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A stochastic Lagrangian model for acceleration in turbulent flows
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A stochastic model is developed for the acceleration of a fluid particle in anisotropic and
inhomogeneous turbulent flows. The model consists of an ordinary differential equation for velocity
~which contains directly the acceleration due to the mean and rapid pressure gradients!, and a
stochastic model for the remainder of the acceleration, which is due to the slow pressure gradient
and to viscosity. In addition to a rapid-pressure model, the stochastic model involves three tensor
coefficients. For isotropic turbulence, the model reverts to that previously proposed by Sawford. At
high Reynolds number the model is consistent with local isotropy and the Kolmogorov hypotheses,
and tends to the generalized Langevin model for fluid-particle velocity. In this case two of the tensor
coefficients are known in terms of the Kolmogorov constantC0 , while the third is related to the
coefficient in the generalized Langevin model. A complete analysis of the model is performed for
homogeneous turbulent shear flow, for which there are Lagrangian data from direct numerical
simulations. The main result is to establish the one-to-one correspondence between the model
coefficients and the primary statistics, namely, the velocity and acceleration covariances and the
tensor of velocity integral time scales. The autocovariances of velocity and acceleration obtained
from the model are in excellent agreement with the direct numerical simulation~DNS! data. Future
DNS studies of homogeneous turbulence can be used to investigate the dependence of the model
coefficients on Reynolds number and on the imposed mean velocity gradients. The acceleration
model can be used to generate a range of turbulence models which, in a natural way, incorporate
Reynolds-number effects. ©2002 American Institute of Physics.@DOI: 10.1063/1.1483876#
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I. INTRODUCTION

In order to investigate dispersion in turbulent flows,
1921 Taylor1 introduced a stochastic model for the positi
X1(t) of a fluid particle. An analysis of Taylor’s mode
shows that it is equivalent to the Langevin equation a
model for the fluid-particle velocityU1(t)5dX1(t)/dt.
~Langevin2 had proposed this stochastic equation in 1908
model the velocity of particles undergoing Brownian m
tion.! The Langevin equation remains the basis for stocha
models of turbulent dispersion~see, e.g., Refs. 3–5!. Further-
more the Langevin equation and its generalization6,7 provide
a closure to the transport equation for the~one-point, one-
time! probability density function~PDF! of velocity.8,9 And
from the modeled velocity PDF equation can be deduced
corresponding partially modeled Reynolds-stress equatio10

Thus, an accurate stochastic model for the fluid-part
velocity U1(t) is a potent tool in turbulence modeling a
well as in the study of turbulent dispersion.

Important conclusions about the performance of
Langevin model can be drawn from the simplest case
statistically stationary homogeneous isotropic turbulence
general, the fluctuating component of fluid-particle veloc
is defined by

u1~ t !5U1~ t !2^U~X1@ t#,t !&, ~1!

whereU(x,t) is the Eulerian velocity; and for the case co

a!Electronic mail: pope@mae.cornell.edu
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sideredu1(t) is a statistically stationary process with me
zero. The Lagrangian velocity autocorrelation function is d
fined by

r~s![^u~ i !
1 ~ t !u~ i !

1 ~ t1s!&/^u~ i !
1 ~ t !u~ i !

1 ~ t !&, ~2!

which is independent oft and i because of stationarity an
isotropy, respectively.~Here and below, bracketed suffixe
are excluded from the summation convention.! The Langevin
model predicts this autocorrelation function to be9

r~s!5expS 2usu
TL

D , ~3!

whereTL is the Lagrangian integral time scale. For not-to
small time intervalsusu/TL , this prediction is in excellent
agreement with experimental and direct numerical simu
tion ~DNS! data.11

But the form of Eq.~3! reveals three related shortcom
ings of the Langevin model. First, it contains the single tim
scaleTL ~which is characteristic of the large-scale, energ
containing motions!; second, there is no dependence on R
nolds number; and, third, the slope ofr(s) given by Eq.~3!
is discontinuous at the origin@reflecting the fact that the
Langevin model foru1(t) is continuous but not differen
tiable#. The same observations can be made12 regarding the
Lagrangian velocity frequency spectrumEL(v)—which is
the Fourier transform of̂ u( i )

1 u( i )
1 &r(s). According to the

Langevin model, at high frequencyEL(v) varies atv22:
0 © 2002 American Institute of Physics
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2361Phys. Fluids, Vol. 14, No. 7, July 2002 A stochastic Lagrangian model for acceleration
there is no representation of the more rapid decreas
EL(v) beyond the frequency corresponding to the Kolmo
orov time scaleth .

In 1991, Sawford12 introduced~for isotropic turbulence!
a stochastic model for the fluid-particle accelerationA1(t)
5dU1(t)/dt5d2X1(t)/dt2. Such a model remedies th
above-mentioned deficiencies of the Langevin model: a s
ond time scale~which scales withth! is introduced; there is
an intrinsic Reynolds-number dependence~sinceTL /th in-
creases with Reynolds number!; and, at the origin, the pre
dicted velocity autocorrelation function is once continuou
differentiable. Correspondingly, around the Kolmogorov f
quency th

21, the Lagrangian velocity spectrumEL(v)
smoothly changes its power-law behavior fromv22 to v24.
For isotropic turbulence, Sawford’s model is in excelle
agreement with DNS data, including accounting for t
Reynolds-number dependence of the acceleration autoc
lation function and the second-order Lagrangian veloc
structure function.12,13

In this paper we consider a more general stocha
model for the fluid-particle acceleration, which is applicab
to anisotropic turbulence and to inhomogeneous turbu
flows. The general form of the model is developed in Sec
where particular attention is paid to the contribution to a
celeration from the rapid pressure gradient. When applie
homogeneous turbulence~with constant and uniform mea
velocity gradients! the stochastic model is of the form

dai* ~ t !52@Ci j aj* ~ t !1Di j uj* ~ t !#dt1Bi j dWj , ~4!

where u* (t) is the model foru1(t), a* (t) is its rate of
change~i.e., a* [du* /dt!, andW(t) is an isotropic Wiener
process.9 The coefficientsB, C, andD are tensors which can
depend on the local state of the flow and the turbulence,
are independent ofa* andu* . ~The conventional notation is
that ‘‘1’’ denotes a fluid-particle property, and ‘‘* ’’ denotes a
model for that property.!

In the simplest case of isotropic turbulence, all the co
ficients in Eq. ~4! are isotropic~e.g., Bi j 5Bd i j !, and the
model reverts to Sawford’s.12 In this case, which is reviewed
in Sec. III C, there is a one-to-one correspondence betw
the three scalar coefficients~B, C, andD! and the three pri-
mary statistics: the acceleration variancea82; the velocity
varianceu82; and the velocity integral time scaleTL .

Beyond isotropic turbulence, the simplest type of flow
study is statistically stationary homogeneous turbulence w
imposed mean velocity gradients—as exemplified by a
cent DNS of forced homogeneous turbulent shear flow,14 and
described in Sec. IV. For this case the coefficientsB, C, and
D are constant, and a complete analysis of the model@Eq.
~4!# can be performed. This is done in Sec. IV B, where it
shown that there is a one-to-one correspondence betwee
tensor coefficients in the model and the primary statist
namely the velocity-acceleration covariances and the ve
ity integral time scale tensor.~This analysis parallels the au
thors’s recent analysis of a stochastic model for velocity.15!

With some approximation~and with an appropriate sca
ing of the variables!, the same analysis can be applied
nonstationary homogeneous turbulence, in particular to~un-
forced! homogeneous turbulent shear flow for which the
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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are Lagrangian data from the recent DNS studies of Saw
and Yeung.16,17 It is shown~in Sec. IV C! that the velocity-
acceleration autocorrelation functions predicted by the mo
are in excellent agreement with these DNS data.

As well as being useful in its own right, we also rega
the acceleration model as an intermediate step in the de
opment of improved stochastic models for velocity for use
dispersion studies, in PDF methods, and in other turbule
models. Compared to the velocity model, the accelera
model can be more closely related to Lagrangian data fr
DNS, which are known to contain strong Reynolds-numb
dependencies.11,18 Given an acceleration model~i.e., a pre-
scription for the coefficientsB, C, andD!, a corresponding
velocity model can be deduced15 which yields the same ve
locity covariances and integral time scales, and which inh
its Reynolds-number dependencies. Such an improved m
has direct application in PDF methods, and from it can
deduced a pressure-rate-of-strain model for use in Reyno
stress models. These and other uses of the acceleration m
are discussed in Sec. V.

II. STOCHASTIC MODEL FOR ACCELERATION

We consider the inhomogeneous turbulent flow of
constant-property Newtonian fluid~of density r and kine-
matic viscosityn!. This is governed by the continuity equa
tion ]Ui /]xi50, and the Navier–Stokes equation

Ai~x,t ![
DUi

Dt
5S ]

]t
1U j

]

]xj
DUi

52
1

r

]p

]xi
1n

]2Ui

]xj]xj
, ~5!

whereA(x,t), U(x,t), and p(x,t) are the acceleration, ve
locity, and pressure. The general fluid particle has posit
X1(t), velocity,

U1~ t !5
dX1~ t !

dt
5U~X1@ t#,t !, ~6!

and acceleration

A1~ t !5
dU1~ t !

dt
5A~X1@ t#,t !. ~7!

A. Decomposition of acceleration

The acceleration can be decomposed into mean and
tuating contributions based on the mean~^U& and ^p&! and
fluctuating~u andp8! components of velocity and pressur
Furthermore, as originally shown by Chou,19 the fluctuating
pressure can be decomposed into rapid,p(r ), slow, p(s), and
harmonic,p(h), contributions.9 Thus, the fluid acceleration is

Ai52
1

r

]^p&
]xi

2
1

r

]p~r !

]xi
2

1

r

]p~s!

]xi
2

1

r

]p~h!

]xi

1n
]2^Ui&
]xj]xj

1n
]2ui

]xj]xj
. ~8!

The harmonic pressure and the mean viscous term are
ligible except in the immediate vicinity of walls~or other
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2362 Phys. Fluids, Vol. 14, No. 7, July 2002 Stephen B. Pope
surfaces!. Here we neglect these terms, and hence leav
future work the development of the special treatments
quired for the viscous near-wall region.

B. Structure of the model

The proposed model consists of an ordinary differen
equation~ODE! for U* (t)—a model for the fluid particle
velocity U1(t)—and a stochastic differential equation~SDE!
for an acceleration variable denoted byA0(t). The model
also involves the fluctuating components of these quantit
which are defined by

u* ~ t ![U* ~ t !2^U* ~ t !uX* ~ t !& ~9!

and

a0~ t ![A0~ t !2^A0~ t !uX* ~ t !&, ~10!

whereX* (t) denotes the position of the model particle.
The ODE for velocity is

dUi*

dt
52S 1

r

]^p&
]xi

D
X* ~ t !

2S 1

r

]p~r !

]xi
D

X* ~ t !

1ai
0~ t !, ~11!

where the first two contributions on the right-hand side r
resent acceleration by the mean pressure gradient~which is
assumed to be known!, and acceleration by the rapid pressu
gradient~which has to be modeled!. A comparison of Eq.~8!
and Eq.~11! then reveals thata0(t) is a model for the accel
eration due to the slow pressure gradient and the visc
term.

The acceleration variableA0(t) is modeled by the gen
eral SDE,

dAi
0~ t !52@Ci j Aj

0~ t !1Di j uj* ~ t !#dt1Bi j dWj , ~12!

whereW(t) is an isotropic Wiener process. The tensor fun
tions B(x,t), C(x,t), and D(x,t) @which in Eq. ~12! are
evaluated at@X* (t),t## depend on the local state of the tu
bulence, but are independent ofU* andA0.

C. Homogeneous turbulence

Before presenting the rationale for the structure of
model, we first note the form that it takes in homogeneo
turbulence.

In homogeneous turbulence~with uniform mean velocity
gradients!, the coefficientsB, C, andD depend only on time,
and it follows that the mean̂A0(t)uX* (t)&5^A0(t)& is zero.
Consequentlya0(t) is identical toA0(t). And the velocity
equation can readily be transformed to an equation
u* (t). Thus, for homogeneous turbulence the model
comes

dui*

dt
52

]^Ui&
]xj

uj* 2S 1

r

]p~r !

]xi
D

X* ~ t !

1ai
0~ t !, ~13!

dai
0~ t !52@Ci j aj

0~ t !1Di j uj* ~ t !#dt1Bi j dWj . ~14!

D. Rationale

The structure of the model is such that some contri
tions to acceleration—namely, from the mean and rapid p
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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sure gradients—appear directly in the ODE for velocity, E
~11!; whereas the other contributions—from the slow pre
sure gradient and viscosity—are modeled through the S
for A0(t), Eq. ~12!. The rationale for this division is base
on the response of the system to a rapid distortion, and it
be most easily understood for the case of homogeneous
bulence.

Consider the sudden imposition of a very large str
rate on homogeneous turbulence. Both the mean and r
pressure fields change suddenly and this leads to a su
change in the fluid acceleration. On the other hand, the fl
tuating velocity field and the slow pressure change conti
ously in response to the suddenly imposed distortion.

The model is qualitatively in accord with this behavio
It may be seen from Eq.~11! and Eq.~13! that the accelera-
tion changes suddenly if there is a sudden change
]^Ui&/]xj , with accompanying sudden changes in]^p&/]xi

and]p(r )/]xi . In the acceleration equation@Eq. ~12! and Eq.
~14!#, these sudden changes can result in sudden chang
the coefficients,B, C, andD, but nevertheless,a0(t) changes
continuously.

E. Rapid-pressure models

As is usual, and in keeping with the physics, we consi
deterministic models for the rapid pressure gradient. T
quantity then to be modeled is the conditional mean ra
pressure gradient—conditional on the modeled state of
fluid particle.

For homogeneous turbulence, the rapid pressure va
linearly with the imposed mean velocity gradient, and hen
the general model can be written20

K 2
1

r

]p~r !

]xi
Ua0,u* L 52

]^Uk&
]x,

N,ki . ~15!

The third-order tensor functionN,ki is given in terms of
two-point conditional velocity statistics in Refs. 20 and
~where it is denoted byB,ki!, and it satisfies the relations

N, i i 5u,* , N,, i50, N,ki5N, ik . ~16!

Rapid distortions of homogeneous turbulence can
treated exactly using the wave-vector model of Van Sloo
and Pope.9,21 This requires that the modeled state of the flu
particle be supplemented by the wave vectore* (t)—which,
among other conditions, satisfied the relations

ei* ei* [1, ei* ui* 50. ~17!

Then the tensorN,ki in Eq. ~15! is given by

N,ki5u,* ek* ei* . ~18!

For rapid distortions, the wave-vector model consists
ODE’s for e* (t) andu* (t), the latter being Eq.~13! with the
neglect ofa0, and with the rapid-pressure model given b
Eqs. ~15! and ~18!. This model is exact for arbitrary rapid
distortions of homogeneous turbulence, in the sense th
yields the correct evolution of the Reynolds stresses.

As is conventional in Reynolds-stress and velocity-P
modeling, we are primarily concerned here with mod
based on velocity and its one-point statistics, i.e.,u* (t) and
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2363Phys. Fluids, Vol. 14, No. 7, July 2002 A stochastic Lagrangian model for acceleration
the Reynolds stresŝuiuj&. The unfortunate fact of the matte
is that these quantities are inadequate to describe rapid
tortions ~see, e.g., Reynolds and Kassinos22!: additional di-
rectional information is needed, as is provided by the wa
vector. However, the hope is that rapid-pressure mod
based on velocity alone may be adequate for the mode
and slowly varying mean strain rates encountered in m
turbulent shear flows.

Following Ref. 20, it is natural to consider a rapi
pressure model that is linear in velocity, and which theref
can be written

K 2
1

r

]p~r !

]xi
Ua0,u* L 5Gi j

~r !uj* 5Hi jk ,
~r ! uj*

]^Uk&
]x,

, ~19!

or, equivalently,

N,ki5
1
2Hi jk ,

~r ! uj* , ~20!

where the tensorsGi j
(r ) andHi jk ,

(r ) correspond to the analogou
tensors in the Haworth–Pope model.7,9 The nondimensiona
fourth-order tensorH(r ) is modeled as a linear function of th
Reynolds-stress anisotropy tensor

bi j [
^uiuj&

^ukuk&
2

1

3
d i j , ~21!

and indeed a nontrivial dependence onbi j is required to sat-
isfy the condition that the rapid pressure neither produces
removes turbulent kinetic energy.

In subsequent sections we confine attention to this lin
model, not least because it is amenable to analysis. In D
the rapid pressure gradient can extracted, its linearity inu1

can be examined, and specific models forHi jk ,
(r ) can be as-

sessed. With this model, Eq.~13! can be rewritten

dui*

dt
52Ki j uj* 1ai

0, ~22!

where the tensorKi j is defined by

Ki j 5
]^Ui&
]xj

2Gi j
~r !5

]^Uk&
]x,

@d ikd j ,2Hi jk ,
~r ! #. ~23!

Finally, we caution that in future studies of rapid
pressure modeling~e.g., based on DNS! nonlinear models
should not be discounted. For example, the simple mode

N,ki5
1

2
u,S d ik2

ui* uk*

uj* uj*
D , ~24!

satisfies all known constraints~without requiring a depen
dence onbi j !.

F. Summary

The model consists of an ODE for velocity, Eq.~11!,
which contains the mean pressure gradient and a mode
the rapid pressure gradient@e.g., Eq.~19!#. The remainder of
the acceleration—owing to the slow pressure gradient
the viscous term—is modeled by an SDE, Eq.~12!, which
contains three tensor coefficients,B, C, and D. Various
properties of these coefficients are revealed in subseq
sections.
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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III. PROPERTIES OF THE MODEL

In this section we examine some of the mathemati
properties of the model, and their connections to the phy
of turbulent motions.

A. Equivalent first-order and second-order systems

For homogeneous turbulence, the model@Eq. ~14! and
Eq. ~22!# can be written as a first-order system of SDE’s,

dui* 5@2Ki j uj* 1ai
0#dt, ~25!

dai
052@Ci j aj

01Di j uj* #dt1Bi j dWj , ~26!

or, in an inferior notation, as a first-order system of ODE

dui*

dt
52Ki j uj* 1ai

0, ~27!

dai
0

dt
52Ci j aj

02Di j uj* 1Bi j Ẇj , ~28!

where Ẇ denotes white noise, which has the prope
*0

t Ẇ(t8)dt85W(t).
Alternatively, by differentiating Eq.~27! with respect to

t, the model can be re-expressed as the second-order sy

d2ui*

dt2
1~Ci j 1Ki j !

duj*

dt
1S Di j 1

dKi j

dt Duj* 5Bi j Ẇj . ~29!

It may be seen that the system is governed fundamentall
just three coefficient tensors, not four as suggested by
appearance ofB, C, D, andK in Eqs.~25!–~28!. In particu-
lar, if K is constant—as is the case in the analysis be
~Sec. IV B!—the behavior ofu* (t) is determined byB, D
and the sum

C̄[C1K , ~30!

but not byC andK individually. Thus, for constantK , Eqs.
~25! and ~26! are equivalent to the system

dui* 5ai* dt, ~31!

dai* 52@C̄i j aj* 1Di j uj* #dt1Bi j dWj , ~32!

in which Eq.~31! definesa* [du* /dt, anda0 can be recov-
ered as

ai
05ai* 1Ki j uj* . ~33!

The model is analyzed below via Eqs.~31! and ~32!.

B. Scaled model equations and coefficients

It is informative to scale the variables and coefficients
the model equations for homogeneous turbulence so
they become nondimensional quantities of order unity. A p
liminary is to define the quantities used to perform the
scalings.

The velocity and acceleration variables are scaled
their standard deviationsu8 anda8, which are given by

u82[ 1
3^ui* ui* &5 2

3k, a82[ 1
3^ai* ai* &, ~34!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2364 Phys. Fluids, Vol. 14, No. 7, July 2002 Stephen B. Pope
wherek is the turbulent kinetic energy. There are four re
evant time scales. The turbulence time scale is defined b

t[
k

e
, ~35!

wheree is the rate of dissipation ofk. The shear time scale
characteristic of the imposed mean velocity gradients, is
fined by

tS[S21, ~36!

where

S2[
]^Ui&
]xj

]^Ui&
]xj

. ~37!

The Kolmogorov time scale is

th[S n

e D 1/2

, ~38!

and the acceleration time scale is defined by

ta[
u82

a82t
. ~39!

The ratioth /t decreases with Reynolds number as

th

t
5Re21/25S 20

3 D 1/2

Rl
21, ~40!

where the turbulence Reynolds number is Re[k2/(en), and

the Taylor-scale Reynolds number isRl[( 20
3 Re)1/2. The

various time scales used throughout the paper are sum
rized in Table I.

With a0 being the Kolmogorov-scaled acceleration va
ance

a0[
a82th

e
, ~41!

the acceleration and Kolmogorov time scales are related

ta

th
5

2

3a0
. ~42!

It may be seen then that~at least approximately at high Rey
nolds number! ta scales withth , since according to the
Kolmogorov hypothesesa0 is a universal constant.23 In fact,
it is known11,24–26 that, at moderate Reynolds numbers,a0

increases weakly withRl—in accord with the refined Kol-
mogorov hypotheses. In discussing scalings we ignore
weak dependence and writeta /t;Re21/2.

TABLE I. Summary of different time scales.

t[k/e Turbulence time scale
th[(n/e)1/2 Kolmogorov time scale
tS[S21 Shear time scale

TL[
1
3T̂ii

u Lagrangian velocity integral time scal

ta[u82/(a82t) Acceleration time scale
T`[l1

21, Eq. ~55! Velocity eigen-time scale
t0[l2

21, Eq. ~57! Acceleration eigen-time scale
T, Eq. ~102! Integral time scale~636! matrix
T̂uu, Eq. ~109! Velocity integral time scale tensor
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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The ODE for velocity, Eq.~13! and Eq.~15!, can be
written

1

u8

dui*

dt̂
5

t

u8

dui*

dt
5

t

tS
FtS

]^Uk&
]x,

GF2N,ki

u8
2

u,*

u8
d ikG

1S t

ta
D 1/2Fai

0

a8
G . ~43!

Each term is nondimensional; expressions in square brac
are of order unity; and time is scaled by the turbulence ti
scale, i.e.,t̂[t/t. If the linear rapid-pressure model, Eq
~19!, is used, then the ODE foru* (t) can alternatively be
written

1

u8

dui*

dt̂
52

t

tS
K̃ i j Fuj*

u8
G1S t

ta
D 1/2Fai

0

a8
G , ~44!

where the nondimensional, order-one coefficientK̃ is

K̃ i j 5tSKi j 5tS
]^Uk&
]x,

@d ikd j ,2Hi jk ,
~r ! #. ~45!

It is clear from Eqs.~43! and~44! thatui* /u8 responds to
the mean velocity gradients at the normalized ratet/tS
5Sk/e. Under usual circumstances this is of order one,
for rapid distortions it is arbitrarily large. Evidently, the ter
in a0 is of orderAt/ta;Re1/4. But sincea0 is a zero-mean
random function with normalized time scaleta /t, the cumu-
lative effect of the term on the covariances ofu* /u8 over a
time interval D t̂@ta /t is of order At/ta

2(D t̂ta /t);D t̂.
Thus, although the term ina0 is relatively large instanta-
neously~of order Re1/4!, its cumulative effect is of order one

For the SDE fora0(t), Eq. ~14!, we define the scaled
coefficients by

B̃25
ta

a82 B2, C̃5taC, D̃5ttaD. ~46!

The subsequent analysis confirms that these scalings ar
propriate, in that each of these scaled coefficients is of or
unity. With these definitions, Eq.~14! can be written

dai
0

a8
52F C̃i j

aj
0

a8
1S ta

t D 1/2

D̃ i j

uj*

u8
G dt

ta
1B̃i j

dWj

Ata

. ~47!

Clearly ta is the characteristic time scale of the process:
mean of the term inC̃, and the variance of the term inB̃ is
each of orderdt/ta . However, the term inD̃ is smaller by
the factor of (ta /t)1/2;Re21/4.

If the mean velocity gradients are constant, then
equations foru* (t) and a0(t) @Eqs. ~25! and ~26!# can be
re-expressed as equations foru* (t) anda* (t) @Eqs.~31! and
~32!#. The scaled forms of these equations are

t

u8

dui*

dt
5S t

ta
D 1/2ai*

a8
~48!

and
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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dai*

a8
52F C̃i j

aj*

a8
1S ta

tS
D K̃ i j

aj*

a8

1S ta

t D 1/2

D̃ i j

uj*

u8
G dt

ta
1B̃i j

dWj

Ata

. ~49!

For the case consideredt/tS is of order unity, so that~com-
pared to the leading-order terms! the terms inK̃ andD̃ are of
orderta /t;Re21/2 and (ta /t)1/2;Re21/4, respectively.

C. Isotropic turbulence

We consider in this section the simplest case of hom
geneous isotropic turbulence made statistically stationary
artificial forcing. We do so to relate the general model p
posed here to Sawford’s,12 and to provide a characterizatio
of the model’s behavior in this simple setting. This provid
a useful reference for the results obtained below for the g
eral case.

For isotropic turbulence without mean velocity grad
ents, there is no rapid pressure, anda* (t)5du* /dt is the
model for the fluid-particle acceleration. The coefficients
the model, Eq.~32!, are inevitably isotropic~Bi j 5Bd i j ,
B̃i j 5B̃d i j , etc.!, and so the three components ofa* (t) are
statistically identical and independent. Writinga* (t) for one
component of acceleration@e.g., a* (t)[a1* (t)#, and with
u* (t) being the corresponding component of velocity, t
model for isotropic turbulence is

da* 52@Ca* 1Du* #dt1B dW. ~50!

This is identical to Sawford’s model,12 but with the coeffi-
cients expresses differently.

An analysis of Eq.~50! ~see Refs. 12 and 13 and Se
IV B ! shows that the acceleration variance is

^a* 2&5
B2

2C
5a82

B̃2

2C̃
, ~51!

the velocity variance is

^u* 2&5
B2

2CD
5u82

B̃2

2C̃D̃
, ~52!

and that the Lagrangian velocity integral time scale is

TL[E
0

`

r~s!ds5
C

D
5t

C̃

D̃
, ~53!

wherer(s) is the Lagrangian velocity autocorrelation fun
tion defined by Eq.~2!.

There is a one-to-one correspondence between the t
model coefficientsB, C, andD, and the three primary statis
tics a82, u82, and TL . Equations~51!–~53! are readily in-
verted to yield for the scaled coefficients

C̃5
TL

t
, B̃25

2TL

t
, D̃51. ~54!

The velocity autocorrelation functionr(s) obtained
from the model is most conveniently and naturally written
terms of two different~but related! time scales,T` and
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t0 (T`.t0). These are the inverses of the two eigenvalu
of the system, which are given by the solution to t
quadratic equation

l22Cl1D50. ~55!

The solutions are given in terms ofTL andta by

l1
215T`5

1

2
TLF11S 12

4tat

TL
2 D 1/2G ~56!

and

l2
215t05

1

2
TLF12S 12

4tat

TL
2 D 1/2G . ~57!

Conversely we have

TL5T`1t0 ~58!

and

ta5
T`t0

t
. ~59!

It may be observed that asta /TL tends to zero,T` and t0

tend toTL andta(t/TL), respectively. The coefficientsB, C,
andD given by Eq.~54! can be re-expressed in terms ofT`

andt0 , which is the form originally given by Sawford.12

The velocity autocorrelation function given by the mod
is

r~s!5Fe2usu/T`2S t0

T`
De2usu/t0G Y S 12

t0

T`
D , ~60!

which is a linear combination of two decaying exponentia
with time scalest0 andT` .

To conclude, based on this examination of the mode
isotropic turbulence, we summarize some important obse
tions which are mirrored in the analysis of the general mo
presented below.

~1! The three model coefficientsB, C, and D are uniquely
related to the three primary statistics,a82, u82, andTL .

~2! The autocorrelation functionr(s) is a linear combina-
tion of decaying exponentials, the time scales of wh
are the inverses of the eigenvalues of the system.

~3! The predictions of the model are in excellent agreem
with Lagrangian statistics obtained from DNS~see Refs.
12 and 13!.

~4! Given the primary statistics, a separate acceleration t
scale cannot be imposed on the model: instead the ac
eration time scaleta is given by Eq.~39!.

~5! The simplest scaling arguments show thatTL scales with
t, and thatta scales withth , so that the scaled coeffi
cientsB̃, C̃, andD̃ are of order unity.

D. Gaussianity

For homogeneous turbulence, the model takes the f
of a set of SDEs, Eqs.~31! and ~32!, in which the drift
coefficients~2C̄i j aj* and 2Di j uj* ! are linear in the depen
dent variables, while the diffusion coefficientBi j is indepen-
dent of a* and u* . Such linear stochastic differential equ
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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tions are known27 to yield Gaussian processes. Thu
according to the model, the processesa* (t) and u* (t) are
jointly Gaussian.

For homogeneous turbulent shear flow, the experime
of Tavoularis and Corrsin28 clearly show that the one-poin
one-time joint PDF of velocity is joint normal. Hence th
model is correct in predicting that the one-time PDFu* (t) is
joint normal. However, it is known from DNS11 and
experiments26,29 that both acceleration and two-time veloci
statistics depart from Gaussianity, an effect which is not r
resented by the model. It is possible to represent these ef
in stochastic models by making the model coefficients the
selves stochastic processes.30,31 In particular, Beck31 shows
that the experimental acceleration distribution can be ac
rately represented by a stochastic model with gamm
distributed coefficients. Here, however, we retain const
coefficients and do not attempt to represent these hig
order effects.

It is emphasized that the Gaussianity of the mode
confined to homogeneous turbulence. For inhomogene
flows, non-Gaussian statistics such as the velocity triple
relation can be accurately calculated by linear stocha
models.

E. High Reynolds number and local isotropy

We now consider the limit of very high Reynolds num
ber, which is equivalent to the limit ofta /t tending to zero.
In this limit, according to the Kolmogorov hypotheses, t
turbulence is locally isotropic. As is now shown, the stoch
tic model for acceleration is consistent with local isotro
provided that the scaled coefficientsB̃ and C̃ tend to the
following isotropic constant tensors:

B̃i j
2 52~ 3

4C0!21d i j and C̃i j 5~ 3
4C0!21d i j , ~61!

where C0 is the Kolmogorov constant associated with t
second-order Lagrangian structure function@see Eq.~69!#.

In general, variations inu* (t) and a0(t) occur on the
time scalest andta , respectively. For the case considere
ta!t, u* (t) changes very slowly compared toa0(t); and so
a0(t) is in a statistically quasistationary state, the statistics
which change slowly in response to the changes inu* (t).
This state is governed by Eq.~47!, with the coefficients
given by Eq.~61!, which can be rewritten

dai
052~ai

02m i@u* ~ t !# !
dt

3
4C0ta

1
a8 dWi

A 3
8C0ta

, ~62!

with

m i~u* ![2
3

4
C0a8S ta

t D 1/2

D̃ i j

uj*

u8
52

3

4
C0

D̃ i j uj*

t
. ~63!

With m i being considered as a frozen coefficient, Eq.~62! is
simply the Langevin equation; and hence each componen
a0(t) is an independent Ornstein–Uhlenbeck~OU! process
with conditional meanm i(u* (t)), variancea82, and time
scale 3

4C0ta . The normalized meanm i /a8 tends to zero as
(ta /t) tends to zero@see Eq.~63!#, and hencea0(t) tends to
a locally isotropic process.
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We now examine the model equation for velocity in t
high Reynolds number limit. For a general inhomogeneo
flow, the model foru* (t) @Eqs.~13! and ~19!# is

dui*

dt
5S 2

]^Ui&
]xj

1Gi j
~r !Duj* 1ai

0~ t !. ~64!

As ta /t tends to zero,a0(t) tends to white noise; or, more
precisely, for a time intervaldt such that bothta /dt and
dt/t tend to zero, the increment in velocity

E
t

t1dt

a0~ t8!dt8, ~65!

tends to a Gaussian random vector with meanm(u* (t))dt,
Eq. ~63!, and covariance

2a82~ 3
4C0ta!d i j dt5C0ed i j dt. ~66!

Thus, in the limit, Eq.~64! tends to a diffusion process give
by the SDE,

dui* 5S 2
]^Ui&
]xj

1Gi j Duj* dt1~C0e!1/2dWi , ~67!

with

Gi j [Gi j
~r !2

3

4
C0

D̃ i j

t
. ~68!

It may be recognized that Eq.~67! is the generalized
Langevin model~GLM7,9!; and from this observation we
draw two important conclusions. First, it is well known th
the GLM is consistent with local isotropy and the Kolmo
orov hypotheses in yielding~for the second-order Lagrangia
structure function!

^@ui* ~ t1s!2ui* ~ t !#@uj* ~ t1s!2uj* ~ t !#&

5C0esd i j , for s!t. ~69!

Second, in the high Reynolds number limit being consider
Eq. ~68! gives the GLM coefficientGi j which corresponds to
the acceleration model coefficientsGi j

(r ) and D̃ i j .
For forced, statistically stationary homogeneous isot

pic turbulence, the GLM coefficientGi j is constrained to be
2 3

4C0d i j /t.9 Correspondingly, Eq.~68! yields D̃ i j 5d i j ,
consistent with Sawford’s model, Eq.~54!. In general, if the
GLM coefficientGi j is decomposed into slow and rapid co
tributions, i.e.,

Gi j 5Gi j
~s!1Gi j

~r ! , ~70!

then Eq.~68! yields

Gi j
~s!52

3

4
C0

D̃ i j

t
. ~71!

The simplest specification ofGi j
(s) ~for unforced turbulence!

is

Gi j
~s!52S 1

2
1

3

4
C0D d i j

t
. ~72!
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for which the corresponding value ofD̃ i j is

D̃ i j 5S 11
2

3C0
D d i j . ~73!

In summary, with the coefficientsB̃ and C̃ specified by
Eq. ~61!, the model is consistent with the Kolmogorov h
potheses. At very high Reynolds number~corresponding to
ta /t tending to zero!, the acceleration statistics are local
isotropic, and the model tends to the generalized Lange
model ~GLM! for velocity, Eq.~67!. There is then a one-to
one correspondence between the remaining accelera
model coefficientD̃ and the GLM coefficientGi j , Eq. ~68!
and Eq.~71!.

IV. HOMOGENEOUS TURBULENT SHEAR FLOW

In this section we examine the stochastic model for
celeration applied to homogeneous turbulent shear flow
which there are Lagrangian data from DNS.16,17The analysis
~performed in Sec. IV B! depends on the processes cons
ered being statistically stationary. We therefore define~in
Sec. IV A! a scaled timet̂, a scaled velocityû( t̂), and the
accelerationâ( t̂)[dû( t̂)/dt̂ such thatû( t̂) and â( t̂) are sta-
tistically stationary processes—at least to a reasonable
proximation. Results from the analysis are compared to
DNS data in Sec. IV C.

A. Scaling for statistical stationarity

1. Forced homogeneous turbulent shear flow

We consider first the case of forced homogeneous tu
lent shear flow corresponding to the DNS of Schumache14

This case is relatively simple because the flow is statistic
stationary. The imposed shear rateS is constant, as are th
turbulent kinetic energyk and its dissipation ratee. The non-
dimensional timet̂ is defined by

t̂[t
e

k
5

t

t
, ~74!

and û( t̂) is defined as the model for the fluctuating comp
nent of velocity following the fluid particle,u* (t), normal-
ized byu8:

û~ t̂ ![
u* ~ t !

u8
. ~75!

With these definitions, the velocity covariance^ûi û j& is of
order unity, and so also are the integral time scales ofû( t̂)
~in scaled time!. In fact, because of the equality of one-poin
one-time Eulerian and Lagrangian statistics in homogene
turbulence, we have the normalization condition followi
from Eq. ~75!:

^ûi~ t̂ !ûi~ t̂ !&53. ~76!

Since the velocity gradients are constant, the general stoc
tic model foru* (t) anda* (t) is given by Eqs.~31! and~32!.
With the transformations
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û~ t̂ !5
u* ~ t !

u8
, â~ t̂ ![

dû

dt̂
5

ta* ~ t !

u8
,

dt̂5
dt

t
, dŴ~ t̂ !5

dW~ t !

t1/2 , ~77!

these stochastic model equations transform to

dûi~ t̂ !5âi~ t̂ !dt̂, ~78!

dâi~ t̂ !52@Ĉi j â j~ t̂ !1D̂ i j û j~ t̂ !#dt̂1B̂i j dŴj~ t̂ !, ~79!

where the transformed~nondimensional! coefficients are

Ĉi j 5tC̄i j 5
t

ta
C̃i j 1tKi j ,

~80!

D̂ i j 5t2Di j 5
t

ta
D̃ i j ,

and

B̂i j 5
t3/2

u8
Bi j 5

t

ta
B̃i j . ~81!

For a given orientation of the shear, i.e.,]^Ui&/]xj

5Sd i1d j 2 , the coefficientsB̂, Ĉ, and D̂ are constant and
depend only on the Reynolds number.

2. Unforced homogeneous turbulent shear flow

The DNS of Sawford and Yeung16 are consistent with
the supposition that~after an initial transient! the energy-
containing motions in~unforced! homogeneous turbulen
shear flow become~approximately! self-similar. The normal-
ized Reynolds-stress tensor^uiuj&/k becomes constant, a
does the ratio of the turbulence-to-shear time scales,t/tS
5Sk/e, and hence also the ratio of productionP to dissipa-
tion e. ~The values deduced from the DNS areSk/e54.83
and P/e51.54.! The turbulent kinetic energy equation the
dictates thatk ande increase exponentially with time—as
observed.

As previously argued,15 this picture suggests that th
definitions of t̂ and û( t̂) by Eq. ~74! and Eq.~75! remain
appropriate, although now the velocity scaleu8(t) used in
Eq. ~75! depends on time. This time dependence is quanti
by the parameter

P[
t

u8

du8

dt
5

1

2 S P
e

21D , ~82!

the value of which isP'0.27 in the present case.~The value
is P50 for the forced case, andP521

2 for decaying turbu-
lence.! Given the ~approximately! self-similar state of the
energy-containing motions, it is reasonable to suppose
û( t̂) is ~approximately! statistically stationary. But thes
states can only be realized approximately since the Reyn
number increases with time. Hence, while we again de
â( t̂) as the derivative ofû( t̂), this process cannot be com
pletely stationary: according to Kolmogorov scaling, the a
plitude of â increases asRl

1/2 and its time scale decreases
Rl

21.
A quantification of the variation ofRl in homogeneous

turbulent shear flow shows that the departure from station
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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ity is not large. Based on the exponential increase ofk with
time it can be shown thatRl increases asRl;exp(Pt̂), and
the DNS data are consistent with this behavior~except at the
beginning and end of the simulation!. The normalized La-
grangian velocity integral time scale is found to beTL /t
50.3.15 Hence, over a time interval of 2TL , Rl increases by
a factor of exp~0.2730.6!'1.18. Thus, over the relevan
time interval, the amplitude ofâ( t̂) increases by approxi
mately 10%, while its time scale decreases by about 20%

As in the forced case, the model equations@Eqs.~31! and
~32!# for u* (t) anda* (t) can be transformed into equation
for û( t̂) andâ( t̂). The transformations are those given by E
~77!, except thatâ( t̂) is given by

â~ t̂ ![
dû~ t̂ !

dt̂
5t

d

dt S u* ~ t !

u8~ t ! D5
ta* ~ t !

u8
2Pû~ t̂ !. ~83!

The transformed model equations are again Eqs.~78! and
~79!, with B̂ given by Eq.~81!, but with Ĉ and D̂ given by

Ĉi j 5tC̄i j 12Pd i j ,
~84!

D̂ i j 5t2D̄ i j 1tPC̄i j 1P2d i j .

It may be noted that Eq.~84! for Ĉi j andD̂ i j also applies to
the forced case, since in that caseP is zero.

To conclude, the stochastic model Eq.~78! and Eq.~79!
is analyzed in the next section, with the assumptions
û( t̂) and â( t̂) are statistically stationary. For homogeneo
turbulent shear flow, the departures from stationarity are
ficiently small that the results of the analysis can usefully
compared to the DNS data of Sawford and Yeung.17 This is
done in Sec. IV C.

B. Analysis of the stochastic model

In this section we analyze the model in application
homogeneous turbulent shear flow. The analysis is somew
involved: for the reader wishing to avoid the details, t
principal results are summarized in Sec. IV B 6.

1. Model equations

When written for the scaled variablesû( t̂) and â( t̂) in
homogeneous turbulent shear flow, the model equations
Eqs. ~78! and ~79!, and the coefficients are given by Eq
~81! and ~84!.

It is convenient to use vector-matrix notation, and hen
we write the model equations as

dâ~ t̂ !52@Ĉâ~ t̂ !1D̂û~ t̂ !#dt̂1B̂ dŴ~ t̂ !, ~85!

dû~ t̂ !5â~ t̂ !dt̂, ~86!

where the coefficientsB̂, Ĉ, and D̂ are 333 matrices. Fur-
thermore, it is convenient to combineâ( t̂) and û( t̂) into a
six-vector

z~ t̂ ![F â~ t̂ !
û~ t̂ !G , ~87!

so that the model can be written as the single SDE

dz~ t̂ !52Fz~ t̂ !dt̂1E dW̄~ t̂ !. ~88!
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Here W̄(t) is a six-vector-valued Wiener process, and t
636 matrix coefficientsE andF are

E5F B̂ 0

0 0
G ~89!

and

F5F Ĉ D̂

ÀI 0
G , ~90!

whereI is the 333 identity matrix.
It is known from the theory of diffusion pro-

cesses9,27,32,33that the diffusion coefficient~e.g., B̂! affects
the process only through the symmetric positive–se
definite fromB̂B̂T, where ‘‘T’’ denotes the transpose. Henc
without loss of generality,B̂ and thereforeE can themselves
be taken to be symmetric positive semidefinite.

It is assumed that the eigenvalues of the drift matrixF
have positive real parts, which is a sufficient condition f
Eq. ~88! to yield a statistically stationary solution.33

2. Autocovariance

Sincez(t) is a Gaussian process, its statistics are co
pletely described by its autocovariance, which we define

R~s![^z~ t̂1s!z~ t̂ !T&. ~91!

It should be noted that this is the transpose of the conv
tional definition in that the time increments appears in the
first variable. The present definition yields simpler equatio
in the subsequent analysis.

The autocovariance ofz( t̂) can be decomposed into th
autocovariances ofâ( t̂) and û( t̂):

R~s!5FRaa~s! Rau~s!

Rua~s! Ruu~s!
G , ~92!

where

Rua~s![^û~ t̂1s!â~ t̂ !T&, ~93!

andRaa(s), Rau(s), andRuu(s) are similarly defined.
In view of statistical stationarity, the autocovariances a

independent of timet̂ ~as implied by the notation!, and they
possess the following symmetries:

R~s!5R~2s!T, Raa~s!5Raa~2s!T,
~94!Ruu~s!5Ruu~2s!T,

Rua~s!5Rau~2s!T52Rau~s!. ~95!

Stemming from the definitionâ5dû/dt̂, properties of
derivatives of the autocovariances are

d

ds
Ruu~s!5Rau~s!,

d

ds
Rua~s!5Raa~s!,

~96!
d

ds
Rau~s!52Raa~s!,

and hence

d2Ruu~s!

ds2 52Raa~s!. ~97!
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Thus, all autocovariances@including R(s)# can be deter-
mined fromRuu(s).

The covariances are denoted by

Q[R~0!5FQaa Qau

Qua QuuG . ~98!

The covariance matricesQ, Qaa, and Quu are symmetric
positive definite; while the off-diagonal matrices are@in view
of Eq. ~95!# antisymmetric and the transposes of each oth

Qua52~Qua!T5~Qau!T. ~99!

It may be observed from Eqs.~96! and ~97! that all of the
covariances can be obtained fromRuu(s) and its derivatives
at the origin (s50).

An important quantity in the subsequent analysis is
autocorrelation matrixwhich is defined by

P~s![R~s!Q21, ~100!

and which has the property

P~0!5I . ~101!

3. Integral time scales

The matrixT of integral time scales, which also plays
central role in the analysis, is defined by

T[E
0

`

P~s!ds. ~102!

This matrix has a special structure, now revealed, wh
stems from the fact thatâ( t̂) is the derivative ofû( t̂). We
define the 636 matrix M by

M[E
0

`

R~s!ds, ~103!

which is related toT by

T5MQ21 or M5TQ, ~104!

and which is partitioned as

M5FMaa Mau

Mua MuuG . ~105!

For Maa we obtain

Maa[E
0

`

Raa~s!ds5E
0

`

^â~ t̂1s!â~ t̂ !T&ds

5K E
0

`

â~ t̂1s!ds â~ t̂ !TL
5^@ û~`!2û~ t̂ !#â~ t̂ !T&

52^û~ t̂ !â~ t̂ !T&52Qua. ~106!

A similar treatment can be applied toMua andMau to show
that M is given by

M5F2Qua 2Quu

Quu Muu G . ~107!

It then follows thatT is of the form
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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T5F 0 2I

Tua TuuG , ~108!

since the first row of the productTQ yields the first row of
M @given by Eq.~107!# in accordance with Eq.~104!.

By analogy to Eq.~104!, we define thevelocity integral
time scale tensorby

T̂uu[Muu~Quu!21, ~109!

which is just ~the transpose of! the time scale tensor tha
arises in the analysis of the stochastic model for velocit15

And we define the~scalar! Lagrangian velocity integral time
scale by

TL[ 1
3T̂ i i

uu . ~110!

We see below that the autocovarianceR(s)—and there-
fore all other statistics—are determined by the covaria
matrix Q and the time scale matrixT ~as previously
shown15!. Because of the special structure of the model,
information content inQ andT is less than it appears at firs
sight. Specifically, the symmetric and nonsymmetric 636
matricesQ andT can be constructed from the 333 matrices
Qaa, Quu, Qua, and T̂uu—which have an information con
tent equivalent to three symmetric and two antisymme
333 matrices. It is marvelous—although most like
inevitable—that this is precisely the information content
the model coefficientsB̂, Ĉ, andD̂.

4. Solution for the autocorrelation matrix

It is readily deduced from the model equation, Eq.~88!,
that the autocovariance satisfies the ODE,

d

ds
R~s!52FR~s! for s>0. ~111!

By post-multiplying both sides of this equation byQ21, we
find thatP(s) @defined by Eq.~100!# satisfies the same equa
tion,

d

ds
P~s!52FP~s! for s>0, ~112!

with the simple initial conditionP~0!5I . The solution to this
equation~satisfying the initial condition! is33

P~s!5exp~2Fs![ (
n50

`
~21!n

n!
Fnsn for s>0, ~113!

as may be verified by differentiating with respect tos. It has
been assumed that the eigenvalues ofF have positive real
part, which is a sufficient condition for exp(2Fs) to con-
verge to zero ass tends to infinity.

The matrixF deduced from the DNS~in Sec. IV C! has
the simplest structure—real positive eigenvalues, and
early independent eigenvectors. In that caseF can be decom-
posed as

F5VLV21, ~114!

where the columns of the 636 matrixV are the eigenvectors
of F, andL is the 636 diagonal matrix of eigenvalues. Th
solution forP(s), Eq. ~113!, can then be re-expressed as
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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P~s!5V exp~2Ls!V21 for s>0, ~115!

showing thatP(s) is a linear combination of six decayin
exponentials, the time scales of which are the inverses of
eigenvalues.

For the general case, the time scale matrixT @Eq. ~102!#
is obtained as the definite integral of the solution, Eq.~113!.
The indefinite integral is

E P~s!ds52F21 exp~2Fs!, ~116!

from which we obtain

T[E
0

`

P~s!ds5F21. ~117!

The 636 drift matrix F is defined in terms of the 333 drift
matricesĈ andD̂ in the stochastic model for acceleration b
Eq. ~90!. Given this structure ofF, it is readily deduced
~from the equationFF215I ! that its inverse is

F215F 0 2I

D̂21 D̂21Ĉ
G , ~118!

which, according to Eq.~117!, equalsT. The first row ofF21

indeed matches that ofT @Eq. ~108!#, while equating the
elements of the second rows yields

Tua5D̂21, Tuu5D̂21Ĉ, ~119!

or conversely

D̂5~Tua!21, Ĉ5~Tua!21Tuu. ~120!

~The assumptions made aboutF are sufficient to ensure
that D̂ is nonsingular.!

The important conclusions are that there is a one-to-
correspondence between the drift coefficientsĈ and D̂ and
the time scale matricesTuu andTua and that the autocorre
lation matrixP(s) is explicitly determined by the drift coef
ficientsĈ andD̂ @through Eq.~90!, Eq.~114!, and Eq.~115!#.
The autocovariances are given by

R~s!5P~s!Q5exp~2Fs!Q for s>0, ~121!

whereF is given in terms ofĈ and D̂ by Eq. ~90!.

5. Solution for the covariance matrix

The solution is completed by determining the covarian
matrix Q. An evolution equation for the covariance is read
derived from the model equation@Eq. ~88!#, and then the
condition thatQ is independent of time yields

EET5E25FQ1~FQ!T. ~122!

ThusE2 is twice the symmetric part ofFQ.
From the definition ofE in terms of B̂ @Eq. ~89!# we

have

E25F ~E2!aa ~E2!au

~E2!ua ~E2!uuG5F B̂2 0

0 0
G ; ~123!

and from the definitions ofF @Eq. ~90!# andQ @Eq. ~92!# we
have
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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FQ5F ĈQaa1D̂Qua ĈQau1D̂Quu

2Qaa 2Qau G . ~124!

Equation~122! can be used to relate the blocks ofE2 to FQ,
and evidently @from Eq. ~123!# only the upper left-hand
block is nonzero.

For the lower right-hand block we have, correctly,

~E2!uu52Qau2QauT50, ~125!

in view of the antisymmetry ofQau @Eq. ~99!#; and in the
Appendix it is shown that the off-diagonal blocks are al
zero. Thus, the only nonzero block ofE2 given by Eq.~122!
is

~E2!aa5B̂25~ĈQaa1D̂Qua!1~ĈQaa1D̂Qua!T. ~126!

6. Conclusions

The major conclusion now drawn from the analysis
that there is a one-to-one correspondence between the m
coefficients~B̂, Ĉ, andD̂! and the primary statistics~Q and
T!. These primary statistics are known in terms of the vel
ity and acceleration covariancesQuu, Qua, andQaa and the
velocity integral time scale tensorT̂uu, Eq. ~109!.

Given Q and T, the coefficientsĈ and D̂ are given by
Eq. ~120!, and thenB̂2 is determined by Eq.~126!.

Conversely, given the coefficients~B̂, Ĉ, and D̂!, T is
determined by Eq.~119!; and the covariances are determin
by Eq. ~126! together with the equation

Qaa5ĈQau1D̂Quu. ~127!

This equation is derived in the Appendix, where the solut
of Eq. ~126! and Eq.~127! for Q is also discussed. Togethe
these equations yield a linear system which determinesQ,
but unfortunately an explicit solution is not evident.

Once both the model coefficients and primary statist
are known, then the autocovariance given by the mo
R(s)5P(s)Q can be determined from Eq.~115!. These au-
tocovariances are linear combinations of the six decay
exponentials, exp(2lis), where $l1 ,l2 ,...,l6% are the ei-
genvalues of the coefficient matrixF, Eq. ~90!.

The analysis is complete, since the autocovariancesQ(s)
fully characterize the Gaussian model processesâ( t̂) and
û( t̂).

For Sawford’s model for isotropic turbulence, th
eigenvalues ofF are t/T` and t/t0 ~each with multiplicity
3!, corresponding to time scalesT` and t0 @Eq. ~56! and
Eq. ~57!# which scale with the integral time scale an
Kolmogorov time scale, respectively. And the time sca
matrices are

Tuu5T̂uu5S T`1t0

t D I5
TL

t
I ~128!

and

Tua5
T`t0

t2 I5
ta

t
I . ~129!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 1. Velocity autocovariances
Ri j

uu(s) against normalized time. Sym
bols, DNS of Sawford and Yeung
~Ref. 16!; lines, from the acceleration
model.
n

c
ar

e-

a
al

it
m

s

th
co

l’s

d

ce

cit
a-
th

of

the
sto-

od-
odel
rva-
lds
dels

t,
nal
ices
oef-
C. Comparison to DNS data

In this section, for the DNS of homogeneous turbule
shear flow,16 the stochastic model coefficientsB̂, Ĉ, and D̂
are deduced from the data; and then the velocity and ac
eration autocovariances predicted by the model are comp
to those from the DNS.

All the DNS information is extracted from the time s
ries of the normalized velocity autocovarianceRuu(s). The
remaining autocovariances@Rua(s), Rau(s), andRaa(s)# are
obtained from Eq.~96! and Eq.~97! by numerical differen-
tiation of Ruu(s), and then the covariances are obtained
Q[R~0!. Clearly this differentiation amplifies the statistic
noise in the data, as is particularly evident inRaa(s) ~see
Fig. 3 below!. @In future DNS designed for this purpose,
would be preferable to form all covariances directly fro
â( t̂) and û( t̂).#

The velocity covariance integralsMuu @Eqs. ~103! and
~105!# are formed from the time series ofRuu(s) by numeri-
cal quadrature, and then the matrix of integral time scaleT
is obtained from Eq.~104!.

Based on the DNS values of the covariances and
velocity integral time scales, the values of the model

efficient B̂, Ĉ, andD̂ are deduced which lead to the mode
matching these statistics. The values ofĈ andD̂ are obtained
from Eq.~120!, and thenB̂2 from Eq.~126!. ~The values thus
obtained are reported below.! The autocovariances predicte
by the model are then deduced from Eqs.~114!, ~115!, and
~100!.

Figures 1–3 show a comparison of the autocovarian
from the DNS~symbols! and from the model~solid lines!.
Clearly the agreement is excellent, especially for the velo
autocovariances~Fig. 1!. It should be noted that an acceler
tion time scale is not an input to the model, and so
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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matching of the location and magnitudes of the peaks
Rua(s) andRaa(s) in Figs. 2 and 3 is not inevitable.

Figure 4 compares the velocity autocovariances from
DNS, from the present acceleration model, and from the
chastic model for velocity15 ~dashed lines!. Only the early
times are shown where the differences between the two m
els are most evident. As may be seen, the acceleration m
provides a much more accurate representation of the cu
ture of the autocovariances at small times. As the Reyno
number increases, the differences between the two mo
decreases, and is confined to smaller times.

The values of the coefficientsB̂, Ĉ, andD̂ deduced from
the DNS are reported in scaled form asB̃ and D̃ @defined
by Eq. ~46!# andC! [taC̄. Their values are

B̃25F 0.70 20.15 0

20.15 0.48 0

0 0 0.64
G , ~130!

C! 5F 0.33 20.03 0

0.07 0.29 0

0 0 0.27
G , ~131!

D̃5F 0.70 0.15 0

0.33 1.41 0

0 0 1.11
G . ~132!

Given that]^U1&/]x2 is the only nonzero velocity gradien
the symmetries in the problem dictate that the off-diago
components in the third rows and columns of these matr
are zero—as is observed. The magnitudes of all three c
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Velocity-acceleration auto-
covariancesRi j

ua(s) against normalized
time. Symbols, DNS of Sawford and
Yeung ~Ref. 16!; lines, from the ac-
celeration model.@Note that Ri j

au(s)
52Ri j

ua(s).#
at
u

se

s

DE
ficients are as expected from Eq.~54! given that the velocity
integral time scale isTL /t'0.3.

As discussed in Sec. III E, if local isotropy prevailed
high Reynolds number, then the acceleration statistics wo
be isotropic~to leading order inRl

21!. A sufficient condition
for the model to yield such local isotropy is thatB̃ andC̃ ~but
not C! ! become isotropic as the Reynolds number increa
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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It is evident from Eq.~130! that, at the moderate Reynold
number of the DNS,B̃2 exhibits significant anisotropy.

V. APPLICATION TO TURBULENCE MODELLING

The general model proposed here consists of an O
Eq. ~11! for the fluid-particle velocityU* (t), which includes
s
-

FIG. 3. Acceleration autocovariance
Ri j

aa(s) against normalized time. Sym
bols, DNS of Sawford and Yeung
~Ref. 16!; lines, from the acceleration
model.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. Velocity autocovariances
Ri j

uu(s) at early times. Symbols, DNS
data of Sawford and Yeung~Ref. 17!;
solid line, from the acceleration
model; dashed line, from the velocity
model ~Ref. 15!.
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a rapid-pressure model@Eq. ~15!#; and an SDE@Eq. ~12!# for
the acceleration variableA0(t). A specific model consists o
a specification of the coefficients appearing in these eq
tions, namely,Ni jk , Bi j , Ci j , andDi j .

Beyond proposing the general model, the objective h
is not to suggest a specific model, but rather to show tha
of the coefficients can be deduced from DNS data on ho
geneous turbulence. Hence, future DNS studies—at diffe
Reynolds numbers and with different imposed mean velo
gradients—can be used to guide the construction of a spe
model.

As outlined in the following subsections, the accele
tion model can be used at different levels of turbulence m
eling. In each case, the turbulent time scalet is needed,
which can be obtained from the standard model equation
e or v[t21, or from particle models for such quantities.30,34

A. Velocity–acceleration–wave-vector model

In addition to the model equations forU* (t) andA0(t),
an additional SDE can be solved for the unit wave vec
e* (t) ~Refs. 9 and 21!, so that Eq.~18! can be used as th
rapid-pressure model. Such a model has the virtue of re
senting exactly the evolution of the Reynolds stresses
arbitrary rapid distortions of homogeneous turbulence.
though it has not been convincingly demonstrated, the mo
should also be capable of providing a more accurate re
sentation of the rapid pressure away from the rapid-distor
limit.

B. Velocity–acceleration model

Without the wave-vector model, the rapid pressure ha
be modeled in terms of the particle velocity and Reyno
stresses~among other quantities!. The standard model@Eq.
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~19!# is linear in the velocity, but nonlinear models@e.g., Eq.
~24!# can also be considered. It has to be acknowledged t
at this level of closure, there is insufficient directional info
mation to model accurately rapid distortions. But such mo
els may be adequately accurate for the moderate distort
that typically occur in turbulent shear flows.

Compared to a velocity model~discussed in the nex
section!, a velocity-acceleration model has two advantag
First, in essence it models the velocity as a second-o
system, Eq.~29!, rather than as a first-order system. Con
quently, the rapid and slow responses of the turbulence
sudden change in the mean velocity gradients can be m
eled in a natural way. The second advantage is that acce
tion is modeled realistically rather than as white noise, a
thereby Reynolds number effects can be incorporated
natural way.

An apparent disadvantage is that, in a numerical imp
mentation, time stepsDt of orderta ~or equivalentlyth! are
needed to resolve the acceleration time series; whereas
a velocity model the time steps can be of orderTL ~or
equivalentlyt!. With time steps of orderth , the computa-
tional cost increases as Re1/2. However, in most applications
the details of the short-time behavior are not required, a
temporal resolution on a time scale of ordert is sufficient. It
is fortunate, therefore, that the model equations can
solved accurately by numerical methods that take time s
Dt that are large compared toth ~but small compared tot!.
This is because the model coefficients vary on the time s
t, and the model equations@e.g., Eq.~25! and Eq.~26!# with
frozen coefficients admit analytic solutions. Consequently
resolution on the Kolmogorov time scale is not required,
velocity-acceleration model can be implemented with a co
putational cost that is independent of Reynolds number.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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C. Velocity model

Given a specific velocity-acceleration model, a cor
sponding velocity model can be defined—as now outline

When applied to~approximately! self-similar homoge-
neous turbulence~at a given Reynolds number and wi
given imposed mean velocity gradients!, the velocity-
acceleration model yields a value of the normalized R
nolds stress tensor (Quu) and of the velocity integral time
scale tensor (T̂uu). The corresponding velocity model is de
fined to be the linear SDE for velocity that yields these sa
statistics. The drift and diffusion coefficients in the veloc
model are uniquely determined byQuu and T̂uu.15

@This procedure for determining the velocity-model c
efficients is straightforward to implement numerically; but
analytical treatment is hampered by the lack of an expl
solution to Eq.~122! for Q.#

The form of the velocity model thus obtained is the sa
as the generalized Langevin model~GLM7,9! but with an
anisotropic diffusion coefficient. The advantage of obtain
a velocity model by this route is that it inherits the Reynold
number dependence~and other attributes! of the velocity-
acceleration model. At very high Reynolds number the
celeration model tends to the GLM with isotropic diffusio
Eq. ~67!, and with the coefficientGi j given by Eq.~71!.

D. Reynolds-stress model

Given a particle model for velocity, it is straightforwar
to derive a corresponding Reynolds-stress equation.10,20,35

Again, such a model inherits from its antecedents
Reynolds-number dependence and other attributes.

VI. CONCLUSIONS

We have considered a stochastic model for fluid-part
velocity and acceleration in inhomogeneous turbulent flo
The model consists of an ODE for velocity, Eq.~11!, and an
SDE for an acceleration variable, Eq.~12!. This structure
produces the correct qualitative response to rapid distorti
If the model is supplemented by the wavevector equat
then the resulting model@Eq. ~15! and Eq.~18!# is exact for
arbitrary rapid distortions of homogeneous turbulence. O
erwise, a standard linear model, Eq.~19!, for the rapid pres-
sure can be used.

For isotropic turbulence, the SDE for acceleration
duces to Sawford’s model.12 For very high Reynolds
number the model is consistent with local isotropy a
the Kolmogorov hypotheses, and tends to the general
Langevin model for velocity. For homogeneous turbulen
~with constant and uniform imposed mean velocity gra
ents! a full analysis of the model is performed. This esta
lishes the one-to-one correspondence between the mode
efficient tensorsB, C, andD and the primary statistics of th
model, namely, the velocity-acceleration covariances and
velocity integral time scale tensor. Details are given in S
IV B 6. For homogeneous turbulence, the modeled proce
~i.e., the velocity and acceleration time series! are Gaussian
and hence are completely characterized by their autocov
ance, which is given explicitly by Eq.~121!. The Gaussianity
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of acceleration and of multitime velocity statistics is phy
cally incorrect, and reflects the fact that the model does
account for internal intermittency.

For homogeneous turbulent shear flow, the model co
ficients are evaluated from the DNS data of Sawford a
Yeung.17 The model autocovariances thus obtained~Figs.
1–4! are in excellent agreement with those from the DN
including the short-time~Kolmogorov scale! behavior~see
Fig. 4!.

Compared to a linear stochastic model for velocity, t
velocity-acceleration model has the advantage of providin
realistic representation of the behavior on the Kolmogo
time scale; and, as a consequence, of naturally incorpora
Reynolds-number effects. The purpose here has not bee
propose a specific model~i.e., a specification of the mode
coefficients!, but rather to show that these coefficients can
deduced from DNS of homogeneous turbulence, as funct
of the Reynolds number and of the imposed mean velo
gradients.

As discussed in Sec. V, the velocity-acceleration mo
can be used as a basis for generating a range of~Reynolds-
number dependent! PDF and Reynolds-stress turbulen
models.
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APPENDIX: SOLUTION FOR THE COVARIANCE
MATRIX

The purposes of this appendix are to derive Eq.~127!; to
show that the off-diagonal blocks ofE2 given by Eq.~122!
and Eq.~124! are zero; and to discuss the solution of E
~126! and Eq.~127! for the covariances.

The covariances are related to the derivatives of the
tocovariances at the origin, Eq.~96!. From the ODE for the
model autocovariance@Eq. ~111!# we obtain

F d

ds
R~s!G

s50

52FQ52F Ĉ D̂

2I 0
G FQaa Qau

Qua QuuG
5F2ĈQaa2D̂Qua 2ĈQau2D̂Quu

Qaa Qau G .

~A1!

The bottom row of this last matrix is consistent with the fir
two relations in Eq.~96!; while the consistency of the uppe
right block with the third relation in Eq.~96! yields

Qaa5ĈQau1D̂Quu, ~A2!

which is Eq.~127!.
The second derivative at the origin is

F d2

ds2 R~s!G
s50

5F2Q. ~A3!
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By expanding the right-hand side and invoking Eq.~97! we
obtain

2F d2

ds2 Ruu~s!G
s50

5Qaa5ĈQau1D̂Quu, ~A4!

which provides no new information, but is consistent w
Eq. ~A2!.

From Eq.~122! and Eq.~124!, we obtain for the upper
right block of E2,

~E2!au5ĈQau1D̂Quu2QaaT
~A5!

5Qaa2QaaT
50, ~A6!

where the second line follows from Eq.~A2! and the sym-
metry of Qaa.

We turn now to the solution of Eq.~126! and Eq.~127!
for Quu, Qaa, andQua given B̂, Ĉ, and D̂. Recall thatQuu

and Qaa are symmetric, whileQua is antisymmetric. Both
sides of Eq.~126! are identically symmetric, whereas th
right hand side of Eq.~127! is not identically symmetric.
Hence, together, these equations represent a linear syste
the components ofQuu, Qaa, Qua—with the same number o
independent equations as the number of independent
knowns, i.e., 15.

It is very unfortunate that there appears not to be
simple explicit solution for the covariances. It should be p
sible, however, to obtain an explicit solution using tens
representation theorems.36,37 That is, the covariance can b
written

Quu5 (
n51

Ns

r uu
~n!S~n!, Qaa5 (

n51

Ns

r aa
~n!S~n!,

~A7!

Qua5 (
n51

Na

r ua
~n!A~n!,

where $S(n)% is a complete set ofNs linearly independent
symmetric tensor functions that can be formed forB̂, Ĉ, and
D̂; and similarly$A(n)% is a complete set ofNa antisymmet-
ric tensors. The coefficients$r uu

(n)%, $r aa
(n)%, and$r ua

(n)% can then
be deduced from Eq.~126! and Eq.~127!: they are invariants
of B̂, Ĉ, and D̂. However such a solution is unlikely to b
simple ~or easy to obtain!.
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