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Stochastic Lagrangian models for the velocity following a fluid particle are used both in studies of
turbulent dispersion and in probability density functidPDF modeling of turbulent flows. A
general linear model is examined for the important case of homogeneous turbulent shear flow, for
which there are recent direct numerical simulatiPiNS) data on Lagrangian statistics. The model

is defined by a drift coefficient tensor and a diffusion tensor, and it is shown that these are uniquely
determined by the normalized Reynolds-stress and timescale tensors determined from DNS. With
the coefficients thus determined, the model yields autocorrelation functions in good agreement with
the DNS data. It is found that the diffusion tensor is significantly anisotropic—contrary to the
Kolmogorov hypotheses and conventional modeling—which may be a low-Reynolds-number effect.
The performance of two PDF models is also compared to the DNS data. These are the simplified
Lagrangian model and the Lagrangian isotropization of production model. There are significant
differences between the autocorrelation functions generated by these models and the DNS data.
© 2002 American Institute of Physic§DOI: 10.1063/1.1465421

I. INTRODUCTION For statistically stationary, homogeneous isotropic turbu-

. lence (with no mean velocity gradientshe only sensible
Homogeneous turbulent shear flow is of fundamentaly,qice of coefficients is

importance in the development of models for inhomoge-

neous turbulent flows. Both experimeh#d direct numeri- Sij

cal simulations(DNS)? of homogeneous shear flow have ii:T_L' 2

been performed in which Eulerian statistics of the turbulence

have been measured. More recently, a series of DNS studié¥!

has been performéd in which Lagrangian statistics have oy'2\ 12

been obtained by tracking a large number of fluid particles.  Bj; =(T—> Sij »

These studies clearly have direct relevance to stochastic La- L

grangian modefsof turbulence, which model the motion of whereT, is the Lagrangian integral timescale antis the

fluid particles as diffusion process@®., continuous Markov turbulence intensityi.e., the rms velocity fluctuationThen,

processes’ The purpose of this paper is to show the connecEq. (1) reduces to an independent Langevin equation for

tion between the Lagrangian velocity autocovariance tensogach component of velocity

obtained from DNS and stochastic Lagrangian models for 2

fluid particle velocity. du=— uiﬂ + ( 2u’”
Stochastic Lagrangian models for the velocity of a fluid T T

particle arise in two different contexts: turbulent This model dates back to Taylor's 1921 original paper on

. . -10 o . .
d|spersi(i>|fé7 and probability density function(PDP turbulent dispersiofi.The autocorrelation function given by
models.~~="In both cases the general form of the modeIsEq_ 4) is

considered\when applied to homogeneous turbulencan
be written as the linear stochastic differential equati®bDE) p(s)=(uy(t)u (t+s))u'?=exp —|s|/T,), 5

()

1/2
o

which agrees well with DNS dat&(except at small values of
dulz_A”U]dt‘l‘B”dV\lj, (1) |S|/TL)
The central issue addressed here is the appropriate speci-

wheredu(t)=u(t+dt) —u(t) is the infinitesimal increment fication of A and B in homogeneous turbulent shear flow.
of the fluctuating component of velocity(t) following the  This has been considered in the context of turbulent disper-
fluid particle; we refer toA(t) as the drift tensorB(t) is the  sion by Sawford and Yeurfty These authors compared La-
diffusion coefficient; anddW(t) is the infinitesimal incre- grangian autocorrelations predicted by two dispersion mod-
ment of a vector-valued Wiener process which has the propels to DNS data. Both of these models t&kéo be isotropic.

erties(dW) =0, (dW; dW;)=dt¢;; . Different models corre- We show here that appropriate valuestoéindB can be
spond to different specifications of the drift tenggft) and  deduced from the measured Lagrangian velocity autocovari-
diffusion coefficientB(t). ance, and that the resulting model is in good agreement with
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the DNS data. This agreement supports the nontrivial con-
clusion that the Lagrangian velocity is well represented by a
linear diffusion procesgexcept over small time intervals
The deduced value @ is significantly anisotropic.

The performance of two models used in PDF methods is
compared to the DNS data. These are the simplified Lange-
vin model (SLM) and the Lagrangian isotropization of pro-
duction (LIPM) model*

Il. HOMOGENEOUS TURBULENT SHEAR FLOW

In homogeneous turbulent shear flow, the imposed mean
velocity gradient is

aU;)
ox;

=8616)2, (6) 0 05 1 15 2
S

whereS is the (constantimposed mean shear rate. The tur-
bulence is characterized by the Reynolds stress tens@itG. 1. Autocorrelation functiong;;(s), Eq. (14), from the DNS data of
(uu;), the turbulent kinetic energk=3(u;u;), and the Sawford and YeungRer. 5.
mean dissipation rate All of these quantities are uniform in
space and evolve in time. R

An essential observation from experiments and DNS is  The autocovariance ai(t) is
that, after an initial transient, the turbulence tends to an ap-

proximately self-similar state. The normalized Reynolds- Rij(8)=(Gi(H0;(t+9)), (12)
stress tensor which (in view of the assumed stationarjtis independent of
(uu;) t; and the scaled Reynolds stress is
Cij= K (7)

. u;u;

_ <0i(t)0j(t)>:Cij:Rij(0):¥,
becomes constant, as does the ratio of turbulence-to-shear

timescalesSk/e, and hence also the ratio of productiBrto
dissipations. The turbulent kinetic energy equation then dic-
tates thatk and ¢ increase exponentially with time—as is
observed. Thus when normalized kyand e, quantities per- Ifeij(s)z ﬁji(—s). (13
taining to the energy-containing scales of the turbulence are
self-similar. Since the Reynolds numblet/(sv) increases

(12

which is constant. Note thatnlike C;;) Ifeij(s) is not sym-
metric, although it has the property

It is conventional to define autocorrelation functions by

with time, small-scale quantities are not self-similar under ﬁ%ij(s)
this scaling. pij(S) =~ (14
9 P IChHnHCH]

The DNS of Sawford and Yeufig are performed from
the nondimensional tim&t=0 until St=20. The fluid par- (Where bracketed suffixes are excluded from the summation
ticles are introduced aft=4 when the self-similar state has convention so that the diagonal components @f(0) are
been attained. The valusk/s =4.83 andP/e =1.54 are de- unity. These autocorrelation functions obtained from the
duced from the values df and(u;u,) from St=4 until St ~ DNS are shown in Fig. 1(Note that, by symmetryp,;

=20; and the average value of the normalized Reynolds P32=0.) . o
stress tensor over this time interval is The analysis below shows that a preferable definition of

the autocorrelations is
096 —-032 O

c—|-032 043 o] ®) Rij(8)=Ci\'Ryj(9), (15
0 0 0.61 whereC;, ' denotes thé-k component of the inverse .
) , ) Unlike p;;, R;j is a tensor, and at the origin it is
We introduce the normalized time
Rij(0)=4j; . (16)

&

tE’ 9) These autocorrelation functions obtained from the DNS are
_ _ _ _ ~ shown in Fig. 2[There is a small inconsistency in the ex-

and the scaled fluctuating velocity following a fluid particle traction of numerical values from the DNS::”. is obtained

i=

. u(t) as an average fror§t=4 to St=20, Whereasf?ij(O) is ob-
act)= KO T2 (100 tained atSt=4. As a consequence, as may be seen in Fig. 2,

the numerical values do not satisfy HG6) exactly]
Consistent with the self-similar state of the turbulence, we Based onR;;(s), we define the(normalized integral

assume thaii(t) is a statistically stationary process. timescales by

Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1698 Phys. Fluids, Vol. 14, No. 5, May 2002 Stephen B. Pope

By post-multiplying both sides of this equation By !, we
find thatR(s) [defined by Eq(15)] satisfies the same equa-
tion

dR”

ds
with the simple initial conditiorR™(0)=1. The solution to
this equation(satisfying the initial conditionis'®

0 _1 n
RT(s)=exp —As)= >, =1

n=0

=—ART, for s=0, (22

A"s",  for s=0,

(23

as may be verified by differentiating with respectstadt has
been assumed that the eigenvaluesAohave positive real

0 0.5 ; 1.5 2 parts, which is a sufficient condition for expfs) to con-
verge to zero as tends to infinity.
FIG. 2. Autocorrelation function&;;(s), Eq. (15), from the DNS data of In th(.a case thah hE.iS linearly independent eigenvectors
Sawford and YeungRef. 5. the solution can be written
RT(s)=Vexp —As)V~1, for s=0, (24)
» and similarly forR
T”Ej R”(S)ds (17) R
0 R(s)"=Vexp —As)V~iC, for s=0. (25)
The values deduced from the DNS data are Thus each component of the autocovariance is a linear com-
044 —-006 O bination of three decaying exponentials—decaying because
_ the eigenvalues are required to be positive.
T=| 011 022 0l (18) For the autocorrelation timescal€g,[Eq. (17)] we ob-
0 0 0.24 tain
lll. STOCHASTIC MODEL TT= foT(S)dSZ f exg( —As)ds=A"1, (26)
0 0

The stochastic model considered is Ef) written for

a(t). Itis convenient to use matrix notation, and so the equa- 1€ conclusion from this development is that the matrix

tion is written of autocorrelation timescal&sof the procesﬁ(f) generated
R R by the stochastic model E4L9) is uniquely determined by
do=—Ad dt+BdwW, (190 the drift matrixA as
where (dW dWT)=1dt, with | being the identity, andr T=(A"YHT. (27)

denoting the transpose.

The drift matrix A is constant and it is required that its
eigenvalues have positive real parts. The valué deduced
from the DNS(below) has the simplest structure—real posi-
tive eigenvalues and independent eigenvectors. In thiskase

This conclusion depends on the eigenvaluesAohaving
positive real parts.

B. Covariance

can be decomposed as It follows from Eg. (19) that the covariancé:=(00T)
A=VAV-L (20) evolves by
where the columns o are the eigenvectors &, andA is (jj_ct:: —AC—-CAT+BB". (28

the diagonal matrix of eigenvalues.

_ The diffusion coefficient matriB is also constant and, Given thatB is symmetric and that the process is stationary,
without loss of generality,we take it to be symmetricR  this leads to the relation
=B").
) B2=AC+CA". (29
A. Autocorrelation function
. . . C. Specification of stochastic model coefficients
It is readily deduced from Eq19) that the autocovari- P

ance matrixR(s) [Eq. (11)] satisfies the ordinary differential Can the model coefficients andB be chosen so that the

equation autocovariancef{(s) from the model matches that obtained
. from DNS of homogeneous turbulent shear flow? Clearly the
d_RT_ _ART  for s=0 21) answer is “no,” since the empirical autocovariances will not

ds ’ e be of the simple form implied by the model—i.e., sums of

Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 14, No. 5, May 2002 Stochastic Lagrangian models of velocity 1699

that at some later times the model value exceeds the DNS
value. Given these inevitable differences, the agreement be-
tween the model and the DNS is as good as could be ex-
pected. In particular the model captures the difference be-
tweenpq; and the other two diagonal componeftushich are
nearly equat and the differences between, andp,; .

IV. GENERALIZED LANGEVIN MODEL

In PDF methods, the stochastic Lagrangian model for
velocity that is employed is the generalized Langevin model
(GLM).2127Applied to homogeneous turbulence, the model
for u(t) is

' : : U
0 05 : 15 2 duj=— ;X|>ujdt+Gijujdt+(C08)1/2dV\/i, (34)
j

FIG. 3. Comparison of autocorrelation functions(s), Eq. (14), from the where the_ _ConStam:O is generally ascribed the value 2.1.
DNS data(symbol3 and from the stochastic modéines) with coefficients ~ The coefficientG;; can depend ofu;u;), £ andd(U;)/dx; :

determined from the dafdq. (32) and Eq.(33)]. (p, circles and solid line; - two particular specifications db;; are considered below.

Pas sauares and dashed line. The transformation of Eq(34) to an SDE fordi(t) re-
sults in the general stochastic model, EfQ), with coeffi-

three exponentials. Nevertheless, the preceding analysfi€nts

shows thatA andB can be chosen to match the covariafice 1(P k o(U;)  k
and the timescale$. Specifically, giverT, A is determined Aj=5l5 it s o 2 Cil (35
by :
and
A=(THT (30)
_ . . Bij=Cq?5; . (36)

[see Eq(27)]; thenB is determined as the symmetric square
root of Equation (35 can be rearranged to yield the value of

B2= AC+ CAT 31) (k/e)G;; implied by the DNS:

—-2.18 3.59 0

[see Eq(29)]. Evidently this specification requires thatbe k
nonsingular. An additional requirement is tHatand C be ;G=| ~065 —463 0 | (37)
such thatB? given by Eq.(31) is positive semi-definite. 0 0 —3.95

For the values ofC and T obtained from the DNS of
homogeneous turbulent shear flow, the valueé\aind B2
obtained from Eq(30) and Eq.(31) are

SinceB is found to be anisotropic—as discussed further in
the next subsection—no choice Gf in Eq. (36) yields the
correct diffusion coefficient. Nevertheless, the magnitude of

245 124 0 the diffusion is characterized by
A=[065 490 O |, (32 Eo=1 traceB?), (39)
0 0 422

the value of which deduced from the DNS @ =4.3. By
comparison, the standard model E@6) yields Co=C,
390 —-118 O =21

B2=| -1.18 384 0. (33
0 0 514

and

A. Anisotropy of the diffusion coefficient

The GLM, and also dispersion models, take the diffusion
coefficientB to be isotropic, Eq(36). The reason generally
advanced for this specification is consistency with the Kol-

Figure 3 shows the comparison between the autocorrelanogorov hypotheses. Fgdimensional time intervalss in
tion functionsp;;(s) obtained from DNS compared to those the inertial subranges,<s<kl/e (wherer, is the Kolmog-
from the mode[with coefficients given by Eq.32) and Eq.  orov timescalg the Kolmogorov hypotheses predict that the
(33)]. Inevitably there are qualitative differences at the ori-second-order Lagrangian structure function is isotropic and
gin. Forp,,, for example, trzle DNS value departs from unity linear ins, i.e.,
at the origin as + s)~s“, whereas the model departs as
1—p11(S)g~|S|. Thfi);l(le)ads to the model values pfi(s) ([uit+s)=uO]luj(t+s)—uj(])=Coesdy, (39
being below the DNS values at small times; and then, fronwhereC, is a Kolmogorov constant. The GLM vyields pre-
the matching of the integral timescales, it is not surprisingcisely this results iiCy is taken to be’,.

D. Comparison of autocorrelation functions
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0.5 TABLE |. Values of the mean timescal'éz% tracdT), the normalized
al Reynolds stres€;; , and the turbulence-to-shear timescale r&kde from
0. the DNS of Sawford and Yeun¢Ref. 5 and from SLM and LIPM for
0.3l different values ofCy and a, .
0.2r DNS SLM SLM LIPM LIPM
01 Co - 2.1 3.4 2.1 4.4
N o, - - - 35 11.9
< Or T 0.30 0.43 0.30 0.63 0.30
01t Cyy 0.96 1.10 0.98 1.02 1.02
) Cy 0.43 0.45 0.51 0.49 0.49
-0.2} Cas 0.61 0.51 0.51 0.49 0.49
Cpo —0.32 —0.39 —0.34 —0.36 —0.36
-0.31 Skle 4.83 4.02 4.47 4.28 4.28
_0_4_
0555 0.6
1 3 €
FIG. 4. The scaled tensoB? andC shows as ellipses in the — X, plane. Gij=—|3+ ZCO kK Sij (40

The dot-dashed line iziijHZ:(C”)’z, and the solid line is the corre- ) )
sponding ellipse foB2. Shown for reference are dashed lines at 0°, 45°, SO that the matriXA [Eq. (35)] is
90°, and 135°.

AN o O
A=|0 N Of, (42)
However, the value oB? deduced from the DNS is de- 0 0 A
cidedly anisotropic: the eigenvalues Bf (which are all with
equal toCy= 2.1 in the GLM are found to be 2.69, 5.06, and
5.14. It is possible that this anisotropy is a Reynolds-number =1 E+ EC 42)
effect, which vanishes at sufficiently high Reynolds number. T 2g 470

This possibility could be investigated through DNS at differ-
ent Reynolds numbers. and

It is also possible that the anisotropy in the deduced o=Skl/s.
value of B? persists at high Reynolds numbers, not becaus% _ .
the Kolmogorov hypothesifEq. (39)] is incorrect, but be- =" idently all three elgenvalues @ are equal to,, and tP €
cause the stochastic Lagrangian model, Etp), is too eigenvectors are not independent—two are equgl @0] .

simple to represent the multi-timescale aspects of anisotropfeonsequently, the autocovarianBgs) is not given by Eq.

turbulence. (25), but instead the solution to EQY) is
Givgn the ob;grva_ttion th&? is anisotropic, it is natural Cy—0sCy, Cpp O
to consider modifications to the GLM to incorporate such . | e c 0
anisotropy. The natural way to introduce anisotropy in the R(s)=e 2-05C Ca ' (43)
model is to make the diffusion coefficient dependent on the 0 0 Caj

normalized Reynolds stress€sBut any such model implies
that the principal axes @2 andC are aligned, which is not
supported by the data. Figure 4 shows the ellipses irnxthe
—X, plane corresponding to the tensd@$ andC. The mis-
alignment of the principal axes is evident. In fact, to within
1°, the minor axis oB? is aligned with the major axis of the
mean rate-of-stain tens&(i.e., the 45° linex,=x;). Hence
an anisotropic model faB? could be constructed based 8n
that is consistent with the DNS data. More data—from dif-
ferent flows and at different Reynolds numbers—are needegO
before an anisotropic model f@° of any generality can be
constructed.

Given a specified value o€, and the DNS value of
Ple, Eq. (31) can be solved to determine the normalized
Reynolds stresseS given by SLM in homogeneous turbu-
lent shear flow, and then the autocovariances can be evalu-
ated from Eq(43). We consider two values @,: the stan-
dard valueCy=2.1; and the valuec,=3.4 for which the
SLM timescalex ~! matches the average DNS timescale
=t trace(T). The values ofC obtained are shown in Table .

The autocorrelationg;;(s) obtained withCy=3.4 are
mpared to the DNS data in Fig. 5. As expected, the agree-
ment is much better with the timescales match€gd= 3.4)
than otherwisg(Cy=2.1, not showh The model correctly
predicts the equality gb,, andps5 and their distinction from
p11, but the quantitative agreement is noticeably poorer than

In this and the next subsection we examine two specifién Fig. 3.
forms of the generalized Langevin model, corresponding to  The model predicts a more substantial difference be-

B. Simplified Langevin model

particular specifications d&;; . tweenpq5(S) and p,4(s) than is evident in the DNS—a be-
For the simplified Langevin modeglSLM) considered havior which is easily understood. The only off-diagonal
here, the specification is term[o in Eq. (41)] enters the SDE for velocity as
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0 0.5

1.5 2 0 05 1 1.5 2
S

n -f

FIG. 5. Comparison of autocorrelation functigng(s), Eq.(14), rom DNS  FIG. 6. Comparison of autocorrelation functign(s), Eq.(14), from DNS
(symbolg and from SLM withCy=3.4. (For SLM, py,=pas3.) (symbols and from LIPM withCy=4.4 anda,=11.9(lines). Dashed lines,
p12 andpss; solid lines,p,;, andpy,.

di,=-— S—kuz dt.... (44) DNS value; see Table |. As a consequence, the m(wigh

& Cp=2.1) produces autocorrelations;(s) (not shown in
Thus large positivéor negative values of(l, tend to lead to  very poor agreement with the DNS data.
large negative(or positive values of(i; after a time lag. To provide a more meaningful comparison, the constants
Thus the peak correlatiowﬂz(f)ﬁl(f+s)>|—or equiva- Co and«, are adjusted to match the average timescale, while
lently the minimum ofp,4(S)—occurs for a positive value of leaving the normalized Reynolds stresses the same. The au-
s. The model overestimates this effect, because it takes n@correlations given by LIPM with these value§,=4.4,

account of rapid pressure fluctuations which tend to counter®z=11.9 are compared to the DNS data in Fig. 6. The

act the effects of mean shear. agreement is quite poor. Except at small timpgy(s) is
incorrectly predicted to be larger thans(s); and evidently

C. Lagrangian isotropization of production model the effect of the rapid pressure is overpredicted as there is

(LIPM) little difference betweem,(S) and p,(S).

This last point can be seen directly in the matAx
14,7
The LIPM™™' corresponds closely to the Launder, Reecewhich for LIPM is

and Rodt® Reynolds-stress model. Using standard values for

the model constantg; _; andy,_¢, the LIPM equation for 286 199 O
Gis A=|221 611 0], (48)
EG=a1I + a,(b—3b?) 0 0 448
€ The direct effect of shear appears in the 1-2 component, and
3 4 3 in SLM the 2—1 component is zero. k deduced from the
- §b12 gt gbn 0 DNS datd Eq. (32)], A,; as about half ofA;,; but for LIPM
Sk A21 exceedﬁlz.
+— _E_%b §b ol (45)
°l 5 5”2 B°w V. CONCLUSIONS
0 0 0 As previously observed by Sawford and YefiRgn the
whereb is the anisotropy tensor context of turbulent dispersion, Lagrangian data from DNS
of homogeneous turbulence is valuable in the development
b= EC— EI (46) and testing of stochastic Lagrangian models. After an initial
2° 37 transient, homogeneous turbulent shear becofapproxi-
the standard value of the constamf is a,=3.5, and the mately self-similar, so that Athe appropriately scaled La-
coefficienta; is given by grangian velocity fluctuatiofi(t) becomes a statistically sta-
tionary random process.
= E+ ECo + i 7—)+3a2trace(b3). (47 The stochastic Lagrangian model consideredid is
2 4 10e the diffusion process Edq19) in which the drift coefficient

With the standard valu€,=2.1, the model yields rea- depends linearly ofi(t) through the drift matrixA, and the
sonable values of the normalized Reynolds stresses, but tfianisotropi¢ diffusion coefficientB is constant. An analysis
average time scal@=3 trace(T) is more than twice the of this model shows that there is a unique specificatioA of
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