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A stochastic Lagrangian model for acceleration in turbulent flows
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A stochastic model is developed for the acceleration of a fluid particle in anisotropic and
inhomogeneous turbulent flows. The model consists of an ordinary differential equation for velocity
(which contains directly the acceleration due to the mean and rapid pressure gjiadiedts
stochastic model for the remainder of the acceleration, which is due to the slow pressure gradient
and to viscosity. In addition to a rapid-pressure model, the stochastic model involves three tensor
coefficients. For isotropic turbulence, the model reverts to that previously proposed by Sawford. At
high Reynolds number the model is consistent with local isotropy and the Kolmogorov hypotheses,
and tends to the generalized Langevin model for fluid-particle velocity. In this case two of the tensor
coefficients are known in terms of the Kolmogorov constnt while the third is related to the
coefficient in the generalized Langevin model. A complete analysis of the model is performed for
homogeneous turbulent shear flow, for which there are Lagrangian data from direct humerical
simulations. The main result is to establish the one-to-one correspondence between the model
coefficients and the primary statistics, namely, the velocity and acceleration covariances and the
tensor of velocity integral time scales. The autocovariances of velocity and acceleration obtained
from the model are in excellent agreement with the direct numerical simuld@i®) data. Future

DNS studies of homogeneous turbulence can be used to investigate the dependence of the model
coefficients on Reynolds number and on the imposed mean velocity gradients. The acceleration
model can be used to generate a range of turbulence models which, in a natural way, incorporate
Reynolds-number effects. @002 American Institute of Physic§DOI: 10.1063/1.1483876

I. INTRODUCTION sideredu™ (t) is a statistically stationary process with mean
zero. The Lagrangian velocity autocorrelation function is de-

In order to investigate dispersion in turbulent flows, in
fined by

1921 Taylot introduced a stochastic model for the position
X*(t) of a fluid particle. An analysis of Taylor's model
shows that it is equivalent to the Langevin equation as a

model for the fluid-particle velocityU™ (t)=dX*(t)/dt. o _ . .
(Langevir? had proposed this stochastic equation in 1908 tQWhICh is independent of andi because of stationarity and

model the velocity of particles undergoing Brownian mo- Isotropy, respectively(Here and below, bracketed suffixes

tion.) The Langevin equation remains the basis for stochasti@"® exclude.d from_ the summatpn conver_mt)d'me Langevin
models of turbulent dispersidsee, e.g., Refs. 335 urther- model predicts this autocorrelation function to’ be

more the Langevin equation and its generaliz&tfoprovide

a closure to the transport equation for tteme-point, one- p(s)=exp< ﬂ) 3
time) probability density functiofPDP of velocity®® And T )

from the modeled velocity PDF equation can be deduced the

corresponding partially modeled Reynolds-stress equation. WhereT, is the Lagrangian integral time scale. For not-too-
Thus, an accurate stochastic model for the fluid-particlesmall time intervals|s|/T,, this prediction is in excellent
velocity U™ (t) is a potent tool in turbulence modeling as agreement with experimental and direct numerical simula-
well as in the study of turbulent dispersion. tion (DNS) data'*

Important conclusions about the performance of the But the form of Eq.(3) reveals three related shortcom-
Langevin model can be drawn from the Simp|est case oings of the LangeVin model. First, it contains the Single time
statistically stationary homogeneous isotropic turbulence. I$caleT, (which is characteristic of the large-scale, energy-
general, the fluctuating component of fluid-particle velocitycontaining motiong second, there is no dependence on Rey-

p(8)=(ug(t)ug (t+s))/ (Ui (Hug (b)), 2)

is defined by nolds number; and, third, the slope @fs) given by Eq.(3)
. . . is discontinuous at the origifreflecting the fact that the
u™ () =U"(t) —(U(XT[t],1)), (1) Langevin model foru*(t) is continuous but not differen-

tiable]. The same observations can be nmadegarding the
Lagrangian velocity frequency spectrul (w)—which is
the Fourier transform ofug,u;,)p(s). According to the
dElectronic mail: pope@mae.cornell.edu Langevin model, at high frequendy, (») varies atw™ 2:

whereU(x,t) is the Eulerian velocity; and for the case con-
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there is no representation of the more rapid decrease iare Lagrangian data from the recent DNS studies of Sawford
E.(w) beyond the frequency corresponding to the Kolmog-and Yeund®!’ It is shown(in Sec. IV Q that the velocity-

orov time scaler,, . acceleration autocorrelation functions predicted by the model
In 1991, Sawforf introduced(for isotropic turbulence  are in excellent agreement with these DNS data.
a stochastic model for the fluid-particle acceleratidn(t) As well as being useful in its own right, we also regard

=dU"(t)/dt=d?X " (t)/dt?>. Such a model remedies the the acceleration model as an intermediate step in the devel-
above-mentioned deficiencies of the Langevin model: a sempment of improved stochastic models for velocity for use in
ond time scaléwhich scales withr,) is introduced; there is dispersion studies, in PDF methods, and in other turbulence
an intrinsic Reynolds-number dependerisice T, /7, in- models. Compared to the velocity model, the acceleration
creases with Reynolds numbeand, at the origin, the pre- model can be more closely related to Lagrangian data from
dicted velocity autocorrelation function is once continuouslyDNS, which are known to contain strong Reynolds-number
differentiable. Correspondingly, around the Kolmogorov fre-dependenciet:*® Given an acceleration modéle., a pre-
quency 7-;1, the Lagrangian velocity spectrunk, (w) scription for the coefficient8, C, andD), a corresponding
smoothly changes its power-law behavior fram? to » ~%. velocity model can be deducBdwhich yields the same ve-
For isotropic turbulence, Sawford’s model is in excellentlocity covariances and integral time scales, and which inher-
agreement with DNS data, including accounting for theits Reynolds-number dependencies. Such an improved model
Reynolds-number dependence of the acceleration autocorrbas direct application in PDF methods, and from it can be
lation function and the second-order Lagrangian velocitydeduced a pressure-rate-of-strain model for use in Reynolds-
structure functiort> stress models. These and other uses of the acceleration model

In this paper we consider a more general stochastiare discussed in Sec. V.
model for the fluid-particle acceleration, which is applicable
to anisotropic turbulence and to inhomogeneous turbulenj sTocHASTIC MODEL FOR ACCELERATION
flows. The general form of the model is developed in Sec. I,
where particular attention is paid to the contribution to ac- We consider the inhomogeneous turbulent flow of a
celeration from the rapid pressure gradient. When applied t6onstant-property Newtonian fluitbf density p and kine-
homogeneous turbulend®ith constant and uniform mean Matic viscosityr). This is governed by the continuity equa-
velocity gradientsthe stochastic model is of the form tion JU;/9x;=0, and the Navier—Stokes equation

daf (t)=—[CyjaX (1) +Dyu* (D]dt+ B, dW;, (@) Ai(x,t)E%:iji)Ui
where u* (t) is the model foru*(t), a*(t) is its rate of Dt A 9%;
change(i.e., a* =du*/dt), andW(t) is an isotropic Wiener 1dp 9?U;
process. The coefficientd, C, andD are tensors which can =
depend on the local state of the flow and the turbulence, but .
are independent af* andu*. (The conventional notation is WhereA(xt), U(xt), andp(x,t) are the acceleration, ve-
that “+” denotes a fluid-particle property, and * denotes a Ioglty, and pressure. The general fluid particle has position
model for that property. X7 (1), velocity,

In the simplest case of isotropic turbulence, all the coef- dX*(t)
ficients in Eq.(4) are isotropic(e.g., B;=B&;), and the ut(t)= at =U(X[t],1), (6)
model reverts to Sawford®.In this case, which is reviewed
in Sec. Il C, there is a one-to-one correspondence betweednd acceleration
the three scalar coefficient, C, andD) and the three pri- du*(t)
mary statistics: the acceleration variara€; the velocity At (t)= at =A(X"t],t). (7)
varianceu’?; and the velocity integral time scalg .

Beyond isotropic turbulence, the simplest type of flow to . .
study is statistically stationary homogeneous turbulence witﬁ" Decomposition of acceleration
imposed mean velocity gradients—as exemplified by a re- The acceleration can be decomposed into mean and fluc-
cent DNS of forced homogeneous turbulent shear tbawnd tuating contributions based on the me@b) and (p)) and
described in Sec. IV. For this case the coefficiBit€, and  fluctuating(u andp’) components of velocity and pressure.
D are constant, and a complete analysis of the mpggl  Furthermore, as originally shown by Chlthe fluctuating
(4)] can be performed. This is done in Sec. IV B, where it ispressure can be decomposed into rapi, slow, p®, and
shown that there is a one-to-one correspondence between tharmonic,p(™, contributions’ Thus, the fluid acceleration is
tensor coefficients in the model and the primary statistics, ; R h
namely the velocity-acceleration covariances and the veloc- A=— } (p) } ap' )_ l ap*® } ap™
ity integral time scale tensofThis analysis parallels the au- p X p X p X p X
thors’s recent analysis of a stochastic model for veldé)ty. (92<U_> U

. . B . . I I

With some approximatiofand with an appropriate scal-
ing of the variables the same analysis can be applied to
nonstationary homogeneous turbulence, in particuldute  The harmonic pressure and the mean viscous term are neg-
forced homogeneous turbulent shear flow for which thereligible except in the immediate vicinity of wallgor other

p X Vo"Xjé’Xj '

©)

®

VO"X]O"X] VU"XJ'BXJ' ’
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surfaces Here we neglect these terms, and hence leave teure gradients—appear directly in the ODE for velocity, Eq.
future work the development of the special treatments re¢11); whereas the other contributions—from the slow pres-

quired for the viscous near-wall region.

B. Structure of the model

The proposed model consists of an ordinary differential

equation(ODE) for U* (t)—a model for the fluid particle
velocity U™ (t)—and a stochastic differential equatit®DE)

for an acceleration variable denoted BY(t). The model
also involves the fluctuating components of these quantitie
which are defined by

u* (1) =U* (1) — (U* (1)[X* (1)) 9)
and
(1) =A"t) —(A°(t)|X* (1)), (10

whereX* (t) denotes the position of the model particle.

The ODE for velocity is
dUi*__<1 a<p>> _(1 ap'"
P IXi [y \P X

—= +a’(t), (11

sure gradient and viscosity—are modeled through the SDE
for A%(t), Eq. (12). The rationale for this division is based
on the response of the system to a rapid distortion, and it can
Ibe most easily understood for the case of homogeneous tur-
bulence.

Consider the sudden imposition of a very large strain
rate on homogeneous turbulence. Both the mean and rapid

Jressure fields change suddenly and this leads to a sudden

¢hange in the fluid acceleration. On the other hand, the fluc-
tuating velocity field and the slow pressure change continu-
ously in response to the suddenly imposed distortion.

The model is qualitatively in accord with this behavior.
It may be seen from Eq11) and Eq.(13) that the accelera-
tion changes suddenly if there is a sudden change in
a(U;)/ 9x; , with accompanying sudden changesi{p)/Jx;
andap(N/ax; . In the acceleration equati¢fq. (12) and Eq.
(14)], these sudden changes can result in sudden changes in
the coefficientsB, C, andD, but neverthelesg’(t) changes
continuously.

where the first two contributions on the right-hand side rep-E. Rapid-pressure models

resent acceleration by the mean pressure gradigmch is

As is usual, and in keeping with the physics, we consider

assumed to be knownand acceleration by the rapid pressureyeterministic models for the rapid pressure gradient. The

gradient(which has to be model@dA comparison of Eq(8)
and Eq.(11) then reveals thaa®(t) is a model for the accel-

quantity then to be modeled is the conditional mean rapid
pressure gradient—conditional on the modeled state of the

eration due to the slow pressure gradient and the viscoug,ig particle.

term.
The acceleration variabla®(t) is modeled by the gen-
eral SDE,

dAY(t)=—[Cy;AXt)+Djuf () ]dt+B; dW,,  (12)

whereW(t) is an isotropic Wiener process. The tensor func-

tions B(x,t), C(x,t), and D(x,t) [which in Eq. (12) are
evaluated afX* (t),t]] depend on the local state of the tur-
bulence, but are independentdf andA°.

C. Homogeneous turbulence

Before presenting the rationale for the structure of the

For homogeneous turbulence, the rapid pressure varies
linearly with the imposed mean velocity gradient, and hence
the general model can be writtén

< aO,u*>:2a<Uk>

&—XeN({ki-
The third-order tensor functioiN; is given in terms of
two-point conditional velocity statistics in Refs. 20 and 8
(where it is denoted b,,;), and it satisfies the relations

(16)

19p™"

o (15)

Ngi=uj, Ngi=0, Ngi=Ngi.

Rapid distortions of homogeneous turbulence can be

model, we first note the form that it takes in homogeneousreated exactly using the wave-vector model of Van Slooten

turbulence.

In homogeneous turbulenéeith uniform mean velocity
gradient$, the coefficient®, C, andD depend only on time,
and it follows that the meafA°(t)|X* (1)) =(A°(t)) is zero.
Consequentha®(t) is identical toA°(t). And the velocity

and Popé€:?! This requires that the modeled state of the fluid
particle be supplemented by the wave veabft)—which,
among other conditions, satisfied the relations

efef=1, e'ur=0.

(17)

equation can readily be transformed to an equation fofrpen the tensoN,,; in Eq. (15) is given by
u*(t). Thus, for homogeneous turbulence the model be- '

comes
du* HU;) (1 ap'" o
dal(t)=—[Cj;al(t)+ Dju (1) Jdt+B;; dW, . (14)

D. Rationale

Nei=uyege’ . (18

For rapid distortions, the wave-vector model consists of
ODE's fore* (t) andu* (t), the latter being Eq(13) with the
neglect ofa’, and with the rapid-pressure model given by
Egs. (15 and (18). This model is exact for arbitrary rapid
distortions of homogeneous turbulence, in the sense that it
yields the correct evolution of the Reynolds stresses.

As is conventional in Reynolds-stress and velocity-PDF

The structure of the model is such that some contribumodeling, we are primarily concerned here with models
tions to acceleration—namely, from the mean and rapid presdhased on velocity and its one-point statistics, U&(t) and
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the Reynolds stregs);u;). The unfortunate fact of the matter Ill. PROPERTIES OF THE MODEL

is that these quantities are inadequate to describe rapid dis-

tortions (see, e.g., Reynolds and Kassitfpsadditional di- In t'his section we examine.some of _the mathematiqal
rectional information is needed, as is provided by the wavéroPerties of the model, and their connections to the physics

vector. However, the hope is that rapid-pressure model8f turbulent motions.

based on velocity alone may be adequate for the moderate ) )

and slowly varying mean strain rates encountered in mang- Eduivalent first-order and second-order systems

turbulent shear flows. For homogeneous turbulence, the mofed). (14) and
Following Ref. 20, it is natural to consider a rapid- Eq. (22)] can be written as a first-order system of SDE’s,

pressure model that is linear in velocity, and which therefore

can be written duf =[ —K;;uf +a’]dt, (25
0__ A0 * - _
<—3a“”aﬂm>=egm;=Hmﬂqa““f 19 da’=—[Cja}+Dj;uf ]dt+B;; dW,, (26)
p X IX¢ or, in an inferior notation, as a first-order system of ODE’s
or, equivalently, du
&k ra (27)
Newi= sH{jR Ut (20 dt WE S
where the tensorG{’ andH([), correspond to the analogous dal _
tensors in the Haworth—Pope modélThe nondimensional T —C;;a’—Dyuf +B;W,, (28)
fourth-order tensoH (") is modeled as a linear function of the t .
Reynolds-stress anisotropy tensor where W denotes white noise, which has the property
(uu)y 1 SEW (") dt’ =W(t).
= (21 Alternatively, by differentiating Eq(27) with respect to

g 30

and indeed a nontrivial dependencetppis required to sat- | N
isfy the condition that the rapid pressure neither produces ndt U +(Cyi+ K__)di n ( D..+ %
removes turbulent kinetic energy. deZ T gy odt
In subsequent sections we confine attention to this line

model, not least because it is amenable to analysis. In DN
the rapid pressure gradient can extracted, its linearity'in
can be examined, and specific models Iﬂﬂﬂz( can be as-
sessed. With this model, E¢L3) can be rewritten

t, the model can be re-expressed as the second-order system

t may be seen that the system is governed fundamentally by
just three coefficient tensors, not four as suggested by the
appearance dB, C, D, andK in Egs.(25)—(28). In particu-
lar, if K is constant—as is the case in the analysis below
(Sec. IV B—the behavior ofu* (t) is determined byB, D

duf and the sum
d_= _K”UT +ai0, (22) J—
t C=C+K, (30)
where the tensoK;; is defined by but not byC andK individually. Thus, for constari, Egs.
U, (U (25) and(26) are equivalent to the system
Ku':—f; )= f; 2 oty Hi ) (23
X Xe du* =a* dt, (31
Finally, we caution that in future studies of rapid- . = . .
pressure modelinge.g., based on DNSnonlinear models daj = —[Cjjaj +Djuj Jdt+ By dWj, (32)
should not be discounted. For example, the simple model  \which Eq.(31) definesa* =du*/dt, anda® can be recov-
1 uruy ered as
Neki:iue( o W) ’ 24 al=al +Kjuf . (33

satisfies all known constraintsvithout requiring a depen- The model is analyzed below via Eq81) and(32).
dence orbj).

B. Scaled model equations and coefficients

F. Summar .. . . - .
y It is informative to scale the variables and coefficients in

The model consists of an ODE for velocity, EQ1), the model equations for homogeneous turbulence so that
which contains the mean pressure gradient and a model ferey become nondimensional quantities of order unity. A pre-
the rapid pressure gradiefe.g., Eq.(19)]. The remainder of |iminary is to define the quantities used to perform these
the acceleration—owing to the slow pressure gradient andcalings.
the viscous term—is modeled by an SDE, E#j2), which The velocity and acceleration variables are scaled by
contains three tensor coefficient8, C, and D. Various  their standard deviations’ anda’, which are given by

properties of these coefficients are revealed in subsequent o 1 e wn o T
sections. uf=xufuf)=35k, a'“=3xafaf), (39
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TABLE I. Summary of different time scales. The ODE for velocity, Eq.(13) and Eq.(15), can be
T=kle Turbulence time scale written
7,=(vle)¥? Kolmogorov time scale N N .
=81 Shear time scale 1dy  7dy 7] HUg|| 2Ny Uy
T, =3T! Lagrangian velocity integral time scale u dt U dt 7'8 Ts Xy u u’ 9k
r,=u’'?/(a'?7) Acceleration time scale
T.=\;% Eq.(55) Velocity eigen-time scale 1/2 a_i

=)\,%, Eq.(57) Acceleration eigen-time scale +|— a2 (43
T, Eq. (102 Integral time scalé6x6) matrix Ta
T4, Eq.(109 Velocity integral time scale tensor

Each term is nondimensional; expressions in square brackets
are of order unity; and time is scaled by the turbulence time
scale, i.e.,i=t/7. If the linear rapid-pressure model, Eq.
wherek is the turbulent kinetic energy. There are four rel-(19), is used, then the ODE far* (t) can alternatively be
evant time scales. The turbulence time scale is defined by written

k * * 1/ 0
_ 1 du; T~ U T a;
=, (35 i SR B P B B e
€ u’ dt TSK” N Ta Z[a’ ' (44)
wheree is the rate of dissipation df. The shear time scale,
characteristic of the imposed mean velocity gradients, is dewhere the nondimensional, order-one coefficiknis
fined by
> c7< k> (r)
T=81, (36 Kij = 7sKjj 7'8[?—[5|k5je Hijkel- (45)
where )
It is clear from Eqs(43) and(44) thatu;*/u’ responds to
SP= o(Ui) 9(U;) 37) the mean velocity gradients at the normalized rateg

axX; X =Sk/e. Under usual circumstances this is of order one, but
for rapid distortions it is arbitrarily large. Evidently, the term
in a° is of order 7/ 7,~Re"* But sincea’ is a zero-mean
random function with normalized time scatg/ r, the cumu-
lative effect of the term on the covariancesusf/u’ over a
time interval At>7,/7 is of order Jr/7,2(Atr,/7)~At.
Thus, although the term iR is relatively large instanta-

u neously(of order R&), its cumulative effect is of order one.
Ta= 312, (39 For the SDE fora(t), Eq. (14), we define the scaled
coefficients by

The Kolmogorov time scale is

(38)

and the acceleration time scale is defined by
12

The ratior, /7 decreases with Reynolds number as

20 1/2
3

~ T ~ ~
" L (40) Bz=a—f"z B>, C=r,C, D=r7D. (46)

=Re 1/2_
T

where the turbulence Reynolds number is=R&(ev), and  The subsequent analysis confirms that these scalings are ap-
the Taylor-scale Reynolds number B,=(%2Re)’>. The propriate, in that each of these scaled coefficients is of order
various time scales used throughout the paper are summanity. With these definitions, Eq14) can be written

rized in Table I.

With ay being the Kolmogorov-scaled acceleration vari- da,-O ~ a? 74\ Y2 u}‘ dt ~ dW,
ance = ~ " |Cig T\ 7| Py B \/— (47)
a'27',,
A= - (41)  Clearly 7, is the characteristic time scale of the process: the

mean of the term irC, and the variance of the term Biis

the acceleration and Kolmogorov time scales are related byach of ordedt/r,. However, the term iD is smaller by

_ the factor of ¢,/ 7)Y>~Re V4

—= . (42 If the mean velocity gradients are constant, then the
» 33 equations foru* (t) and a’(t) [Egs. (25) and (26)] can be
It may be seen then théat least approximately at high Rey- re-expressed as equations @di(t) anda* (t) [Egs.(31) and
nolds number 7, scales withr,, since according to the (32)]. The scaled forms of these equations are
Kolmogorov hypothesea, is a universal constaft.In fact,
it is knownt!?4=2®that, at moderate Reynolds numbeas, T duf
increases weakly witfir,—in accord with the refined Kol- o dt
mogorov hypotheses. In discussing scalings we ignore this
weak dependence and writg/ 7~Re 12, and

T 1/2 arr

G (48)
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da* - a* - a* 70 (T.>17p). These are the inverses of the two eigenvalues
i i Ta i . . -
a Cij+ o Kij—r of the system, which are given by the solution to the
s quadratic equation
1/2 *
Ta| g “_J dt = dW, (49 A2—CA+D=0. (55)
T iy |] \/—

The solutions are given in terms @f and 7, by
For the case consideredrg is of order unity, so thatcom-

: : 1 47,7\ 12

pared to the Iea_?/lzng-order ter}gﬁe te_rms irK andD are of 7\1_1:Too:§TL 1+ 1- _Tar) (56)
orderr,/7~Re < and (r,/7)““~Re ', respectively. L
C. Isotropic turbulence and

We consider in this section the simplest case of homo- 7\2—1_70 TL 1— (1_ 4762‘7) e (57)
geneous isotropic turbulence made statistically stationary by 2 1L
artificial forcing. We do so to relate the general model prO'Converser we have
posed here to Sawford’$,and to provide a characterization
of the model’s behavior in this simple setting. This provides T, =T,.+ 7, (58
a useful reference for the results obtained below for the gen-
eral case. and

For isotropic turbulence without mean velocity gradi- T..70
ents, there is no rapid pressure, aafdt)=du*/dt is the Ta=" (59
model for the fluid-particle acceleration. The coefficients in
the model, Eq.(32), are inevitably isotropic(B;;=BJ;, It may be observed that as, /T, tends to zeroT,, and 7

B = B&,J , etc), and so the three componentsajf(t) are  tend toT_ and7,(7/T_), respectively. The coefficiens, C,
statlstlcally identical and independent. Writiag(t) for one  andD given by Eq.(54) can be re-expressed in termsTof
component of acceleratiofe.g., a* (t)=aj (t)], and with and,, which is the form originally given by Sawford.
u*(t) being the corresponding component of velocity, the  The velocity autocorrelation function given by the model

model for isotropic turbulence is is
* * *
da*=—[Ca*+Du*]dt+B dW. (50) o(S)= e|s/Tm_(E e@,ﬁ)}/ (1_2)' 60)
This is identical to Sawford’s modéf, but with the coeffi- T Ter
cients expresses differently. which is a linear combination of two decaying exponentials,
An analysis of Eq(50) (see Refs. 12 and 13 and Sec. with time scalesry andT...
IVB) shows that the acceleration variance is To conclude, based on this examination of the model in
52 52 isotropic turbulence, we summarize some important observa-
(a*%)= -~ =a'?—, (51) tions which are mirrored in the analysis of the general model
2C 2C presented below.
the velocity variance is (1) The three model coefficient8, C, andD are uniquely
) ~, related to the three primary statisties?, u’?, andT| .
(u*2)= B :u'Z—E-.r (52) (2) The autocorrelation functiop(s) is a linear combina-
2CD 2CD’ tion of decaying exponentials, the time scales of which

are the inverses of the eigenvalues of the system.

and that the Lagrangian velocity integral time scale is (3) The predictions of the model are in excellent agreement

o C C with Lagrangian statistics obtained from DN&:e Refs.
T,_Ef p(S)dS=B=T-, (53 12 and 13.

0 D (4) Given the primary statistics, a separate acceleration time
wherep(s) is the Lagrangian velocity autocorrelation func- ~ scale cannot be imposed on the model: instead the accel-
tion defined by Eq(2). eration time scale, is given by Eq.(39).

There is a one-to-one correspondence between the thréd) The simplest scaling arguments show thatscales with
model coefficient®, C, andD, and the three primary statis- 7, and thatr, scales withr,, so that the scaled coeffi-
ticsa’?, u’?, andT,. Equations(51)—(53) are readily in- cientsB, C, andD are of order unity.

verted to yield for the scaled coefficients
D. Gaussianity

C= 2=—— D=1. (54) For homogeneous turbulence, the model takes the form

T T of a set of SDEs, Eqs(31) and (32), in which the drift
The velocity autocorrelation functiom(s) obtained  coefficients(—Cj;a and —Dj;uf") are linear in the depen-
from the model is most conveniently and naturally written indent variables, while the diffusion coefficieBf; is indepen-
terms of two different(but related time scales,T.. and dent ofa* andu*. Such linear stochastic differential equa-

T ~, 2T ~
LB L
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tions are knowf/ to yield Gaussian processes. Thus, We now examine the model equation for velocity in the
according to the model, the process&gt) andu*(t) are  high Reynolds number limit. For a general inhomogeneous

jointly Gaussian. flow, the model foru* (t) [Egs.(13) and(19)] is

For homogeneous turbulent shear flow, the experiments .
of Tavoularis and Corrsffi clearly show that the one-point di:( _ M+Gg) u* +a’(t) (64)
one-time joint PDF of velocity is joint normal. Hence the dt X v IR

model is correct in predicting that the one-time PDRt) is
joint normal. However, it is known from DN$ and
experiment&®?that both acceleration and two-time velocity
statistics depart from Gaussianity, an effect which is not rep
resented by the model. It is possible to represent these effects 1+ st
J al(t")dt’,
t

As 1,/ 7 tends to zeroa’(t) tends to white noise; or, more
precisely, for a time intervabt such that bothr,/ét and
ot/ tend to zero, the increment in velocity

in stochastic models by making the model coefficients them- (65

selves stochastic processé&s! In particular, Beck' shows
that the experimental acceleration distribution can be accuends to a Gaussian random vector with meeu’* (t)) ot,
rately represented by a stochastic model with gammagq. (63), and covariance
distributed coefficients. Here, however, we retain constant
coefficients and do not attempt to represent these higher-  2a’2($C,7,) 8;j St=Coed;; ot. (66)
order effects.

It is emphasized that the Gaussianity of the model isThUS, in the ||m|t, Eq(64) tends to a diffusion process given
confined to homogeneous turbulence. For inhomogeneod@’ the SDE,
flows, non-Gaussian statistics such as the velocity triple cor-

relation can be accurately calculated by linear stochastic du* = —M'FG” u* dt+ (Coe)Y2dW,, (67)
models. X :

. ] with
E. High Reynolds number and local isotropy 5

We now consider the limit of very high Reynolds num- G.=G— ECOE. (69)
ber, which is equivalent to the limit of, /7 tending to zero. S S

In this limit, according to the Kolmogorov hypotheses, the

; . . . _ It may be recognized that Eq67) is the generalized
turbulence is locally isotropic. As is now shown, the stochas Langevin model(GLM?9): and from this observation we

tic model for acceleration is consistent with local iSOtroIOydraw two important conclusions. First, it is well known that

fgﬁgﬁiﬁd it:;trothi zgiﬁgnﬁgggiﬁ and C tend to the the GLM is consistent with local isotropy and the Kolmog-
9 P ' orov hypotheses in yieldindor the second-order Lagrangian

Efj =2(3Cy)"ts; and E;ij =(3co) 18y, (61)  structure functiop

where C, is the Kolmogorov constant associated with the([u (t+s)—uf (D)][uf (t+s)—uf (1)])
second-order Lagrangian structure functjsee Eq(69)].
In general, variations in* (t) and a’(t) occur on the

time 5051'987 and7,, respectively. For the case considered,second, in the high Reynolds number limit being considered,
T,<7, U*(t) changes very slowly comparedafi(t); and so  gq, (68) gives the GLM coefficien6; which corresponds to
a’(t) is in a statistically quasistationary state, the statistics ofhe acceleration model Coeﬁiciem#r) andf)ij

! .

which change slowly in response to the changesit). For forced, statistically stationary homogeneous isotro-
This state is governed by Eqd7), with the coefficients ;c yyrbulence, the GLM coefficier;; is constrained to be
given by Eq.(61), which can be rewritten _‘37005” /7.° Correspondingly, Eq.68) yields D=6,

dt a’ dw, consistent with Sawford’s model, E¢4). In general, if the
+ (62 GLM coefficientG;; is decomposed into slow and rapid con-

Cota  \2Cora tributions, i.e.,

=Cpesg;j, for s<r7. (69

da=—(a’— w[u*(1)])

with G =G +G{’, (70)
3 [ma\Y< uf 3 Bijufc then Eq.(68) yields
mi(U*)=—7Coa —> Dijyr="26—— (63 -

With u; being considered as a frozen coefficient, &) is GP=- ZCO%- (72)

simply the Langevin equation; and hence each component of
a’(t) is an independent Ornstein—Uhlenbe@U) process  The simplest specification @ (for unforced turbulenge
with conditional meanu;(u*(t)), variancea’?, and time s

scale$Cy7,. The normalized meap;/a’ tends to zero as
(74/7) tends to zergsee Eq(63)], and hence®(t) tends to
a locally isotropic process.

1 3 Sii
Gi(jS):_(E—i_ZCO)J' (72

T
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for which the corresponding value &ij is .Uty ... da  Tar(t)
ut)=——, at)=—==—5—,
_ 2 ) u dt u
Di=|1+=—]4;. 73
! 3Co/ " 79 i O g < W@ -
In summary, with the coefficien® and C specified by B t)= e (

Eqg. (61), the model is consistent with the Kolmogorov hy- these stochastic model equations transform to
potheses. At very high Reynolds numkenrresponding to

7,/7 tending to zerp the acceleration statistics are locally ~ dii(t)=a(H)dt, (78)
isotropic, and the model tends to the generalized Langevin A AN A A A LA A a s A A s

model (GLM) for velocity, Eq.(67). There is then a one-to- da;(t)=—[Cyjay(t) + Dy uy(1) Jdt+ By dWi(t),  (79)
one correspondence between the remaining accelerationhere the transformethondimensionalcoefficients are

model coefficientD and the GLM coefficienG;;, Eq. (68) A oL
and ECI(71) CijZTCijo_Cij+TKija
a
(80)
~ T ~
Dij:TZD” _Dijv
IV. HOMOGENEOUS TURBULENT SHEAR FLOW Ta
In this section we examine the stochastic model for ac@nd
celeration applied to homogeneous turbulent shear flow for . 32 T~
which there are Lagrangian data from DS The analysis Bij=—7Bii=—_Bij- (82)
a

(performed in Sec. IV Bdepends on the processes consid-

ered being statistically stationary. We therefore defim FOr a given orientation of the shear, ied(U;)/dx;
Sec. IVA) a scaled timd, a scaled velocityi(t), and the ~=S86i16j2, the coefficientsB, C, and D are constant and
acceleratiora(t) =di(t)/dt such thatii(t) anda(t) are sta- depend only on the Reynolds number.

tistically stationary processes—at least to a reasonable ap-

proximation. Results from the analysis are compared to the, Unforced homogeneous turbulent shear flow

DNS data in Sec. IVC. The DNS of Sawford and Yeuh§are consistent with
the supposition thatafter an initial transientthe energy-
containing motions in(unforced homogeneous turbulent
shear flow becomépproximately self-similar. The normal-
1. Forced homogeneous turbulent shear flow ized Reynol(_is-stress tensou;u;)/k becomeg constant, as
does the ratio of the turbulence-to-shear time scatésg
We consider first the case of forced homogeneous turbu= sSk/e, and hence also the ratio of productidrto dissipa-
lent shear flow corresponding to the DNS of Schumather. tion e (The values deduced from the DNS a$k/e=4.83
This case is relatively simple because the flow is statisticallland P/e=1.54) The turbulent kinetic energy equation then
stationary. The imposed shear ralds constant, as are the (ictates thak and e increase exponentially with time—as is
turbulent kinetic energi and its dissipation rate The non-  gbserved.
dimensional timet is defined by As previously argued this picture suggests that the
definitions oft and G(t) by Eq. (74) and Eq.(75) remain
= - (74 appropriate, although now the velocity scalg(t) used in
Eq. (75) depends on time. This time dependence is quantified
and((t) is defined as the model for the fluctuating compo-by the parameter
nent of velocity following the fluid particley* (t), normal-

A. Scaling for statistical stationarity

—

ized byu': _raw_1/p 82
- Sva 2l (82
XA uUT(t L .
u(t)= ® (75  the value of which id1~0.27 in the present cas@he value

is [1=0 for the forced case, and=—3 for decaying turbu-
With these definitions, the velocity covarian(:éiﬁj) is 9f lence) Given the (approximately self-similar state of the
order unity, and so also are the integral time scaleg(bf  energy-containing motions, it is reasonable to suppose that
(in scaled time In fact, because of the equality of one-point, U(t) is (approximately statistically stationary. But these
one-time Eulerian and Lagrangian statistics in homogeneouwstates can only be realized approximately since the Reynolds
turbulence, we have the normalization condition followingnumber increases with time. Hence, while we again define
from Eq. (75): a(t) as the derivative ofi(t), this process cannot be com-
pletely stationary: according to Kolmogorov scaling, the am-

(UOu(0)=3. (76) plitude of a increases aR}? and its time scale decreases as
Since the velocity gradients are constant, the general stochaR{l.
tic model foru* (t) anda* (t) is given by Egs(31) and(32). A quantification of the variation oR, in homogeneous
With the transformations turbulent shear flow shows that the departure from stationar-
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ity is not large. Based on the exponential increas& oith ~ Here W(t) is a six-vector-valued Wiener process, and the
time it can be shown tha, increases aR, ~exp(lt), and 6x6 matrix coefficientE andF are
the DNS data are consistent with this behaymtcept at the

beginning and end of the simulatipriThe normalized La- _ B 0 (89)
grangian velocity integral time scale is found to Be/r 10 0
=0.3® Hence, over a time interval of , R, increases by
a factor of exp0.27x0.6)~1.18. Thus, over the relevant R
time interval, the amplitude o&(t) increases by approxi- C D
mately 10%, while its time scale decreases by about 20%. F= -1 ol (90)
As in the forced case, the model equatipigs.(31) and
(32)] for u* (t) anda* (t) can be transformed into equations Wherel is the 3<3 identity matrix.
for 4(t) anda(t). The transformations are those given by Eq. It is_known from the theory of diffusion pro-
(77), except thaé(f) is given by cesses?’3233that the diffusion coefficiente.g., B) affects
doch) d (U (t) o (1) the process only through the symmetric positive—semi-
al)=—rr= 7._( : T ——T1G(h). (83  definite fromBBT, where “T” denotes the transpose. Hence,
dt dtiu’(t) u without loss of generalityd and thereforéE can themselves
The transformed model equations are again E@8) and be taken to be symmetric positive semidefinite.
(79), with B given by Eq.(81), but with C andD given by It is assumed that the eigenvalues of the drift makix
R — have positive real parts, which is a sufficient condition for
Cij=1C;+2115, Eq. (89) to yield a statistically stationary solutid.
- — — 84
Dij=7°Dy; + 7I1C; +11°; . A A o 2. Autocovariance
It may be noted that Eq84) for C;; andD;; also applies to Sincez(t) is a Gaussian process, its statistics are com-
the forced case, since in that cddes zero. pletely described by its autocovariance, which we define by
To conclude, the stochastic model E@8) and Eq.(79) . -
is analyzed in the next section, with the assumptions that R(S)=(Z(t+s)z(1)"). (91

0(t) and a(t) are statistically stationary. For homogeneousit should be noted that this is the transpose of the conven-
turbulent shear flow, the departures from stationarity are sufjional definition in that the time incremestappears in the
ficiently small that the results of the analysis can usefully befirst variable. The present definition yields simpler equations
compared to the DNS data of Sawford and Yethhis is  in the subsequent analysis.

done in Sec. IVC. The autocovariance df(t) can be decomposed into the

autocovariances d(t) andu(t):
B. Analysis of the stochastic model

Raa(s) RaU(S)
In this section we analyze the model in application to  R(s)= Rua RUU(s) | (92
homogeneous turbulent shear flow. The analysis is somewhat (s) (s)
involved: for the reader wishing to avoid the details, thewhere
principal results are summarized in Sec. IV B 6. R“a(s)z<ﬁ(f+s)é(f)T>, 93
_ andR?%(s), R®Y(s), andR""(s) are similarly defined.
1. Model equations In view of statistical stationarity, the autocovariances are

independent of timé (as implied by the notationand they

When written for the scaled variablégt) and a(t) in . :
Rossess the following symmetries:

homogeneous turbulent shear flow, the model equations a
Egs. (78) and (79), and the coefficients are given by Egs. R(s)=R(—s)", R¥(s)=R33(—s)T,

(81) and(84). (94)
It is convenient to use vector-matrix notation, and hence R™(s)=R"(=9)",
we write the model equations as RY3(s)=R3Y(—s)T= —R3Y(s). (95)
da(t)=—[Cab)+Da(h) dt+B dw(i), (89 Stemming from the definitiora=d{/dt, properties of
di(h =ad)t, 86) derivatives of the autocovariances are
where the coefficient8, C, andD are 3X3 matrices. Fur- ERUU(S):RaU(S), iRua(s):Raa(s),
thermore, it is convenient to combirg&t) and G(t) into a s ds
six-vector d (96)
- _ pau/q)— _ paa
u(t)’ and hence
so that the model can be written as the single SDE d2RYY(s)
; o n — . ———=—R?%(s). (97)
dz(t)=—Fz(t)dt+E dW(t). (89 ds’
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Thus, all autocovariancefncluding R(s)] can be deter- 0o -1
mined fromRY4(s). T= Tua Tuuls (108
The covariances are denoted by
aa  ~au since the first row of the produdiQ yields the first row of
Q=R(0)= Q } (98) M [given by Eq.(107)] in accordance with Eq104).
Qe Q™ By analogy to Eq(104), we define thevelocity integral
The covariance matrice®, Q22 and Q'Y are symmetric time scale tensoby
positive definite; while the off-diagonal matrices aireview fquMUU(QUU)—l, (109

of Eqg. (95)] antisymmetric and the transposes of each other, =~ = )
which is just (the transpose dfthe time scale tensor that

QUa=—(Q"yT=(Q*")". (99 arises in the analysis of the stochastic model for veldgity.
It may be observed from Eq€96) and (97) that all of the And we define théscalaj Lagrangian velocity integral time

covariances can be obtained fraRi!(s) and its derivatives Scale by
at the origin 6=0). T, =LiTuu (110
. L . L= 3%ii -
An important quantity in the subsequent analysis is the .
autocorrelation matrixwhich is defined by We see below that the autocovariariRgs)—and there-
. fore all other statistics—are determined by the covariance
P(s)=R(s)Q" 7, (100 matrix Q and the time scale matridr (as previously
and which has the property _showr'}5)_. Because qf the spe(_:ial structure_ of the model_, the
information content irQ andT is less than it appears at first
P(0)=1I. (101 sight. Specifically, the symmetric and nonsymmetrig 66
_ matricesQ andT can be constructed from the<3 matrices
3. Integral time scales Q% QUY, QU3 andTY“—which have an information con-

tent equivalent to three symmetric and two antisymmetric
3X3 matrices. It is marvelous—although most likely
inevitable—that this is precisely the information content in
the model coefficient8, C, andD.

The matrixT of integral time scales, which also plays a
central role in the analysis, is defined by
TEI P(s)ds. (102
0

. . . . 4. Solution for the autocorrelation matrix
This matrix has a special structure, now revealed, which

stems from the fact tha(t) is the derivative ofi(t). We It is readily deduced from the model equation, Egg),
define the &6 matrixM by that the autocovariance satisfies the ODE,
o0 d
M= fo R(s)ds, (103 GR(9=—FR(s) for s=0. (112)

By post-multiplying both sides of this equation iy %, we

hich is related toT b
which is related fol by find thatP(s) [defined by Eq(100] satisfies the same equa-

T=MQ ! or M=TQ, (104  tion,
and which is partitioned as d
—P(s)=—FP(s) for s=0, (112
Maa pau ds
M= . (105 . . I " _ . .
mua pmuu with the simple initial conditiorP(0)=I. The solution to this

equation(satisfying the initial conditionis>

0 o _ - (_1)” nan
Maazf Raa(S)dSZJ <a(’f+s)é(i[‘)T>ds P(s)=exq—FS)=20 - F's" for s=0, (113
0 0

n=

For M22 we obtain

. as may be verified by differentiating with respectstdt has

:<f é(f+s)dsé(f)T> been assumed that the eigenvalued-dfiave positive real

0 part, which is a sufficient condition for expfs) to con-
verge to zero as tends to infinity.

— {1 OHV1a T
=([u(=)—u®]ait)’) The matrixF deduced from the DN@n Sec. IV O has
=—(G(hHat)Ty=—Qua. (106)  the simplest structure—real positive eigenvalues, and lin-
A similar treatment can be applied k"* andM?" to show Sgglé/(;ngsependent eigenvectors. In that ceiszan be decom
thatM is given by .
_qua _qu F=VAV™ -, (114
M= Qu (107 where the columns of theXé matrixV are the eigenvectors
of F, andA is the 6x6 diagonal matrix of eigenvalues. The
It then follows thatT is of the form solution forP(s), Eq. (113, can then be re-expressed as
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P(s)=Vexp—As)V~! for s=0, (115 CQ3¥+DQUa CQaU+DQUU
FO= . 124
showing thatP(s) is a linear combination of six decaying Q —Qaa —Qad (124
exponentials, the time scales of which are the inverses of the )
eigenvalues. Equation(122) can be used to relate the blocksEf to FQ,

For the general case, the time scale mafrpEq. (102]  @nd evidently[from Eq. (123] only the upper left-hand
is obtained as the definite integral of the solution, B4.3.  Plock is nonzero.

The indefinite integral is For the lower right-hand block we have, correctly,
E2 uu_ _ nau_ auT_ 0, 12
f P(s)ds=—F lexp —Fs), (116 (E) e (129
_ _ in view of the antisymmetry oQ?" [Eq. (99)]; and in the
from which we obtain Appendix it is shown that the off-diagonal blocks are also
o zero. Thus, the only nonzero block Bf given by Eq.(122)
Tsf P(s)ds=F 1. (117 s
0
The 6x6 drift matrix F is defined in terms of the>83 drift (E?)*?=B%=(CQ**+DQ"?) +(CQ**+DQ"")T. (126

matricesC andD in the stochastic model for acceleration by
Eq. (90). Given this structure of, it is readily deduced 6. conclusions
(from the equatiorFF~1=1) that its inverse is

0 — I
bt Die
which, according to Eq117), equalsT. The first row ofF %

indeed matches that of [Eq. (108], while equating the
elements of the second rows yields

The major conclusion now drawn from the analysis is
that there is a one-to-one correspondence between the model
coefficients(B, C, andD) and the primary statistic&Q and
T). These primary statistics are known in terms of the veloc-
ity and acceleration covarianc€®', Q"% andQ®® and the
velocity integral time scale tensd", Eq. (109).

R o GivenQ and T, the coefficients<C andD are given by
Tue=p-1, TW=D"!C, (119  Eq.(120), and thenB? is determined by Eq126). _

Conversely, given the coefficien{8, C, andD), T is
R ~ determined by Eq(119); and the covariances are determined

D=(TY® "1 C=(Tu® iTu, (120 by Eq.(126) together with the equation
(The_assumptions made aboht are sufficient to ensure aa_ AAal ;. BAuU
that D is nonsingulaj. QF=CQT+DQ™ (127

The important conclusions are that there is a one-to-onghis equation is derived in the Appendix, where the solution
correspondence between the drift coefficie@tandD and  of Eq. (126) and Eq.(127) for Q is also discussed. Together
the time scale matriceg"" and T'? and that the autocorre- these equations y|e|d a linear system which determ@es
lation matrixP(s) is explicitly determined by the drift coef- byt unfortunately an explicit solution is not evident.

Fil=

: (118

or conversely

ficientsC andD [through Eq/(90), Eq.(114), and Eq(115)]. Once both the model coefficients and primary statistics
The autocovariances are given by are known, then the autocovariance given by the model
R(s)=P(s)Q=exp—Fs)Q for s=0, (121 R(9)= P_(s)Q can be_ determine(_j fr(_)m E@qL15. Th_ese au--
o ] - - tocovariances are linear combinations of the six decaying
whereF is given in terms ofC andD by Eq. (90). exponentials, expf\;s), where{\;,\,,...,\¢} are the ei-

genvalues of the coefficient matrix Eq. (90).
' ' _ The analysis is complete, since the autocovariaQ{es$
5. Solution for the covariance matrix fully characterize the Gaussian model procesa@$ and

The solution is completed by determining the covariancd(1)- , , i
matrix Q. An evolution equation for the covariance is readily = F0f Sawford's model for isotropic turbulence, the
derived from the model equatiofEq. (88)], and then the eigenvalues of are 7/T., and 7/ 7, (each with multiplicity

condition thatQ is independent of time yields 3), corresponding to time scalés. and 7o [Eq. (56) and
o T Eq. (57)] which scale with the integral time scale and
EE'=E°=FQ+(FQ) . (122 Kolmogorov time scale, respectively. And the time scale
ThusE? is twice the symmetric part dfQ._ matrices are
From the definition ofE in terms of B [Eq. (89)] we T 41 T
have TUU:Tuu:(w_O | = 7L| (129
, (EZ)aa (Ez)au éz 0 -
= = N 1
(EZ)ua (EZ)UU 0 0 ’ ( ) and
and from the definitions of [Eq. (90)] andQ [Eq. (92)] we Tua_ T7o |— EI (129
have o
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C. Comparison to DNS data matching of the location and magnitudes of the peaks of

RY4(s) andR®?(s) in Figs. 2 and 3 is not inevitable.
Figure 4 compares the velocity autocovariances from the

are deduced from the data; and then the velocity and accePNS’ from the present acceleration model, and from the sto-

eration autocovariances predicted by the model are compart% astic morc]iel for ;]/eloctlrt"];? (dnghed I|neb)s tOnIy t:]he (;zarly d
to those from the DNS. Imes are shown where the differences between the two mod-

All the DNS information is extracted from the time se- els are most evident. As may be seen, the ac_celeration model
ries of the normalized velocity autocovarianR8"(s). The provides a much more accurate representation of the curva-
remaining autocovariancéBU(s), R2¥(s), andR?(s)] are ture of the autocovarlancgs at small times. As the Reynolds
obtained from Eq(96) and Eq.(97) by numerical differen- number increases, the differences between the two models

tiation of R"Y(s), and then the covariances are obtained aéjecreases, and is confined to smaller times.

- I o - The values of the coefficienB, C, andD deduced from
Q=R(0). Clearly this differentiation amplifies the statistical X A~ = :
noise in the data, as is particularly evidentR3?%(s) (see the DNS are reported in scaled form Bsand D [defined

Fig. 3 below. [In future DNS designed for this purpose, it ?Y Ed-(46)] andC=7,C. Their values are
would be preferable to form all covariances directly from

In this section, for the DNS of homogeneous turbulent
shear flow'® the stochastic model coefficienBs C, and D

a(t) andl(t).] 070 -015 0
The velocity covariance integrald“" [Egs. (103 and B2=| —0.15 048 0 |, (130
(1095] are formed from the time series Bf'Y(s) by numeri- 0 0 0.64

cal quadrature, and then the matrix of integral time scéles
is obtained from Eq(104).

Based on the DNS values of the covariances and the 033 -003 0
velocity integral time scales, the values of the model co- C=| 0.07 0.29 0|, (131
efficientB, C, andD are deduced which lead to the model’s ) 0 0.27
matching these statistics. The valuesdoandD are obtained
from Eq.(120), and therB? from Eq.(126). (The values thus 0.70 015 O
obtained are reported belgwhe autocovariances predicted =~ 1033 141 o0
by the model are then deduced from E¢EL4), (115, and D= Y : ' (132
(100). L O 0 111

Figures 1-3 show a comparison of the autocovariances
from the DNS(symbols and from the mode(solid lines. Given thatd(U,)/dx, is the only nonzero velocity gradient,
Clearly the agreement is excellent, especially for the velocitthe symmetries in the problem dictate that the off-diagonal
autocovariancegFig. 1). It should be noted that an accelera- components in the third rows and columns of these matrices
tion time scale is not an input to the model, and so theare zero—as is observed. The magnitudes of all three coef-
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ficients are as expected from E&4) given that the velocity
integral time scale ig /7~0.3.

As discussed in Sec. Il E, if local isotropy prevailed at
high Reynolds number, then the acceleration statistics Woulg/ APPLICATION TO TURBULENCE MODELLING
be isotropic(to leading order irR; !). A sufficient condition
for the model to yield such local isotropy is tH&andC (but
not C) become isotropic as the Reynolds number increase£q. (11) for the fluid-particle velocityJ* (t), which includes

Stephen B. Pope

FIG. 2. Velocity-acceleration auto-
covariance®;;*(s) against normalized
time. Symbols, DNS of Sawford and
Yeung (Ref. 16; lines, from the ac-
celeration model.[Note that R{"(s)
=—Ri¥(s).]

It is evident from Eq.(130) that, at the moderate Reynolds

number of the DNSE2 exhibits significant anisotropy.

The general model proposed here consists of an ODE

FIG. 3. Acceleration autocovariances
Ri*(s) against normalized time. Sym-
bols, DNS of Sawford and Yeung
(Ref. 16; lines, from the acceleration
model.
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FIG. 4. \elocity autocovariances
Ri“(s) at early times. Symbols, DNS
data of Sawford and Yeun@ef. 17;
solid line, from the acceleration
model; dashed line, from the velocity
model (Ref. 15.

a rapid-pressure modgEqg. (15)]; and an SDEE(Q. (12)] for ~ (19)] is linear in the velocity, but nonlinear mod¢ks.g., Eq.
the acceleration variabla®(t). A specific model consists of (24)] can also be considered. It has to be acknowledged that,
a specification of the coefficients appearing in these equaat this level of closure, there is insufficient directional infor-
tions, namelyN;j, Bj;, Cij, andDj; . mation to model accurately rapid distortions. But such mod-
Beyond proposing the general model, the objective herels may be adequately accurate for the moderate distortions
is not to suggest a specific model, but rather to show that athat typically occur in turbulent shear flows.
of the coefficients can be deduced from DNS data on homo- Compared to a velocity moddHiscussed in the next
geneous turbulence. Hence, future DNS studies—at differerdection, a velocity-acceleration model has two advantages.
Reynolds numbers and with different imposed mean velocityirst in essence it models the velocity as a second-order
gradients—can be used to guide the construction of a specifg;ystem' Eq(29), rather than as a first-order system. Conse-
model. quently, the rapid and slow responses of the turbulence to a

_ As outlined in the foIIovying subsections, the accelera-g,qden change in the mean velocity gradients can be mod-
tion model can be used at different levels of turbulence modg|aq in a natural way. The second advantage is that accelera-

eling. In each case, the turbulent time scalés needed,

natural way.

An apparent disadvantage is that, in a numerical imple-
mentation, time step&t of order 7, (or equivalentlyr,) are

In addition to the model equations for (t) andA°(t), needed to resolve the acceleration time series; whereas with
an additional SDE can be solved for the unit wave vectora velocity model the time steps can be of ordgr (or
e*(t) (Refs. 9 and 2Jl so that Eq(18) can be used as the equivalently7). With time steps of order,, the computa-
rapid-pressure model. Such a model has the virtue of repraional cost increases as ®e However, in most applications
senting exactly the evolution of the Reynolds stresses fothe details of the short-time behavior are not required, and
arbitrary rapid distortions of homogeneous turbulence. Altemporal resolution on a time scale of ordes sufficient. It
though it has not been convincingly demonstrated, the modg§ fortunate, therefore, that the model equations can be
should also be capable of providing a more accurate represplyed accurately by numerical methods that take time steps
s_er}tation of the rapid pressure away from the rapid-distortion\ ¢ that are large compared to, (but small compared ta).
limit. This is because the model coefficients vary on the time scale
7, and the model equatiofie.g., Eq.(25) and Eq.(26)] with
frozen coefficients admit analytic solutions. Consequently, if

Without the wave-vector model, the rapid pressure has teesolution on the Kolmogorov time scale is not required, the
be modeled in terms of the particle velocity and Reynoldsvelocity-acceleration model can be implemented with a com-
stressegamong other quantiti¢sThe standard mod¢Eq.  putational cost that is independent of Reynolds number.

A. Velocity—acceleration—wave-vector model

B. Velocity—acceleration model
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C. Velocity model of acceleration and of multitime velocity statistics is physi-

cally incorrect, and reflects the fact that the model does not

account for internal intermittency.

When applied to(approximately self-similar homoge- . For homogeneous turbulent shear flow, the model coef-

neous turbulencéat a given Reynolds number and with f|C|entsi7are evaluated from the_ DNS data of Sgwfqrd and
Yeung:’ The model autocovariances thus obtaingdgs.

given imposed mean velocity gradientsthe velocity- . .
acceleration model yields a value of the normalized Rey—.l_4) are in excellent agreement with those from the DNS,

nolds stress tensoiQUY) and of the velocity integral time mpluding the short-timgKolmogorov scalg behavior (see
scale tensori““). The corresponding velocity model is de- Fig. 4).

fined to be the linear SDE for velocity that yields these same, elogi?njgfggoel: :;)tiﬁr:I%eoaéeftﬁgg?ﬁgcam?ﬁ; fc;ro\]/celcr)c():\l/tiy(/jirghea
statistics. The drift and diffusion coefficients in the velocity Y g P 9

del iquelv determined 1Y and T4 15 realistic representation of the behavior on the Kolmogorov
mo ‘;h"?“e unlqtéey fe e(;mtme l@“ &n I. it del time scale; and, as a consequence, of naturally incorporating

' [ IS procedure for getermining the velocity-modet co- Reynolds-number effects. The purpose here has not been to
efficients is straightforward to implement numerically; but an

Wtical treat tis h d by the lack of i _tgropose a specific modél.e., a specification of the model
analytical treaiment 1S hampered by the fack ot an explici oefficients, but rather to show that these coefficients can be
solution to Eq.(122) for Q.]

The form of the velocity model thus obtained is the Sarm_}deduced from DNS of homogeneous turbulence, as functions
. . _ of the Reynolds number and of the imposed mean velocit
as the generalized Langevin mod&@LM”% but with an y P y

. A . ._._gradients.
anisotropic diffusion coefficient. The advantage of obtaining As discussed in Sec. V, the velocity-acceleration model
a velocity model by this route is that it inherits the Reynolds-can be used as a basis for,generating a rang&eynolds-
number dependencend other attributgsof the velocity- number dependentPDF and Reynolds-stress turbulence
acceleration model. At very high Reynolds number the aC odels.
celeration model tends to the GLM with isotropic diffusion,
Eq. (67), and with the coefficienG;; given by Eq.(71). ACKNOWLEDGMENTS
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Given a specific velocity-acceleration model, a corre-
sponding velocity model can be defined—as now outlined.

D. Reynolds-stress model

APPENDIX: SOLUTION FOR THE COVARIANCE
VI. CONCLUSIONS MATRIX

We have considered a stochastic model for fluid-particle ~ The purposes of this appendix are to derive @47); to
velocity and acceleration in inhomogeneous turbulent flowsshow that the off-diagonal blocks &? given by Eq.(122
The model consists of an ODE for velocity, H41), and an  and Eq.(124) are zero; and to discuss the solution of Eq.
SDE for an acceleration variable, EQL2). This structure (126) and Eq.(127) for the covariances.
produces the correct qualitative response to rapid distortions. The covariances are related to the derivatives of the au-
If the model is supplemented by the wavevector equationtocovariances at the origin, E€P6). From the ODE for the
then the resulting mod¢Eq. (15) and Eq.(18)] is exact for  model autocovariancEq. (111)] we obtain
arbitrary rapid distortions of homogeneous turbulence. Oth- A ATrmaa ~au
erwise, a standard linear model, E9), for the rapid pres- C DHQ Q }
sure can be used. -1 oj[Q" Q"™
For isotropic turbulence, the SDE for acceleration re-

v

d—SR(S) Y

duces to Sawford’s modéf. For very high Reynolds | —cQ*#-DQ"* —CQ*-DQ"™
number the model is consistent with local isotropy and B Qaa Qa3 '
the Kolmogorov hypotheses, and tends to the generalized (A1)

Langevin model for velocity. For homogeneous turbulence
(with constant and uniform imposed mean velocity gradi-The bottom row of this last matrix is consistent with the first
ent9 a full analysis of the model is performed. This estab-two relations in Eq(96); while the consistency of the upper
lishes the one-to-one correspondence between the model daght block with the third relation in Eq96) yields

efficient tensor$3, C, andD and the primary statistics of the a8 Amau L AU

model, namely, the velocity-acceleration covariances and the QT=CQT+DQ, (A2)
velocity integral time scale tensor. Details are given in Secwhich is Eq.(127).

IV B 6. For homogeneous turbulence, the modeled processes The second derivative at the origin is

(i.e., the velocity and acceleration time seyiage Gaussian, d2
and hence are completely characterized by their autocovari- {_SZR(S) =F2Q. (A3)
ance, which is given explicitly by Eq121). The Gaussianity d s=0
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