
PDF calculations (Ref. 41).

in the flame. Figure 12 shows the &-T composition space.
Pure fuel and pure coflow correspond to the points (£,7)
=(1,300 K) and (&,7)=(0,1045 K), respectively. If there
were inert mixing between these two streams, then all par-
ticles would lie on the line between these two points (labeled
“inert mixing”). On the right-hand part of this line, the tem-
peratures are low, and the mixture is essentially inert. In
contrast, on the left-hand part of the line, the temperatures
are sufficiently high for the mixture to autoignite. The most
reactive mixture—that with the shortest ignition-delay
time—occurs at a quite lean mixture, £~ 0.07. If the particles
reacted to the point of reaching chemical equilibrium, then
they would lie on the indicated upper curve.

Figure 13, from the PDF calculations of Wang and
Pope,42 shows the evolution of the properties of particles that
emanate from the fuel jet. Hence, initially, all of the particles
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FIG. 12. (Color online) The composition space (projected onto the mixture
fraction/temperature plane) for the Cabra lifted flame, showing compositions
corresponding to pure fuel, pure coflow, inert mixing, and chemical
equilibrium.
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FIG. 13. (Color online) Scatter plot of mixture fraction and temperature of
particles emanating from the fuel jet in PDF calculations (Ref. 42)
of the Cabra flame. Print version, particles at x/D=13; on-line version,
animation with time corresponding to x/D (enhanced online). [URL:
http://dx.doi.org/10.1063/1.3531744.3]

are close to (£,7)=(1,300 K). As time evolves, the particles
move upward [increasing X (#)], and the animation shows
the particle properties evolving as their axial position in-
creases. That is, “time” in the animation corresponds to
downstream distance x/D. As may be seen in the animation,
early on (x/D<9) there is essentially inert mixing. At x/D
~9, a few particles approach the most reactive composition
and then move upward, away from the inert-mixing line, by
virtue of chemical reactions. As more particles react, mixing
increases the temperature of other particles until they are
sufficiently hot (7=1000 K) to react at a significant rate.
Eventually, nearly all of the particles are close to the equi-
librium line, and they move along it due to mixing.

The picture that emerges from these PDF calculations is
that the route to flame stabilization is inert mixing of the fuel
and coflow leading to mixtures that autoignite and then
propagate the combustion. In contrast to most other flames,
this stabilization mechanism does not require propagation of
heat or products against the flow. Subsequent studies***
have confirmed and amplified this view.

E. Large-eddy simulation/PDF methods

In the PDF method described above, the velocity-
frequency joint PDF provides a statistical description of the
flow and turbulent motions of all scales. Over the past two
decades, large-eddy simulation (LES) has emerged as a
popular alternative to purely statistical approaches. In LES,
the large-scale turbulent motions are explicitly represented,
while statistical models account for the influence of the un-
resolved, smaller scales. The statistical models for the small
scales are usually simple algebraic models—for example, the
Smagorinsky model—but PDF methods are also used.

In the LES context, there are nontrivial issues concerned
with the appropriate definition of the PDF (or related quan-
tity). Based on the filtering approach to LES, Pope46 intro-
duced the filtered density function (FDF). The corresponding
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governing equations have been derived,” modeled, and
implemented.48 However, the FDF pertains to a single real-
ization and does not account for the distribution of subfilter-
scale fields. In the author’s view, a better definition is that of
a PDF conditional on the resolved fields, as proposed by
Fox*® and developed by Pope.49 At this stage of develop-
ment, the difference between LES/FDF and LES/PDF is
purely conceptual, with the modeled equations used being
the same. However, there are real differences in their exact
evolution equations, especially in the molecular transport
terms as the LES is refined to approach DNS, and we can
expect modeled LES/PDF equations to be developed to con-
form to this known limiting behavior.

There are several different PDF approaches, dependent
on the set of variables considered, primarily combinations of
composition, velocity, and frequency. Most of these ap-
proaches have been implemented in the LES context by Givi
and co-workers.”® However, the most widely used LES/PDF
approach is for reactive flows, and it uses conventional LES
modeling for the velocity field, and the PDF approach for the
compositions. In this case, the position X*(¢) of the compu-
tational particles evolves by the SDE

dX*(1) = [ﬁ+LVFT]+dt+ \/<2—FT)+dw, (56)
(p) (p)

where U(x,?) is the resolved LES velocity field, {(p) is the
resolved density, and I'; is the turbulent (subgrid-scale) dif-
fusivity.

In recent years, there has been an increasing use of LES/
PDF methods for turbulent combustion, both in academic
research and in industry.51 Reviews of this work are provided
by Pitsch,52 Hawor’th,26 and Haworth and Pope,53 and there
are recent examples using a particle/mesh method,™ using
the stochastic fields method™ and using DQMOM.”® While
LES/PDF is computationally more expensive than both LES
and PDF methods, it combines the merits of both in provid-
ing an accurate description of the turbulent velocity field and
of the turbulence-chemistry interactions, which typically oc-
cur on the smallest, unresolved scales.

F. Discussion on the modeling of mixing in PDF
and LES/PDF methods

Models are sometimes criticized for lacking a represen-
tation of a physical process deemed essential to the phenom-
enon at hand. Clearly, in reactive flows, the processes of
molecular diffusion and thermal conductivity are essential,
since only by molecular diffusion can fuel and oxidant mix
to form a reactive mixture, and only by conduction can hot
and cold fluids produce warm fluid. It is these processes that
in PDF methods are modeled by the IEM and similar models.
It is interesting to observe, therefore, that PDF methods are
successful in accounting for challenging phenomena such as
local extinction and reignition, and stabilization of lifted
flames in hot coflows, and yet these models do not involve
the molecular diffusivity or conductivity of the fluid. Instead,
in accord with the cascade picture of turbulence, the rate of
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molecular mixing is modeled to be determined by the large-
scale turbulent motions, independent of the molecular prop-
erties. Given that the Reynolds numbers of the turbulent
flames mentioned are not large, it is perhaps surprising how
successful this scaling argument appears to be.

In spite of the successes mentioned above, it is certainly
the case that the modeling of molecular mixing is not satis-
factory in all respects, and many attempts have been made to
construct improved models, e.g., Refs. 57-59. Perhaps the
greatest challenge is posed by premixed turbulent combus-
tion in the flamelet regime. In that case, the steepest scalar
gradients result from a reaction-diffusion balance in the
flamelets, rather than from the straining-diffusion balance ex-
perienced by nonreactive scalars. In several studies,**®! PDF
methods have been applied to premixed combustion in the
flamelet regime.

There are two interesting observations concerning mo-
lecular diffusion in LES/PDEF. First, in contrast to PDF meth-
ods, the direct effect of molecular diffusion can be signifi-
cant, and even dominant. In LES simulations of the Sandia
Flame D, it is found that (on reasonable grids) the molecular
diffusivity is larger than the turbulent diffusivity in the near
field and at all but the lowest temperatures.62 (This observa-
tion is relevant to all LES approaches, not just to LES/PDF.)

To make the second observation, we consider a high-
Reynolds-number flow involving the mixing of a conserved
scalar ¢, the mixture fraction, which is zero in one stream
and unity in the other. The integral scale of the turbulence is
L, and the LES resolution parameter (e.g., the filter width) A
is in the inertial range (L>A> 7).

With ¢ denoting the LES field, and with ( ) denoting the
mean, the scalar can be decomposed as

o=(D)+ (S~ (D) + (¢~ ). (57)

The three terms on the right-hand side correspond to the
mean, the resolved fluctuation, and the residual fluctuation.
To a good approximation, the composition variance can be
expressed as the sum of resolved and residual contributions,

(o= (d))?) = (s~ () + (¢~ ). (58)

Standard scaling arguments16 give the residual variance de-
creasing as (A/L)*? as A decreases, and hence this modeled
contribution becomes small compared to the known resolved
contribution. This is the normal picture of LES—the mod-
eled unresolved contributions become progressively less im-
portant as A decreases.

Consider now the composition ¢*(z) of a computational
particle in a LES/PDF calculation of this flow. For the case
considered (A> 7), the direct effects of molecular diffusion
are negligible (since I'<<I'y), whereas molecular mixing is
modeled, for example, by the IEM model. We observe, there-
fore, that ¢*(r) evolves solely due to the modeled term: if the
mixing model were omitted, then there would be no mecha-
nism for ¢*(¢) to depart from its initial value (0 or 1), and
hence the predicted composition PDF would be a double-
delta function everywhere. Furthermore, scaling arguments
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show that the (normalized) mixing rate w,, increases as
(A/L)??, indicating that in some sense the “strength” of the
model increases as A decreases. Nevertheless, since the re-
sidual variance decreases as A decreases, the sensitivity of
the LES/PDF calculations to the model also decreases.

IV. ADVANCED STOCHASTIC LAGRANGIAN MODELS

In this section, we examine more closely the Lagrangian
velocity in homogeneous isotropic turbulence, and the extent
to which it is described by the Langevin model. Referring to
Box’s statement, “All models are wrong; but some are use-
ful,” we have already seen the usefulness of the Langevin
model not only for isotropic turbulence, but as an important
component of PDF methods applied to inhomogeneous flows
such as turbulent flames. Nevertheless, when examined in
detail, the model is found to be wrong—or, more charitably,
it provides an incomplete description of the phenomena. In
Secs. IV A-IV D that follow, we examine the Lagrangian
velocity on small time scales, observe deficiencies of the
Langevin model, and show how they can be remedied.

Prior to 1989, we had little detailed knowledge of La-
grangian statistics in turbulence due to the obvious experi-
mental difficulties. However, over the past 20 years, starting
with the work of Yeung and Pope,]5 we have obtained exten-
sive, detailed information from DNS;63765 and in the past
decade, remarkable progress has been made in experimental
techniques enabling the measurement of Lagrangian velocity
and acceleration.®® It is this information from DNS and
experiments which has enabled the development of more ad-
vanced stochastic Lagrangian models.

A. Lagrangian velocity increments

We consider statistically stationary, homogeneous, iso-
tropic turbulence with turbulence intensity ' and mean dis-
sipation rate . A component of the Lagrangian velocity (of a
fluid particle) is denoted by u*(¢). This has mean zero and
variance u’?. The most basic multitime statistics are the au-
tocorrelation function

p(s) = (u*(s)u*(0)), (59)
and the second-order Lagrangian structure function
D(s) = ([u*(s) - u*(0)]%), (60)

which is just the variance of the increment over the time
interval s =0. These two functions are related to each other
by

D(s) = 2u"*(1 = p(s)). (61)

According to the Langevin model, the structure function
is

D(s) = CoeT,(1 - e™¥11), (62)

where the Lagrangian velocity integral time scale 7 is re-

lated to the Eulerian turbulence properties by
2u'? 4k

T Coe 3Ce’

Note that for small times (s/T;<<1), Eq. (62) yields

(63)

L
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FIG. 14. (Color online) Compensated second-order Lagrangian structure
functions: solid lines, DNS (Ref. 70) at Reynolds numbers (from bottom to
top) R\=43, 86, 140, 235, 393, 595, 1000; dashed line, Langevin model
with Cy=2.1.

D(s) = Cyes, for 2 < 1, (64)
T,
consistent with the Kolmogorov hypotheses.

Figure 14 shows compensated structure functions, i.e.,
D(s)/(es), obtained from DNS,” for Taylor-scale Reynolds
numbers R, from 43 to 1000, compared to the Langevin-
model result, Eq. (62). The following clear observations can
be made from the DNS data:

(1) There is a strong Reynolds-number dependence. Indeed,
it is generally found that compared to Eulerian statistics,
Lagrangian statistics exhibit a stronger Reynolds-
number dependence, and do so up to higher Reynolds
numbers.

(2) Even at the highest Reynolds number, D(s)/(es) does
not convincingly display the plateau predicted by Kol-
mogorov theory [Eq. (64)].

(3) At larger times [for s to the right of the peak of
D(s)/(es)] there is a collapse of the compensated struc-
ture functions at different Reynolds number (when plot-
ted against s/7T;).

(4) At very small times, D(s)/(es) increases linearly with s,
since a Taylor series for [u*(s)—u*(0)] yields

+\2
D(s)zs2<<ddit> > for — <1. (65)

n

In comparison, the Langevin model has no Reynolds-number
dependence, it does yield a plateau, and this extends to s
=0. [Note that u*(r) given by the Langevin equation is con-
tinuous but not differentiable, and so Eq. (65) does not apply
to it.]

B. Reynolds number

It is straightforward to incorporate Reynolds-number de-
pendence in the Langevin model simply by making the
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FIG. 15. (Color online) The Langevin-model constant C,, against Reynolds
number: symbols, from DNS (Ref. 70) and Eq. (67); line, empirical fit,
Eq. (68).

model coefficient Cy depend on Ry, i.e., Cy(R)). Consistency
with the Kolmogorov hypotheses requires only

lim Cy(Ry) =C, (66)

R\ —

where now we distinguish between the Kolmogorov constant
Cy and the model coefficient Cy(R,). Furthermore, Cy(R))
can be determined directly from DNS data via Eq. (63), i.e.,
4k
 3eT,

Co (67)
Figure 15 shows values of C, thus obtained from DNS,"™
compared to the empirical fit

6.5

ColR\)=—"T"——"T""="3721-

(68)
which is based on a suggestion by Sawford et al As may
be seen, the fit represents the data well, and is consistent with
the Kolmogorov hypotheses with Cy=6.5.

Figure 16 compares the compensated structure functions
from DNS with those from the Langevin model with Cy(R))
specified by Eq. (67). As may be seen, the Langevin model
now provides an accurate representation of the structure
function for s/7,>10, say. Even though C, is specified
based on the data, this agreement for the structure function is
not inevitable. Instead, it indicates that, except in the dissi-
pation range (s <<107,), D(s) is characterized by the single
time scale 7.

C. Stochastic model for acceleration

As observed from Fig. 16, the behavior of the Langevin
model is qualitatively incorrect at small times. This is inevi-
table given that u*(7) is modeled as a diffusion process. The
problem can be removed, however, by moving the stochastic
modeling to the next level; that is, by constructing a stochas-
tic model for the Lagrangian acceleration a*(z), and then
obtaining the velocity from du*/dt=a*.

Phys. Fluids 23, 011301 (2011)

FIG. 16. (Color online) Compensated second-order Lagrangian structure
functions: solid lines, DNS (Ref. 70) at Reynolds numbers (from bottom to
top) R,=43, 86, 140, 235, 393, 595, 1000; dashed lines, Langevin model
with C, obtained from Eq. (67).

In 1991, Sawford’ introduced a linear stochastic model
for acceleration,

T \a* ut
dat=—\1+—|—dt- dt
T.) T Tot
1 1 1/2
+ 2a’2<— + T_> dw. (69)
T oo

The two specified time scales T.. and 7 are related to the
integral scale and the Kolmogorov scale, respectively, and
their ratio increases with Reynolds number. Based in these
time scales and the rms velocity u’, the acceleration scale is
defined by

12
(70)

a“=——".
TeT

Analytic expressions for the autocorrelation functions
and structure functions can be deduced from Sawford’s
model. Figure 17 compares the predicted compensated struc-
ture functions with those from DNS. As may be seen, there is
good agreement, and in particular the small time scales are
well represented.

D. Intermittency

As is to be expected, the statistics of acceleration and
velocity increments over small time intervals are found to be
highly non-Gaussian—a manifestation of interval intermit-
tency. For example, in an experiment at Ry =680, Mordant et
al.” measured the kurtosis of acceleration to be greater than
100, compared to the Gaussian value of 3. From the DNS of
Yeung et al.,” Fig. 18 shows the PDF of acceleration. As
may be seen, this is much broader than the Gaussian distri-
bution (of the same standard deviation).

As originally suggested by Oboukhov’*  and
Kolmogorov17 in 1962, the standard way to approach inter-
nal intermittency is to condition statistics based on the local
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8

FIG. 17. (Color online) Compensated second-order Lagrangian structure
functions: solid lines, DNS (Ref. 70) at Reynolds numbers (from bottom to
top) R,\=43, 86, 140, 235, 393, 595, 1000; dashed lines, from Sawford’s
model (Ref. 7), Eq. (69).

dissipation rate. An early lesson from DNS (Ref. 15) is that,
for this purpose, the pseudodissipation ¢ = vdu;/dx;du;/ ox;
is superior to the dissipation &= %V(r?u,-/ Oxj+u;l dx;)
X (Ju;! 9xj+du;/ ox;).

Also shown in Fig. 18 are the PDFs of acceleration con-
ditional on ¢. Specifically, there are five conditional PDFs
corresponding to the five quintiles of ¢. As may be seen, the
conditional PDFs are much narrower that the unconditional
PDF, and, remarkably, they are essentially independent of the
conditioning variable, i.e., the five curves collapse.

Several stochastic models have been constructed which
account for intermittency.s’75’76 The starting point is a sto-
chastic model for pseudodissipation, ¢*(r). A striking obser-
vation from DNS is that the one-time PDF of ¢* is very close

10° | |
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FIG. 18. (Color online) Standardized PDFs of acceleration from DNS (Ref.
73): outer solid line (red), unconditional PDF; inner solid lines (six indis-
tinguishable lines), PDFs conditional on pseudodissipation quintiles (ma-
genta, online), and the cubic Gaussian equation [Eq. (73)] (green, online);
inner dashed line, Gaussian (blue).
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FIG. 19. (Color online) Kurtosis of x, the logarithm of pseudodissipation,
obtained from DNS (Ref. 73) against Reynolds number compared to the
Gaussian value of 3.

to log-normal, or, equivalently, the quantity
<p+(t)>
(o)

is close to Gaussian. Figure 19 shows that the kurtosis of x*
is remarkably close to the Gaussian value of 3 over the large
range of Reynolds numbers investigated. Furthermore, the
autocorrelation function of x*(z), shown in Fig. 20, is well
approximated by an exponential. It is thus natural to model
x*(1) as an Ornstein—Uhlenbeck process, governed by a lin-
ear SDE similar to the Langevin equation.

Let o,(x) denote the standard deviation of the accelera-
tion a*(¢) conditioned on x*(r)=x. The DNS data” show, as
expected, that o,(y) increases steeply with y. The condition-
ally standardized acceleration da(z) is defined by

X)) = ln( (71)

0.8f i

Px(8)

0.4r i

s/Ty

FIG. 20. (Color online) Autocorrelation function of y, the logarithm of
pseudodissipation, obtained from DNS (Ref. 77) compared to the exponen-
tial (dashed line).
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a*(?)
a()=s ———=. (72)
ol x (1]

The fact that the PDFs of conditional acceleration collapse in
Fig. 18 indicates that the one-time PDF of d(z) is indepen-
dent of x*(r) and is that observed in the figure. An empirical
finding is that this PDF is well approximated by a “cubic
Gaussian.” That is, the PDF of d(z) is well approximated by
that of

a=(1-pa+pa, (73)

where a is a Gaussian random variable and p=0.1.

Based on the above observations, Lamorgese et al® pro-
posed a stochastic model for velocity u*(r), acceleration
a*(r), and pseudodissipation ¢*(r), which, by construction,
yields the correct one-time joint PDF of these quantities, thus
appropriately accounting for internal intermittency.

E. Further stochastic Lagrangian models

Without attempting a comprehensive review, we mention
here some further stochastic Lagrangian models that have
been developed. For velocity and acceleration, the models
described above focus on the small time scales. For inhomo-
geneous flows, of more importance is the effect of mean
velocity gradients. The generalized Langevin model (GLM)
(Ref. 78) accounts for these effects by making the drift term
in the Langevin equation for the velocity vector depend lin-
early on the mean velocity gradient tensor. There is a corre-
spondence between the tensor drift coefficient and models
for the pressure-rate-of-strain tensor in Reynolds-stress
models.?! In a similar manner, Sawford’s acceleration model
can be generalized to incorporate the effects of mean veloc-
ity gradients.79

The GLM models (in part) the “rapid” pressure, and it is
consistent with rapid distortion theory to the limited extent
that it correctly represents the initial response of isotropic
turbulence. The stochastic wave-vector model® introduces a
unit wavenumber vector e*(¢) as an additional particle prop-
erty. Coupled equations for u*(s) and e*(r) are then con-
structed using a mathematical analogy to the Navier—Stokes
equations in wavenumber space such that the Reynolds-
stress evolution is correct for all rapid distortions of homo-
geneous turbulence. It is interesting to note that this exact
treatment of rapid distortion is possible through stochastic
modeling, but it cannot be achieved in moment closures.

Other quantities and processes related to turbulent veloc-
ity fields for which stochastic Lagrangian models have been
constructed include the velocity gradient tensor,” ™ two-
particle dispersion,m_87 and inertial particles.gs_go Some re-
cent reviews are provided by Meneveau’' and Sawford and
Pinton.'®

Above we have described the IEM and IECM models
which model the evolution of the composition ¢*(¢) of a
fluid particle due to molecular diffusion. Such “mixing mod-
els” are central to PDF methods for turbulent reactive flows.
Arguably, this general problem is much more challenging
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than modeling the velocity and related quantities. Some rea-
sons for these challenges (not all independent) are the fol-
lowing:

(I) In the conservation equation for compositions, there is
no term analogous to the pressure gradient that appears
in the velocity equation, and which has a randomizing
effect.

(2) Mixing occurs predominantly at the smallest scales,
whereas the particle composition (or, equivalently, the
one-point joint PDF of composition) contains no scale
information, but is dominated by the large scales.

(3) Different compositions can have different diffusivities,
leading to differential diffusion effects, including
thermal-diffusive instabilities.

(4) Individual compositions (e.g., species mass fractions)
are bounded (i.e., between 0 and 1), and sets of compo-
sitions with equal diffusivities satisfy joint boundedness
conditions.

(5) Sets of compositions with equal diffusivities satisfy lin-
earity and independence conditions,” to which models
should adhere.

(6) In reacting flows (especially premixed turbulent com-
bustion in the flamelet regime) the steepest composition
gradients can be caused by reaction fronts, rather than
by turbulent straining.

Over the past 30 years, several models have been devel-
oped based solely on particle composition. These include the
modified Curl model,%’94 the binomial Langevin model,95
the mapping closure,”®”’ the Euclidean minimum spanning
tree (EMST) model,”” and multiple mapping conditioning.”

It is natural to attempt to improve the description of the
physics of mixing by incorporating scale information. It has
proved difficult to do so in a way that leads to a tractable
model for inhomogeneous reactive flows. Some attempts
have been based on composition gradients,98 and on spectral
representations,5 s including combining PDF methods with
the eddy-damped quasi-normal Markovian (EDQNM)
approach.99

V. CONCLUSIONS AND FUTURE CHALLENGES

In this paper, we have illustrated the potency and broad
applicability of stochastic Lagrangian models of turbulence.
Dispersion from a line source in grid turbulence is a funda-
mental flow in the study of turbulent transport and mixing.
Turbulent diffusion models (e.g., based on the k-& model) are
qualitatively incorrect, except far from the source. In con-
trast, the simple Langevin model for the fluid-particle veloc-
ity and the IECM model for composition yield accurate pre-
dictions of the mean, variances, and covariances from single
and multiple line sources.

In Sec. III, it is shown that with straightforward exten-
sions, these simple stochastic Lagrangian models for velocity
and composition can be used to effect a turbulence closure,
in terms of the joint PDF of velocity and composition, and
the stochastic models form the basis for a natural particle/
mesh numerical method to solve the modeled PDF equation.
These PDF methods have been applied to several turbulent
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flames, and they have proved most successful in accounting
for important turbulence-chemistry interactions.

With the advent of DNS and modern diagnostics, it has
been possible to examine in detail Lagrangian time series in
turbulent flows. This examination has shown that the simple
Langevin model has several limitations and deficiencies. All
of these can be remedied, but at the cost of more complexity.
For example, a model for velocity, acceleration, and pseudo-
dissipation is able to describe accurately the Lagrangian ve-
locity on all time scales, including Reynolds-number effects
and internal intermittency.

Looking to the future, there are of course enumerable
opportunities and challenges for the further development of
modeling and simulation methodologies for turbulent flows.
We mention here just two of these, in the context of stochas-
tic Lagrangian modeling in conjunction with LES.

First, in a LES of a high-Reynolds-number turbulent
flow, there is a significant separation of scale between the
smallest scales in the flow and the smallest scales resolved in
the LES. As discussed in Sec. IV E, it remains a challenge to
model small-scale processes such as molecular mixing, espe-
cially when processes on these small scales are rate limiting,
or when they create (rather than dissipate) fluctuations. High-
Reynolds-number DNS now provides the information
needed to develop and test such models.

Second, while LES provides significant modeling advan-
tages over Reynolds-averaged Navier-Stokes (RANS) ap-
proaches, it has several problematic aspects.loo In a RANS
calculation, numerical errors can be quantified and reduced
below acceptable levels. On the other hand, in LES as it is
generally practiced, the calculated statistics depend both on
the numerical method and on the grid used. A worthwhile
challenge for future research is the development of a LES
methodology which yields calculations with controllably
small numerical effects. Such a methodology most likely re-
quires adaptive mesh refinement and calculations on multiple
grids.
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