
PHYSICS OF FLUIDS VOLUME 14, NUMBER 5 MAY 2002
Stochastic Lagrangian models of velocity in homogeneous
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Stochastic Lagrangian models for the velocity following a fluid particle are used both in studies of
turbulent dispersion and in probability density function~PDF! modeling of turbulent flows. A
general linear model is examined for the important case of homogeneous turbulent shear flow, for
which there are recent direct numerical simulation~DNS! data on Lagrangian statistics. The model
is defined by a drift coefficient tensor and a diffusion tensor, and it is shown that these are uniquely
determined by the normalized Reynolds-stress and timescale tensors determined from DNS. With
the coefficients thus determined, the model yields autocorrelation functions in good agreement with
the DNS data. It is found that the diffusion tensor is significantly anisotropic—contrary to the
Kolmogorov hypotheses and conventional modeling—which may be a low-Reynolds-number effect.
The performance of two PDF models is also compared to the DNS data. These are the simplified
Lagrangian model and the Lagrangian isotropization of production model. There are significant
differences between the autocorrelation functions generated by these models and the DNS data.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1465421#
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I. INTRODUCTION

Homogeneous turbulent shear flow is of fundamen
importance in the development of models for inhomog
neous turbulent flows. Both experiments1 and direct numeri-
cal simulations~DNS!2 of homogeneous shear flow hav
been performed in which Eulerian statistics of the turbule
have been measured. More recently, a series of DNS stu
has been performed3–5 in which Lagrangian statistics hav
been obtained by tracking a large number of fluid particl
These studies clearly have direct relevance to stochastic
grangian models6 of turbulence, which model the motion o
fluid particles as diffusion processes~i.e., continuous Markov
processes!.7 The purpose of this paper is to show the conn
tion between the Lagrangian velocity autocovariance ten
obtained from DNS and stochastic Lagrangian models
fluid particle velocity.

Stochastic Lagrangian models for the velocity of a flu
particle arise in two different contexts: turbule
dispersion;8–10 and probability density function~PDF!
models.11,12,7 In both cases the general form of the mod
considered~when applied to homogeneous turbulence! can
be written as the linear stochastic differential equation~SDE!

dui52Ai j uj dt1Bi j dWj , ~1!

wheredu(t)[u(t1dt)2u(t) is the infinitesimal incremen
of the fluctuating component of velocityu(t) following the
fluid particle; we refer toA(t) as the drift tensor;B(t) is the
diffusion coefficient; anddW(t) is the infinitesimal incre-
ment of a vector-valued Wiener process which has the p
erties^dW&50, ^dWi dWj&5dtd i j . Different models corre-
spond to different specifications of the drift tensorA(t) and
diffusion coefficientB(t).
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For statistically stationary, homogeneous isotropic turb
lence ~with no mean velocity gradients! the only sensible
choice of coefficients is

Ai j 5
d i j

TL
, ~2!

and

Bi j 5S 2u82

TL
D 1/2

d i j , ~3!

whereTL is the Lagrangian integral timescale andu8 is the
turbulence intensity~i.e., the rms velocity fluctuation!. Then,
Eq. ~1! reduces to an independent Langevin equation
each component of velocity

dui52ui

dt

TL
1S 2u82

TL
D 1/2

dWi . ~4!

This model dates back to Taylor’s 1921 original paper
turbulent dispersion.8 The autocorrelation function given b
Eq. ~4! is

r~s![^u1~ t !u1~ t1s!&/u825exp~2usu/TL!, ~5!

which agrees well with DNS data13 ~except at small values o
usu/TL!.

The central issue addressed here is the appropriate s
fication of A and B in homogeneous turbulent shear flow
This has been considered in the context of turbulent disp
sion by Sawford and Yeung.4,5 These authors compared La
grangian autocorrelations predicted by two dispersion m
els to DNS data. Both of these models takeB to be isotropic.

We show here that appropriate values ofA andB can be
deduced from the measured Lagrangian velocity autocov
ance, and that the resulting model is in good agreement w
6 © 2002 American Institute of Physics
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the DNS data. This agreement supports the nontrivial c
clusion that the Lagrangian velocity is well represented b
linear diffusion process~except over small time intervals!.
The deduced value ofB is significantly anisotropic.

The performance of two models used in PDF method
compared to the DNS data. These are the simplified Lan
vin model ~SLM! and the Lagrangian isotropization of pro
duction ~LIPM! model.14

II. HOMOGENEOUS TURBULENT SHEAR FLOW

In homogeneous turbulent shear flow, the imposed m
velocity gradient is

]^Ui&
]xj

5Sd i1d j 2 , ~6!

whereS is the ~constant! imposed mean shear rate. The tu
bulence is characterized by the Reynolds stress te
^uiuj&, the turbulent kinetic energyk[ 1

2^uiui&, and the
mean dissipation rate«. All of these quantities are uniform in
space and evolve in time.

An essential observation from experiments and DNS
that, after an initial transient, the turbulence tends to an
proximately self-similar state. The normalized Reynold
stress tensor

Ci j [
^uiuj&

k
~7!

becomes constant, as does the ratio of turbulence-to-s
timescales,Sk/«, and hence also the ratio of productionP to
dissipation«. The turbulent kinetic energy equation then d
tates thatk and « increase exponentially with time—as
observed. Thus when normalized byk and«, quantities per-
taining to the energy-containing scales of the turbulence
self-similar. Since the Reynolds numberk2/(«n) increases
with time, small-scale quantities are not self-similar und
this scaling.

The DNS of Sawford and Yeung4,5 are performed from
the nondimensional timeSt50 until St520. The fluid par-
ticles are introduced atSt54 when the self-similar state ha
been attained. The valuesSk/«54.83 andP/«51.54 are de-
duced from the values ofk and ^u1u2& from St54 until St
520; and the average value of the normalized Reyno
stress tensor over this time interval is

C5F 0.96 20.32 0

20.32 0.43 0

0 0 0.61
G . ~8!

We introduce the normalized time

t̂[t
«

k
, ~9!

and the scaled fluctuating velocity following a fluid partic

û~ t̂ ![
u~ t !

k~ t !1/2. ~10!

Consistent with the self-similar state of the turbulence,
assume thatû( t̂ ) is a statistically stationary process.
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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The autocovariance ofû( t̂ ) is

R̂i j ~s![^ûi~ t̂ !û j~ t̂1s!&, ~11!

which ~in view of the assumed stationarity! is independent of
t̂ ; and the scaled Reynolds stress is

^ûi~ t !û j~ t !&5Ci j 5R̂i j ~0!5
^uiuj&

k
, ~12!

which is constant. Note that~unlike Ci j ! R̂i j (s) is not sym-
metric, although it has the property

R̂i j ~s!5R̂j i ~2s!. ~13!

It is conventional to define autocorrelation functions b

r i j ~s![
R̂i j ~s!

@C~ i !~ i !C~ j !~ j !#
1/2 ~14!

~where bracketed suffixes are excluded from the summa
convention! so that the diagonal components ofr i j (0) are
unity. These autocorrelation functions obtained from t
DNS are shown in Fig. 1.~Note that, by symmetry,r23

5r3250.!
The analysis below shows that a preferable definition

the autocorrelations is

Ri j ~s![Cik
21R̂k j~s!, ~15!

whereCik
21 denotes thei -k component of the inverse ofC.

Unlike r i j , Ri j is a tensor, and at the origin it is

Ri j ~0!5d i j . ~16!

These autocorrelation functions obtained from the DNS
shown in Fig. 2.@There is a small inconsistency in the e
traction of numerical values from the DNS:Ci j is obtained
as an average fromSt54 to St520, whereasR̂i j (0) is ob-
tained atSt54. As a consequence, as may be seen in Fig
the numerical values do not satisfy Eq.~16! exactly.#

Based onRi j (s), we define the~normalized! integral
timescales by

FIG. 1. Autocorrelation functionsr i j (s), Eq. ~14!, from the DNS data of
Sawford and Yeung~Ref. 5!.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Ti j [E
0

`

Ri j ~s!ds. ~17!

The values deduced from the DNS data are

T5F 0.44 20.06 0

20.11 0.22 0

0 0 0.24
G . ~18!

III. STOCHASTIC MODEL

The stochastic model considered is Eq.~1! written for
û( t̂ ). It is convenient to use matrix notation, and so the eq
tion is written

dû52Aû d t̂1B dŴ, ~19!

where ^dŴ dŴT&5I dt, with I being the identity, andT
denoting the transpose.

The drift matrixA is constant and it is required that i
eigenvalues have positive real parts. The value ofA deduced
from the DNS~below! has the simplest structure—real pos
tive eigenvalues and independent eigenvectors. In this caA
can be decomposed as

A5VLV21, ~20!

where the columns ofV are the eigenvectors ofA, andL is
the diagonal matrix of eigenvalues.

The diffusion coefficient matrixB is also constant and
without loss of generality,7 we take it to be symmetric (B
5BT).

A. Autocorrelation function

It is readily deduced from Eq.~19! that the autocovari-
ance matrixR̂(s) @Eq. ~11!# satisfies the ordinary differentia
equation

dR̂T

ds
52AR̂T, for s>0. ~21!

FIG. 2. Autocorrelation functionsRi j (s), Eq. ~15!, from the DNS data of
Sawford and Yeung~Ref. 5!.
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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By post-multiplying both sides of this equation byC21, we
find thatR(s) @defined by Eq.~15!# satisfies the same equa
tion

dRT

ds
52ART, for s>0, ~22!

with the simple initial conditionRT(0)5I . The solution to
this equation~satisfying the initial condition! is15

RT~s!5exp~2As!5 (
n50

`
~21!n

n!
Ansn, for s>0,

~23!

as may be verified by differentiating with respect tos. It has
been assumed that the eigenvalues ofA have positive real
parts, which is a sufficient condition for exp(2As) to con-
verge to zero ass tends to infinity.

In the case thatA has linearly independent eigenvecto
the solution can be written

RT~s!5V exp~2Ls!V21, for s>0, ~24!

and similarly forR̂

R̂~s!T5V exp~2Ls!V21C, for s>0. ~25!

Thus each component of the autocovariance is a linear c
bination of three decaying exponentials—decaying beca
the eigenvalues are required to be positive.

For the autocorrelation timescales,T @Eq. ~17!# we ob-
tain

TT[E
0

`

RT~s!ds5E
0

`

exp~2As!ds5A21. ~26!

The conclusion from this development is that the mat
of autocorrelation timescalesT of the processû( t̂ ) generated
by the stochastic model Eq.~19! is uniquely determined by
the drift matrixA as

T5~A21!T. ~27!

This conclusion depends on the eigenvalues ofA having
positive real parts.

B. Covariance

It follows from Eq. ~19! that the covarianceC5^ûûT&
evolves by

dC

dt
52AC2CAT1BBT. ~28!

Given thatB is symmetric and that the process is stationa
this leads to the relation

B25AC1CAT. ~29!

C. Specification of stochastic model coefficients

Can the model coefficientsA andB be chosen so that th
autocovarianceR̂(s) from the model matches that obtaine
from DNS of homogeneous turbulent shear flow? Clearly
answer is ‘‘no,’’ since the empirical autocovariances will n
be of the simple form implied by the model—i.e., sums
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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three exponentials. Nevertheless, the preceding ana
shows thatA andB can be chosen to match the covarianceC
and the timescalesT. Specifically, givenT, A is determined
by

A5~T21!T ~30!

@see Eq.~27!#; thenB is determined as the symmetric squa
root of

B25AC1CAT ~31!

@see Eq.~29!#. Evidently this specification requires thatT be
nonsingular. An additional requirement is thatT and C be
such thatB2 given by Eq.~31! is positive semi-definite.

For the values ofC and T obtained from the DNS of
homogeneous turbulent shear flow, the values ofA and B2

obtained from Eq.~30! and Eq.~31! are

A5F 2.45 1.24 0

0.65 4.90 0

0 0 4.22
G , ~32!

and

B25F 3.90 21.18 0

21.18 3.84 0

0 0 5.14
G . ~33!

D. Comparison of autocorrelation functions

Figure 3 shows the comparison between the autocorr
tion functionsr i j (s) obtained from DNS compared to thos
from the model@with coefficients given by Eq.~32! and Eq.
~33!#. Inevitably there are qualitative differences at the o
gin. Forr11, for example, the DNS value departs from un
at the origin as 12r11(s);s2, whereas the model departs
12r11(s);usu. This leads to the model values ofr11(s)
being below the DNS values at small times; and then, fr
the matching of the integral timescales, it is not surpris

FIG. 3. Comparison of autocorrelation functionsr i j (s), Eq. ~14!, from the
DNS data~symbols! and from the stochastic model~lines! with coefficients
determined from the data@Eq. ~32! and Eq.~33!#. ~r22 circles and solid line;
r33 squares and dashed line.!
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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that at some later times the model value exceeds the D
value. Given these inevitable differences, the agreement
tween the model and the DNS is as good as could be
pected. In particular the model captures the difference
tweenr11 and the other two diagonal components~which are
nearly equal!; and the differences betweenr12 andr21.

IV. GENERALIZED LANGEVIN MODEL

In PDF methods, the stochastic Lagrangian model
velocity that is employed is the generalized Langevin mo
~GLM!.11,12,7Applied to homogeneous turbulence, the mod
for u(t) is

dui52
]^Ui&
]xj

uj dt1Gi j uj dt1~C0«!1/2dWi , ~34!

where the constantC0 is generally ascribed the value 2.
The coefficientGi j can depend on̂uiuj&, « and]^Ui&/]xj :
two particular specifications ofGi j are considered below.

The transformation of Eq.~34! to an SDE forû( t̂ ) re-
sults in the general stochastic model, Eq.~19!, with coeffi-
cients

Ai j 5
1

2 S P
«

21D d i j 1
k

«

]^Ui&
]xj

2
k

«
Gi j , ~35!

and

Bi j 5C0
1/2d i j . ~36!

Equation ~35! can be rearranged to yield the value
(k/«)Gi j implied by the DNS:

k

«
G5F 22.18 3.59 0

20.65 24.63 0

0 0 23.95
G . ~37!

SinceB is found to be anisotropic—as discussed further
the next subsection—no choice ofC0 in Eq. ~36! yields the
correct diffusion coefficient. Nevertheless, the magnitude
the diffusion is characterized by

Ĉ0[ 1
3 trace~B2!, ~38!

the value of which deduced from the DNS isĈ054.3. By
comparison, the standard model Eq.~36! yields Ĉ05C0

52.1.

A. Anisotropy of the diffusion coefficient

The GLM, and also dispersion models, take the diffus
coefficientB to be isotropic, Eq.~36!. The reason generally
advanced for this specification is consistency with the K
mogorov hypotheses. For~dimensional! time intervalss in
the inertial subrange,th!s!k/« ~whereth is the Kolmog-
orov timescale!, the Kolmogorov hypotheses predict that th
second-order Lagrangian structure function is isotropic a
linear in s, i.e.,

^@ui~ t1s!2ui~ t !#@uj~ t1s!2uj~ t !#&5C0«sd i j , ~39!

whereC0 is a Kolmogorov constant. The GLM yields pre
cisely this results ifC0 is taken to beC0 .
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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However, the value ofB2 deduced from the DNS is de
cidedly anisotropic: the eigenvalues ofB2 ~which are all
equal toC052.1 in the GLM! are found to be 2.69, 5.06, an
5.14. It is possible that this anisotropy is a Reynolds-num
effect, which vanishes at sufficiently high Reynolds numb
This possibility could be investigated through DNS at diffe
ent Reynolds numbers.

It is also possible that the anisotropy in the deduc
value ofB2 persists at high Reynolds numbers, not beca
the Kolmogorov hypothesis@Eq. ~39!# is incorrect, but be-
cause the stochastic Lagrangian model, Eq.~19!, is too
simple to represent the multi-timescale aspects of anisotr
turbulence.

Given the observation thatB2 is anisotropic, it is natura
to consider modifications to the GLM to incorporate su
anisotropy. The natural way to introduce anisotropy in
model is to make the diffusion coefficient dependent on
normalized Reynolds stressesC. But any such model implies
that the principal axes ofB2 andC are aligned, which is no
supported by the data. Figure 4 shows the ellipses in thex1

2x2 plane corresponding to the tensorsB2 andC. The mis-
alignment of the principal axes is evident. In fact, to with
1°, the minor axis ofB2 is aligned with the major axis of the
mean rate-of-stain tensorS ~i.e., the 45° linex25x1!. Hence
an anisotropic model forB2 could be constructed based onS
that is consistent with the DNS data. More data—from d
ferent flows and at different Reynolds numbers—are nee
before an anisotropic model forB2 of any generality can be
constructed.

B. Simplified Langevin model

In this and the next subsection we examine two spec
forms of the generalized Langevin model, corresponding
particular specifications ofGi j .

For the simplified Langevin model~SLM! considered
here, the specification is

FIG. 4. The scaled tensorsB2 andC shows as ellipses in thex12x2 plane.
The dot-dashed line isxixjCi j

225(Cii )
22, and the solid line is the corre

sponding ellipse forB2. Shown for reference are dashed lines at 0°, 4
90°, and 135°.
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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1

3

4
C0D «

k
d i j , ~40!

so that the matrixA @Eq. ~35!# is

A5F l s 0

0 l 0

0 0 l
G , ~41!

with

l5
1

2

P
«

1
3

4
C0 , ~42!

and

s5Sk/«.

Evidently all three eigenvalues ofA are equal tol, and the
eigenvectors are not independent—two are equal to@1 0 0#T.
Consequently, the autocovarianceR̂(s) is not given by Eq.
~25!, but instead the solution to Eq.~21! is

R̂~s!5e2lsFC112ssC12 C12 0

C212ssC22 C22 0

0 0 C33

G . ~43!

Given a specified value ofC0 and the DNS value of
P/«, Eq. ~31! can be solved to determine the normaliz
Reynolds stressesC given by SLM in homogeneous turbu
lent shear flow, and then the autocovariances can be ev
ated from Eq.~43!. We consider two values ofC0 : the stan-
dard valueC052.1; and the valueC053.4 for which the
SLM timescalel21 matches the average DNS timescaleT
[ 1

3 trace~T!. The values ofC obtained are shown in Table I
The autocorrelationsr i j (s) obtained withC053.4 are

compared to the DNS data in Fig. 5. As expected, the ag
ment is much better with the timescales matched (C053.4)
than otherwise~C052.1, not shown!. The model correctly
predicts the equality ofr22 andr33 and their distinction from
r11, but the quantitative agreement is noticeably poorer th
in Fig. 3.

The model predicts a more substantial difference
tweenr12(s) andr21(s) than is evident in the DNS—a be
havior which is easily understood. The only off-diagon
term @s in Eq. ~41!# enters the SDE for velocity as

,

TABLE I. Values of the mean timescaleT[
1
3 trace~T!, the normalized

Reynolds stressCi j , and the turbulence-to-shear timescale ratioSk/« from
the DNS of Sawford and Yeung~Ref. 5! and from SLM and LIPM for
different values ofC0 anda2 .

DNS SLM SLM LIPM LIPM

C0 - 2.1 3.4 2.1 4.4
a2 - - - 3.5 11.9
T 0.30 0.43 0.30 0.63 0.30

C11 0.96 1.10 0.98 1.02 1.02
C22 0.43 0.45 0.51 0.49 0.49
C33 0.61 0.51 0.51 0.49 0.49
C12 20.32 20.39 20.34 20.36 20.36
Sk/« 4.83 4.02 4.47 4.28 4.28
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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dû152
Sk

«
û2 d t̂.... ~44!

Thus large positive~or negative! values ofû2 tend to lead to
large negative~or positive! values of û1 after a time lag.
Thus the peak correlationu^û2( t̂ )û1( t̂1s)&u—or equiva-
lently the minimum ofr21(s)—occurs for a positive value o
s. The model overestimates this effect, because it takes
account of rapid pressure fluctuations which tend to coun
act the effects of mean shear.

C. Lagrangian isotropization of production model
„LIPM…

The LIPM14,7 corresponds closely to the Launder, Ree
and Rodi16 Reynolds-stress model. Using standard values
the model constantsb123 andg126 , the LIPM equation for
G is

k

«
G5a1I1a2~b23b2!

1
Sk

« F 2
3

5
b12

4

5
1

3

5
b11 0

2
1

5
2

3

5
b22

3

5
b12 0

0 0 0

G , ~45!

whereb is the anisotropy tensor

b5
1

2
C2

1

3
I , ~46!

the standard value of the constanta2 is a253.5, and the
coefficienta1 is given by

a152S 1

2
1

3

4
C0D1

3

10

P
«

13a2trace~b3!. ~47!

With the standard valueC052.1, the model yields rea
sonable values of the normalized Reynolds stresses, bu
average time scaleT[ 1

3 trace(T) is more than twice the

FIG. 5. Comparison of autocorrelation functionsr i j (s), Eq.~14!, from DNS
~symbols! and from SLM withC053.4. ~For SLM, r225r33 .!
Downloaded 16 Jan 2005 to 128.84.158.89. Redistribution subject to AIP
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DNS value; see Table I. As a consequence, the model~with
C052.1! produces autocorrelationsr i j (s) ~not shown! in
very poor agreement with the DNS data.

To provide a more meaningful comparison, the consta
C0 anda2 are adjusted to match the average timescale, w
leaving the normalized Reynolds stresses the same. The
tocorrelations given by LIPM with these values~C054.4,
a2511.9! are compared to the DNS data in Fig. 6. T
agreement is quite poor. Except at small times,r22(s) is
incorrectly predicted to be larger thanr33(s); and evidently
the effect of the rapid pressure is overpredicted as ther
little difference betweenr12(s) andr21(s).

This last point can be seen directly in the matrixA,
which for LIPM is

A5F 2.86 1.99 0

2.21 6.11 0

0 0 4.48
G . ~48!

The direct effect of shear appears in the 1–2 component,
in SLM the 2–1 component is zero. InA deduced from the
DNS data@Eq. ~32!#, A21 as about half ofA12; but for LIPM
A21 exceedsA12.

V. CONCLUSIONS

As previously observed by Sawford and Yeung4,5 in the
context of turbulent dispersion, Lagrangian data from DN
of homogeneous turbulence is valuable in the developm
and testing of stochastic Lagrangian models. After an ini
transient, homogeneous turbulent shear becomes~approxi-
mately! self-similar, so that the appropriately scaled L
grangian velocity fluctuationû( t̂ ) becomes a statistically sta
tionary random process.

The stochastic Lagrangian model considered forû( t̂ ) is
the diffusion process Eq.~19! in which the drift coefficient
depends linearly onû( t̂ ) through the drift matrixA, and the
~anisotropic! diffusion coefficientB is constant. An analysis
of this model shows that there is a unique specification oA

FIG. 6. Comparison of autocorrelation functionsr i j (s), Eq.~14!, from DNS
~symbols! and from LIPM withC054.4 anda2511.9~lines!. Dashed lines,
r12 andr33 ; solid lines,r21 andr22 .
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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andB @Eq. ~30! and Eq.~31!# such that the covariance matr
C and the timescale matrixT match those obtained from
DNS. The autocorrelation functions predicted by the mo
are in good agreement with the DNS data~except at small
times!. The model forû( t̂ ) is a continuous, Gaussian, Ma
kov process; and it is a significant conclusion that suc
simple process provides a good model for the Lagrang
velocity in homogeneous turbulent shear flow.~It is known
that the one-point one-time joint PDF of velocity is joint
normal1 in this flow.!

Contrary to conventional modelling assumptions, if
found that the diffusion coefficientB is significantly aniso-
tropic. Whether or not this is a low Reynolds-number effe
is an important question which can be addressed in fu
DNS studies.

The magnitude of the diffusion coefficient can be ch
acterized byĈ0[ 1

3 trace(B2) and the value deduced from
the DNS data isĈ054.3. This is substantially larger than th
corresponding valueC052.1 normally used in PDF models

There is evidence that the appropriate value ofC0 de-
pends on Reynolds number.13,10 In the DNS, the Taylor-scale
Reynolds number based onx1-direction statistics increase
from Rl'40 toRl'110 during the course of the simulatio
Sawford and Yeung5 provide an empirical expression forC0

as a function ofRl , which increase fromC053.7 at Rl

540 to C055.4 at Rl5110. The valueC054.3 deduced
from the DNS lies within this range, but Reynolds-numb
effects are not addressed here.

The autocorrelation functions predicted by two gener
ized Langevin models are compared to the DNS data in F
5 and 6. In the simplified Langevin model~SLM!, no ac-
count is taken of the rapid pressure fluctuations, and a
consequence the difference betweenr12(s) and r21(s) is
overpredicted. The Lagrangian IP model~LIPM!—which in-
cludes a model for the rapid pressure—yields autocorr
tions in poor agreement with the DNS data.

In the specification of both the drift and diffusion coe
ficients, there is clearly scope for considerable improvem
in generalized Langevin models.
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