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PDF METHODS FOR TURBULENT REACTIVE FLOWS

S. B. PorPE
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, U.S.A.

Abstract —The aim of the methods described is to calculate the properties of turbulent reactive flow fields.
At each point in the flow field, a complete statistical description of the state of the fluid is provided by the
velocity—composition joint pdf. This is the joint probability density function (pdf) of the three components
of velocity and of the composition variables (species mass fractions and enthalpy). The principal method
described is to solve a modelled transport equation for the velocity—composition joint pdf. For a variable-
density flow with arbitrarily complex and nonlinear reactions, it is remarkable that in this equation the
effects of convection, reaction, body forces and the mean pressure gradient appear exactly and so do not
have to be modelled. Even though the joint pdf is a function of many independent variables, its transport
equation can be solved by a Monte Carlo method for the inhomogeneous flows of practical interest. A
second method that is described briefly is to solve a modelled transport equation for the composition joint
pdf.

The objective of the paper is to provide a comprehensive and understandable account of the theoretical
foundations of the pdf approach.
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1. INTRODUCTION
1.1. Introduction and Objectives

This paper describes the use of evolution equations
for probability density functions (pdf’s) to calculate
the properties of turbulent reactive flows.

Most flows in the environment, in process industry,
and in engineering equipment are turbulent. When
these flows involve heat transfer, mass transfer or
reaction, turbulence usually plays a dominant role in
determining the rates of these processes. The evident
importance of turbulent flows involving mixing and
reaction has stimulated a wide variety of theoretical
approaches, as revealed in a number of reviews, collec-
tive works, and specialist meetings.!"® The aim of
these approaches is to calculate the important proper-
ties of the flow field. For inert flows, the turbulence
closure problem® makes this a difficult task and, for
reactive flows, the difficulty is compounded by non-
linear reaction rates and large density variations. The
pdf methods described here are remarkably successful
in alleviating these difficulties: in a variable-density
flow, the effects of convection, reaction, body forces
and the mean pressure gradient can be treated without
approximation. The only remaining closure problems
are due to the fluctuating pressure gradient and to
molecular transport.

A cursory examination of the work on pdf methods
over the past fifteen years may leave the following
three impressions:

(i) pdf methods have great potential, since (as
mentioned above) they overcome the most
important closure problems;

(ii) because joint pdf’s are functions of many (maybe
8) independent variables, numerical solutions to
their evolution equations would be extremely
difficult and costly, if not impossible; and

(iii) the mathematical formalism associated with the
pdf equations makes them inaccessible to all but
a handful of specialists, and has‘added little to
our understanding of the physical processes.

The objectives of this work are:

(i) to make pdf methods understandable from both
mathematical and physical viewpoints;

(i) to show that the methods overcome the most
important closure problems;

(iii) to present models for the processes that cannot
be treated exactly; .

(iv) to describe a computationally-efficient solution
algorithm for the modelled pdf equation that
makes it feasible to calculate the properties of
turbulent reactive flows of practical interest; and

(v) to show that considerable insight is gained by
describing physical processes in the multidimen-
sional state space in which the pdf’s are defined.

In comparison to conventional turbulence
models,!%!! pdf methods derive their advantage from
their more complete representation of the turbulent
flow field. Consider a flow involving three scalars
¢,(x,1), ¢,(x,t) and ¢,(x, t)—these could be fuel mass
fraction, oxidant mass fraction and enthalpy. With a
two-equation turbulence model (e.g. the k—¢ model),
at each point the turbulent reactive flow is repre-
sented by eight quantities—the means of the three
velocity components, the means of the three scalars, k
and ¢. In the pdf method, on the other hand, the flow is
represented by the joint pdf of the three velocities and
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the three scalars. At each point this is a function of six
independent variables. Clearly, the six-dimensional
joint pdf contains much more information than the
eight quantities considered in the conventional
turbulence-model approach.

Probability density functions have been used in the
study of turbulent reactive flows for at least 35
years.'? In the last ten years, several models have been
developed in which pdf’s play a central role.!>!'# In
these models, a parametric form for the pdf is
assumed!®>!® in terms of its first and second
moments, for which transport equations are solved.
The methods described here are distinctly different in
that the shape of the pdf is not assumed, but it is
calculated from a modelled evolution equation for the
pdf.

The pdf methods are applicable to a wide class of
flows. While we restrict our attention to single-phase,
low-Mach number flows, no restrictions are placed on
the complexity of the thermochemistry —there can be
large density variations, and there can be nonlinear
reactions involving many species. Pdf methods are
well-suited to flows with complex thermochemistry,
and most of the work on pdf’s in the last ten years has
been applied to reactive flows. This work, too, is
concerned with reactive flow: but this should not hide
the fact that (compared to conventional turbulence
models) pdf methods have many advantages for inert
and constant-density flows.

1.2. Pdf Methods

The method of solving a modelled pdf equation
started in 1969. Lundgren'® derived, modelled, and
solved a transport equation for the joint pdf of
velocity. In this equation, convective transport
appears in closed form. In mean-flow closures'® a
model is needed for the Reynolds stresses (which
transport momentum), and in Reynolds-stress
closures!!:2° a model is needed for the triple velocity
correlations (which transport the Reynolds stresses).
These transport processes are usually modelled by
gradient diffusion. But in the velocity pdf equation
these processes do not have to be modelled and so the
gradient-diffusion assumption is avoided. Lundgren
proposed simple relaxation models for the unknown
terms, and obtained analytic solutions to the modelled
pdf equation for simple flows.

Dopazo and O’Brien?!"23 and Pope?* derived,
modelled, and solved the transport equation for the
composition joint pdf —that is, the joint pdf of a set of
scalars (e.g. mass fractions and enthalpy) that describe
the thermochemical state of the fluid. This equation is
remarkable in that arbitrarily complicated reactions
can be treated without approximation. This is in
marked contrast to conventional turbulence models in
which the mean reaction rate can be determined only
in special circumstances—when the reaction rate is
linear or when it is either very fast or very slow
compared with the turbulent time scales. For a
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general, nonlinear, finite-rate reaction, conventional
turbulence models reach an impasse.

The modelled composition joint pdf equation has
been solved for a variety of flows, demonstrating its
ability to handle nonlinear reactions. Janicka et
al?*2% and Nguyen and Pope?’ studied hydrogen—
air turbulent diffusion flames; Pope?® and McNutt??
studied turbulent premixed flames; and Sherikar and
Chevray®® and Givi et al! studied the NO-O,
reaction in turbulent shear flows. There have also
been several solutions of the transport equation for
the pdf of a conserved scalar.32-36

While the composition—pdf equation overcomes the
closure problem associated with nonlinear reaction
rates, it does not address the problem of determining
the turbulent flow field. In most of the composition pdf
calculations referenced above, the standard k—¢
turbulence model was used to determine the mean
velocity and turbulence fields. The mean velocity and
the turbulent diffusivity and frequency were then used
as inputs to the modelled transport equation for the
composition joint pdf. In this equation, turbulent
transport is generally modelled by gradient diffusion.

For the inhomogeneous flows of practical interest,
analytical solutions to the pdf transport equations are
out of the question, and numerical methods are
required. Standard techniques such as finite-differ-
ences are severely limited because of the large dimen-
sionality of joint pdf’s. For example in a statistically
two-dimensional flow, the velocity joint pdf and the
joint pdf of three compositions are each a function of
five independent variables and time. It can be
estimated3? that each time step in a finite-difference
solution to these joint pdf equations requires of the
order 10!! computer operations (additions or multi-
plications). With current computing rates of order 10°
operations per second, such requirements are exces-
sive if not prohibitive. Further, the computer require-
ments rise exponentially with the dimensionality of

-the pdf.

For problems with a large number of independent
variables, Monte Carlo methods®?-38 usually provide
a feasible alternative means of obtaining numerical
solutions. In 1980, Pope3® devised a Monte Carlo
method to solve the composition joint pdf equation.
This can be viewed as an extension to the inhomo-
geneous case of the stochastic mixing models of
Spielman and Levenspiel*® and Flagan and
Appleton.*! In this case the computer requirements
rise only linearly with the dimensionality of the pdf—
the best that can be achieved. The Monte Carlo
method has been used to solve the equation for the
joint pdf of three compositions in a one-dimensional
flow?8 and that of two compositions in a two-dimen-
sional flow.30:3!

The ability of the Monte Carlo method to handle
joint pdf’s of large dimensionality opened the way to
combining the velocity and composition pdf methods
to obtain the advantages of both. This is achieved by
considering the transport equation for the joint pdf of
the velocities and compositions. In this equation, con-
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vection appears in closed form (as it does in the
velocity—pdf equation) and reaction appears in closed
form (as it does in the composition—pdf equation).
Even though the velocity—composition joint pdf is a
function of many independent variables, its evolution
equation can be solved by a Monte Carlo method.42
The joint pdf equation has been solved for a plane
jet,*>*3 for a thermal wake,** for a premixed flame,**
and for a diffusion flame.*®

The pdf’s considered here are Eulerian—that is,
they are the pdf’s of fluid properties at a fixed spatial
location. But the pdf equations can be derived,
modelled and solved by either Eulerian or Lagrangian
methods. In the works cited above, the Eulerian view
is generally adopted. Here we make use of both
approaches. .

Frost*”#® and Chung*®:*® have obtained pdf equa-
tions from a Lagrangian formulation by using the
Langevin equation to model the fluid particle motion.
(The Langevin equation®! was originally devised to
describe Brownian motion.) Calculations of turbulent
diffusion flames using these pdf equations have been
performed by Frost*® and by Bywater.52

1.3. Outline

This paper is primarily concerned with the
evolution equation for the velocity—composition joint
pdf—its derivation, interpretations, modelling, and
solution. The objective is to provide a comprehensive
and understandable account of the theoretical
foundations of the approach.

The next section contains a review of the definition
and properties of the probability functions used in
subsequent sections. In Section 3, the governing con-
servation equations of turbulent reactive flow are
presented: the properties of the velocity—composition
joint pdf are examined, and its evolution equation is
derived. In Section 4 this equation is studied from a
Lagrangian viewpoint. This Lagrangian description
affords a clear physical interpretation of the equation
and provides the framework for the modelling
(Section 5) and for the solution algorithm (Section 6).
Three types of models are described: linear deter-
ministic models; stochastic particle-interaction
models; and, models based on the Langevin equation.
In Section 7 the composition joint pdf equation is
examined. The final section contains a summary of the
most important points, and a discussion on the attri-
butes and limitations of the pdf approach.

2. PROBABILITY FUNCTIONS

Considering the stochastic nature of turbulence, it is
remarkable how little probability theory is used in
most theoretical approaches to the subject (see, for
example. Hinze®?). In this section various probability
functions are defined and their properties outlined in
order to provide the theoretical foundation on which
the rest of the paper is built. The texts on probability
theory by Drake®* and Gnedenko®% and those more
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FiG. 2.1. Sketch of a turbulent mixing layer showing
locations of (a) fully turbulent flow, (b) intermittent flow, (c)
non-turbulent flow.

closely related to turbulence by Lumley®® and
Panchev®” can be used as general references, but these
do not contain all the necessary results.

The reader familiar with probability theory may
wish just to examine the use of delta functions (most
importantly in Eqs (2.67) and (2.150)) before passing
on to Section 3.

In the following development, the concepts of prob-
ability are linked to turbulence by reference to
measurements in a hypothetical experiment involving
a turbulent flow.

2.1. Turbulent Mixing Layer

Figure 2.1 is a sketch of the turbulent mixing layer
formed between two parallel streams of air. The axial
and lateral coordinates are x, and x,, and the width of
the apparatus is assumed to be infinite in the spanwise,
X5, direction. The lower air stream has an axial
velocity U, and absolute temperature T,, while the
upper stream has a higher velocity U, and a higher
temperature T,. The figure shows the flow a long time
after its initiation, when the free stream properties (U,
T,, U, and T,) no longer vary with time. However, we
are also interested in the temporal development of the
flow from a uniform, quiescent initial condition. This
initial state exists before the time t = 0 when the flow
is started in a repeatable way.

It is assumed that the temperature T (x,t) is always
in the range,

T,<T<T,

a

(2.1)

This assumption is valid if the initial and boundary
conditions satisfy Eq. (2.1), and if the Mach number
Ma is small. Specifically, we require

T,—T,
Ma* « 22 22
a® < .47, (2.2)
The normalized temperature ¢(x, t) is defined by
o(x,1) = (T(x,1)=T)T,—T,), (23)

and, in view of Eq. (2.1), ¢ adopts values between zero
and unity:
0<op<1. (2.4)

In referring to measurements of the normalized
temperature ¢(x,t) and of the velocity U(x.1). we
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assume that the measurements are free from error, and
that the measurement process does not affect the flow.

2.2. Random Variables

In the mixing-layer experiment, at a particular time
t = t, and at a particular location within the turbulent
flow x = x,, the value of ¢(x,,t,) is measured. The
experiment is then repeated and a second measured
value of ¢(x,, t,) is obtained. (Recall that the time ¢ is
measured from the initiation of the flow.) Almost
certainly, the two measured values of ¢ will be
different. This is the nature of turbulent flows and the
result may not be surprising. But, the source of the
difference between the two realizations of the flow
needs careful consideration.

In both cases the flow is governed by the same
deterministic equations with the same initial and
boundary conditions. Why then is the flow not
uniquely determined as the solution of these
equations? The answer is that the initial and boun-
dary conditions, though nominally the same, are not
identical. Small air movements before the start of the
experiment lead to slightly different initial conditions.
Mechanical disturbances to the apparatus (such as
vibrations) lead to slightly different boundary con-
ditions. Even the governing equations may be slightly
different because impurities in the air lead to different
fluid properties. These differences, however small, are
amplified by the turbulence so that after some time the
temperature and velocity fields in the two experiments
are completely different.

We conclude, then, that in any turbulent flow
experiment, the boundary and initial conditions
cannot be controlled (or even known) sufficiently for
the evolution of the flow to be determined. Conse-
quently, it is appropriate to treat any flow property as
a random variable. The temperature ¢(x,, t,) and the
axial velocity U,(x,,t,) are simple examples of flow
properties that can be treated as random variables.

A probabilistic theory makes no attempt to predict
the value of a random variable (¢(x,, t,), for example)
in a particular experiment, since this value is indeter-
minable. Instead, the aim of the theory is to determine
the probabilities of the random variables adopting
specified values. The relationship between these prob-

abilities and measured values is discussed in Section
2.6. '

2.3. Distribution Function

We take as an example of a random variable the
normalized temperature at (x,t) = (xo,%,) which is
denoted simply by ¢, rather than by ¢(x,,t,). When
the experiment is performed and the temperature is
measured, the value of ¢ can be plotted as a point on

1 W=¢ 1 w

(] |

FIG. 2.2. Sample space (y-space) for the random variable ¢,
showing the sample point y = ¢.

A v

L 1 P
[¢] 173 2/3 |

FIG. 2.3. Sample space showing the region corresponding to
the event 4 = 1/3 < ¢ < 2/3: @ sample point for which 4
occurs; O sample point for which 4 does not occur.

the real line. Figure 2.2 shows the real line as the axis
of the independent variable v, with the experimental
point (or sample point) plotted at Y = ¢. The y axis
(or y-space) is called the sample space of the random
variable ¢. Since ¢ is a normalized temperature, ¥ is
an independent temperature variable, and so y-space
is also called temperature space.

The significance of the sample space is that any
event determined by the random variable corresponds
to a region of the sample space. For example, let the
event A be

A=(1/3<¢ <2/3). (2.5)

The region of y-space corresponding to this event is,
simply, 1/3 < ¢ < 2/3, see Fig. 2.3. If the sample point
Y = ¢ falls within this region, then the event A4
occurred; if not, 4 did not occur.

The probability of the occurrence of the event A (or
simply, the probability of A) is denoted by P(A4). The
probability of an event is a real number between zero
and unity. If an event cannot occur (i.e. it is impos-
sible) then its probability is zero. If an event must
occur (i.e. it is certain) then its probability is one. For
example, consider the events

B=¢ > 2,
C=sin¢g = 0.

(2.6)
(2.7)

Now, since ¢ can only take values in the range
0 < ¢ < 1(Eq.2.4),itisclear that B is impossible and
that C is certain:

P(B) =0,
P(C)=1.

These events are sketched on Fig. 2.4.

Since every event can be associated with a region of
the sample space, the probability of the event is equal
to the probability of the random variable being within
that region. The probability for any region can be
determined from the distribution function: for the
random variable ¢, the distribution function F W) is
defined by

(2.8)
(2.9)

F,() =P < ). (2.10)
Thus, for example, for the event
D=¢<1/4, (2.11)
B
c
1 1 1 1 ) 1 “’
0 1 2 3'r 4

FiG. 2.4. Sample space showing the regions corresponding
totheevents B=¢ >2and C =sin¢ > 0.
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‘4’<4’2
y<y B
——— yey<y,
1 1 1 I ¢
K7 ¥ |

F1G. 2.5. Sample space showing the region ¥, <y <, as
the difference between the regions Y < ¢, and y < y,.

its probability is
P(D) = F,(1/4). 2.12)
Consider the event E
E=y, <o <y, (2.13)

where , > ,. The probability of E can be deter-
mined by noting that the region ¥, < Y <y, is equal
to the (infinite) region Y <y, minus the (infinite)
region Y < y,, see Fig. 2.5. Thus,

PE)=P{Y, <o <y,)
=P <y,)-PY < y,)
= F¢(‘/’2)“F¢(‘/’1)- (2.14)

The fundamental properties of the distribution
function are readily deduced. Since the event
(—oc < ¢ < 0)iscertain, we obtain

P(p < —o0) = Fy(—0) =0, (2.15)

and
P(¢ < o0) = Fy(o0) = 1. (2.16)

(These properties hold for any random variable and
do not depend upon our knowledge of ¢, e.g. Eq.
(2.4)). The probability of the event E, Eqs (2.13)-
(2.14),is

P(E) = Fy(y,)—Fy(¥,) 2 0, (2.17)

and hence

FoW3) 2 Fyy),for g, > ¢y (2.18)

Thus F,(¥) is a non-decreasing function of y that
increases from zero to one as Y varies from — oo to oo.

An example of F,(y) for the mixing-layer experi-
ment is sketched on Fig. 2.6. It may be noted that in
this case F,(0) =0 and F,(1) = 1, by virtue of Eq.
(2.4).

2.4. Probability Density Function

The probability density function (pdf) f,(¥) of the
random variable ¢ is the derivative of the distribution

Fo (y)
1.0
0.5

14

0 05 10
FiG. 2.6. Distribution function F, () against y.

function F4(¢):

d
dy
By integrating this equation between y, and

¥, (Y, > ;) and comparing the result with Eq. (2.14),
we find that ’

Jo) = —F,(y). (2.19)

(2
L f¢(‘/’)d‘l/ = F¢('/’2)“F¢(|/’1)
=P, < ¢ <¥,).

That is, the probability of ¢ in a given region is equal
to the integral of the pdf over that region. In
particular, for an infinitesimal region,

P < ¢ <y +dy) =7,(y)dy.

A probability density function has three fundamen-
tal properties. Since F () is a non-decreasing
function of y, its derivative f, () cannot be negative:

fo) = 0. (2.22)

The event — o0 < ¢ < oo is certain, and so from Eq.
(2.20), we obtain

(2.20)

.21)

J fo)dy = 1. (2.23)
As || tends to infinity, F () tends monotonically to
a constant (0 or 1), and so its derivative f4(i) tends to
zero:

Sfo(—©0) =fys(0) = 0. (2.24)

Figure 2.7 shows the pdf f,,(y) corresponding to the
distribution function of Fig. 2.6.

In some treatments of probability theory, the pdf is
defined only if the distribution function is continuous.
In the present context, this restriction is unnecessary,
but clearly the definition of the pdf as the derivative of
a discontinuous function requires further comment. A
simple example of a discontinuous distribution
function arises when the random variable ¢ always
adopts the constant value ¢ = ¢,,. Then,

P(¢p <¢,)=0,
Plp=9¢,)=1,
P(¢>4,) =0, (2.25)
and the corresponding distribution function is
F,(0)=0,¥ <9,,
=1Ly>09,. (2.26)
V¢(‘#)
4.0
2.0
. N 4
o] 0.5 1.0

FiG. 2.7. Probability density function f,(y) against y.
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Discontinuous distribution functions such as Eq.
(2.26) can be expressed as Heaviside functions, and
then the corresponding pdf’s are composed of Dirac
delta functions. The definitions and properties of these
generalized functions are given briefly here: a more
detailed and rigorous treatment can be found in Refs
58 and 59.

The Heaviside function (or unit step function)
H(y)is given by

H(y)=0, y <0,

=1y>0. (2.27)

A better definition of H(y) is that, for any function
g(y) (that is integrable and continuous at the origin)
j H(y)g(y)dy = j gy)dy.  (2.28)
- V]
The Dirac delta function (or unit impulse function)
6(y) is the derivative of the Heaviside function:
dH(y)
oy)=—-=—.
(» d
It is zero everywhere except at y =0 where it is
infinite. The area under the delta function is unity
since for any positive number g,

(2.29)

fﬂ o(y)dy = H(a)—H(—a)=1. (230)

The delta function is best defined by its fundamental
(sifting) property:
f o(y)g(y)dy = g(0). (2.31)

The quantity bH(y—c) is a step at y=c¢ of

Faty) § 4
1L0+40

05+20

FaW)
1.0+4.0

0.5+2.0

Ry
1.0+4.0

05+20

, 14
0 0.5 1.0

FiG. 2.8. Distribution functions and pdf’s in a turbulent
flow: (a) fully turbulent region; (b) intermittent region; (c)
non-turbulent region.

125

magnitude b, and its derivative bS(y—c) is a delta
function at y = ¢ of magnitude b. (By “delta function
of magnitude b” we mean a delta function multiplied
by a constant of magnitude b.) From Eq. (2.31) we
obtain,

f bd(y—c)g(y)dy = bg(c). (2.32)

The discontinuous distribution function Eq. (2.26)

can now be written as

Fo) = H(y—¢*), (2.33)

and the corresponding pdf is obtained by differ-
entiating both sides,

fo¥) = 0y —*). (2.34)

In turbulent flows, distribution functions are
encountered that are sometimes continuous, and
sometimes discontinuous. For example, Fig. 2.8(a)
shows the continuous distribution function and pdf of
¢ when the measuring location x, is chosen in the
center of the turbulent flow (see Fig. 2.1). If, on the
other hand, x, had been located away from the
turbulent flow in the high temperature free stream
(where ¢ = 1), then the distribution function would
have been,

Fy,(y)=H-1). (2.35)

This is shown on Fig. 2.8(c) with the corresponding
pdf which is a delta function at y = 1. At the edge of
the mixing layer the flow is intermittent—sometimes
turbulent, sometimes non-turbulent with ¢ = 1. The
corresponding distribution, sketched on Fig. 2.8(b), is
continuous up to ¥ = 1, where there is a jump of
magnitude 0.35. The pdf is also continuous up to
¥ = 1 where there is a delta function of magnitude
0.35.

The probability of ¢ adopting the particular value
¢, can be deduced from Eq. (2.17):

P(¢ =¢,) = lim P(d, < ¢ < ¢, +AY)
Ay —0

= A{l’imo {Fo(dp+AY)—F4(d,))-
(2.36)

If the distribution function F »(¥) has a step of magni-
tude b at Yy = ¢, and, consequently, the pdf fs() has
a delta function of magnitude b at y = ¢, then we
obtain

P(¢=¢,) =b. (2.37)

If, on the other hand, F,(y) is continuous in the neigh-
borhood of ¢,, then P(¢ = ¢,) is zero. The event
¢ = ¢, is not impossible, but it has probability zero
since it is just one of an infinite number of possible
events. Similarly, the event ¢ # ¢, has probability
one, but it is not certain.

We have taken as our example of a random variable
the normalized temperature ¢. Consider now the
temperature T measured in degrees Kelvin and the
same temperature 6 measured in degrees Rankine.
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With T and 0 being the sample space variables corre-
sponding to T and 6 we have

0= 2 T, (2.38)
5
and
~ 9
2.39
=<1 (2:39)

The event T < T is identical to the event 6 <  and so
(in an obvious notation) the distribution functions are
equal:

F(T) = F,#). (2.40)

Differentiating both sides with respect to T we obtain
dF(T) . df dF,0)

dr " T dT dé

Since 1 degree Kelvin corresponds to 9/5 degrees
Rankine, the probability per degree Kelvin, f1(T), is
9/5 times the probability per degree Rankine, f,(6).
Note that f; and f, have dimensions of (K)~! and

(R)™! respectively. (It is because of these observations
that pdf’s earn the designation “density™.)

9
=3/6(0). 241)

For the more general change of variables

0 =O(T) and § = O(T), (2.42)

where © is a monotonically increasing function, we
obtain similar results:
F(T)=

F,(0), (2.43)

and
do(T)

f(T) = 0. (2.44)

For ©(T). being a monotonically decreasing function
of T.theevent T < T'is identical to the event § > § =
O(T). Thus

P(T<T)=P0O=0)=1-P0O <8), (245)

and so
Fo(T) = 1=F,(0). (2.46)
Differentiating both sides with respect to T yields

o dG)T
fp(ty = — 9240

fa(0). (2.47)
Since. in this case d@(T)/’dT is negative, Eqs (2.44)
and (2.47) can be rewritten in the common form

d@( T)

fr(T) = 12(0).

The random variable ¢ that we have been consider-
ing is the normalized temperature at the particular
location (x,1) = (X,.7,). The distribution function of ¢
is F, (). and its pdf is f, (). Clearly. the normalized
temperature at any location is a random variable, and
consequently the distribution function and pdf are
defined for all x and t:

Foly.x.0) = P($ix.1) < ), (2.49)

(2.48) -

and
OF ¢('/’, X,t)
oy )
A semi-colon is used to indicate that f, is a density
with respect to i (to the left of the semi-colon).
A flow is said to be statistically stationary if all

probabilities are independent of time. Thus for a
statistically stationary flow,

fol;xt) = (2.50)

ot o i
and
o5 x1)
o =0. (2.52)

If there is a coordinate system (x,, X,, X;) in whichall
probabilities are independent of X, then the flow is
said to be statistically two-dimensional. For such a
flow,

5F¢(1//’)21:f2,)23,[) =0, (253)
0X3
and
0f¢(¢ xlax25x37t)=0 (254)

0%

Similarly, if all probabilities are independent of X, and
X3, the flow is statistically one-dimensional. If all prob-
abilities are independent of position (X,,%, and x,)
then the flow is statistically homogeneous.

By most definitions, all turbulent flows are three-
dimensional and time dependent. But many flows of
interest are statistically stationary and many are
statistically one- or two-dimensional. The turbulent
mixing layer sketched in Fig. 2.1 is statistically two-
dimensional and, for large times, it can be expected to
be statistically stationary.

2.5. Expectation

Most readers will be familiar with time averaging, a
procedure that is useful only in statistically-stationary
flows. For the normalized temperature ¢(x, t), the time
average {¢p(x,1)>,, is defined by

1 1+ At
(P&, 1)par = J ¢(x,7)dr,  (2.55)
Ar ),

where At is a specified time interval. The time average
is itself a random variable. But if the time interval At is
sufficiently large, the measured value of {¢p(x,1))a,
may vary little in successive repetitions of the experi-
ment. In that case the measured time average is an
approximation to a far more fundamental quantity —
the expectation of ¢(x.1).

In this sub-section the definition and properties of
the expectation of a random variable are described. In
the next sub-section the relationship between expecta-
tions and measurable quantities (such as time
averages) is examined.

The mathematical expectation of the random
variable ¢ is denoted by E(¢) or {¢) and is defined
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by,

E(¢)=<{¢)>= j Wi, () dy. (2.56)
The terms mathematical expectation, expectation,
expected value, mean value and mean, are all synony-
mous. The mean (@) is the center of the pdf, in that
the first moment about (¢ is zero,
f W —<X)f,(¥)dy = 0. (2.57)
A function of a random variable is itself a random
variable. For example, in the mixing layer between
two air streams of different temperatures, the density
p(¢) is a function of the normalized temperature. In
general, let Q(¢) be a function* of the random variable
¢ then the expectation of Q is defined by

Q@D = |  QW)f,W)dy.
(It may be seen that the definition of (¢}, Eq. (2.56), is
a particular case of this more general definition.) In
the infinitesimal region y < ¢ < Y +dy, the value of
0(¢) is Q(¥) and the probability is Sfs()dy. Thus the
mean {Q) is the probability-weighted integral of all
possible values of Q.

After the mean, the second most important
numerical characteristic of a random variable is its
variance. The variance of ¢ is denoted by D(¢) and is
defined by

D(¢) = E(6—($>])
- f T WS, W) v

i o}

(2.58)

(2.59)

The random variable ¢ can be decomposed into its
mean {¢) and the fluctuation ¢’,

¢ =<P>+¢, (2.60)

where,

¢’ =¢d—<e). (2.61)
The variance is the mean of the square of the fluctua-
tion

D(¢) = (¢'*). (2.62)

The standard deviation, which is the square root of
the variance, is a measure of the width of the prob-
ability density function.

The variance is the second central moment of ¢.
The mth central moment is defined by

= (™ = f T W, dv. (263)

It is evident from Eq. (2.63) that all the moments of ¢
can be determined from the pdf: but, in general, the

* Here and henceforth, we assume that functions such as
Q(¥) have whatever properties are required for the integrals
- such as Eq. (2.58) to exist. In general these properties are
difficult to specify. If the pdf is continuous it is sufficient that
Q(¥) be integrable. If the distribution function F »() con-
tains discontinuities, then Q() must be continuous at all
points of discontinuity of F,(y).
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P
pdf cannot be determined from a finite number of
moments. .
The expectation Q) of the random variable Q(¢) is
defined only if the integral

f QWS (V) dy

exists. For the pdf’s considered here, it is certain that
the means and variances exist, and it is highly likely
that all the central moments exist. It is equally likely
that the expectation of rapidly increasing functions —
such as exp(exp(¢))—do not exist (for unbounded
random variables).

It proves to be very useful to identify F,(i) and
fo(¥) as the expectations of H(y — ¢) and 3(y — ¢). Let
G be the event

G=¢ <. (2.64)
The probability of G is, simply,
P(G) =P(¢ <) = F,(¥). (2.65)

If the event G occurs, then the Heaviside function
H(y — @) is unity, and if G does not occur, H(y — ¢) is
zero. Thus the expected value of H(y — ¢) is
CH{—¢)) = 1-P(G)+0-(1-P(G))
= F,(¥). (2.66)
Differentiating both sides with respect to i we obtain
G =) =fo). (2.67)
This property —that the pdf is the expected value of
the delta function—is of paramount importance in pdf
methods. Indeed in some treatments of the subject
(e.g- Ref. 60) it is taken as the starting point: 3( — )
is defined as the “fine grained” pdf (i.e. the pdf in one
realization of the flow), and then the pdf Sol) is
defined as {6(y — ¢)>. Both approaches or viewpoints
lead to the same results. (It may also be noted that Eqs
(2.66) and (2.67) could also be obtained by substi-
tuting H(Y — ¢) and 8(y — @) for Q(¥) in Eq. (2.58)—
provided that f,(y) is continuous. The above
development is to be preferred since it places no
restrictions on the pdf.)
An important result is that differentiation (with
respect to x or t) and taking the mean, commute: that

is,
< o > _X¢>
ox; ox;
<@_¢’> _ X
ot or
These properties follow trivially from the definition of
a derivative:

<a_¢> = <lirn {¢(z+5t)—¢(t)}>
ot 5t—0

= 51tiin0 {Koe+o1)>—<p()>} =

(2.68)

and

(2.69)

¢

ct

(2.70)
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2.6. Measurements

From a theoretical viewpoint, the definition of the
mean {¢) as the mathematical expectation E(¢) is,
without doubt, superior to other possible choices.
Other possible definitions of the mean are: the
ensemble average (for flows that can be duplicated);
the realization average (for flows that can be re-
peated); the time average (for statistically-stationary
flows); the spatial average (for flows that are statisti-
cally homogeneous in one or more coordinate direc-
tions); and the phase average (for flows that are
statistically periodic). Of all the possible choices, only
the mathematical expectation is defined for all flows.
Consequently, only a theory based on this definition is
generally applicable. However, unlike the other
averages, the mathematical expectation cannot be
measured. We need, therefore, to consider the rela-
tionship between measurable quantities and the
mathematical expectation.

Consider the ensemble average of the random vari-
able ¢ = ¢(x,,t,) for the turbulent mixing-layer ex-
periment. A large number N of (nominally) identical
apparatus are constructed, and the experiment is per-
formed on each one with (nominally) the same initial
and boundary conditions. For the nth apparatus, the
measured value of ¢ is denoted by ¢™. Then the
ensemble average (¢ of d) is defined by

($on=+ Z .

n=1
The ensemble average <¢> ~ 1s clearly an estimate of
the mean {¢) since, for any N,

E((d>5) = <¢). 2.72)

For large N, the Central Limit Theorem reveals the

relationship between (¢)y and (¢). We define the
normalized error ¢ by

(2.71)

£ = (K@dy—<{D))/en, (2.73)
where the standard error ¢y, is defined by
ex=0//N, (2.74)

and o is the standard deviation of ¢, {¢'2>'/2. Then as
N tends to infinity, according to the Central Limit
Theorem,>® the pdf of ¢, f,(¢), tends to the standard-
ized normal distribution

fi&)=(@m)~" 26Xp< 52)

The following three results are readily deduced

from Eq. (2.75):

(i) Almost certainly (i.e. with probability one), as N
tends to infinity, (¢ tends to ().

(i) A finite N suffices to reduce the error
[{¢p>x—<¢>| below any specified positive limit
with any required probability (less than unity).
That is, for any a > 0 and p < 1, there is a finite
M such that

P(<¢>n—
for N > M.

(2.75)

{$p>|<a)=p, (2.76)

o N o
| ewswan- 3 [0

(ili) For large N, with probability 0.68, the aror
[K¢p>n— <¢>| is less than the standard error ¢y,

en = ((¢"2)/N)!/2. @

Thus, although <{¢) cannot be measured with
absolute certainty, for sufficiently large N, the
ensemble average (¢ )y provides as good an approxi-
mation as may be required. It may be noted from (iii)
that the likely error is proportional to the standard

deviation ,/{¢'?) and decreases with the square root
of N. In order to halve the error, N must be increased
by a factor of four.

Similar results are obtained for the realization
average and, with some additional assumptions, for
the time, spatial and periodic averages. In practice,
then, the theory predicts values of the mathematical
expectation which can legitimately be compared with
experimentally determined averages. The ensemble
average of Q(¢), a function of ¢, is defined by,

<Q(¢)> NEY Z (™). (2.78)
The relationship between (Q}N and <Q) is precisely
the same as that between {¢ > and {¢>. In particular,

E(KQ>y) =<0, (2.79)
forany N > 1.

By analogy to Egs (2.66) and (2. 67) the ensemble-

averaged distribution function F,y(y) and pdf f,x(¥)
are defined by

.
Fon(W)=<HW =@y = ﬁz H(y— d)("’)
) (2.80)
and
1 N
Son(h) = QW =Dy = T 50/=¢").
(2.81)

Again, for any N > 1, the expectations of these
ensemble averages are

E{Fon()} = F4(y), (2.82)

and

E{fon(0)} = f,(0). (2.83)

These definitions are consistent since the ensemble

average of any function of ¢ can be recovered without
error:

QWS —¢™)dy

1 (n
=N 2 2 (6" =<Q(®)>

(2.84)

To illustrate the difference between ensemble-
averaged distributions and their continuous counter-
parts, Fig. 2.9 shows distributions for the Gaussian or
normal pdf,
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F16. 2.9. (a) Distribution functions against y: dashed line

F,(¥); solid line F,y(y). (b) PDF’s against y: dashed line

Js(¥); vertical lines (representing delta functions of magni-
tude 0.05) £,y (V).

So) = @2n{d?)) ™ exp(— (b —<b))2 /'),
(2.85)

with (¢} = 0.5 and {(¢'?>) = 0.01. On Fig. 2.9a, the
dashed line is the -distribution function F »()
(obtained by integrating Eq. (2.85)), and the solid line
is Fyn(f) for N =20. (The 20 samples ¢™ are
normally-distributed random numbers with mean 0.5
and variance 0.01.) It may be seen that while F (W) is
continuous, F,y(y) is a piece-wise constant with N
points of discontinuity. On Fig. 2.9b, the dashed line is
the pdf £, (1), Eq. (2.85), and the delta functions (each
of magnitude 1/N =1/20) form the ensemble-
averaged pdf £,y ().

The definition of the ensemble-averaged pdf is satis-
factory since it possesses the required mathematical
properties, Eqs (2.83-84). But its relationship to the
pdf requires further comment: they are distinctly
different quantities in that £,y () is composed of delta
functions whereas f,, () may be continuous. The rela-
tionship between f;y () and f4(¥) can be understood
as follows.

Each value ¢™ is a sample of the random variable
¢, and each location ¥ = ¢™ is a sample point in
y-space. Let m(y, Ay) denote the number of sample
points in the region Y < ¢ < ¥+ Ay. The normalized
sample point number density is defined by

o [my,AY)
f¢~('/’)=A};T {N—Aw—}’

and is the fraction of sample points per unit distance
along the y-axis. Clearly, (V) is zero except at the
sample points where there is a delta function of magni-
tude 1/N. In other words, it is equal to the ensemble-
averaged pdf:

(2.86)

f.;zlv('p) =f¢~(‘/’)- (2.87)

Thus the ensemble-averaged pdf is the normalized
sample point number density in y-space.

As N tends to infinity, the ensemble-averaged pdf
fen does not converge to f,, since f, is still composed
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of delta functions. The ensemble-averaged distribu-
tion function Fy, is composed of steps and, even as N
tends to infinity, it does not become differentiable.
Nonetheless, for any continuous function Q(¢), the
ensemble-average (Q(¢)>y almost certainly con-
verges to (Q(¢4)>; and, for any N > 1, the expectation
of fg is f-
It may be noted that the expectation of Eq. (2.87)

E{fNW)} =f,). (2.88)

shows that the pdfis the expectation of the normalized
sample point number density.

These considerations are important for the theory
developed below, where pdf's are represented in-
directly by ensembles of sample points. The principal
conclusions are that the pdf can be regarded as the
expectation of the normalized sample point density,
which is equal to the ensemble-averaged pdf. As the
size of the ensemble N tends to infinity, all ensemble
averages {Q)y almost certainly tend to the means

2

2.7. Joint Pdf’s

For the mixing-layer experiment, the random
variable that we have been considering is the
normalized temperature at a particular location, ¢ =
¢(Xo,to)- We now consider a second random variable
U, which is the normalized axial velocity at the same
location:

U= (U (X, 1) =U/(Up=U,).  (2.89)

When the steady state is reached, in the low-speed free
stream U and ¢ are zero, and in the high-speed stream
U and ¢ are unity. The value of ¢ is bounded by zero
and unity; but the same is not the case for the velocity,
since pressure fluctuations can cause U to exceed these
bounds. (Experimental data®' show that U does
indeed exceed these bounds.)

A sample space (temperature space, or y-space) has
been associated with the random variable ¢, so that
any value of ¢ can be plotted as a sample point i = ¢.
Similarly, velocity space of V-space is introduced so
that any value of U can be plotted as the sample point
V="U.

The distribution function F,(V) and the pdf f,(V)
are defined by,

F,V)=P(U < V), (2.90)
and
_dF,(V)
L) = T (2.91)

These definitions and the properties of the functions
are exactly analogous to those for ¢. The mean
(mathematical expectation) of U is

<U>=J

and the mean of a functiont of U, Q(U) is

V. (V)dV, (2.92)

T See previous footnote.
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Q) = r oMLYV, (293)

The variance of U is

D(U) = (u?) = f T WUy,

(2.94)
where u is the fluctuation

u=U-U). (2.95)

The distribution functions F,(y) and F,(V) contain
all the information about ¢ and U separately, but they
do not contain joint information. That is, if ¢ and U
are measured, the probability of ¢ < ¢ is given by
F4() and the probability of U < V is given by F (V).
But Fy(¥) and F, (V) do not contain sufficient in-
formation to determine the probability of the joint
(simultaneous) event ¢ < y and U < V. This informa-
tion is provided by the joint distribution function
F,,(V,{) which is defined by

Fo(V,Y) =PU <V, < ¥). (2.96)

It is emphasized that the event (U < V, ¢ < ¥) refers
to simultaneous values of U and ¢.

The following properties of the joint distribution
function are readily deduced:

0<F,(Vy)<1, - (297)
F(—0,y)=F,(V,—0)=0, (2.98)
Fo4(0,¥) = Fy(¥), (2.99)
F4(V,0) = F,(V), (2.100)

and, F,,(V, V) is a non-decreasing function of both ¥
and .
The joint pdf of U and ¢, f,,(V, ¥), is defined by
62
VW)= ———F,_(V,¥).
fu¢( "//) 6V6|// u¢( 'p)
Both F,,(V,¥) and f,,(V,¥) are defined in the two-
dimensional V-y sample space. By integrating Eq.
(2.101) over an infinitesimal area in this velocity—
temperature space, we obtain

fuo(Voy)dVdy = P(V < U < V+dV,

(2.101)

U< <y+dy). (2.102)
Other properties of the joint pdf are:
JuwuVi¥) 20, (2.103)
r r fuWV)dVdy =1,  (2.104)
VAV = o), (2105)
and
f T (VoY) Ay = f,(V). (2.106)

The pdf’s f,(¥) and f,(V) are called marginal pdf’s,
and the last two equations show that these marginal
pdf’s can be recovered from thé joint pdf. But, as has

S. B. PopE

already been noted, the joint pdf cannot (in general)
be determined from the marginal pdf’s.

If Q(U, ¢) is a function of U and ¢, then its mean
(mathematical expectation) is

Q. $)> = r r OV, ) (Vo) AV dy.

(2.107)
If Q is a function only of U, then this formula yields

Q) = r Q(V){r fud,(v,w)dw}dv

= Jw om)f,(vydv, (2.108)

which is consistent with the earlier definition, Eq.
(2.93).

The marginal pdf’s £,(V) and f,()) have means
{U) and {¢) and variances {u?) and {¢'2). For the
joint pdf f,,(V, ) another important characteristic is
the covariance {u¢’», '

Cug'y = f ) f " (V= U W= (D) oo (Vo¥) AV .
e (2.109)

The normalized covariance r is called the correlation
coefficient:

r = ud >/ {<u?) (@ 3HH2 (2.110)

If r is zero, then U and ¢ are said to be uncorrelated. If
|rl =1, then U and ¢ are perfectly correlated. In
general, r lies between minus one and one,

-1<r<i. (2.111)

Perfect correlation occurs when U and ¢ are linearly
related,

¢ = a+pU, @2.112)

where a and f are constants. If f is positive, thenr = 1
and U and ¢ are perfectly positively correlated: if B is
negative,r = —1and U and ¢ are perfectly negatively
correlated.

In nearly-homogeneous turbulence, experiments®?
show that f,,(V,¥)is a joint normal distribution:

Jus(Vo¥h) = c™2exp(—A(V,y)), (2.113)
where the constant ¢ is
¢ =4n2{u?) {P'*> (1 -r?), (2.114)

and A(V, ¥) is the positive definite quadratic function
AV ) = H(V = U P /Ku?)
=2r(V=<UD) ( —<{))/(Ku*» {p*))'7?
FW =LK}/ ~r?). (2.115)

The marginal pdf’s f, (V) and f,,(y) can be obtained by
integrating Eq. (2.113) over y and V respectively.
Both are normal distributions,

LuV) = 2rdu?)y)~ 2 exp(—3(V = (U )*/(u?)),
(2.116)
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FiG. 2.10. Joint-normal pdf, and 100 sample points. The
probability of a sample point being inside each ellipse is
(from the inside outward) 0.2, 0.4, 0.6, 0.8 and 0.99.

and

Jo() = 2r@*>) ™ 2 exp(—3 (Y — <P /KP'?)).
(2.117)

The joint-normal pdf is maximum at (V,y)=
(KU>,<¢>) where i, Eq. (2.115), is zero. Lines of
constant (positive) 4 are ellipses in the V- sample
space, and on these ellipses the probability density is
constant, Eq. (2.113). From Egs (2.113-2.115) it can
be shown®* that the probability P(1,) of a sample
point (V, ) = (U, ¢) lying within the ellipse given by
A=4,is

P(4,) = l—exp(—4,)." (2.118)

Figure 2.10 shows the joint-normal pdf correspond-
ing to CU) =04, (¢) =0.5, u?) =001, (") =
0.00696 and r=0.3. The maximum probability
density (at (V,¥) = (CUD,<{¢>))is 20. Five ellipses are
shown on which the probability densities are (from
the inside outward) 16, 12, 8, 4 and 0.2. The prob-
ability of a sample point being within each ellipse is
0.2, 0.4, 0.6, 0.8 and 0.99. Also shown are 100 sample
points which were obtained from an appropriate

v fug (Vi)
o7} 5o

0.5

1 i . L v
0.0 - 05 1.0

FiG. 2.11. Joint-normal pdf: £, (V, y) against V for y = 0.3,
04,0.5,0.6and 0.7.

random number generator. It may be seen that the
sample-point density approximates the probability
density.

Figure 2.10 shows fus(V,¥) as a contour plot.
Alternatively, f,,(V,¥) can be plotted against V for
different values of . This representation is shown on
Fig. 2.11.

The joint normal distribution is defined by the
means, variances and covariances of the random vari-
ables. It is emphasized, however, that in general a pdf
or a joint pdf cannot be determined from a finite
number of moments. Because of their occurrence in
nearly-homogeneous turbulence, joint normal pdf’s
have an important place in pdf methods. But in in-
homogeneous flows, especially turbulent reactive
flow, pdf’s can be far from normal.$3

At a given location in sample space, the distribution
function F,4(V,¥) can be continuous or it can be
discontinuous in either or both of V and Y. For
example, if ¢ adopts the constant value ¢ = ¢, then
F,, is discontinuous in ¢:

Fu(V.Y)=F,(V)HWY —9,). (2.119)
The corresponding pdf is
SV ) = £, (V)6 — ). (2.120)

If U also adopts a constant value U = U « then F,

e 1S
discontinuous in both ¥ and y:

Fuo(VY)=HWV-U)HWY—¢,), (2.121)
and the joint pdf is,
Ju(VoY) =0(V-U,)é(—¢,). (2.122)

The delta function product, or two-dimensional delta
function, in Eq. (2.122) represents a unit spike at
location (U, ¢,,) in the V-y sample space.

We now consider the transformation of the joint pdf
under a change of variables. (Equation 2.48 is the
transformation for a marginal pdf.) Let g and h be
random variables (with corresponding sample-space

variables § and A) defined by
9=GU,¢), § =G(V,y), (2.123)

and

h=HU,¢), h=HV,y). (2.124)

We require that the functions G and H be such that
there is a one-to-one correspondence between points
in V- space and those in §—h space. This require-
ment is met if the Jacobian

%4 9

3G,h) _|ov oy

30 = | ok ah| (2.125)
v

has the same sign everywhere.

A given event corresponds to a region of ¥~y space
which, in turn, corresponds to a region of §—h space.
As an example, the event

A=V, <U<V,y,<d<y,), (2126)



132 S. B. PoPe

<
>

vey
Y - Z A0
\PO - é V=Vb
V=V,
a) b)
\;c \l/b v 6

FIG. 2.12. The event A4 (Eq. 2.126) in: (a) V- space, (b) §-h
space.

is sketched as a region of V- space on Fig. 2.12a and
as a region of g—h space in Fig. 2.12b. With f,,(4, h)
being the joint pdf of g and h, the probability of the
event A is

(Ve (¥
PA)= | L Ju(V,¥)dV dy

r

- | qud,(v,w)dde

(2.127)

= Jf,,h(.é, hydg dh.
A

v

Now since there is a one-to-one correspondence
between points in the two spaces, the last integral can
be rewritten®*

34, h
L J‘Lh(é,ﬁ)dédﬁ = L Jfg"(é’ﬁ)la((lg/ ,/,))

avdy.

(2.128)

Since the event A can be chosen arbitrarily, com-
paring the last two equations we obtain the
transformation rule

a@, h)
awv. )|

The absolute value of the Jacobian represents the
volume ratio between the two spaces. The probability
in an infinitesimal volume dVdy at (V,y) is
JuVap)dVdy. In g-h space, the corresponding
volume is |8(d, h)/8(V,y)|dV dy and hence the corre-
sponding probability is

Fuo VW) = [, ﬁ) (2.129)

o, h)
AT
As Eq. (2.129) states, these two probabilities are equal.
The joint distribution function and pdf have been
defined for the random variables U and ¢ measured at
the particular location x,,?,. As with the marginal

pdf’s, this definition can be generalized to make F,,
and f,, functions of x and t:

Sl v dy.

Fu(p(V, ‘p,X’ t) = P(U(Z.a t) < Vs ¢(K~ t) < ‘I’)’
(2.130)
and
: 82
J.,,,s(V,l//,Lt)=WF.,¢(V,¢,&I)~ (2.131)

As before, the semicolon is used to separate the
variables (V, /) with respect to which f,, is a density.

2.8. Conditional Probabilities

Conditional expectations play a central role in pdf
methods. Before examining their properties we need
to define conditional probability and conditional
pdf’s.

Let 4 and B be two events with positive probabili-
ties P(4) and P(B). The probability of the joint event
AB is P(AB). Since the joint event AB can only occur if
both 4 and B occur, it is clear that,

P(4B) < P(4), (2.132)

and
P(AB) < P(B). (2.133)
The conditional probability of A and B is defined by
" P(A|B) = P(AB)/P(B). (2.134)
This is the probability of the event A4, given that the
event B occurs. It is obvious from Eqs (2.132-2.134)

that P(4|B) conforms with the requirements on
probabilities, namely

0<PMA[B)<1 (2.135)

The meaning of conditional probabilities is
illustrated in the following example. Let n denote the
outcome of the throw of a fair die (ie.n=1,2,3,4,5
or 6 with equal probability). If 4 is the event “n = 27,
and Bis the event “nis even (2,4 or 6)” then,

P(4) = 1/6 (2.136)
(B) =172 (2.137)

and _
P(4B) = 1/6. (2.138)

From the definition of conditional probabilities, Eq.
(2.134),

P(A|B) = (1/6)/(1/2) = 1/3, (2.139)

and

P(B|A4) = (1/6)/(1/6) = 1. (2.140)

That is, if n is even (event B), then the probability of
n=2 (event A) is 1/3, Eq. (2139): if n=2, n is
certainly even, Eq. (2.140).

For the random variables U and ¢, consider the
events

A=U<V, (2.141)
and

B=y < ¢ <y+AY. (2.142)
The probabilities P(4), P(B) and P(4B) can be deter-
mined from the joint pdf f,,(V,¥). Hence, using the
definition of conditional probabilities, we obtain,
PAIB)=P(U <V|y <P <y+AY)

Voorusay
=J J Jo(V¥)dyd
—oc JY

The conditional distribution function F,(V|¥) is
defined as the limit of this conditional probability as

,./ v+ay . ~
wj Jo)dy.

2
(2.143)
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Ay tends to zero*:

Fue(VIY) =PWU < V|p = y)
Vv
= J LV dV/If, (). (2.144)

The conditional pdf f,, is the derivative (with respect
to V) of the conditional distribution function,

Suo VIV) = Lo Vo) (). (2.145)

It is simple to verify that F,, and f, 4 have all the
properties of a distribution function and a pdf, respec-
tively. The significance of the conditional pdf is that

Jus (V) dV

is the probability that U is in the infinitesimal range
V < U < V+dV, given that ¢ is equal to y. It is also
evident from Eq. (2.145) that the joint pdf can be
recovered from the conditional pdf by

fuq& =fd>fu1¢ =fuf¢|u- (2146)
If Q(U, ¢) is a function of U and ¢, the conditional
expectation of Q, given ¢ = Y, is

E(Q(U, $)|é = ¥) = QU $)|b =
- r Fuo(VIWIQV, W) V.

(2.147)

The unconditional mean of Q can then be obtained by

Q(U,¢) =

i r LoV QU Y)dVdy

)

- fw){ j " fs (VR w)dV}dw

J
(foo

=1 LW)<QU,¢)p=y)>dy. (2.148)

J -

In particular, the unconditional expectation of U is
U= J S XUl =y>dy. (2.149)

In the subsequent derivation and examination of
pdf equations, terms of the form (Ud(¢—y)) are
frequently encountered. Substituting Ud(¢ —y) for
Q(U, ¢) in Eq. (2.148) we obtain:

r

U= = | L) KUSb— Wb =¥'>dy’

(o0

=1 SW)KUW -yl =y">dy’

(* o0

=1 W)W —y)<KUlp=y">dy

o — 0

=) <Ulp =¥>.

This important result is used extensively below.
For the joint-normal distribution, the conditional

(2.150)

*If Fy(y) is discontinuous, F, 4 and f,4 can still be
defined but not by Eqs (2.144) and (2.145).

pdf f,4 is obtained by dividing f,4, Eq. (2.113), by f,,
Eq. (2.117):

fas (V1Y) = [2n¢u?> (1 =r)] 712
1
XeXp{~§(V—<UI¢ = lﬂ))z/((uz) (l—rz))},

where the conditional mean of U is

U=y =U>+<ud’y (Y —<{>)Kd*>.
(2.151)
Thus the conditional pdf f,,, may be seen to be a
normal distribution with mean (U|¢=y) and
variance <u2?) (1 —r?). Similarly, foiu 1s @ normal
distribution with mean

PIU = V) =) +ud’> (V-(U»)/Ku*)
(2.152)

and variance {¢'2) (1 —r?).

By definition, the random variables U and ¢ are
independent if their joint pdf is the product of their
marginal pdf’s:

Jus (V) = L.(V) 1 (). (2.153)

It then follows from Eq. (2.145) that the conditional
pdf’s are equal to the unconditional pdf’s,

Jus V1Y) = £u(V), (2.154)

and
SoW1V) = fo (). (2.153)

Equation (2.154) shows that, if U and ¢ are
independent, a knowledge of ¢ provides no informa-
tion about U. In particular, the conditional
expectation of U is the same as the unconditional
expectation.

Independent random variables are uncorrelated
since

<u¢”>=£ J_ (V=CUD) W =<V fus(V,h)dV dy

='[ (V-<U>)f..(V)de_ W =<D)(¥)dy

=0. (2.156)

But a lack of correlation does not, in general, imply
independence. For example, with ¢ being a uniformly
distributed random variable between zero and one,
the random variables g = cos(2n¢) and h = sin(2n¢)
are uncorrelated, but they are obviously not indepen-
dent.

2.9. Limitations of One-Point Pdf’s

All the pdf’s.considered in this paper are one-point
pdf’s—pdf’s of random variables at the same location
and time. An example of a two-point pdf, is the joint
pdf f,, of the random variables ¢(x,t) and ¢(x,,t,).

The two-point distribution function F,, is defined by

F2¢('l/’ ‘ll*,latyiw t*) = P(¢(L t) < \l’y ¢(2‘_*’ t*) < '//*)9
(2.157)
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and the two-point joint pdfis

de)('l/a ‘//*’ X, tai*s t*)
62

T owy,

The one-point pdf can be recovered by

F2¢('//a ‘l/*,Lt,l*,t*)- (2158)

f¢(|//;lat)= J. f2¢(!//,¢*;&t,l*,t*)d¢*,

(2.159)

but, in general, the two-point pdf cannot be deter-
mined from f,(¥; x, t) and f, (¥, ; X, £,0)-

It is clear, then, that one-point pdf’s do not provide
a complete description of random fields. They provide
information at each point separately, but no joint
information at two or more points. As a consequence,
one-point pdf’s contain no information about the
frequency or length scale of the fluctuations.

To illustrate this observation, suppose that ¢(x, t) is
a travelling sine wave of frequency w, wave length L,
and random phase,

¢ (x,1) = 3+3sin {2n(wt +x,/L+¢)},
(2.160)

where ¢ is a random variable, uniformly distributed
between zero and one. The corresponding pdf is

Soix,1) = % {1-@y-1)3}-12. (2161)

The pdf, it may be seen, is independent of both the
frequency w and the wave length L. Consequently the
one-point pdf contains insufficient information to
determine a quantity such as {(d¢/0x,)?> which
clearly depends upon the wave length L. (It follows
from Eq. (2.160) that this quantity is given by,

A 2
(62)-rew

3. VELOCITY-COMPOSITION JOINT PDF

(2.162)

In a low Mach number gaseous flow, the state of the
fluid at any location is fully described by the three
components of velocity (U = U, U,, U,) and by a set
of ¢ scalars (¢ = ¢, d,,...,,). The set of scalars ]
comprises the species mass fractions and the enthalpy.
In section 3.1 the transport equations for U and ¢ are
presented.

A complete one-point statistical description of a
turbulent reactive flow is provided by f(V, ¥ixit)—
the joint pdf of U and ¢. At a given location in
physical space and time (x,t), the joint pdf f(V, Y)is
the probability density in the combined three-dimen-
sional velocity space (V-space) and the o-dimensional
composition space (y-space). The properties of the
velocity—composition space and of the pdf are out-
lined in Sections 3.2 and 3.3. The joint pdf can be
represented by an ensemble of delta functions (cf. Eq.
2.81). This discrete representation, which plays a
central role in the pdf approach, is described in section

S. B. PopE

34. In Section 3.5 the transport equation for
SV, ¥;x,t) is derived from the transport equations
for U and ¢.

3.1. Conservation Equations

The state of a reacting gas mixture composed of s
species is fully described by the species mass fractions
m,(x,t) (@ = 1,2,...,s), the specific enthalpy h(x, t), the
pressure p(x,t), and the velocity U(x, t). An equation
of state determines the density p as a function of m, h

“and p:

p = p(m,h,p),

where m denotes the set of species mass fractions.

The evolution of the reactive flow field is governed
by the conservation equations of mass, momentum,
chemical species and enthalpy®3:9:

3.1)

%f’“a% (pUy) =0, (3.2)
?)lfj - %%“g,%ﬂg,-- (3.3)
p?)n:a = —Z—ﬁwsa, (3.4)
and
"B ‘?—fﬂsw (3.5,

where the material derivative (the rate of change
following the fluid) is

D_¢.,9
Dt o ‘ox,

In these equations, g; is the body force (per unit mass)
in the x;-direction; 7;; is the sum of the viscous and
viscous-diffusive stress tensors®®; S, is the mass rate of
addition (per unit mass) of species « due to reaction;
J%is the diffusive mass flux vector of species o; S,is the
source of specific enthalpy due to compressibility,
viscous dissipation and radiation; and J* is the specific
energy flux vector due to molecular transport. The
molecular transport quantities t;;, J* and J* are com-
plicated functions of the local properties and their
gradients.®

The source of m,, S,, is 'a combination of reaction
rates and stoichiometric coefficients. The reaction
rates depend upon the mass fractions, the pressure,
and the temperature T (x, 7). Since the temperature can
be determined from m, h and p,

(3.6)

T = T(m,h, p), (3.7)
so also can the source S, :
S, = S,(m, h,p). (3.8)

The fluid mechanical equations (Eqs 3.2-3.3) are
coupled to the thermochemical equations (Eqs 3.1,
3.4, 3.5, 3.8) principally by the pressure and density. It
proves to be extremely useful to invoke the low Mach
number assumption to remove the coupling through
the pressure. Let x,, be a reference location and let the
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reference pressure p,, be

Pol(t) = {p(Xo,1)).

The pressure can then be written as

(39)

p(x, 1) = po(t) +Ap(x, t), (3.10)
where the pressure variation Ap is defined by
Ap(x,t) = p(x, 1) = po(t). (3.11)

The pressure-gradient term in the momentum equa-
tion can be rewritten as

0Ap
ox;’

J

o _ 0 (Ap(x,

2, " ox, 1)+po(t)) =

(3.12)

showing that the uniform reference pressure p, has no
effect.

The density and the reaction rates (and hence S.)
depend upon the magnitude of the pressure, not upon
the pressure gradient. The equation of state (Eq. 3.1)
can be expanded in a Taylor series in p around p, to
yield,

5
m, h,p) = p(m, h, {1+————+.... .
p(m, h,p) = p(m, h, p,) > op

(3.13)

Now, since Ap/p, can be estimated to be of the order
of the Mach number squared,'” only the first term in
the expansion need be retained. Thus, to a good
approximation,

ah7 Po),

and similarly, the sources S, can be evaluated by

p = p(m (3.14)

S, = S,(m,h, p,). (3.15)
The source in the enthalpy equation is®®
U, Dp
pSy =1 o, +—+(A €), (3.16)

where 4 and ¢ are the rates of absorption and emission
of radiant energy (per unit volume). At low Mach
number, the viscous dissipation term is negligible and
the pressure term is well approximated by -

Dp dl’o
Dt dt’

In non-sooting gaseous flames, radiative heat transfer
can usually be neglected in the enthalpy equation. It is
assumed that the rate of absorption 4 is negligible, but
the rate of emission can be retained in the equation
since it is a function of m, T and Po- Thus, with the
assumption of low Mach number and the neglect of
radiation absorption we obtain

S, = S,(m, h, py, dp,/dt). (3.18)

It may be seen that with the low Mach number
assumption, the pressure variations Ap do not affect
the thermochemical equations while the reference
pressure p, does not affect the momentum equations
directly. The equations are still coupled through the
density which depends upon p,,. (Strahle®” and others

(3.17)
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have also determined that Ap does not affect the
thermochemical equations at low Mach number.)

In some applications (notably internal combustion
engines) the reference pressure p,(t) varies signifi-
cantly with time. In other applications (open flames,
furnaces, and gas turbine combustors in the steady
state) the reference pressure is constant. For
simplicity, we consider the case of constant reference
pressure, but the extension to the variable case is
straightforward.

The mass fraction and enthalpy equations can be
written in a common form by defining the set of
¢ = s+ 1 scalars ¢(x,t) by:

o, =m,, a=12..s=0-1,
and
¢, = h. (3.19)

Then, with J{ =J! and S, = §,, the general scalar
transport equation is,
Dy, ot

P Dt O0x

For a given reference pressure p, (assumed constant),
the density and sources depend only on the set of
scalars ¢:

+0S, a=12,...,0. (320

i

p=p(9), (3.21)

and
S, = S,(9). (3.22)

The set of o scalars ¢ defined by Eq. (3.19) provides
a complete description of the thermochemical
properties of the gas mixture. Many combustion
problems involve a large number of species, and con-
sequently ¢ is large. (For example, the combustion
of methanol may involve 26 species.®®) In turbulent
combustion calculations, simplifying assumptions are
usually made in order to reduce the number of scalars
needed to describe the gas composition. Extreme
examples are the idealized premixed and diffusion
flames, in each of which the gas composition is (by
assumption) determined by a single scalar. For the
idealized premixed flame®® the single scalar is the
progress variable (or the normalized product concen-
tration): for the idealized diffusion flame’® the single
scalar is the mixture fraction (or the nozzle-fluid con-
centration).

In order to exploit such simplifying assumptions,
we redefine the set of scalars considered as follows:

¢ is a set of ¢ scalars @ =0¢1,05...,0,),
governed by the general transport equation Eq.
(3.20), which, in conjunction with the simplifying
assumptions (if any), is sufficient to determine the
density p, the source terms S,(@=1,2,...,0)and
any other thermochemical property of interest.

The scalars ¢ are called the composition variables since
they determine the composition of the gas mixture.
Their definition ensures that Eqs (3.20-3.22) hold, and
that (at least by assumption) the mass fractions and
enthalpy are known functions:
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m, = m,(¢), (3.23)

and

h = h(¢). (3.24)

In summary, the equations governing the evolution
of the turbulent reactive flow field are the mass con-
servation equation, Eq. (3.2), the momentum con-
servation equation, Eq. (3.3), the composition
equations, Eq. (3.20) and the equation of state, Eq.
(3.21). No assumptions have been made about the
reaction rates S, or the molecular transport terms t;;
J*and J".

ij>

3.2. Velocity and Composition Spaces

At a given position and time (x,t) = (Xo,%,) in a
turbulent flow, each component of the velocity
(U;=Ux,t), i=1,23) is a random variable.
Together, the three components form the random
vector U. Let (V,,V,, V3) be the coordinates of the
point V in a three-dimensional Euclidean space that
we call the velocity space. Then the simultaneously-
measured values U, U, and U, can be plotted as the
sample point V = U in the velocity space. The velocity
space (or V-space) is the sample space of the random
vector U.

Similarly, each of the composition variables (¢, =
O, (Xo.1o) 2 =1,2,..., o) is a random variable: taken
together they form a a-dlmensmnal random vector ¢.
Let (¥,.¥,.....Y,) be the coordinates of the point ¥ in
a o-dimensional Euclidean space that we call the
composition space. This is the sample space of the
composition variables, since a simultaneous measure-
ment of (¢,,¢,,...,¢,) can be plotted as the sample
point Y = ¢.

If the composition variable ¢, is a mass fraction—
m,, say —then (from the definition of mass fractions)
¢, must lie between zero and unity:

0<¢,<1 (3.25)

A value of ¢, exceeding these bounds cannot occur. In
general, there is a region in composition space
(Y-space) called the allowed region within which any
point ¥ corresponds to a possible composition ¢ = .
Outside the allowed region, a point y corresponds to a
composition ¢ = that cannot occur—possibly
because a negative mass fraction is implied.

Equations (3.21-3.24) show that properties such as
p, S,» m, and h are known in terms of the composition
variables ¢. Since every point y in the allowed region
of the composition space corresponds to a possible

_composition ¢ = Y. the corresponding properties at
the point are p(uj/),gﬂ(y), m, (), h(y), and so on. In this
way, any property of ¢ can be regarded as a function
in composition space. The density p is a scalar, while
quantities which have ¢ components can be regarded
as vectors in y-space. In particular, ¢ = (¢,,
¢,....p,)and S = (S, S,...., S,) are vectors.

Processes as well as properties, can be represented
in composition space. Consider a homogeneous,

reaction path

fo

¥
F1G. 3.1. Reaction path in augmented composition space.
quiescent, reactive gas mixture, which at time ¢, has

the composition ¢(t,) = ¢,. According to Eq. (3.20),
as reaction takes place, the composition evolves by

d¢,
Frae S,(9), (3.26)
or, in terms of the vectors ¢ andS§,
d
¢ = S(¢). (3.27)

(Because of the assumed homogeneity, ¢ depends only
upon ¢, and the other terms in Eq. (3.20) are zero. ) The
solution to Eq. (3.27) can be written

$(t) = D(¢o. 1), (3.28)

to show, explicitly the dependence of ¢(t) upon the
initial condition ¢,

At any time, the composition can be represented by
a point in y-space. Initially the point is i = ®(¢,, 1).
Such a trajectory—or reaction path—is sketched on
Fig. 3.1 in the augmented composition space (Y-t
space). The composition is shown approaching the
value § = @, corresponding to chemical equilibrium.
It is evident from Eq. (3.27) that S represents the
velocity of the point in composition space, and conse-
quently reaction paths are everywhere tangential to S.

The velocity vector U is a three-dimensional
random vector and ¢ is a o-dimensional random
vector. Taken together, the (3 +¢) quantities (U, ¢) =
(U, Uy Us by, @ss...,0,) form a (3+ g)-dimensional
random vector. The appropriate sample space for this
random vector is the (3+ ¢g)-dimensional Euclidean
space in which the coordinates of the point (V, ) are
V1, Vo Vas ¥ i, ¥s, ..., ¥,). This is called the velocity—
composition space or Y-y space. The experimental
techniques of laser-Doppler-anemometry and Raman
spectroscopy are approaching the stage where simul-
taneous measurements of U and ¢ are possible.”! A
simultaneous measurement of these (3 +¢) quantities
could be plotted as a point in V-y space.

3.3. Velocity—Composition Joint Pdf

At the particular location and time (x,) = (X, o).
the three components of velocity and the ¢ com-
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position variables, form the (3+ 0¢)-dimensional
random vector (U,¢). The (3+0)-dimensional
distribution function of (U, ¢) is defined by

Fo (V) =PU, <V, U, <V, U; <V,
¢l < l//1’¢2 < ‘f/]Z""’d)a < l//o')' (329)

At every point in the velocity—composition space
(V-y space), this distribution function has a value
between zero and one. The joint pdf of (U,¢) is
defined by,

fu¥otr) = V,av,avauau, oy, LuL Y
(3.30)

Before outlining the properties of f,,, we introduce
some abbreviated notation. First, f (without sub-
scripts) is written for f, ,:

FLY) = fus(V ). (3.31)

An infinitesimal volume in V-space is written dV,

a3+a

dVv =dv,dv,dv,, (3.32)
and an infinitesimal volume in y-space is dy,
dy =dy, y,...dy,. (3.33)

Thus dVdy is an infinitesimal (3+ o)-dimensional
volume in velocity—composition space. Integration
over the whole of V-space or y-space is indicated by a
single integral sign:

f( )d2=f r X

and
f( )dy¢=f_ r S
(3.35)

Integration over the whole of V- space is written as

f f( )dV dy.

The joint pdf of the three velocity components f,(V)
is obtained from f (V, y) by integrating over y-space:

V) = Jf(!ﬁ)dﬂ-

And the marginal pdf of a single velocity compo-
nent—U,, say—is obtained by integrating f, over
the other two velocities:

)ydV, dV,dV,,
(3.34)

(3.36)

fu V) = r f fV)AV,dV,.  (337)

Similarly the joint pdf of the compositions, f4(y) is
obtained by integrating f(V, y) over velocity space
JANE ff(z, ¥)dv. (3.38)

The probability that U is in the infinitesimal volume
dV at Vis f,(V)dV: the probability that ¢ is in the

)dy, dy,...dy,.

infinitesimal volume dy at  is f,, () dy. Similarly, for
the (3+0)-dimensional random vector (U, ¢), the prob-
ability of its being in the infinitesimal volume dV dy at
(V,¢)is f(V,¥)dV dy. (These properties of the pdf’s
follow from the definition of the distribution function,
Eq. (3.29).)

The sample point corresponding to a value of the
random vector (U, ¢) is sure to lie somewhere in the
V- sample space. Thus the probability of this event
(which is given by the integral of / (V, ) over the whole
space) is one:

”f(& Y)dvdy = 1. (3.39)
Similarly,
| ffg V)dv =1, (3.40)
and
jf@(ﬂ) dy = 1. (3.41)

Let Q(U, ¢) be a function* of U and ¢. Corre-
spondingly, Q(V, ¥) is a function defined everywhere in
velocity—composition space. The mean, or expectation,
of Qis

QU 9)) = jJQ(YJLk)f (V. ¢y)dVdy. (3.42)

If Q is a function of U only, then its mean is

QW) - [ [owswpavay
- Jew{ [rw aghay
- [ewrmav. 6.4
Similarly, if Qis a fu:lction of ¢ only,
Q@p - [ownwa.  ou

It may be recalled that ¢ is always within the
allowed region of y-space. Physical properties such as
the density p have no physical meaning outside the
allowed region. However, it aids both the notation
and the analysis to regard p(y) as a finite continuous
function defined everywhere in y-space. The definition
of p(¢) outside the allowed region is arbitrary (except
that p(y) should be finite and continuous) since
p(W¥)f4(¥)is non-zero only in the allowed region. Thus,
the mean density can be determined from

<p(@)) = Jp(ﬂ)fg(sli)dzlg, (3.45)
and is independent of the definition of p() outside the
allowed region. Similarly, all other functions (e.g. S(}))
are regarded as being defined everywhere in com-

position space.

* See footnote in Section 2.5.
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In Section 2.5 it was shown that the pdf of a single
scalar f; () is equal to the expectation of a delta function
{0(¥ —¢)), Eq. (2.67). Similarly, for the joint pdf we
have

f%LY) = 6(V-U)éy —9)>,

where 6(V-U)is written for the three-dimensional delta
functionatV =U,
oV -U)=46(V,-U,)o(V,—U,)é(V5—U,),
(3.47)

and, similarly, 6(y —¢) is the o-dimensional delta
function at y = ¢,

(3.46)

oY—9)=[1 6(.—9,). (3.48)
a=1
If R is any random variable, its mean can be deter-
mined by

(R) = ”.<RIQ =V, ¢=¥f(V,y)dVdy,
(3.49)

where (R|U =V, ¢ = ¥ is the conditional expecta-
tionof R,giventhat U = Vand ¢ = y (cf. Eq. 2.149).If
R is independent of U and ¢, then the conditional
expectation is equal to the mean,

(RIU=YV, ¢ =y =<R), (3.50)

in which case Eq. (3.49) is not useful. At the opposite
extreme, if R is completely determined by U and & (ie.
R = R(U, ¢)), then

(RU,PIU =V, ¢ =y) =RV, ¥), (3.51)

and Eq. (3.49) reduces to the definition of the
unconditional mean. Henceforth, conditional expecta-
tions are written {R|V, y>, it being implied that V is the
value of U, and ¥ is the value of ¢.

An important result embracing conditional expec-
tations and delta functions is

(ROV-U)s(—9)> =<RIVYf (V). (352)

This result, which is used extensively below, can be
deduced from Eq. (3.42), (cf. Eq. 2.150).

For variable-density flows, there can be an advan-
tage!” in considering density-weighted means (or Favre
averages’?). For the random variable R, the density-
weighted mean R is defined by

R=(pRYKp>, (3.53)
and the fluctuation about this mean is
R"=R-R. (3.54)

From Egs (3.49) and (3.53) we obtain

rp

R= | |<p@RIV.¥>f(V.$)dV dy/(p)

JvoJ

rp

PRIV, Y f(V, ¥)dV dy/<p)>

= | [KRIV. w7V p)dv ay, (3.55)

where the density-weighted joint pdf f'is defined7° by

TLY) = (VL ¥)pW)Kp)- (3.56)

With this definition of f; Eq. (3.55) for the density-
weighted mean, Ris directly analogous to Eq. (3.49) for
the mean {(R).

The random vector (U, ¢) has been defined as the
velocity and composition at the particular location and
time (x,t) = (Xo,t,). Clearly, the random vector (and
hence the distribution function and pdf) can be defined
at any (x,t). In general, then, the joint distribution
function is defined by,

F,,¥,x0) =P(U (%, 1) < V;, Uy(x,1)
B <V3,Us( )< Va6, (0.1)
<Y1, 025, 1) <Yy, (X, ) < Y,),
(3.57)
and the joint pdfis defined by,
§3+e
OV, 0V,0V30y,0y,...04,
X Fuo(V, ¥, %,8).  (3.58)

It is emphasized that f(V, y/; x, t) contains information
about every point (x, t) separately: it contains no two-
point information in physical space or time.

In applying the pdf equation to inhomogeneous,
variable-density flows, the natural dependent variable
isneither f nor f'but it is the mass density function (mdf)

FVY.x0)=pW)f (V. ¥;%.1)
=PIy x0). (3.59)

Asis explained in the next subsection, the mass density
function & is the expected mass density in V— y—x
space.

The important properties of & follow immediately
from its definition and from the properties of f:

rr

SV xt) =

FNV. Y, x;1)dVdy = {p), (3.60)
FNLY,x; ) [p()] 1dVdy =1, (3.61)
FN Y, x; )0V, ¥)dV dy = (pQ)> = {p>0,

J (3.62)

and

fﬁﬂlg,&; t)<R|V,¥>dV.dy = {pR) = {p>R.
(3.63)

In these equations, the means are functions of x and ¢
and {R|V, y) is written for

(R DIURE 1) =V, $(x,1) = ¢).

3.4. Discrete Representation

In Section 2.6 the ensemble-averaged pdf f,y was
defined by (Eq. 2.81)
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Son(¥) = ¢""

where ¢ is the nth measured value of ¢(x,, t,). The pdf
fs(¥)and the ensemble-averaged pdf fon (W) arerelated
in two ways. First, for any N(N > 1), S 1s the expected
value of f, (Eq. 2.83):

<f¢N(‘/’)> =f¢('/’) (3-65)

Second, for large N, the ensemble average of any
function Q(¢),

Q@)y = JQ(!//)fw(lﬁ)dtﬁ,

_Zé

n—l

(3.64)

(3.66)

approximates the mean {Q(¢)>. The statistical error in
this approximation is of order N~ 1/2,

In this section the discrete representation of pdf’s as
ensembles of delta functions is extended and general-
ized. This discrete representation is central to the whole
approach. First, for homogeneous constant-density
flows, a discrete representation for the joint pdf £ (V, )
is obtained: then, for the general case, a discrete
representation for the mass density function # (V, y, x)
is given.

Thediscrete pdf f, () (Eq. 3.64)isdefined in terms of
N sample values ¢™, n=1,2,...,N. In order to
represent the jgint pdf f (V, §), N samples are needed of
the (3 + o)-dimensionalrandom vector (U, ¢). Then the
discrete pdf fy(V, .'k) is

HYy)=— Z S(V-U")s(y—¢™). (3.67)
n=1
This is an ensemble of N (3+ o)-dimensional delta
functions in velocity—composition space.

While it is natural to think of (U™, ™) as simul-
taneously-measured values of the velocity and com-
position, the discrete representation (Eq. 3.67) is valid
for any random variables (U™, ¢ with pdf f(V,y).
For then, the expectation of Eq. (3.67) is

YD =fV¥). (3.68)

The ensemble-average <Q(U, ¢)>y of any function
0Q(U, ¢) can be obtained consistently from the discrete
representation by

QU 9N = f JQ(X, W V.y)dVdy

=_ Z Q(_(") Q("))

n-l

The ensemble average {Q> approximates the mean
{Q@) with a statistical error ¢y

(DOn =<2 +egn. (3.70)

The expected error E(eyy) is zero, and the standard
deviation gy is

gov = /Dlegn) = N"12/D(Q).  (3.71)

This formula (Eq. 3.71) for the standard error reveals
the strength and weakness of the discrete representa-
tion. The weakness is that the statistical error decreases
slowly with increasing N: if 100 samples (N = 100)

(3.69)

produce 10 9 accuracy, then 10,000 samples are needed
for 19 accuracy and 1,000,000 samples are needed for
0.19 accuracy. The over-riding strength of the
representation is its ability to handle pdf’s of large
dimensionality. The discrete pdf is defined by N
(3+0)-vectors, that is, by (3 +¢)N numbers. Thus for
given N, the number of numbers required to represent
the pdfrises only linearly with the dimensionality of the
sample space. And Eq. (3.71) shows that the statistical
error isindependent of the dimensionality of the sample
space. Thus, if a three-dimensional pdf can be
adequately represented by 1,000 samples (3,000 num-
bers) then a ten-dimensional pdf can be represented to
the same accuracy by just 10,000 numbers.

The ability to treat the problems of large dimen-
sionality and the slow convergence (egnaN ~12) are
characteristics of all Monte Carlo methods 37

Each of the N vectors (U™, ™) defines a sample
point in velocity—composition space. These points can
be thought of as the locations (V, ) = (U™, ¢™)of N
notational particles in V- space. The normalized
particle number density (in V-y space) is

1 N
N 2 SV -U) oW —¢") =fy(V.y), (3.72)
n=1

and Eq. (3.68) shows that the pdf f (V, Y)is the expecta-
tion of this normalized particle number density.

This discrete representation of f(V, ¥) (Eq. 3.67) is
used to study homogeneous flows. But for the general
variable-density inhomogeneous case, a discrete
representation of the mass density function # (V, i, x)is
required.

Consider the turbulent flow within a volume ¥ of
physical space (x-space). The expected mass of fluid
within this volume is M,

M= J(P(é))dl, (3.73)

where jdl is written for the integral over ¥,

f( )dx = Jff ( )dx,dx,dx;. (3.74)
v

Within the volume ¥, the mass density function
F (V,§,x) is represented by N notional particles, each
representing a mass Am,

Am = M/N. (3.75)

The nth particle has velocity U™, composition ¢®
and position x™. The (6+ o)-dimensional vector
(U™, ™, x™) defines the state of the particle and is
called the state vector. This state corresponds to the
point (V,y,x) = (U™, ¢™,x™) in the (6+ ¢)-dimen-
sional state space— (V-y—x) space. The discrete mass
density function # N(V ¥, x) is defined by

Fy\V,¢,x)=Am Z S(V-U") oy~ ¢™)d(x—

n=1
(3.76)

The numbering of the particles is arbitrary. In
other words the random vectors (U™, g™, x™),
n=12,...,N, are identically distributed. Con-

x®).
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sequently, the expectation of Eq. (3.76) can be written

N
Iy, x)> =Am ¥ (6(V-U")o(y — ™)

n=1

x o(x—x™)), (3.77)

or, alternatively,
(FrN ¥, %))
= MBSV -U")o@ —¢™)6(x—x")), (3.78)

foranyn(l <n<N).

The discrete mass density function &, has been
defined (Eq. 3.76) in terms of the state vectors of the N
notional particles, but the properties of these random
vectors have yet to be defined. Their properties are now
deduced from the requirement that the expectation of
Z y is the mass density function & :

CFN Y ¥,x)) = F(V, ¥, %). (3.79)

Let h(x) be the pdf of particle positions—that is, h(x)
is the probability density of x™ = x. Then integrating
Eq. (3.78) over velocity—composition space yields

”(%D dVdy = M{S(x—x")>

= Mh(x), (3.80)
and integrating Eq. (3.79) yields
jj(%& dVdy = {p(x)>. (3.81)

A comparison of these results shows that the particle
position pdf is

h(x) = <p)>/M. (3.82)

Thus the number density of notional particles in
physical spaceis proportional to the mean fluid density.
(It may be noted that the integral over ¥ of each side of
Eq. (3.82) is unity.)

Let f*(V, ¥ |x) denote the joint pdf of U™ and ¢™
conditionaluponx™ = x. Thisisthejoint pdf of U and
¢™ for a notional particle located at x. In terms of delta
functions, this conditional pdf is

[V ylx) = 6V -U") oy — ™)
x o(x —x")>/Ko(x—x")>. (3.83)

The numerator is (Fy)/M (Eq. 3.78) while the
denominator is {p)/M (Eq. 3.82). Thus invoking Eqs
(3.79) and (3.59) we obtain

F*ylx) = F(VL ¥, x)/KpX))
=7V, ¥;%). (3.84)

Thisequation shows that,in order tosatisfy the require-
ment{Zy> = Z,the pdfofnotional particle properties
at a given location must be equal to the density-
weighted pdf of the fluid properties.

To summarize the properties of the discrete represen-
tation for variable-density inhomogeneous flows: the
mass density function & (V,y,x) is represented by N
notional particles, each representing a mass Am (Eq.

3.76). In physical space, the expected particle number
density is proportional to the mean fluid density (Eq.
3.82). At agiven location in physical space, the expected
particle number density in velocity—composition space
is proportional to the density-weighted joint pdf f (Eq.
3.84).Instate space (V-y—x space) theexpected particle
number density is proportional to the mass density
function # (Eqs 3.78 and 3.79).

For constant-density homogeneous flows, the
expected particle number density is uniform in physical
space and the statistics of U™ and ¢ are independent
of x™. The volume average of the discrete representa-
tion of #(V,y,x) (Eq. 3.76) is then the same as the
discrete representation of f (V, ¥) (Eq.3.67),thusestab-
lishing the consistency of the two representations.

We have obtained a prescription for determining the
discrete representation Zy(V,y,x) from the mass
density function % (V, {, x). In the solution procedure
described in Section 6, the discrete representation is
used, and consequently we need to consider the inverse
problem—to determine (or, rather, to approximate)
expectations from % y(V, {, x).

To this end, let the volume ¥ be divided into K cells,
the kth being centered at x,, and having volume ¥,.
These cells are sufficiently small that within each one
statistical homogeneity can be assumed, and the
total number of particles N is sufficiently large that the
number of particles N, in the kth cell is large.

The volume average of Eq. (3.82) over the kth cell is

(NW/(N¥) = {plx)>/M (3.85)

where xy, is a location within the cell. Consequently, an
approximation to the mean density is

PR = Ame/Vw (3.86)

Thisis simply the mass of particles in the cell divided by
the cell volume. There are two approximations in Eq.
(3.86):first { N, > has beenreplaced by N,, resultingina
statistical error of relative magnitude N, '/?; second,
because of the assumed homogeneity with the cell, x,
has been replaced by x).

A similar approximation is obtained for the density-
weighted mean of any function Q(U, ¢). Multiplying
Eq. (3.79) by Q(V, ¥), integrating over V- space, and
taking the volume average over cell k we obtain

A
PR)IQ X)) = ?m <Z o™, Q"")>, (3.87)
k \N,

where x;,is a location within the cell, and summation is
over all the particles in the cell. Consequently an
approximation to Q is

Ame} 1

— T oU™, ¢,

v, Nk%;,Q(_ ™)
(3.88)

or,recognizing that the term in braces is an approxima-
tion to {p(x,,)> (Eq. 3.86),

<p(x(k))>Q~(_)S(k)) x {

~ 1
O(xg) = N > oU”,o™). (3.89)
k N,
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Thus, the ensemble average over the particles in
the cell approximates the density-weighted mean.

3.5. Joint Pdf Transport Equation

A transport equation for the velocity—composition
joint pdfcan bederived from the transport equationsfor
U and ¢, Eqgs (3.3) and (3.20). These equations can be
rewritten as

DU;
—I=4, 3.9
Dt y (390)
and
D¢
=0, 391
o=, (391)
where A is the force per unit mass,
ot; Op
Axt)= L= . 3.92
pAx,t) ox, "7, +p9; (3.92)
and @ is the net source of ¢,
PO, x,t) = — (3.93)

There are several different methods of deriving pdf
transport equations. A useful method (originated by
Lundgren'® and subsequently used by several
researchers?#25:17:6%) gtarts from the expression for
the pdf as the expectation of a delta function. Starting
from the expression

FOV 5%, =V -U(x 1) 6y — d(x, 1)), (3.94)

Pope2 used this method to derive the transport equa-
tionfor f. A different method that does notinvolve delta
functions is used here. The method is to equate two
independent expressions for { pDQ/Dt), where (U, ¢)
is (almost) any function. (The choice of Q is discussed in
Section 3.5.1.) With the aid of the continuity equation,
Eq. (3.2), we obtain

<3t—> 5 f f WOV, ¥)fdV dy

+§ f Jp(_lk)V,-Q(L ¥)f dVdy

- ”Q(x,g){p(@%w(wm%}dw.

(3.95)

This is the first expression for (pDQ/Dt).
A second expression is obtained by relating changes

in Q to changes in U and ¢,
DQWU.¢) _ 09 DU; oQ D¢, (396)
" Dt aU Dt ' d¢, Dt )

Notethat summationisimplied over repeated suffices (j
and a). The material derivatives can be replaced by A;
and ©, (Egs 3.90 and 3.91) to yield

®,> . (397

Do\ _/ a0 20
G N C R

The first term on the right-hand side can be re-

expressed in terms of a conditional expectation,

< 70U ) > ”< aQ(_,g_g_)Alw w>dedyi
V
- Hp( ot TR
xfdvdy. (3.98)
The second step follows since, for U = V and ¢ =y,
p0Q/0U isaknown function of V and y. Integration by

parts yields,
_”Q(V Lk)

(i)

o) <Ai'—w“i>f 1dvdy,  (3.99)
where
d
= f J 77, PRI ) (4, V. y>f1dV dy.
J (3.100)

In Section 3.5.1 it is shown that for the wide class of
functions Q considered, the integral I is zero.

Following the same procedure for the final term in
Eq. (3.97) we obtain

<” °.)- - [Jewwz;

x[pW)<O,IV.y>f]1dVdy, (3.101)

and combining Egs (3.99) and (3.101) (with I = 0), the
second expression for (pDQ/Dt) is obtained,

<p_>= _”vag){ [p(Q K41V 4> 1]

+W[p(ﬂ) (6,y, ,lé)f]}dx dy.

(3.102)

By subtractmg the second expression for (pDQ/Dt,
Eq. (3.102), from the first expression, Eq. (3.95), we
obtain,

J jQ(V 511){9(511) +p(W)V;

f

+6-V—j[p(se)<Aj|z,;q>f] |

+—a—[p(311)<®all,ﬁ>f]}dl’.dyg=0- (3.103)

The terms within the braces are independent of Q.
Consequently, a sufficient condition for the satisfaction
of Eq. (3.103) (for any Q)is that the terms within braces
sum to zero: but since Q can be chosen arbitrarily from a
wideclass of functions, thisis also anecessary condition.

Hence we obtain the transport equation for the
velocity—scalar joint pdf f(V, y; x, t):

o o 9
p(sli)5+p(sli)V15;;— ——j[P(sk)<Aj|Y4311>f]

[p(¥)<O,IV.¥>f].
(3.104)

5%



142 S. B. PorE

Equivalently, the transport equation for the mass

density function (¥ = pf )is
0 0
i 14 5 LAV )
5'// JVYDF]=0. (3.105)

It may be seen that the change of # with time is caused
by transport in x-space (due to the velocity), transport
in V-space (due to A), and transport in y-space (due to
©). A complete discussion of thisfundamental equation
is provided in the next section.

Expressionsfor the conditional expectations of A and
© are obtained from their defining equations. From Eq.
(3.93) we obtain

a

—an+ S, |V >

PO, IV, ¥) = <

oJe
—<5;|y,w_>+p(ms,(w.
(3.106)

By decomposing the pressure p into its mean {p) and
fluctuation p’

p'=p—<p,
from Eq. (3.92) we obtain

(3.107)

Jj

+p(5k g j

With these expressions for the conditional
expectations, the joint pdf transport equation, Eq.
(3.104), can be written as,

(3.108)

L+ o, —f N (p(wg,-
c°<p> f
)w 2 [pW)S.W)]

U
o @y, sé>f] .

If the conditional expectations appearing on the right-
hand side were known, this equation could be solved for
f(p and S are known functions in y-space and {p) can
be determined from f, see Section 4.7). Thus, the
processes represented by the terms on the left-hand side
are accounted for exactly, without any approximation.
These processes are: transport in physical space; trans-
port in velocity space by gravity and by the mean
pressure gradient ; and, transport in composition space
by reaction. It is remarkable that in a variable-density
flow with arbitrarily complicated reactions, all these
processes can be treated without approximation.

The terms on the right-hand side of Eq. (3.109)
represent transport in velocity space by the viscous
stresses and by the fluctuating pressure gradient, and
transport in composition space by the molecular fluxes.
Before the equation can be solved for f, the conditional
expectations appearing in these terms must be deter-
mined or approximated. In Section 5 models are
presented that approximate the conditional expecta-
tions as functions of the joint pdf and of a specified
turbulent time scale 7(x, t).

3.5.1. Evaluation of the integral I
It is shown that the integral

) j J 567 PRV, ¥)XA4,1V.¥>f1dVdy,
| J (3.110)

iszero for a wide class of functions Q. It is simply shown
that Iiszeroif Q has bounded support. In addition, with
very reasonable physical assumptions, it is shown
that Iiszeroif Qismonotonicas|V |tendstoinfinityand
the expectation {pA4;Q) exists.

Let S(v) denote the surface of the sphere in V-space,
centered at the origin, and with radius v,

¥=V-V, (3.111)

and let g(v) be the probability density of [U - UJ*/? = v.
By first integrating over composition space, the integral

I becomes

0
= jﬁ[(ijQIDf!(X)]d! (3.112)

Thisistheintegral of adivergencein V-space, and hence
using the divergence theorem, it can berewritten as the
surface integral,

I = lim

v— 0 S(v)

= lim {pA4;n;Q0|v)g(v),

(pA;0|Von;f,(V)dS(v) (3.113)
(3.114)

where n is the outward-pointing normal vector.

It is obvious from Eq. (3.114) that if Q has bounded
support then I is zero.

We now consider less stringent conditions on Q. The
mean {pA;Q) can be expressed as

pA;Q> = j(ﬂA;Qlng(!)dX, (3.115)

and its existence implies the absolute convergence of
this integral. That is, it implies the convergence of the
integral,

JKPA,»QIX)IJ’E(Y_) v

= j { J l<pA,~QIX>|fg(X)dS(v)}dv- (3.116)
0 Ste)

Now if Q is monotonic as v— o, since p and A; are
physical quantities it is reasonable to assume that
|[{pA;Q|v>|is also monotonic. Then, the convergence of
the integral (3.116) implies
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lim [(pA4,Q|v>[g(v) = 0.

v—

Now from Eq. (3.114),
| = lim [<pA;n;Q|v>g(v)

(3.117)

3

< lim ) [<p4,0|vd|g(v)=0. (3.118)
L= 0 j=1

Thus the monotonicity of Q at infinity and the existence

of {pA,Q) are sufficient to ensure that I is zero.

4. LAGRANGIAN DESCRIPTION

The velocity—composition pdf equation derived in
the previous section is clearly useful, since the major
processes (convection and reaction) can be treated
without approximation. Before calculations can be
made using the equation, the conditional expectations
must be modelled, and a method of solving the equation
must be devised. With simple models and
for extremely simple flows, analytic solutions can
be obtained. But, in general, a numerical technique
is required. A standard technique—such as finite-
differences—is bound to be impracticable,3? because
S(V,¥;x,1)is a function of (6 + o) variables and time.

The modelling and the numerical solution procedure
arestrongly intorconnected. The purpose of this section
is to show this interconnnection by considering both
topics in general terms. In the following two sections,
modelling (Section 5) and the solution procedure
(Section 6) are examined more specifically.

In Section 4.1 the observation is made that many
different systems evolve with the same pdf. In Sections
45 and 4.6 deterministic and stochastic systems
evolving with the same pdf are described. These systems
are used to interpret the pdf equation and to model it,
respectively. All the systems considered consist of
particles. Hence a Lagrangian viewpoint—developed
in Sections 4.2-4—is adopted. This Lagrangian
formulation provides a close link between the pdf
equation and the physical processes of turbulent reac-
tive flows.

There are subtle questions concerning the mean
pressure field, the mean continuity equation, and the
normalization of the mass density function. These
questions are addressed in Section 4.7.

Thissection may be the most difficult to comprehend:
several different pdf’s are introduced, and (asusual with
Lagrangian formulations) the notation is involved. So
that the important conclusions are not obscured by
these difficulties, a summary is provided in Section 4.8.
The reader may find it useful to refer to this summary
after reading each sub-section.

4.1. Equivalent Systems

In Section 3, the joint pdf transport equation was
derived from the conservation equations,

i) 0
L+ (oUy =0,
0x;

e 4.1)

d d
(E“L U; E) Uj=4,x1), (4.2)

and

0 )

(5?+Ulahx'> ¢u = Gz(ﬁ’ t)’ (43)
where A and © are given by Eqs (3.92) and (3.93).Ina
turbulent flow, these rates of change (A and ©) are
random variables. Their conditional expectations are,
of course, not random variables, but are (unknown)
functions that are determined by the initial and
boundary conditions. Thus, for a given turbulent flow,
denoting these conditional expectations by a and 6, we
have

A& DIV YD = ai(V, ¥,x,1), 4.4)
and
O, )|V, ¥> = 0,(V,¥,x,1).

Inorder to stress that a and 6 are not random variables,
we note that

<aj(y~£’5’ t)> = aj(ya _,lli’lv t)v

4.5)

(4.6)
and that

BV x,0)IV=V', ¢y =y">=0,(V,¥,x1).
4.7)

Thetransport equations for thejoint pdf f(Eq.3.104)
and for the mass density function # (Eq. 3.105) were
derived from the conservation equations Eqgs (4.1-4.3).
In terms of a(V, y,x,¢) and 8(V, ¥, X, t), the transport
equation for #(V, §,x; t) is,

o0F 0

i F
— = - [FV]-— [Fa]—-[F70].
o 3%, [(#FV] aVi[Ja.] 6%[/' 2]

(4.8)

Thisisadeterministicequation. Although Z is the mass
density function of random variables, and a;and 0, are
conditional expectations of random variables,
nevertheless, for a given flow, # (V, U.x; 0),a(V, 4, %, )
and 6,(V, ¥, x, t) are functions determined by the initial
and boundary conditions. This equation (Eq. 4.8)
shows how these deterministic functions are related.

A second important observation is that the dynamics
of the velocity and composition fields enter the con-
servation equations (Eqs 4.1-4.3) through the random
variables A(x, t) and ©(x, t). But, in the equation for #
(Eq. 4.8), the dynamics enter only through the con-
ditionalexpectationsa and §. Thisis significant because
many different random variables can have the same
expectations, and consequently, the same mass—
density-function equation can describe the evolution
of many different stochastic systems. Two systems
that evolve with the same pdf or mass density function
are said to be stochastically equivalent.

Stochastically equivalent systems are used in two
ways: to interpret the equation for the mass density
function, and to provide a method for its solution. In
both cases, a Lagrangian view is adopted.
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4.2. Lagrangian Equations

In presenting transport equations, we have adopted
the Eulerian view—we have considered the fluid
propertiesatafixed locationx. Thestarting point for the
alternative— Lagrangian —view is the concept of a fluid
particle. Let x* (x4, t) be the location (at time t) of the
fluid particle that at time t4(¢, < t) was located at
X = Xo. The fluid particle has velocity U™* (x,t) and
composition ¢ *(x,,t): these are just the velocity and
composition at x * (xo, ),

U* (%o, 1) = Ux" (X0, 1), 2], (4.9)

and
Q+(lo, t) = Q[l+ (30» t)’ t] .

By definition, the fluid particle moves with the fluid
velocity,

(4.10)

0x* (Xort) _

6t y_+(l(),t)~

@.11)

Differentiating Eq (4.9) with respect to time we
obtain

ot “hat o ot ox;

(DY,
Dt iy

since 0x;" /0t is just the velocity U;. This confirms the
interpretation of the material derivative D/Dt as the
rate of change following the fluid. Thus, (from Eqs 4.2
4.3) the Lagrangian equations for U* and ¢ * are

+

3U; (o,t) _ (U, Oxf aU,.>
X

X=x

4.12)

-
g

5 Ul Go 1) =4,[x" (x0,1), 1],

(4.13)

and

0
3 ¢4 (X0, 1) = O[X" (X0, 1), 1], (4.14)

where A and @ are given by Eqgs (3.92-3.93).
Consider an infinitesimal material element of fluid
that at time t, occupies the volume dV(t,) = dx, at x,.
The mass of this element is
dm = p(xo, to) d¥(to). (4.15)

Atalater timet > t,, the material element occupies the
volume d¥(t) at x*(x,,t), and its mass (which, by
definition of a material element, is unchanged) is,

dm = p[x™ (o, 1), t] AV (1).
The volume d¥(t) is related to d¥V(t,) by the Jacobian
_ 0(x{,x3,x3)
- 0(x015X02X03)
_ox’)
 3(xo)

From these three equations we obtain the Lagrangian
form of the continuity equation

dv(t) d¥(z,)

d¥(t,). @.17)

4.16)

t

d¥ (1)

X2

d¥ (1)

to
X

Fi1G. 4.1. Fluid particle paths and material element volume
change in x,—x,—t space.

a(x")
0(x0)

Figure 4.1 is a sketch of fluid particle paths (or
pathlines) in x—t space for a two-dimensional flow. The
fluid particle which is initially at x, follows the fluid
particle path to reach x*(x,,t) at time t. The fluid
particles which initially occupy the (two-dimensional)
volume d¥(t,), at time t occupy the larger volume d¥(t).
This volume expansion is due to a decrease in density,
Eq. (4.18).

The state of a given fluid particle (i.e. given x,)
is defined by its position x*, its velocity U* and
its composition ¢*. At any time ¢, the state of the
particle can be represented by a point (V,y,x)=
(U*,¢*,x")in the (6+ o)-dimensional state space or
V-y—x space;and (U™, ¢*,x*)is the state vector.

As time progresses, the state of the particle changes
and the point defined by the state vector moves in state
space. The Lagrangian equations show that the state
vector evolves by,

p(l+st) = p(lO’tO)' (4'18)

P u* A
= ot =@ (4.19)
x* u*

Thus the vector (A, ©, U *) represents the rate of change
of state, or the velocity in state space. The evolution of
the state of the particle can be represented by a path in
the augmented state space or V-y—x—t space. For given
Xo, the particle path is

v U*)
vl=|¢0 (4.20)
X x*(t)

If at (x,t) = (Xq, o) the flow is turbulent, then the
initial state

v U™ (t) U(xo, o)
¥ |=10%@1) | = | ¢&oito) |, (421)
X x" (o) Xo

isarandom vector. The rates of change A and © are also
random vectors. Consequently, different realizations of
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FIG. 4.2. Fluid particle paths in the augmented state space.

thesame turbulent flow generate different particle paths
in the augmented state space.

Figure 4.2 is a sketch of particle paths for different
realizations of the same turbulent flow. This sketch
can only be suggestive of the true paths, since the
(74 0)-dimensional augmented state space is repre-
sented as a three-dimensional space. The following
observations can be made:

(i) in different realizations, the initial value of x = x, is
the same, but the initial values of U* and ¢ * are
likely to be different;

(ii) the particle paths can cross, since the state vector

\(U*,¢*,x*) does not uniquely determine the
|rate of change vector (A,®, U*); and
(ii/'L)'/ the state vector changes in time and physical space
on all scales, down to the smallest (Kolmogorov)
scales.

4.3. Lagrangian Pdf

The Lagrangian conditional joint pdf considered —
SL(V ¥, %5t Vo, Yo, Xo)—is the joint pdf of the fluid
particle properties at time ¢, conditional upon the
particle properties at the earlier time t,. More pre-
cisely, fi is the joint probability density of the event

Sl = {H-’-(LO’ t)=X,Q+LX_0, t) =51_/;§+(10: I)=§},

4.22)
conditional upon the event
So = {U" (X0, 20) = U(Xo, to) = V,,
8" (X0, o) = $(Xo, to) = Yo} (4.23)

This is a quantity of fundamental importance and
usefulness since, as is shown below, it is the transition
density for turbulent reactive-flows. That is, the mass
density function at time ¢ can be determined from its
value at ¢, by

FNY,x;t) = J”ﬁ(&s@l;tlh&o,&o)

X F Vo, Yo, Xo; to) AV, dyo dx,.
(4.24)

The evolution equation for f; is derived here using
the delta-function method. First—mainly to simplify
the notation—several fine-grained pdf’s are introduced.
These are just delta-function products that can be
thought of as pdf’s in a single realization of the flow.5°
The Eulerian fine-grained joint pdf is

SV x,t) = 6(U(x, 1) = V)S(o(x, 1) = ),
(4.25)
and its expectation is f(V,y;x,t) (cf. Eq. 3.46). The
Lagrangian fine-grained joint pdf is
So (V4% t1%0) = 0(U ™ (X0, 1) = V)S(9 " (X0, 1) = )
x3(x ¥ (Xo. 1) —X). (4.26)

This pdfis conditional upon the initial particle location
Xo, but not upon its initial properties. The conditional
Lagrangian pdf f; can be expressed as

fL(Ma ‘,di’&; tlyo, ‘,‘110’ Z(_O)
=<f;;(y_y!kal; t‘&o)f’(yo,fo;ﬁo’[o)>/f(¥0,5[io;XOJO),
(4.27)
(cf. Eq. 2.145).

The evolution equation for f; is derived by
differentiating Eq. (4.27) with respect to time. In order
to do this we need to determine the derivatives of
the delta functions. For the temporal derivative of
O(U™ (o, )= V) we have

08(U* —V) _3U; 2o(U" - V)
o o eut
_ —dUf 33(U* -V)
Tt ev,

o (oUr .
- —v
fwi{ T —’}

0
=~ {Ax", 00U - V)}.

(4.28)

The second step follows since an infinitesimal change in
U ofdU* hasthe sameeffect on the delta function asa
change in V of dV = —dU™; the third step follows
because U /dt is not a function of V; and the final
result is obtained by using Eq. (4.13).

Differentiating Eq. (4.27) with respect to time (noting
that only f, is a function of t) we obtain

o 0
’afEL‘ - <‘a—v,. {A,.(f,t)f,,’f’}>/f

a + 1
+<“awa (O, 01y f }>/f
+<—a—a— {U,+ (KO’ t)fp’f’}>/f7 (4'29)
Xi

where f,f,,f” and f have the same arguments as in Eq.
(4.27), and Eqgs (4.11) and (4.14) have been used to
eliminate 0x * /0t and ¢ * /dt. Now for the term in 4; we
have (see Eq. 2.150)
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AR O /f = AT, 018, 50> fp fDIf
=408, S0>f,  (4.30)

where the conditions S, and S, are defined by Eqs
(4.22-23).In thefinal step, x * can be replaced by x since
x* = x is one of the conditions in S,. By applying the
same treatment to the other terms, we obtain the
evolution equation for f; :

of, o 2
§+‘é;i[fLVs]+a—Vi[fL<Ai|Snso>]
0
+6—|//, [f.{©,]S,,8,>]=0. (4.31)

The evolution equation for f; has a similar form to
that for &, Eq. (4.8). There are two important differ-
ences: f; is 4 pdf rather than a mass density function;
and in Eq. (4.31) A and @ are conditioned on S as well
asonS,.

(It is interesting to note that the form of Eq. (4.31)
does not change if additional fixed conditions are
applied to (or removed from) f; . [ By definition a fixed
conditionisindependent oft.] Let C denote aset of fixed
conditions and let f.(V,y,x;t|C,x,) be the corre-
sponding Lagrangian conditional pdf. Then the evolu-
tion equation for f, is the same as Eq. (4.31) with f,
replacing f; and C replacing S,.)

4.4, Mhip between Lagrangian and

Eulerian Pdf’s

In this subsection f; is shown to be the transition
density (by establishing Eq. 4.24, and then further
relationships between f; and & are demonstrated.

Consider the quantity

F'(Vy,x;1) = jjj”(%)ﬂf dV, dy, dx,,
4.32)
where f, and " havethesame argumentsasin Eq. (4.27).
It is now shown that the expectation of & is equal to
each side of Eq. (4.24), thus establishing the equation’s
validity.
Simply taking the expectation of Eq. (4.32) yields

F'V.x51)) = J.pr(yio)fL(.\_’,%l;tho,![{o,lo)
xf (Vo YosXo, to}dV, difo dx,

= JJJ& (V4. x; Vo, Yo, Xo)

X F Vo, Yo, Xo5 to) AV dy, dx,,
(4.33)

which is the same as the right-hand side of Eq. (4.24).

To establish that &' is the fine-grained mass density
function (as is implied by the notation)is less simple. In
Eqg. (4.32), the integral over the particle positions at time
to([dx,) can be replaced by the integral over their
positions at time t

o) . .
J B

Now, the Jacobian is known from the Lagrangian
continuity equation Eq. (4.18) in terms of the densities.
Thus, Eq. (4.32) can be rewritten

F'Ly,x;t) = J j f PWo)o(@*)/p(Plx0,t])

xoU*-V)é(¢* -¥)
x6(U[Xo,20] — Vo)
x 6(d[x0, 2] —¥o)
x5(x* —x)dVodyodx*. (4.34)
The right-hand side of this equation can be deter-
mined by integrating over Vo, Yo and x* in turn. Only
0(U(x0,t)—V,) depends upon V, and its integral
over the whole of V-space is unity. Only p(y,) and
0(¢ (%0, to)—¥o) depend upon ¥, and in view of the

sifting property of the delta function (Eq. 2.32) we
have

IP(_.‘QO){P(SP_[!O, t1} 71 0(@[Xo, ] — Yo) do = 1.
| (4.35)
Thus, Eq. (4.34) reduces to

F'Vy,x;t) = fp(dz*)é(g* -V)o@* -y)

x8(x* —x)dx*. (4.36)

Again in view of the sifting property, the only contri-
bution to this integral is from fluid particles located at
x* = x. And at this location, the Lagrangian properties
(e-g- U™ (x0, 1)) can be written as Eulerian variables (i.e.
U(x,t)). We thus obtain

F' L, x;t) = p(Y)o(U(x, 1) - V)o(o(x, ) —¥),

4.37)
and taking the mean
CF VLX) =p)f (V, ¥5x,1) = F (V. x5t).
(4.38)

Equating the two different expressions for (%' (Eqs
4.33 and 4.38) yields the required result

y(!a_,'li’ia t) = J‘J‘J‘fL (X,_lk,l, thO’SILO’lO)

X F(No,Yo:X05t0) AV Ao dx,.
(4.39)

This identifies f; as the relevant transition pdf: it is the
probability density of the fluid particle’s transition from
the initial state (Vo,Y,,X,) at time 1, to the state
(V,¢¥,x) at time t. The mass density at time ¢t is
(according to Eq. 4.39) the mass-probability-weighted
integral of this transition pdf over all initial states.
The Lagrangian pdf f; has been conditioned on
V.Y, and x,. In fact, the conditioning on V, is not
needed in order to obtain arelation similar to Eq. (4.39).
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The conditioning on y, is needed in order to relate the
Jacobian é(x*)/é(x,) to densities. But in constant-
density flows (in which the Jacobian is unity) only the
conditioning on x, is needed. In this (constant-density)
case Eq. (4.39) reduces to

fLyxt)= Jﬁ(!%z;tl&o)dlo. (4.40)

Itis useful to be able to derive Eulerian pdf evolution
equationsfrom Lagrangian equations. Thiscanbedone
by differentiating Eq. (4.39) and substituting for 0f; /0t
from Eq. (4.31):

0F (V,¢,x;1)

ot

=~jJH [fLV]+ [fL<A|SnSO>]

[/.€0,lS,, So>]}

51//a
x F (Vo, Yo, Xo3 to) dVo difg dxo.  (4.42)

It may be noted that, for each of the three terms, the
derivative (0/0x;, 6/0V; or 8/0y,) can be removed from
the integral, since F (Vo, Yo, Xo; to) AV, dy, dx, does
not depend upon the state variables (V,y,x). The
resulting integrals are\t\lken of the form

A\
ijfL(len So>37'~(Y40’ Vo, Xo5 to) dVo AP dxo.
We now show that this integral is equal to

Q&Y F V¥, x%;1).

Multiplying Eq. (4.32) by an arbitrary function Q(x, t)
and taking the mean we obtain

(QF (V.y,x;0)) = ”JP(%)(Qﬂf'WYOd%dKO'
(4.43)

Having identified &' as the fine-grained mass density
function, the left-hand side can be re-expressed as

QF" ={Qpf")=<QE NV YpW)f (V.Y %1)
=QE VYO F (V. y.x;1). (4.44)

(The second step is analogous to Eq. 2.150.) Similarly,
the right-hand side of Eq. (4.43) is

fjjp(ﬂo) CQf "> dVodyedxg
= ijP(ﬂo)(Qm,, So> {fof"> dVodyso dx,

= JJJ(Q!S.,SOJ”L(X,%L; t|¥0, Y0, Xo)

X F Vo, Wo,Xo5 to) dVodyodxy. (4.45)

Thus, combining the last three equations we obtain the
required result:

J:[J<QIS:, So>fLF (Mo, Yo, Xo520)dV o i dx,

=QEIVYOF (V. ¥,x;t). (4.46)

With this result, Eq. (4.42) becomes

6,/'

=~ LVl [FCAILD]

[#(O,IV.¥)]. (447)

Wa
This is the evolution equation for the Eulerian mass
density function & derived from the Lagrangian
equations for the evolution of fluid particle properties
(U*,¢*,x*). Inevitably the result is the same as Eq.
(4.8) which is derived from the evolution equations for
the Eulerian properties U and ¢.

4.5, Deterministic System

It has already been noted that the joint pdf transport
equation, Eq. (4.8), is deterministic. In this subsection
the equation is interpreted in terms of a deterministic
Lagrangian system.

In the joint pdf equation, the rates of change A(x, t),
O(x,t) and U(x,t) appear as their conditionally
expected values:

a\V,y¥,x,t) AV ¥
OV, ¥, x,t) | = | <OE DIV ¥ (4.48)
v AU NIV, ¥

For a given flow, the conditional rate of change vector
(a3,6,V) is an unknown but nonetheless determined
vector function in state space.

Consider now the deterministic Lagrangian
equation
(2] [2@z0
=l [=|aCéin]|. @)
e 0]

Inthiscase the state vector (U, d_; ,X)doesnot pertaintoa
fluid particle, since fluid particles evolve by a different
equation, Eq. (4.19). Equation (4.49) describes the
evolution of the state of notational quantities called
conditionally-expected particles, or conditional
particles, for short.

Fromagiveninitial state (V,, /o, Xo) at time t = ty,a
conditional particle follows a path determined by Eq.
(4.49).In order to show explicitly the dependence on the
initial state, we write this path as,

! g(yo, !ko’ 509 t)
}é_ = Q(Y‘Os ‘,w_09 K.Oa t)
X ﬁ(yo, 5110’ lo’ t)

In the augmented state space (V-y—x—t-space), this
equation defines the conditional path from the initial
state (Vo, Yo Xo).

For the fluid particle with state (U*, ¢ *,x ), its rate
ofchange (A, ®, U *)isarandom variable (although the
x-component U™ is, of course, known). Thus, in a
subsequent repetition of the flow, a fluid particle may be
found with the same state (U*,¢*,x*) but with a
different rate of change (A, ®, U *); see Fig. 4.2. For the
conditional particle with state (108 é, X), its rate of

(4.50)
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FiG. 4.3. Conditional path from (V,, Vo, Xo) at t = ¢, in the
augmented state space.

change (a,0,0) is not a random variable: it is the
conditional expectation of the rate of change of fluid
particles with the same state.

The conditional path from the state (Vo,0,X,) at
t =t is sketched on Fig. 4.3. Again, this sketch is only
suggestive since the (7+o0)-dimensional augmented
state space (V-y—x—t-space) is shown as being 3-
dimensional. The following observation‘f can be made:

(i) the conditional path is uniquely defined by the
initial state;

(i) since the state vector uniquely determines the rate
of change vector (a, 6, U) conditional pathscannot
cross; and

(iii) the state vector changes in time and physical space
onscales characteristic of the larger scale turbulent
motions.

While the behavior of fluid particles and conditional
particles are quite different, their (one-point) statistics
are identical. This is simply because in each case the
evolution for the mass density function & is Eq. (4.8).
Thus, for a given flow, if initially (at time t,) the
conditional particles are distributed in state space
identically to the fluid particles, then the conditional
and fluid particle distributions remain identical at
future times.

For conditional particles, the transition density is

fL(.\_]dk’l; tIXOs_.‘éO’EO) = 6(¥_g)6(ﬂ_é)6(l_g)’
(4.51)

since, by definition, (0, g}, %) is the state-at time t of the
conditional particle that had the state (V,, ¥/, Xo) at
timet,. Thus, from Eq. (4.39), the mass density function
at time ¢ is determined by its value at time ¢, and by the
conditional paths:

FNV, ¥, x;5t) = f“lf(xo, Yo, %03 10)8(V—T0)

x 8y~ §)3(x~R)dVodyodxo. (4.52)

Because of the particular nature of the transition
density, Eq. (4.51), thisformalsolution can beexpressed
locally, rather than as an integral over all initial states.

The integration dV, dy, dx, over the initial states can
be replaced by the integration dOU d¢ di over the final
states, multiplied by the Jacobian:

FV,¢.x51) = fjjéd—ﬂ)5(£—§)5(l—i)

X {?(Y_o, ﬂo,&); tO)
6(_\10, 5110’ lo)
00.4.%)

The left-hand side of this equation can also be written as
an integral over the final states, namely

}dg dgé dg. (4.53)

FNVY,x;t) = ” f s(V-0)s(y — d)o(x—%)
x{#(0,$,%;1)}d0dddx. (4.54)

Now, since both these equations for # must hold for all
states (V, §, x), the two terms in braces must be equal:

a(yov _'807 lo)

-g(_fl,é,ﬁ;l) =Z Vo, Y0, Xo05 lo)m,

(4.55)
or, dividing by the Jacobian,
~ 2o 00,8.%)
FU,0,81) - ———— = F (Vo, Y0, X0 Lo)-
( Q )B(Xo,ﬂo,lo) o¥oXoilo

(4.56)

This formal solution, Eq. (4.56), has -a simple
geometric interpretation in terms of expected mass and
conditional tubes. Let S, be the surfacein state space that
encloses a (6 + o)-dimensional volume ¥,. At the time
to, the quantity

m(ty) = ffj F(Vo, Yo, X035 to)dVo difo dx,,
¥
(4.57)
represents the expectation of the mass within the
particular region of state space ¥,: that is, m(z,) is the
expected mass in V, at time t,,.
In the augmented state space (V-y—x-t), the condi-

tional tube (associated with ¥) is defined to be the
surface formed by all the conditional pathsthatatt = ¢,

'

¥(t)

conditional
path

-—

Se ¥,

to

1<y

¥

FiG. 44. Conditional tube in augmented state space.
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pass through the surface S,. Since, by definition, the
tube is everywhere tangential to conditional paths, a
conditional particle cannot cross from inside to outside
the tube or vice versa. A conditional tube is sketched on
Fig.4.4. Because x and (V, ) are each represented by a
single coordinate, the surface S, appears as a closed
curve, and the volume ¥, appears as a two-dimensional
area.

Atthelatertimet > t,, the conditional tube occupies
the volume ¥(¢) in state space, see Fig. 4.4. The expected
mass in ¥(t)is

m(t)=IJJ‘ F(V,¢,x;t)dVdydx. (4.58)
W)

There is a one-to-one correspondence between
the points in ¥, (V4,¥0,Xe), and points in ¥(t),
@, 55_, %). Consequently, the integral over ¥(t) can be
replaced by an integral over VO :

-] rrogeds

————dV,dy, dx,.
3V o) L0 Mo o
(4.59)
Now the formal solution to the pdf equation, Eq.
(4.56), states that the integrals in Eq. (4.57) and (4.59)
are equal. Thus we obtain

m(t) =

C.8,%;1)

m(ty). (4.60)
Expected mass is constant along a conditional tube.
The same analysis applies to an infinitesimal condi-
“tional tube. In an obvious notation we have

dm(to) = g(yo’ LILO, _x.f)’ tO)dVO’ (4'61)
dm(t) = F(V, ¥, x; t)dV(t)
044 080
=% (Qs Q,é )6(20’ J@o’lo)dvo
= dm(t,). (4.62)

The Jacobianrepresents the volume ratio dV(t)/dV, for
the infinitesimal conditional tube. If the conditional
paths converge, d¥(t) decreases and the Jacobian is less
than unity. In order that the expected mass remains
constant, the mass density &4 must increase. Con-
versely, if the conditional paths diverge, d¥(t) increases,
the Jacobian is greater than unity, and the mass density
decreases.

There is a direct analogy between Eq. (4.56) for the
massdensity along aconditional path,and Eq. (4.18)for
thefluid density along a fluid particle path. Thisanalogy
may also be seen by comparing Figs 4.1 and 4.4. The
analogy arises because expected mass is conserved
along conditional tubes, and mass is conserved
following a material element: mass density is expected
mass per unit volume (in the state space), and the fluid
density is mass per unit volume (in physical space).

These considerations of conditional paths lead to a
computationally feasible method of solving the joint
pdf equation. At the initial time ¢,, the mass density
function is approximated by a large number N of
particles in state space (see Eq. 3.76):

F Vo, Vo X3 to) & F n(Vo, Yo, Xo5 L)

N
=Am 2 (Vo —UP)
n=1

X 0(Yo— ¢5")d(x0 —x(").  (4.63)

Eachparticlerepresentsamass Amand (attimet,) (U,
o, x{") is the state of the nth particle. Replacing # by
Z y on the right-hand side of Eq. (4.52) yields

F NV, ¥,x:t)
N
~Am Y j j ja(yo —UP)o(o— 95")5(x0 —X5")
n=1

x 8(V—O[V,, Yo, X0, t])‘s(_‘l’__é[Xo’ Vo, Xo,t])
x 0(x —X[ Vo, Yo, X0, t]) AV, dyyp dxo

=Am i 8V ~T"[)s(y — $V DS (x~ 2" (1),

n=1
(4.64)
where
0™ () G, 8. x, 1)
") | =| dUP, 8, x, 1)
£™(e) (U, 00", xP, 1)
(4.65)

The state [0™(¢), $™(¢), *™(¢)] is the state at time ¢ of
the conditional particle that at time ¢, had the state
[UP, 3, x3]. Thus Eq. (4.64)shows that for all time the
mass density function can be approximated by a large
number of conditional particles.

Through Eq. (4.64) we have reduced the problem of
determining #(V,§,x;t) to that of determining the
states of N conditional particles. Suppose that the
unknown conditional rates of change a(V,,x,t) and
O(V,¥.x,t) can be modelled as simply computed
functions in state space. Then the particle states can be
determined by solving the equations

S[E0 ] a0,
a é(") = Q(Q("), é_(")) X(n)i t) yh= 2’ e} N’
X (n) Q(n)
(4.66)

from the initial conditions (UY, 9%, xM). For each
value of n, Eq. (4.66) is a set of (6+¢) simultaneous
ordinary differential equations. To solve these
equations numerically is trivially simple compared to
solving directly the equation for # (Eq. 4.8) whichisa
partial differential equation in (7 + o) dimensions.

The conclusion that the pdf equation can be solved
economically via Eq. (4.66) is based on the supposition
that a and 0 can be modelled as simply computed
functions* in state space. In Section 5.2.2 such simple
deterministic models are examined and it is shown that,
in general, they are unsatisfactory. Satisfactory deter-
ministic models can be constructed, but they are far

* For the present purpose, a “simply computed function”
can be defined to be a function of V, y, x and ¢ that can
depend upon the first few moments of the pdf, but is other-
wise independent of the pdf.
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from simple, and the computational advantages of Eq.
(4.66) are lost. Satisfactory modelling combined with
computational economy can be obtained through
stochastic models. These are discussed in the next
subsection and in Sections 5.2.3—4.

4.6. Stochastic Systems

Many different systems evolve with the same pdf.
Fluid particles and conditional particles behave quite
differently, but nevertheless their pdf’s are the same. We
now consider systems of stochastic particles whose
behavior is physically and mathematically different
fromthat of fluid or conditional particles. The essence of
the whole approach is to construct a system of
stochastic particles whose evolution is simply com-
puted and in which the pdf evolves in the same way
as the pdf of fluid particles.

We consider two types of stochastic processes.
Poisson processes form the basis of particle interaction
models (Section 5.3); and diffusion processes form the
basis for Langevin models (Section 5.5).

At time ¢, the state of a stochastic particle is denoted
by (U*(t), ¢*(t), x*(t)). This is a (6 + ¢)-dimensional
state vector that corresponds to a point in state space.
The state of the particle evolves according to- a
stochastic prescription, and the corresponding point
moves—not necessarily continuously—in the aug-
mented state space (V, , x, t).

In order to examine Poisson and diffusion processes
itissufficient toconsider a single (scalar) state property.
Let U*(¢) be the state property at time t and let f*(V ; t)
be the corresponding pdf. The stochastic process U*(t)
can be defined either in terms of the increment

Ay U*(t) = U*(t 4 6t)— U*(1), 4.67)

or in terms of the transition density f;, (V; t| V,). This is
the probability density of the event U*(t+6t) =V
conditional upon U*(t) = V,. In both cases we consider
the limit as the (positive) time interval, ot tends to zero.
(Note that A;, is the forward-difference operator.)

For a Poisson process, the increment is:

with probability 1—§t/t: A, U*(t) = 0,
HAUX(t) = U%(t) = U*(r),
(4.68)

where 7(t) is a specified time scale and U°(t)is a random
variable with a specified conditional pdf g(V| Vo, t).

A sample of such a process is shown on Fig. 4.5. The
conditional pdf in this example is

. 9
gV|Vo,t) =0 <V T Vo):

and the time scale 7 is taken to be constant. It may be
seen from the figure that U*(¢) is constant except at a
finite number of points where it changes abruptly. In
this example, the value of U* isreduced by 109/ at each
such change. The time interval between abrupt changes
isarandom variable: the probability density of the time
interval being At is 1~ ! e =477 (see Ref. 55).

with probability dt/z

(4.69)

S. B. PoPe
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Fic. 4.5. A sample of the Poisson_process U*(t).

An evolution equation for f*(V;t)—the pdf of
U*(t)—is now derived. Because U* is a discontinuous
function of time, the methods of derivation used in
Sections 3.5 and 4.3 cannot be employed. However the
evolution equation is readily derived from the
transition density through the relation

f*V;t+or) = ff*(Vo; Ofs(V; t|Vp)dVy,
(4.70)

(cf. Eq. 4.39). The transition density for the Poisson
process, corresponding to Eq. (4.68), is

SVitlVo) = (1=8t/1)8(V = Vo) + (5t/0)g(V| Vo, 1).
(4.71)

~

Substituting for f;, in Eq. (4.70) yields
SXWVit+6t) = (1=6t/r) f*(V; t)+ (6t/7)

X Jf*(Vo;t)g(V|V0,t)dV0. 4.72)

Hence in the limit as 6t tends to zero we obtain the
evolution equation

af*(v; 1
AL f F*Vos (V| Vo, 1) AV = F4(V; ).

4.73)

It may be seen that although U*(t) evolves
stochastically and discontinuously, its pdf f*(V;r)
evolves deterministically and smoothly (provided that
neither f*(V; to) nor g(V|V,,t) is pathological).

The usefulness of the Poisson process is discussed
below, but now we turn our attention to diffusion
processes. A necessary preliminary is to describe the
Weiner process.

Let the time interval from ¢t = O to t = T be divided
into N equal subintervals of duration 6t = T/N, and let
Em (n=1,2,...,N) denote N independent standard-
ized normal random variables; thus

&> =0, (4.74)

and

<é(n)é(m)> = 5nm~ (4.75)
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FiG. 4.6. A sample of the function W(t,).
Consider the quantity

W(t) = 61" ¥ &y,

i=1
where t, = nAt. Alternatively, W(t,) can be defined by
the increment

AJRW(tn— l) = (6t)1/2€(n), n= 1, 29 ey N:
@.77)

with the initial condition W(t,) = 0. Figure 4.6 shows
Wi(,)forT=1and N =50. -

The mean and variance of the difference
w(t,)—Wi(t,) (m < n) is readily deduced from Eqgs
(4.74-75):

(4.76)

(W(t)=W(tn)> =" ¥ <&y =0,

i=m+1
(4.78)
and
<[W(tn)_W(tm)]2>=5t Z Z <€(i)‘fm>
i=m+1j=m+1
&t Y Y s,
i=m+1j=m+1
=dt(h—m)=t,—t,. 4.79)

Thus the difference W(t,) — W(t,,) is a Gaussian random
variable with zero mean, and variance equal to the time
difference t,—t,,. This last result, it may be noted, is
independent of the choice of N. By a similar procedure it
is readily shown that (for m < n < p < q) the random
variables [W(t,)— W(t,,)] and [W(t,)— W(t,)] are un-
correlated and hence independent (in view of their
Gaussianity), with means of zero and variances (t, —t,,)
and (¢, —t,) respectively.

The Weiner process,denoted by W,,can be thought of
as the discrete process described above in the limit as ¢
tends tozero (N tends toinfinity). A sampleis shown on
Fig. 4.7. Infact, it is better to define the Weiner process
by the properties deduced above™:for0 <t; <t, <

0- 5 T T T T

-1or

t

F1G. 4.7. Sample of the Weiner process W,.

ty < tq, [W,,—W,] and [W, — W, ] are independent
Gaussian random variables with zero means and
variances (¢, —t,) and (t, —t3) respectively.t

The increment

A&tVVt = VVt+6x_VVH (4.80)

is equal to 6t'/2 multiplied by a standardized Gaussian
random variable (cf. Eq. 4.77). Consequently, as ot tends
to zero, so does A, W,, showing that W, is a continuous
function. On the other hand (A, W, )/t becomes infinite
and hence W, is not differentiable.

The general diffusion process U*(t) considered has
the increment (as 6t tends to zero)

Ay U*(t)=D(U*[1],t)0t + [ B(U*[1],1)]"2As, W,
(4.81)
where D and B are specified functions, B being non-
negative. Thisincrementis a Gaussian random variable
with conditional mean
CAsU*(@)|U*(t) = Vo) = D(V,, 1) b,
and variance
C[AsU*(t)—D(Vo, ) 3t1*|U*(t) = Vo) = B(Vo, t)0t.
(4.83)

Consequently the transition density f;,(V;t|V,) is a
Gaussian pdf with mean V,+ D(V,,t)dt and variance
B(V,,t)ét.

Since U*(t), like W,, is not differentiable, the evolu-
tion equation for its pdf f*(V'; t) cannot be derived by
the methods of Sections 3.5 or 4.3. The standard
method”#7% involvesg,,(AV| V,, t)—the pdf of A;, U*(t)
conditional upon U*(t) = V,,. In general, g;, is simply
related to the transition density by

9a(AV Vo, t) = fu(Vo + AV t|Vy),

(4.82)

(4.84)

It follows from the central limit theorem that for a finite
time interval (£, —t,), the increment [W;, — W, ] is Gaussian
even if the infinitesimal increments £, (Eqs 4.74-4.75) are
not.
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and, in the case being considered, g;, is Gaussian with
mean D(V,, t)ot and variance B(V,, t)dt.

Either from first principles or by combining Eqs
(4.70) and (4.84) (with V, = V — AV) we obtain

f*(Vit+6t) = Jf*(V—AV; 1095(AV|V = AV, ) d(AV).

(4.85)

The right-hand side can be re-expressed as a Taylor
series:

f¥V;t+ot)= Hf *(V; 1)gs(AV |V, 1)

0(f*ga)
—-AV FT%
0*(f*s)

1
_ V)?
T AV

. } d(AV), (4.86)

where f*g,, is written for f*(V; t)g;(AV|V, t). Now the
derivatives and f* can be removed from the integral,
and theremaining terms can beidentified asconditional
moments of A;, U*(t):

J(A VY5 (AVIV, 1) d(AV) = {[A, UX()]"| V).
(4.87)
From Eqs (4.82-83) it may be seen that the first agd
second moments are of order §t while highe nts
are of smaller order.t Thus, to first order in §t,
0
[XVit+ot)=f*(V; r)—é-‘; [/*(V;)D(V,t)é1]

+1 o2
2812

LA*(V; 0BV, t)dt],

and hence in the limit as ¢ tends to zero we obtain the
evolution equation for f*:
of*(V;t) 0 N
—_— = - V;t)D(V,t
= s L0000, 0]

A2

10 .
+§WU (V;t)B(V,t)]. (4.88)

The evolution equation for the pdf in a diffusion
process, Eq. (4.88), is called the Fokker-Planck equa-
tion and has found wide application in many
fields.”>~7¢ The functions D(V,t) and B(V, t) are called
the coefficients of drift and diffusion. If D is uniform,
thenitseffectistocause the pdfto movein V-spaceat the
speed D. If B is uniform (and D is zero) then Eq. (4.88)
reduces to the unsteady one-dimensional heat conduc-
tion equation:

20%
lBaf

ot 2 v

Fromthisit maybe seen that the termin Bcausesthe pdf

8{ i (4.89)

1 These conditions on the moments are sufficient for Eq.
(4.88) to follow. The infinitesimal increment Az U*(t) does
not have to be Gaussian.

to diffuse in V-space. (The diffusion process Eq. (4.81)
causes the pdf to diffuse in V-space. This should not be
confused with gradient-diffusion models of turbulent
transport which cause diffusion in physical space.)
For the particular case in which B is uniform and D is
linearin V, :

DV, t) = G@)V, (4.90)
the general diffusion process (Eq. 4.81) reduces to
Ay U*(t) = G(t)U*(t)5t + [B(t)]2A,W,. (491)

Thisis the Langevin equation. Originally proposed®! to
model the velocity of a particle undergoing Brownian
motion, the Langevin equation and its generalizations
have been widely studied.”®-75

We now consider, in general terms, the modelling of a
physical process by a stochastic process. Let U(t)bea
physical quantity (e.g. one component of velocity) and
let A(t) (arandom variable)beitsrate of change. The pdf-
of U(t)—f,(V; t)—evolves according to

ofvity 0 .
—a = —W[a(V,'t)f.,(V, 0], (492)

(cf. Eq. 4.8) where
alV,t) = CA@)|U@) = V). (4.93)

For a Poisson process, U*(t) is a discontinuous
function of time, and for a diffusion process it is
continuous but not differentiable. Clearly then, neither
of these stochastic processes provides a good direct
model of the physical process U(t). But the pdf’s of U*(z)
and U(t) can evolve identically and hence f*(V;t) can
be a perfect model of £,(V'; t). The conditions that have
to be satisfied for this to be the case can be deduced by
comparing Eqgs (4.73), (4.88) and (4.92). For the Poisson
process, the time scale 7 and the pdf g must be such that

Vv
a(V,1) = J {fu(V’;t)— qu(Voﬂ)

xg(V’lVo,t)dVo}dV’/[rfu(V; t)]. (4.94)

For the diffusion process, the functions D and Bmust be
such that

0

aV,0) = DV, =3 LAV 01 LAl Vs DBV, 1),

(4.95)

And of course in both cases the initial conditions
fu(V;ito) and f*(V;t,) must be the same.

At the end of the last sub-section a computationally
feasible deterministic method of solving the joint pdf
equation was outlined. In the present context the
method is to approximate the initial pdf f,(V;t,) by a
large number of conditional particles in V-space:

1 X "
fuVito) = N Y oV=U"(@,)).  (496)
n=1
It was supposed that a(V,t) could be modelled as a
simply computed function, and hence the evolution of
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the conditional particles could be simply computed by
solving the N ordinary differential equations
dU™(t)
dt

= a(U™[1], ). (4.97)
Although the selection of the initial conditions U™(t,)
may involve randomness, the subsequent evolution
according to Eq. (4.97) is deterministic.

The pdfequations arising from the stochastic models,
Eqgs(4.73)and (4.88),can besolved either by a determin-
istic method or by a random—Monte Carlo—method.
The deterministic method is as described above, with
a(U™[1],t) in Eq. (4.97) obtained from Eq. (4.94) for a
Poisson process, or from Eq. (4.95) for a diffusion
process. But thismethod isnotcomputationally feasible
since the integrals or differentials of f required by Eqs
(4.94-95) are extremely difficult to compute from the
discrete representation.

The alternative—Monte Carlo—method is straight-
forward and computationally efficient. The initial pdf
f*(V;t,) is represented by a large number N of
stochastic particles in V-space:

1
fHVito) ~ Z 3(V = U*"(t,)).

n—-l

(4.98)

The stochastic particles then evolve according to the
stochastic processes: Eq. (4.68) for a Poisson process,
Eq. (4.81) for a different process. (These equations are
simple to solve numerically.) Then, provided that the
modelling is accurate (i.e. Eq. (4.94) or (4.95)is satisfied),
f*(V;t)isequal to f,(V;t) for all time.

This algorithm is called an indirect Monte Carlo
method3’ —indirect because U*(t) does not model U(t)
directly.

We now revert to the general case in which a

stochastic particle has the (6+a)-dimensional%t‘e/
vector U*(t), *(t),x*(t), with corresponding (uncondi-

tional) Lagrangian pdf f(V, ¥, x; t) and Eulerian mass
density function #*(V,{,x;¢). In order to illustrate
how theequationsfor f*and & * can be derived, we take
the following process as an example:

Agx¥(t) = UF(t)ot, (4.99)
Ay UF(t) = M;(x*[t],t) 0t + G (x*[t], t) U (t)ot
+[Bx*[1], )] As(W)),, (4.100)

with probability 1 —dt/: A, pX(t) =0,
Au2 () = 92(t)— P2(t).
(4.101)

Here, M(x,t), Gu(x,t) and B(x,t) are specified func-
tions; W, is an isotropic Weiner process so that

<Aa:(W):Aaz(W;)x> 8td;j; (4.102)

and ¢° is a random o-vector with specified conditional
joint pdf g(Y|y¥e,Xx,t)—conditional, that is, on
$*(t) = Yo and x*(t) = x.

By the methods presented in this section, the
evolution equation for the Lagrangian joint pdf
SV, ¢,x;t) can be derived from Egs (4.99-101).

with probability 6t/t

ijo
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The result is:
o oft oft
a0 = Vo, M’Q‘”)av
0 o
(X,t)— fL*V)+ B(x,t) ——
G oy aviav;
1 .
+;{ jfﬁlﬂo,é; gl Yo, x,t)dy —fL*}.
(4.103)

Both stochastic processes considered are Markov
processes. That is, given the current state U*(t), the
future state U*(t,) is independent of the past U*(t,)
(to <t <t,). Consequently,’® the conditional pdf
SV ¥, x5t Vo, Yo, Xo) evolves according to the same
evolution equation as the unconditional pdf, Eq.
(4.103). In fact, the conditional pdf can be determined
as the solution of this equation with the initial
condition

JEV, ¥, %5 80) = 0 (V. — Vo) d(Y — Y0)d(x — Xo). (4.104)

As before, the evolution equation for the (Eulerian)
mass density function #*(V,y,x;t) can be obtained
from the conditional Lagrangian pdf via Eq. (4.39).
Differentiating this equation with respect to time and
substituting the right-hand side of Eq. (4.103) for df*/dt
yields:

OF* 8y

TE 6_[ ] —'[{M +Gp Vi F*]
1 02 F* 1
2 aV 0V
{ jr*( _.l.b_O’ H t)9(![£|_'£0s_, t)d!ko }

(4.105)

Although f* and %#* have distinctly different
properties, it may be seen that their evolution equations
(Eqs 4.103 and 4.105) are identical.

4.7. Normalization, Mean Continuity and Pressure

The mass density function
following conditions:

FNY,x;0)20

F (V,y, x; t) satisfies the

(4.106)

fjf(ﬁ,%z; )dVdy = (p(x,1)y, (4.107)

and

IJ?(L vx;0)lp(] 'dVdy =1, (4.108)

(see Section 3.3). Conversely, any function F*(V, §, x;
t) satisfying these conditions is a valid mass density
function.t

t#* denotes any mass density function that approxi-
mates the fluid mass density function &#.
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We now ask: starting from a consistent initial con-
dition F*(V,y,x;t,), what conditions must be
satisfied by a modelled pdf equation in order that #*
remains a valid mass density function? This ques-
tion is answered by establishing the following
propositions.

(i) Any model that can be expressed in terms of the
evolution of the discrete mass density function
Fy satisfies the realizability condition, Eq.
(4.106).

(ii) The consistency condition, Eq. (4.107), and the
normalization condition, Eq. (4.108), are equi-
valent (one implies the other).

(iii) The satisfaction of the mean continuity equation

p> AU
ot 0x;

is a necessary and sufficient condition for the
satisfaction of the consistency condition.

(iv) The mean continuity equation is satisfied for all
time if, and only if, the mean pressure satisfies a
Poisson equation, Eq. (4.129).

=0, (4.109)

Thus, if the model can be expressed in terms of the
evolution of the discrete mass density function, and if
the mean pressure is correctly determined (by Eq.
4.129), then the modelled mass density function F* is
valid (i.e. it satisfies Eqs 4.106-108). )

The discrete representation of the mass density
function, Eq. (3.76), is a positive quantity (Am) multi-
plied by the sum of delta function locations moving in
state space. But irrespective of the delta functions’
locations (i.e. irrespective of the modelling) the delta
functions are non-negative and hence proposition (i)
is established. Thus in pdf methods, realizability is
guaranteed in a simple, natural manner.

Rather than assuming Eq. (4.107), we define

N
q(x,1) = fff*(i,ﬂ,L; t)dvVdy, (4.110)

and then define
FVL¥sx1) = FXV 4, x:1)/g(x,1).  (4.111)

Since f is non-negative and integrates to unity, it is a
joint pdf. Density weighted means are defined (at any
x,t) by

0U,¢)= ij(!, VI (V.¢)dVdy. (4.112)
These are consistent definitions that assume Eq.
(4.106) but not Eqs (4.107-108).
Now with Q(U, ¢) = [p(¢)] ™, Eq. (4.112) yields

p(@)] " =<p(@)y~' = fj[ﬂ(sk)] T (V. y)dVdy

e
(4.113)

By comparing this equation w1th Eqgs (4.107-108), we
clearly see that the consistency and normalization

V.y)dvVdy/q.

conditions are satisfied if, and only if,

<p(elx,1])) = q(x,1).

Hence proposition (ii).

The terms to be modelled in the evolution equation
for #* represent transport in V-y space. Conse-
quently, when any modelled evolution equation for
&* is integrated over all V and y the modelled terms
vanish leaving:

2 '[ j FHY,y,x;0)dV dy

@114)

A f 'ff*(x,sk,z;t)"idldﬂ= 0. @115)

Evaluating the integrals using Eqs (4.111-112) yields

dg 0
) = 4.11

3 tae @00 =0, (4.116)
or

D a0,

_ =t 4.11

Y] Ing ox,’ (4.117)
where

D o . o

_— = = L— 4.11

Bi-at Vi (4.118)

Rather than assuming the satisfaction of the mean
continuity equation (Eq. 4.109), we define the function
x(x,t) by

@ [(P)U.]
T ox,

Then y = 0 is a necessary and sufficient condition for
the continuity equation to be satisfied. Obtaining 80U,/
Ox; from this equation and substituting into Eg.
(4.117) yields:

Ding Din¢p)
Dt Dt
Since g and {p) are initially equal (for all x), then it is
obvious from Eq. (4.120) that they remain equal if and
only if ¥ = 0. Thus proposition (iii) is established.
The satisfaction of the mean continuity equation for
all time is equivalent to the satisfaction of

ox

ot
with the initial condition x(x,t,) = 0. Differentiating
Eq. 4. 120) with respect to time we obtain

o _
ot

P11 = (4.119)

i

(4.120)

=0, (4.121)

tz {<p> }+0,— {<p> —-q}

'a 6t

ou, @
3 ox, Kp>—q}.  (4122)
Suppose that at time t the consistency condition
({p> = q) and the continuity equation (x = 0) are
satisfied. Then the last term in Eq. (4.122) is clearly
zero, and so also is the next to last term. This follows
since (for the case considered) Eq. (4.120) yields /6t
({p>—q) = 0. Thus in order to satisfy Eq. (4.121) and
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hence the continuity equation we require

a2
gg {p>—q} =

We now show that this equation is satisfied if, and
only if, the mean pressure satisfies a Poisson equation,
(Eq. 4.129).

For a fluid particle with state U*(¢), ¢*(t), x* (¢),
the velocity evolves by (see Eq. 3.3)

GU” oy 10 Ot
.at (Q ) { ax[}id' +g,.

J

(4.123)

Thus in a small time interval Jt, the velocity increment
A5 U* due to the mean pressure gradient is

=0tp(9 ™) T VP>

We consider, then, the general model for the
velocity increment of a stochastic particle:

Ay U*(t) = —0tp(9*) ' [VPDxe + 251
(4.124)

The first term on the right-hand side represents the
effect of the mean pressure gradient. The random
function a;, can depend upon the state variables U*(t),
¢*(t), x*(t) and time. The corresponding Eulerian
mean momentum equation is obtained by deriving the
appropriate equation for F*(V, Y, x; t), multiplying by
V;, and integrating over all V and Q. The result is

9 __0 _9 Xp 10
at(qu)— axi(qUi 5) < > ox, ——*q IZ
(4.125)
hert
A%%x,1) = <p> " lim {<payp/ot}. (4.126)
ot—0
From Eq. (4.116) we obtain
og* 0 0
—57 =5 at q0)). (4.127)

Adding 82¢p)/0t* to both 51des and using Eq. (4.125)
to substitute for §/0t(qU ;) yields

& *py *qUU)
PR i v R P ox,

0 ( q 0(1’))
6xj {p) 0x

In order to satisfy Eq. (4.123), the nght-hand side of
Eq. (4.128) must be zero. For the case considered (in
which [{p)>—gq], but not necessarily its temporal

derivatives, is zero), this condition leads to the
Poisson equation

0py _9%py _9%pUUp 6(<p>1°)
0x;0x; o2 0x,0x; 0x;

—(qA9). (4.128)

(4.129)

It may be seen that in order for the mean momentum to
evolve continuously, the limit lims,_,q (a5 )/6t must exist.
This does not imply that limg,_,a,/0t exists: indeed this
limit exists for neither Poisson nor diffusion processes.
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To summarize this development: if, and only if, the
mean pressure satisfies Eq. (4.129) then, in turn, Egs
(4.123), (4.121) and the mean continuity equation, Eq.
(4.109) are satisfied, thus establishing proposition (iv).

The starting point for this derivation of the Poisson
equation for {p) is the general model for a stochastic
particle, Eq. (4.124). The result is valid even if U* is
not a differentiable function of time. For the more
familiar but less general case of fluid particles, the
same equation is readily derived. From Eq. (3.3) w
have

6‘;U’+5—( U,U <”> , (4.130)
where
A;’Ea—ri P Loy (4.131)
Ox; 0x; J

(This redefinition of A° is, for the case considered,
consistent with definition (4.126).) The Poisson
equation, Eq. (4.129) is obtained by taking the mean
of Eq. (4.130), differentiating with respect to x ;» and
substituting

d 9 % p)
0x; 6t or?
which is obtamed from the continuity equation.
Finally, we note that the mean continuity equation,
Eq. (4.109), and the Poisson equation, Eq. (4.129), are
kinematic equations. That is, they hold at each time ¢
independent of the past or future. For a constant-

density Newtonian fluid this is obvious because the
equations reduce to

pUp = — (4.132)

V-U) =0, (4.133)
and
2
VXp) = — M (4.134)
0x;0x;

But in variable-density flow, the occurrence of 8¢ p»/dt

and 0%¢p)/0t* in Eqs (4.109) and (4.129) suggests the

contrary. However, the time derivatives of {p) can be

re-expressed solely in terms of the fields at time ¢.
From Eqgs (3.20) and (3.21) we obtain

op
i)

— L @ 8¢a
0 10J¢
- La@z){— v Sies e,
(4.135)
where
L) = m (4.136)

Each quantity on the right-hand-side of Eq. (4.135)
can be evaluated from the fields U(x,¢) and ¢(x,¢)
independent of their rates of change. By the same
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method an expression for 82p/dt? can be derived, and
hence it may be seen that 6{p)>/dt and 9%{p)>/0t* can
be determined from the dependent variables at a single
time.

(The conclusion that the pressure is determined
kinematically stems from the assumption that the
density is independent of pressure. Without this
assumption there would be an acoustic pressure field
that is not kinematically determined.)

4.8. Summary

We have considered several different systems of
particles. The fluid particle originating from x,, at time
to has the state U*(xo,1), ¢* (X, 1), X* (X, ¢), Which
evolves according to Eq. (4.19). Fluid particle paths
are sketched on Fig. 4.2.

The Lagrangian conditional joint pdf f; (V,y,x;
t| Vo, ¥0,%o) is the joint pdf of the fluid particle
state (U*,¢*,x*) at time ¢, conditional upon its
state being (Vo,Yo,X0) at time t,. This is the tran-
sition density for turbulent reactive flows: the mass
density function at time t, #(V,{,x;t), is equal to
the mass-probability-weighted integral of f; over all
initial states, Eq. (4.24).

Conditional particles evolve deterministically with
the same pdf as fluid particles. From the initial state
(Vo, Yo, Xo) at time t,, the state (U,¢,%) of a con-
ditional particle evolves according to Eq. (4.49). The
rate of change of state of a conditional particle is the
conditional expectation of the rate of change of state
of fluid particles with the same state. The solution to
the joint pdf equation can be formally written in terms
of conditional particle states, Eqs (4.52) and (4.56).

Many different systems of particles evolve with the
same pdf. The essence of the whole approach is to
construct a system of stochastic particles whose evolu-
tion is simply computed and in which the pdf evolves
in the same way as the pdf of fluid particles. The
stochastic particle originating from x, at time ¢, has
the state (U* ¢* x*) with the corresponding pdf
VY, ¥,x;1)

In a Poisson process, the state of a stochastic
particle is constant except at a finite number of time-
points where it changes abruptly; see, for example,
Fig. 4.5. For a diffusion process, in the small time
interval dt, the change of state of a stochastic particle
has two components: a deterministic component of
order dt, and a random component with zero mean
and standard deviation of order (5t)/2. The state
variables are continuous but non-differentiable func-
tions of time: see, for example, Fig. 4.7.

Equations (4.99-101) provide an example of a com-
bined Poisson and diffusion process. The correspond-
ing pdf equation for f/* Eq. (4.103), shows that the
Poisson process gives rise to integrals over state space,
whereas the diffusion process leads to a term corre-
sponding to diffusion of the pdfin state space.

The task of modelling is to devise a stochastic
process such that the pdf f* of the stochastic particles
evolves in the same way as the pdf f; of fluid particles.
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Then the corresponding mass density functions #*
and # will also have the same evolution. To solve the
evolution equation for #* directly would be a pro-
hibitively difficult computational task. But it is
straightforward to compute the evolution of a large
number of stochastic particles which, through the
discrete representation Eq. (4.98), approximate the
mass density function & *,

The mass density function & satisfies realizability,
normalization and consistency conditions, Eqs
(4.106-108). The modelled mass density function % *
also satisfies these conditions provided that

(i) the model can be expressed in terms of the
evolution of the discrete mass density function;
and

(ii) the mean pressure is determined by the Poisson
equation, Eq. (4.129).

5. MODELLING

Ih a turbulent reactive flow, the evolution equation
for thejoint pdf f(V. Q' X, t)is (see Eq. 3.109):

P(Lli o +p(_lk f

d
( W~ >)6_£+5W (WS,

_ 0 ot; op 0 oJ?
b ] (]
(5.1)

The mean pressure {(p) is obtained from the Poisson
equation, (Eq. 4.129), and p(y) and S(y) are known
functions. Thus all the terms on the left-hand side of
Eq. (5.1) are in closed form. The three conditional
expectations containing 7;;, p* and Jf need to be
modelled while the remaining terms are known.
Before considering the terms to be modelled, we
emphasize that no modelling is needed for the terms
pertaining to reaction, the mean pressure gradient,
buoyancy, or transport in physical space.

In this section, models for the three conditional
expectations are presented. The emphasis is on the
form of the models, their qualitative performance, and
how they affect the solution procedure.

In Section 5.1, the general principles that guide the
modelling are outlined. In order to demonstrate the
qualitative features of different types of models, in

“Section 5.2, deterministic, particle-interaction, and

Langevin models are presented for the effect of
molecular diffusion on the pdf f,(¢) of a single com-
position. A combined deterministic and particle-inter-
action model for the velocity joint pdf f,(V) is
presented in Sections 5.3 and 5.4; and the generalized
Langevin model for f,(V) is described in Section 5.5.
In Section 5.6 the models for Jo(¥) and fy(V) are
combined and extended to apply to the joint pdf
S(V,¥). The models presented in Sections 5.2—5.6 are
for inert, constant-density, high-Reynolds-number,
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homogeneous turbulence. The development of more
accurate and general models is an active area of
current and future research which is discussed in
Section 5.7.

For the homogeneous flows considered in Sections
5.2-5.6, the joint pdf f(V,{; x, ) is found to be a joint
normal distribution.5? The aim of the modelling is,
therefore, to produce Gaussian pdf’s whose first and
second moments evolve correctly.

The joint pdf f(V,y;x,t) contains no information
about the time or length scales of the turbulent
fluctuations: such information must be supplied. All
the models presented involve a turbulent time scale
7(x, t) defined by

T = kfe, (5.2)

where k(x, t) is the turbulent kinetic energy
1 1
k= §<uiu.~> = _”5 (Vi=<U) (V;=<Up)fdV dy,

(5.3)

and ¢ is the rate of dissipation of k,

U,
&= Tija—x, p-

(Here, and until Section 5.7, constant density is
assumed.) Since k is known as a function of f, the time
scale t can be obtained by solving a modelled trans-
port equation for ¢.!® Alternatively, in simple flows, <
(or the length scale k'/?t) can be specified directly.
There is further discussion concerning the determina-
tion of 7 in Section 5.7.3.

54)

5.1. Guiding Principles

The modelling process comsists of replacing exact
but unknown quantities in the joint pdf equation with
approximations in terms of known quantities. For
each of the exact quantities to be modelled (and for
the pdf equation itself) several quite general
properties can be deduced, usually by examining the
effects of various transformations. The modelling is
guided by the requirement that the modelled
quantities have the same properties as their exact
counterparts.

The six principles that have guided the modelling
presented here are:

(i) dimensional consistency,
(ii) coordinate system independence,
(iii) Gallilean invariance,
(iv) realizability,
(v) linearity and independence of conserved passive
scalars, and '
(vi) boundedness of compositions.

The velocity U, (at a reference point and time) in a
flow can be expressed in various units (e.g. m/sec, ft/hr
etc.), and the reference point can be expressed in
various coordinate systems. But the physical process
(i.e. the flow), being oblivious of these human con-

structs, is invariant under a change of units and under
a change of coordinate system. Principles (i) and (ii)
guarantee that the model equations also have these
properties. Dimensional consistency simply requires
that the exact and modelled terms have the same
dimensions. Coordinate system independence is
guaranteed provided that the exact and modelled
terms can be written as Cartesian tensors with the
same suffices.

The principle of Gallilean invariance states that (in
Newtonian mechanics) the equations of motion are
invariant under a change of inertial frame. Conse-
quently, under such a change, exact and modelled
terms must transform in the same way.

Schumann’” introduced the realizability principle
into turbulence modelling and it has subsequently
been used by several authors (e.g. Ref. 11). In fact the
ideas introduced by Schumann can be made more
precise by distinguishing between three different prin-
ciples: weak realizability; strong realizability; and the
accessibility of extreme states. These principles are
now described and illustrated. ’

The weak realizability principle states that if a
physical quantity (q, say) satisfies an inequality (e.g.
q > 0), then the value of the quantity obtained from the
model equations should satisfy the same inequality.
Examples of such inequalities are

F(V.¥) =0, (5.3)

and
{uy u ) =0,

whereu = U—(U).

Equation (5.5) is the principal weak realizability
condition that the mass density function (or
equivalently the joint pdf) has to satisfy. If Eq. (5.5) is
satisfied, then all weak realizability conditions applic-
able to moments (e.g. Eq. 5.6) are also satisfied. As is
pointed out in Section 4.7, the discrete representation
of the mass density function satisfies Eq. (5.5), and
hence any model that can be expressed in terms of its
evolution satisfies the weak realizability condition. All
the models presented below satisfy this condition.
Another weak realizability condition to be satisfied by
the mass density function is the boundedness of com-
positions, principle (vi). This is discussed separately.

The strong realizability condition is concerned with
behavior of physical quantities in extreme states. If the
physical quantity q(t) satisfies the inequality

(5.6)

q=0, (5.7)

then, by definition, g = 0 is an extreme state. Now if|
at some time t,, g attains its extreme value (ie.
q(t,) = 0) then its rate of change at ¢, must also be
zero—for if not, either g will be negative at the next
instant of time, or, contrary to assumption, g is not a
differentiable function of time. Equation (5.7) then

implies
9q
<E>¢=° =0. (5.8)
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In general, the 'strong realizability principle is that the
rate of change of a physical quantity in an extreme state
is zero.
Suppose that the evolution of g is modelled by the
equation
dg

- = R(q[tjv r[t])s

¥ (59)

where r is some other physical quantity, and the
specific model is defined by the choice of the function
R. If g(t) = 0, then the strong realizability principle
requires

R(0,r[t]) = 0. (5.10)
But consider a model for which
R(0,r[t]) > 0. (5.11)

In this case the extreme state q(t) =0 cannot be
reached (except as the initial condition) and so the
strong realizability principle Eq. (5.8) is not violated,
but it becomes mute. Thus we conclude that the strong
realizability condition is not violated by a model for
which

R(O,r[]) = 0. (5.12)

We introduce the principle of the accessibility of
extreme states, according to which a model equation
should allow the extreme states to be reached. Equation
(5.10) is then a necessary condition for this principle to
be satisfied. But, unlike the realizability principles,
there is no fundamental reason why we should
demand that the accessibility principle be satisfied.

The models presented here conform to Eq. (5.12)
rather than (5.10). Thus the strong realizability condi-
tion is not violated but the extreme states may be
inaccessible. The extreme states generally considered
are two-dimensional turbulence.!!’® and the perfect
correlation of the velocity and scalar fields.!*:7® Since
neither of these states is likely to exist in the turbulent
reactive flows being considered, their accessibility is
most likely not an important consideration.

The fifth and sixth guiding principles are concerned
with the modelling of the scalars ¢(x,t). In a reactive
flow each scalar may have a different source S,(¢) and
a different molecular transport term. But the modelled
pdf equation should be applicable to the simpler case
of ¢ being a set of conserved passive scalars with the
same diffusivities: that is,

S(¢) =0, (5.13) -
JE = -r%, (5.14)
ox

i

with the diffusivity I" and the density p being constant.
For this simple case, each scalar evolves indepen-
dently according to the same equation that is linear in
¢.
By considering linear transformations of the set of
scalars ¢, Pope®® deduced constraints on the con-
struction of consistent closure approximations. For
scalar moments (e.g. for {u;¢,) or {¢,¢;>), the evolu-
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tion equations must be homogeneous (i.e. the same
scalar suffices must appear in each term, including any
repeated suffices).

In pdf models, the linearity and independence con-
ditions are simply stated in terms of the scalar incre-
ment. If the modelled mass density function
F*(V,y,x; t) is represented by N stochastic particles
with the nth having the composition ¢*™(t), then the
increment

Ay drP(1) = GEV(t+0)—F™(),  (5.15)

must be a linear function of ¢*™ (n=1,2,...,N),
independent of any other scalar property (e.g
{¢,95>)- The models presented below satisfy this con-
dition. ’

As discussed in Section 3.2, composition variables
are usually bounded. For example, if ¢, is a species
mass fraction, then

0<¢,<1. (5.16)

Consequently there is an allowed region of com-
position space corresponding to possible values of ¢.
Outside the allowed region the joint pdf f (V, y; x, 1) is
zero. Clearly a modelled pdf equation should preserve
this property.

5.2. Scalar Dissipation

In order to examine the qualitative performance of
linear deterministic models, particle-interaction
models, and Langevin models, we consider the effect
of molecular diffusion on the pdf of a conserved
passive scalar. This allows general conclusions to be
drawn (Section 5.2.5) about the use of these models in
pdf methods.

5.2.1. Exact equations

We consider the simple case of the evolution of the
pdf f,(¥; t) of a single conserved passive scalar ¢(x, t)
in constant-density homogeneous turbulence. There
are no mean gradients (of <U) or (¢)) and the
coordinate system is chosen so that the mean velocity
is zero.

Before examining the behavior of the pdf, we con-
sider the evolution of the mean {¢) and the variance
{¢’*)>. Assuming simple gradient diffusion, with I’
being the constant diffusion coefficient, the molecular
flux of ¢ is

0
J, = r% (5.17)
0x;
Then, the transport equation for ¢(x,t) (Eq. 3.20) is:
- D¢
— =TV32¢. 5.18
5 =TV (5.18)

For the case considered, the mean of this equation is
K¢
—77 _,
dr

showing that the mean {¢) remains constant. An
equation for the variance {(¢'?) is obtained by multi-

(5.19)
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plying Eq. (5.18) by ¢ and taking the mean:

1d<¢?y
IR TR (5.20)
where the scalar dissipation is
3 a¢r a¢:>
gy = (F/p)<5)—c; Ec—, . (5.21)

Since ¢, is positive, it is evident that the variance {(¢'%)
decays. ‘

Just as T = k/e is the decay time scale of the velocity
fluctuations, 14 = 3<(¢'*)/e, is the decay time scale
of the scalar fluctuations. The determination of ¢, is
discussed in Section 5.7.3. For the moment we adopt
Spalding’s suggestion®! that 7 and T, are propor-

tional:
74 = 7/Cy, (5.22)

where the empirical constant C, is taken to be 2.0.
Thus,

gy = 3C4<{P" D/t (5.23)
Defining the non-dimensional time t* by
de* = di/x, (5.24)
the equation for the variance (Eq. 5.20) becomes
d(¢"?
2 e, (5.25)

de*

which, with the initial condition of (¢'%), at t* =0,
has the solution

(¢"*) = <(¢")oexp(—Cyt*). (5.26)

If the pdf of ¢, f(¥; 1), is Gaussian then it is com-
pletely determined by the (constant) mean {¢) and
the variance (¢'?):

fo)=(2n{¢">)™ 12exp(— 1Y —<($DI*K$'?).
(5.27)

A satisfactory modelled pdf equation should admit
this Gaussian pdf as a solution.

The evolution equation for f,(; t) is obtained from
the equation for f(V, ¥; x, t) (Eq. 3.109) by integrating
over velocity space and invoking the conditions of
constant density and statistical homogeneity:

W _ 0 <6Ji >
iy [ﬁ, o, v) | (5.28)
or
ofy 0
iy LfT/p)V?1YD].  (5.29)

It may be seen that the evolution of the pdf de-
pends entirely upon the conditional expectation
{(T/p)V2¢ | ¥y which is to be modelled.

5.2.2. Deterministic model

Dopazo3® suggested the following deterministic
" model:

T/p)V2lY)> = —%C¢('I’“<¢>)/T- (5-30)

The behavior of the model is best understood in terms
of the corresponding equation for a conditional
particle:

dé

de*
In composition space (Y-space) the conditional
particle moves towards the mean {(¢) at a rate pro-
portional to its distance (in y-space) from the mean
{¢>. Thus, as time proceeds, the conditional paths
converge to the location ¥ = {(¢). The constant of
proportionality $C, is chosen to yield the correct
decay rate of the variance.

This model is attractive in its simplicity, and it is
straightforward to verify that the modelled pdf
equation admits the Gaussian solution Eq. (5.27) as it
should. But in general its qualitative behavior is incor-
rect.8? From the arbitrary initial condition

SW;0) =<5 gy —<d)1(P'*>5 112,
(5.32)

(where g is an arbitrary standardized pdf) the solution
to the modelled pdf equation is

FW30=<9"7> " 2g([Y = (@I 1),
(5.33)

(The mean (@) remains constant and the variance
{¢'*) decays according to Eq. 5.26.) As is readily seen,
the model predicts that the shape of the pdf remains
unchanged during decay, and consequently, from an
arbitrary initial pdf, there is no relaxation to a
Gaussian distribution. This incorrect behaviour might
be expected since the model contains no information
about the shape of the distribution—only the mean
{¢) appears in Eq. (5.30).

In order for arbitrary pdf’s to relax, the model must
contain information about the shape of the distribu-
tion. Such models have been proposed by Pope,?*
Janicka et al.2% and Dopazo.?? In each case the model
contains functions of the pdf integrated over com-
position space. The nonlinear and integral nature of
the resulting pdf equation, prohibits analytical solu-
tions. Numerical solutions can be obtained, but only
for one-dimensional (and possibly, two-dimensional)
composition spaces. For flows with many species, and
hence a composition space of large dimension, the
computational work needed to perform the integra-
tion over y-space is prohibitive.3? Fortunately, the
same result can be obtained by computationally-
efficient stochastic models.

1 ~
= —5Co(@—<8)). (531)

5.2.3. Particle-interaction model

Consider the discrete representation in which the
pdf f,(¥) is represented by N delta functions:

1 N
JonWt) = N Y oY —¢*@).  (534)
n=1
The discrete pdf evolves by the N stochastic particles

¢*™ moving in y-space.
We now describe a stochastic mixing model (similar
to a Poisson process) that simulates scalar dissipation.
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In a small interval of time d¢, there is a small prob-
ability that a pair of stochastic particles will “mix”.
The time 1 is defined by

Ty = T/(CyN). (5.35)

Then in the time interval §t, with probability 1 —dt/zy,
the compositions of all the stochastic particles do not
change: but, with probability t/ty, the compositions
of a pair of particles change. These two particles
(denoted by p and q) are selected at random without
replacement and their values of ¢* are replaced by
their common mean $(¢*@ + ¢*@). (Sampling with-
out replacement simply means that p and g may not

be the same particle.) This stochastic model can be
written

with probability 1 —dt/ty:

G*M(t+6t) = d*"(t), n=1,2,...,N; (5.36)

with probability dt/zy:
¢*(”)(t+ 5[) = ¢*(")(t + 6t) = % [d)*(p)(t) + ¢*“1’(t)],

and (5.37)

P*O(t+5t)=p*™(t), n=1,2,...,N,n#p,n#q.

It is important to realize that this stochastic process
is not a direct model of the physical process—a fluid
particle does not change its composition discon-
tinuously at discrete times. Rather, Egs (5.36-37)
define a stochastic system whose expected state corre-
sponds to the expected state of the physical system.
The pdf for the stochastic system

N
f&Wsn EE% 2 S —o* (1),  (5.38)

n=1
evolves continuously and deterministically, and
models the evolution of the pdf f,(i). If the model is
accurate then f¥ is equal to f, and the stochastic
system is equivalent to the physical system. Then,
consistent with Eq. (5.38), the mean of a function of ¢,
{Q(#)), is equal to the expectation of the ensemble

average of Q(¢*™):

N
Q@) =E5 T 06*).

n=1

(5.39)

To every stochastic model there is a corresponding
deterministic model. Using the techniques presented
in Section 4.6, or by other means,®##5 the evolution
equation for fX*(y;t) corresponding to this model
(Eqs 5.35-37) can be shown to be

ofg W)

(5.40)

(Note that the number of particles N does not appear
in Eq. (5.40). It is shown below that the specification of
Ty by Eq. (5.35) produces the correct decay rate of

Tar 2C¢{2 jfg(np +YFW—¥)dy —f.,,*(ll/)}-

¢
(a)
'i
¢
| :
(b) ; ; I
e T E—
'.
3
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FiG. 5.1. Particle trajectories: (a) fluid particles; (b)
stochastic particles; (c) conditional particles.

{¢'*) independent of N.) All the well-behaved deter-
ministic models proposed?#2¢-83-85 contain an
integral over composition space sucl! as that in Eq.
(5.40). In a numerical solution, these integrals are
computationally-expensive to perform, and con-
sequently it is advantageous to use the stochastic
model instead.

The distinct behaviour of fluid particles, stochastic
particles and conditional particles is illustrated in Fig.
5.1. Fluid particle paths in y-space (Fig. 5.1a) are
erratic with variations on all time scales down to the
Kolmogorov scale. A stochastic particle path (Fig.
5.1b) is discontinuous since ¢*™ is a piecewise con-
stant function of t: the duration of the intervals of
constancy is of order 7. Conditional paths (Fig. 5.1c)
are uniquely determined, smooth and continuous. In
each case the particle paths converge since the
variance {$'?) decreases with time.

The preceding discussion is aimed at describing the
nature of stochastic models and at establishing their
connection to pdf equations. We now turn to examine
the performance of the stochastic model defined by
Eqs (5.35-37). This model, of which there are many
variants, is variously called Curl’'s model, the
coalescence/dispersal model, or the stochastic mixing
model. The evolution of the mean {¢) and variance
{¢'*) can be determined either from the pdf equation,
Eq. (5.40), or by examining the model directly. It is
instructive to adopt the latter approach.

The modelled mixing process does not affect the
mean value of ¢. From Eq. (5.39) we obtain
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N
Y [o*™(t+61)

n=1

- ¢*""(t)]}- (5.41)

1
(@(t+61)) —<{(t)) = E{-ﬁ

If in the time interval ot there is no mixing then the
sum in Eq. (5.41) is zero (see Eq. 5.36). If a pair of
elements (p and g) mix, then the sum is again zero
since, from Eq. (5.37), we have

¢*(P)(t + 6t) + ¢*(Q)(t + 51) = ¢*(P)(t) + ¢*(q)(t)_
(5.42)

Thus the model correctly leaves the mean (¢)
unaffected. )

Since the mean is constant, a change in the variance

{@'*) is the same as a change in (¢2). In the time
interval 6t this is

A9y = B+ 80> — (90
- LE{ T tomoieron - 5 pomeion].
N n=1 n=1

(5.43)

The only contribution to the right-hand side is from
the particles p and g in the event that they mix. The
probability of this event is ét/ty. Thus

A7y = S E{L6MO0+ 501+ (929 + 50
[T~ [0
= % ppapigen) +1emo0r
[P ~ (64O (0]

= S B {44 ]

+¢*P(1)p* (1)} (3.44)

The second step follows from the definitions of ty and
¢*P(¢t+5t). Since ¢*P is an element selected at
random from the ensemble, we have

E[¢*P)? = (¢?) = (¢"H+(p>%  (5.49)

and the same for E[¢*@]2. On the other hand, since
¢*® and ¢*@ are independent samples, we have

E{¢*P¢*D} = E{¢p*P}E{p*?@} = ($)>. (5.46)

Substituting these results in Eq. (5.44) and dividing by
ot we obtain

A @2)[0t = —C K/ (5.47)

Hence, in the limit as 8t tends to zero, the correct
decay rate of (¢'2) is obtained (cf. Eq. 5.25).

(In fact, rather than showing that Eq. 5.47 yields the
correct decay rate, this analysis is used to determine
the time 7 (Eq. 5.35) that produces the correct result.)

As well as having the correct effect on the mean and
variance, the stochastic mixing model causes arbitrary
initial pdf’s to relax to a bell-shaped curve. Unfor-
tunately, this bell-shaped curve is significantly dif-
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FiG. 5.2. Standardized pdf’s f}(y) against y: ——————
Gaussian; ————— standard stochastic mixing model;
improved stochastic mixing model. (f,*(¥) is sym-

metric about = 0: it is shown for ¢ > 0 only.)

ferent from a Gaussian pdf. In particular the flatness
factor (¢'*»/(¢'*»? for the mixing model’s pdf is
infinite whereas it is equal to 3 for a Gaussian. Pope®®
has developed an improved stochastic model that
produces pdf’s that are closer to Gaussian. Figure 5.2
shows the pdf’s for the standard mixing model and for
the improved model compared with a Gaussian.
Stochastic mixing models are readily extended to
apply to a set of o scalars, ¢ = ¢,, ¢,,...,¢,. The
joint pdf f,(y;t) is represented by N stochastic
particles (¢*™, n = 1,2,..., N), and the mixing occurs
by these particles moving in the g-dimensional com-
position space. For the simple stochastic model
described, two particles (p and gq) are selected at
random (in the same way as for a single scalar), and
mixing occurs by:
Q*(")(t + 5,:) = %[Q*(m([) +Q*(q)(t)]»
n=porn=gq, (5.48)
*M(t+5t) = ¢*™(t),n+pandn #q. (549)

Figure 5.3 illustrates the mixing process given by Eq.

¥,

F1G. 5.3. Effect of mixing on the stochastic particles ¢*®
and ¢*?9: O before mixing, @ after mixing.
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(5.48) for a two-dimensional (Y, —y,) composition
space. After mixing, both the stochastic particles ¢*®
and ¢*@ lie half-way between their initial locations.

According to this simple mixing model the means
and variances evolve by,

A<,

—re _0,

ar (5.50)

and

K> _

o= —Ckodp. 65

5.2.4. Langevin model

A model of scalar dissipation analogous to the
Langevin equation is (cf. Eqs 4.81 and 4.91):

Ay d* (1) = GLP*(1)—<p())16t/7
+[B( )1 2 A W, (5.52)

Here G and B are constants to be determined (B > 0),
and W, is a Weiner process. Thus the first term on the
right-hand side of (5.52) represents a deterministic
change in the composition of the stochastic particle;
while the second term represents a random change of
mean zero and variance B{¢"?)t/r.

Corresponding to this Langevin model, the evolu-
tion for the pdff¥(y ;1) is (cf. Eq. 4.88)

S _ _ 0 raGu— g 08
s = "oy LEGU— @3B Gk
(5.53)

Multiplying this equation by (Y —{¢)>) and inte-
grating yields Eq. (5.19), showing that the mean {(¢)
does not change. Alternatively, the same conclusion
follows from the observation that the mean of Eq.
(5.52) is simply

A, (@*(t)> = 0. (5.54)
The evolution of the variance (¢’ can be deter-
mined either from Eq. (5.52) or by multiplying Eq.
(5.53) by (y —<{¢))? and integrating. The result is
d{¢*)
de*
By comparing this equation with the known decay

rate, Eq. (5.25), we obtain a relationship between the
constants:

= (2G+BX¢'*). (5.55)

G= ——;—(B+C¢). (5.56)

Figures 5.4a and 5.4b show ¢*(¢) according to the
Langevin model, Eq. (5.52), for two different values of
B—2.0 and 0.2 respectively. For both plots the same
initial condition ¢*(0) was used and also the same
sample of the Weiner process W,, namely that shown
on Fig. 4.7. A comparison of the figures illustrates the
role of the constant B in determining the variance of
the random fluctuations.

These plots of ¢*(t) according to the Langevin
model can also be compared to the plots of ¢*(t),
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(a)

(b)

[¢] - I

Fi1G. 5.4. Samples of ¢*(t) given by the Langevin model with
(a) B=20,(b)B =0.2.

¢*(t) and H(t) shown on Fig. 5.1. The behavior of
¢*(t) according to the Langevin model is similar to
that of fluid particles. However ¢*(t) has fluctuation
on all time scales whereas ¢ * (t) has fluctuations only
down to the Kolmogorov time scale.

The pdf admits the desired Gaussian solution, Eq.
(5:27). Further it can be shown (by Fourier analysis)
that from any initial condition the pdf relaxes to a
Gaussian. The rate at which it relaxes depends on the
value of B. (For B =0, the Langevin equation, Eq.
(5.52), reduces to the deterministic model Eq. (5.30)
and there is no relaxation.)

The qualitative behavior of the Langevin model is
satisfactory in all respects except one—it violates the
principle of the boundedness of compositions.
Because of the diffusive nature of Eq. (5.53), fr(y;t)is
greater than zero for all values of . Thus if ¢ were a
bounded scalar (e.g. ¢ > 0) then the boundedness
condition would be violated since the pdf would be
positive at values of Y corresponding to impossible
compositions (e.g. Y {0). (Note that Fig. 5.4a shows
regions of negative ¢*.) For the simple one-dimen-
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sional case considered, the Langevin equation could
be modified to guarantee boundedness. But for the
general case, such modifications would be prohibi-
tively complicated.

5.2.5. Conclusion

From the preceding examination of deterministic,
particle-interaction, and Langevin models, we can
draw conclusions about their use in pdf methods.

Because of their simplicity, linear deterministic
models (e.g. Eq. 5.30) are appealing, especially from
a computational viewpoint. Since they do not cause
the pdf shape to relax, they cannot be used alone. But
they can be used in conjunction with other models. A
linear deterministic model is used to model part of the
pressure term (Section 5.4).

For the case considered (scalar dissipation) the
Langevin model is, in general, inapplicable because it
violates the principle of composition boundedness. Of
the models described, only the particle interaction
model is satisfactory in all respects. (The simple model
described is unsatisfactory in that the pdf shapes
obtained are far from Gaussian, but the improved
mixing models®® are satisfactory.) In the next sub-
section particle-interaction models for the velocity
joint pdf are described.

Although the Langevin model is inapplicable to
scalars, it is a good model for the velocities (which are
not bounded). A generalized Langevin model for the
joint pdf of velocity is presented in Section 5.5.

5.3. Energy Decay and the Return-to-Isotropy

We now turn our attention to the joint pdf of the
velocities f,(V;t) for constant-density homogeneous
turbulence with no mean velocity gradients. A good
approximation to this flow is the turbulence generated
by a uniform stream passing through a grid. In a
coordinate system moving with the mean flow
velocity, the two principal observations are that the
turbulent kinetic energy decays,®® and that the
Reynolds stresses tend towards isotropy.?”

The evolution equation for the Reynolds stresses
{u;juy can be derived from the continuity and
momentum equations (Eqs 3.2-3.3). Since the density
is constant, the continuity equation (Eq. 3.2) becomes

oU; '

ax, 0. (5.57)
By decomposing U into its mean (in this case zero)
and fluctuation u

U(x, 1) = <U(x, 1)) +u(x,t), (5.58)
we obtain
2:: 0. (5.59)
With the assumption of a Newtonian fluid
oU; aU
Ty = ( ot o ) (5.60)

the momentum equation (Eq. 3.3) becomes

6 Ou; Ou; Ou; 6p
Pt =

0x;0x; ax ’ (5.61)
(The mean pressure is uniform and, since the density is
constant, there is no buoyancy effect.) The Reynolds-
stress equation is obtained by multiplying Eq. (5.61)
by u,, adding the same equation with j and k com-
muted, and taking the mean. The result is

u;u ouuu
p <alt k> <ax k> ”<ukvzuj+ujvzuk>
op’ i)
—< P Ly, 5”—>. (5.62)

Finally, making use of the fact that in homogeneous
turbulence the spatial gradients of mean quantities
(Cugujuy, Cujuyy and {u,p')) are zero, we can write the
Reynolds-stress equation as

d
pa; (uy = —pey+ Py, (5.63)
where the dissipation tensor is
Ou; 0wy,
g =2— <ax F > (5.64)
and the pressure—rate-of-strain correlation is
ou; Ou
P, =(p|—4+—% > .
i <p <8xk+ ax,) (5.65)

Of course, the Reynolds-stress equation can also be
derived from the joint pdf equation. This is achieved
by multiplying the equation for f(V,y;x,t), Eq.
(3.109), by V,V,, integrating over V-y space and
invoking the assumptions of homogeneity, etc.

The decay of the turbulent kinetic energy

1

k=-

2

is due solely to the dissipation: contracting each side
of the Reynolds-stress equation yields

515
de

where the dissipation rate of turbulent kinetic energy

is
—ls <6u 6u>
8_2” Ox; Ox

There is no contribution from the pressure-rate-of-
strain because, by virtue of the continuity equation,
P;;iszero. It may be noted that ¢ is a positive quantity.

It is assumed that ¢ is known, either from a
modelled transport equation or through the turbulent
time scale t© = k/e. In terms of the normalized time
(dt* = dt/r), the kinetic energy equation is

dk

de*

The net rate of change of the Reynolds stresses is

Cuu), (5.66)

= —¢g, (5.67)

(5.68)

(5.69)
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often expressed as,

d<{u;u 2
<djt > - —585,-;‘+Rjk’ (5.70)
where
2
Ry =Py/p— 385}1‘ > -1)

(Lumley'! and Launder et al.2°). The isotropic part
(—(2/3)edy) causes the normal stresses ({u,u,),
{uyu,) and {ujuz)) to decay, while the anisotropic
part R serves to redistribute energy among the
Reynolds stresses: the trace Rj; is zero. The observed
tendency of the Reynolds stresses to become isotropic

is due to the term R,
Rotta®8 suggested the model
o jk> / T, (5.72)
where C, is an empirical constant. The Reynolds-
stress equation then becomes
d 2
a;(ujuk) = —3-6(5 -C, <(u RT3 ——k6 )/

(5.73)

Rotta’s model is best understood in terms of the
normalized anisotropy tensor

Ry =-C, ((“juk> —zk

1 1
b, = §<ujuk>/k—§61k. (5.74)
This tensor has zero trace and each component is zero
if the Reynolds stresses are isotropic. A scalar measure
of the anisotropy is
b:=b b,

ijYjir

(5.75)

which is zero for isotropy and positive otherwise.
Equations (5.73-75) yield

db,
dT:‘k = —Cjby, (5.76)
and
db? 12
g+ = %€ b2, (5.77)
where
C,=C,—1. (5.78)

It may be seen that for C, < 1 (C;, < 0), the aniso-
tropy increases, contrary to experimental observa-
tion.8” For C, > 1 (C, > 0), the anisotropy decays
exponentially with t*, and for C, =1 (C, = 0) the
anisotropy is constant.

Launder et al.2° used Rotta’s model with the con-
stant value C, = 1.5. Lumley!! suggested that Rotta’s
model (and, hence, Eq. 5.76) accurately describes
existing experimental. data, although C, is not a
constant—it is a function of the anisotropy and
Reynolds number. Recent experiments and the re-
examination of existing data®” confirm that C, is not
a constant and suggest that the return to isotropy may

not be linear in b, as Rotta’s model implies, Eq. (5.76).
(This is discussed more in Section 5.5.) Nevertheless,
Rotta’s model provides a reasonable representation of
the experimental results—at least with C, being a
function of the anisotropy and Reynolds number.

For the flow considered, the evolution equation for
the joint pdf of velocity £, (V;t)is

v)]

aﬁ, _ 6 <61 op
rn AL T ox;
>] (5.79)

4
- ‘a—v,[fﬂ< Ve

(This equation is obtained by integrating the joint pdf
equation, Eq. (3.109), over composition space and
invoking the assumptions of constant density and
homogeneity.) The conditional expectations, which
are to be modelled, represent the (conditional) force
per unit volume due to viscous stresses and to the
fluctuating pressure gradient. A good model causes
the pdf to relax to a Gaussian. The mean velocity (U
does not change, while the second moments evolve
(approximately) according to Rotta’s model, Eq.
(5.73).

A particle interaction model—or, rather two
models—produce the required result. The Reynolds-
stress equation incorporating Rotta’s model, Eq.
(5.73), can be rewritten

d
F(ujuk> =<y —C; ((“ “k>——k5 )

(5.80)

The first term on the right-hand side ca':ﬁses the kinetic
energy to decay without the anisotropy tensor being
affected: the stochastic mixing model produces this
effect. The second term causes the anisotropy tensor
to decay without the kinetic energy being affected: the
stochastic reorientation model produces this effect.

The stochastic mixing model is directly analogous
to that used for the scalar dissipation. The joint pdf
fu(¥;t) is represented by the discrete pdf A
which is composed of N delta functions:

f;?v(X;t)E Z S(V—-U*™()).

n=1
The velocities U*™ of the stochastic particles remain
constant except at discrete times. In the small interval
of time dt, with probability 1—6t/7,, the velocities
U*™ of all the stochastic particles remain constant;
where

(5.81)

= 7/(NC,), (5.82)

and C, is a constant to be determined. With prob-
ability ét/z,, a pair of particles mix. The two particles
(denoted by p and gq) are selected at random with-
out replacement and their velocities are replaced by
their common mean velocity:

U*P(t+61) = U@t +61) =

%[g*(ﬂ)(t) + Q*(q)(t)] .

(5.83)
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oq

FIG. 5.5. Effect of mixing on the stochastic particles U*®
and U*@: O before mixing, @ after mixing.

Figure 5.5 shows, in velocity space, the effect of mixing
on the stochastic particles p and g, Eq. (5.83). After
mixing, both particles lie half-way between their initial
locations.

The momentum (per unit mass) M? associated
with the particles p and q is, simply:

M(pq) = g*(p)+_u*(q) = ZQ(""’, (5.84)
where the average velocity U%? is
0w = l[g*(p) + U*(q)}_ (5.85)
U > 194

Equation (5.83) shows that the average velocity is
unaffected by the mixing process

U9t +6t) = OP9(¢). (5.86)
The kinetic energy (per unit mass) associated with the
particles is
K®o = ,I_U*(p) U@ +1u*(q) U@, (5.87)
2= 2= =
In terms of the average velocity U? and the velocity
difference
AUPD = |Q*(p)__g*(q)|’ (5.88)

the kinetic energy can be re-expressed as
K®9 — (e . Jra +'l [AU®D]2, (5.89)
- = 4

Equation (5.83) shows that the change in Kkinetic
energy due to mixing is

K®9(t+6t)— K®0(t) = —%[AU"’“’(t)]z.

(5.90)

Thus, the reduction of the particle separation in
velocity space causes a decrease in kinetic energy.

The type of analysis used in Section 5.2.3. can be
used to show that the effect of the stochastic mixing
model on the Reynolds stresses is

Sumy = ~Cumy,  (591)
and hence, for compatibility with the first term in Eq.
(5.80), C, is unity. ’

The stochastic reorientation model differs from the
stochastic mixing model only in the definition of the
time scale, and in the operation performed on the pair
of particles selected. The time scale 1y is defined by

R = 7/(C3N). (5.92)

In the small time interval Jt, with probability ot/zg,
two particles (p and q) are selected at random with-
out replacement. These particles are randomly re-
orientated in velocity space by

U*®(t 4 6t) = Q“""(t)+%!1AU("“’(t),

and (5.93)

U*@(t +6t) = O®9(r) _%HAU(PQ)U)’

where 7 is a random vector uniformly distributed on
the unit sphere (that is, 7 is a unit vector of random
orientation). In this process, which is illustrated on
Fig. 5.6, neither the average velocity U®? nor the
velocity difference AU®? is changed. Consequently,
neither the momentum nor the kinetic energy is
affected.

In Section 5.3.1 the stochastic reorientation model
is analyzed to show that its effect on the Reynolds
stresses is

d<uu,> , © 2
d;*" =—c,{<uju,‘>—§kaj,‘}. (5.94)

When the stochastic mixing model and the stochastic
reorientation model are used simultaneously, the net
effect is the sum of the two effects (Eqs 5.91 and 5.94).
Thus, the stochastic models cause the Reynolds
stresses to evolve according to Rotta’s model (Eq.
5.80).

Vi

r-\']

=)

Fi1G. 5.6. Effect of stochastic reorientation showing that the
average velocity U and the velocity difference AU are un-
affected: O before reorientation, @ after reorientation.
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The reorientation process, Eq. (5.93), is directly
analogous to a collision between two Maxwellian
molecules. Before the collision, the two molecules (p
and g) have velocities U*® and U*9. They collide,
and their new velocities U*®)(t + §t) and U*@(t + 6t)
are such that both momentum and energy are con-
served. In view of this analogy, it is not surprising that
the stochastic reorientation model causes the pdf to
relax to a Gaussian (Maxwellian) distribution.

5.3.1. Analysis of the stochastic reorientation model

The effect of the stochastic reorientation model
(Egs 5.92-93) on the Reynolds stresses is determined
in this subsection.

In the time interval J¢, with probability 6t/zz, the
velocities of particles p and g change: otherwise the
velocities are constant. Thus the change in {u U 18

ot 1
Asuuy = N E{U?P(t+6t)U¥P(t+5t)

+ U;‘(‘I)(t +6t)U,f(“)(t +6t)
- U}“(")U,""(") — U;_k(q) U,‘:(")},
(5.95)

where, here and below, U*™ is written for U*™(¢).
From the definition of U*®(t+6t) and U*@(t 4 6t),
Eq. (5.93), we obtain

E{U¥P(t+6t)UFP(t + 1)}

o 1 _
=E {U}‘"’) U;pq) +§ U;"‘”r],‘AU(”)

1_ 1
+ E Uipq)njA ytra +Z ’1j’1k[A U(pq)]z} .

(5.96)
Substituting for U (Eq. 5.85), the first term becomes

I 1
E{ U}pq)u;‘pq)} = Z E{ U}‘"’) U;‘k(l’) + U;t(p) U;‘t(q)
+ U;‘(") U,’f(”) + U}"“”U,’f(‘”}

1
=§<ujuk>+<Uj><Uk>' (5.97)

The last step follows from
E{UIUF9) = E(UI9)} E{UF) = (U, (U,
(5.98)
(since U*® and U*@ are independent) and from
E{U;‘(”’U,‘f“’)} =(U;UD =UpU»+ uju.
(5.99)

The remaining terms in Eq. (5.90) depend upon 1.
Since the orientation of 1 is random, each component
(M k=1,2,3) is symmetrically distributed about
zero—for any number z, the events 7, =z and
1, = —z are equally likely. Consequently the expected
value of each component is zero:

E(n,) = 0. (5.100)

Similarly, for j#k, the conditional expectation
E(n;|n,) is zero since, for given n, (k # j) and z, the
events n; = z and n; = —z are equally likely. Hence,

Emm) =0,j#k. (5.101)
By definition, the vector 7 has unit length:

nin;=Emm) =E@mn, +nm+n3n3)=1.
(5.102)

And, since by symmetry E(,7,), E(1,1,) and E(n51,)
are equal, we obtain
1
Emn) =3 i=k (5.103)
Equation (5.101) and (5.103) can be written in the
common form
1
551.,‘. ‘ (5.104)
Returning to Eq. (5.96), since 7 is independent of the
velocities, the second term on the right-hand side is
zero:

E(’?j'?k) =

1_ |
E{E Uy”‘)r],‘ A U(pq)} = E{ 5 U;_pq) A U(”)}E(m) =0.

(5.105)

Similarly the third term is zero. The final term is
1

E{Z ’7j'1k[A U(pq)lz}
= 1 E E{[AU®P97]2
=2 (n j’lk) {[ ] }

1
= E 5jkE{Ulgk(p)U?=(p) - 2U,3"(")U?°(q) + U;t:(q)u:}(q)}

1
=20l (VU —<UD U}

1
=3k (5.106).

All the terms in Eq. (5.95) have now been evaluated.
Using these results, the change in the Reynolds stress
is found to be

: ot 2
Asujuy = —N—TR{<ujuk>-—§k5,k}. (5.107)

Dividing by dt, substituting for zx (Eq. 5.92), and
taking the limit as Jr tends to zero, we obtain the
required result:

d<uuy _
de*

—c {<ujuk> —gkaﬂ}. (5.108)

5.4. Rapid Pressure

While still considering constant-density homo-
geneous turbulence, we now allow uniform mean
velocity gradients d{U,»/dx ;- The interaction of the
mean velocity gradients with the turbulence gives rise
to “rapid” pressure fluctuations. In this section a
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deterministic model for these rapid pressure fluctua-
tions is presented.

For constant-density flows, the continuity
equation, (Eq. 3.2), yields
oU; 6 U, 0
WU _ou_ . (5.109)

6x 0x; 0x;

An equation for the fluctuating velocity u is obtained
by subtracting from Eq. (3.3) its mean. For a constant-
density Newtonian fluid, the result is,

ou; 0
Pa—tl‘*‘Pa[<Ui>“j+<Uj>“i+“i“j_ Cuu]

ap’
=uViy,——.
HYTH 0x

i

(5.110)

(For the homogeneous case, the gradients of the
Reynolds stresses d<uu;»/0x; are zero.) A Poisson
equation for the fluctuating pressure is obtained by
differentiating Eq. (5.110) with respect to x;:

KUy auj i
—— 5.111
Ox; 0x; ° 0x;0x; ( )

This Poisson equation for p’ shows that there are
two sources of pressure fluctuations; one due to the
interaction of turbulence with the mean velocity
gradients, and the other solely due to turbulence.
These contributions to p’ are denoted by p) and p'»
respectively. The contribution p'*) is termed the
“rapid” pressure since it changes rapidly in response
to changes in the mean velocity gradient. The
separation of p’ into two contributions allows its effect
on the joint velocity pdf f, (V) to be separated (cf. Eq.
5.79):

R TRTP

Vip=-2p

gl
Por = aV 2\ox, ¥
8p(” 5p(2)
= fu<—— v f., V)|
an[ S\ ox; 0%,
(5.112)
The stochastic mixing and reorientation models have

been used to model the term in p@: a deterministic
model for the term in p'! is now developed.
From Eq. (5.111) we have
6( U, du,
0x 6x, ’
and differentiating with respect to x; (recalling that
the mean velocity gradient is uniform) we obtain
op KU,y &u,
ox; P 0x, 0x,0%;
This equation can be solved using Green’s theorem to
yield an expression for the conditional rapid pressure

gradient in terms of the two-point conditional expec-
tation of velocity:

<5p(1)
0x;

V2p(l) —

(5.113)

VZ

(5.114)

. __> _ 2 6§U’>

Bml](v)’

(5.115)
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where

Buj(v) = (u (x+1)|ux)=v>dr.

1 1 9
|1'|a"t

A derivation of this equation is presented in Section
5.4.1 where several properties of the tensor B,;(v) are
deduced.

The task of modelling the rapid pressure term has
now been reduced to that of modelling the tensor
Bj(v). Since B has dimensions of velocity and is
independent of the scale of the turbulence, Pope’?
suggested modelling it as a function v and the
Reynolds stresses. It is expedient to assume that Bis a
linear function of v since this leads to a model that is
compatible with Reynolds stress models. Some
support for the linearity assumption is provided by
the exact result (Eq. 5.146 of Section 5.4.1):

(5.116)

Bm/, =Upy. (5.117)
The general form of the linear model is
Bm/j = Uchmljv (5118)

where C is a non-dimensional tensor function of the
Reynolds stresses.

Before considering the determination of the tensor
C, let us examine the form of the model. Combining
Eqgs (5.118) and (5.115) yields

< ap\v
0x;
or alternatively .

5p(1) >
<ax u-v
(5.120)

The effect of the rapid pressure on the joint pdf of
velocity (Eq. 5.112) is, then,

KU
u= y> - -2 %Cqmﬁu‘,, (5.119)

U
fa 2 Cony (V= CU).

af, 6(U >
S = T2 C q,.,,aV [V, =<UM,
(5.121)
and the corresponding conditional Lagrangian
equation is
do, KU, .
#=...2T’CWJ(U¢—<U,,>). (5.122)

Thus, the effect of the rapid pressure is to move
conditional particles in velocity space at a rate pro-
portional to their distance from the mean velocity
(0 —<U») and proportional to the mean velocity
gradient. Since the mean velocity is unaffected, the net
motion in each direction (in V-space) is zero: and,
since the kinetic energy is unaffected, the mean-square _
outward motion from V = (U) is balanced by the
mean-square inward motion.

As with the other linear deterministic models, this
model does not change the shape of the distribution,
only its moments. Thus a joint normal distribution



168 S. B. PorE

remains normal and, conversely, any other distribu-
tion does not relax to a normal distribution. For the
other processes considered, the lack of relaxation was
considered to be a defect in the model. But rapid
distortion theory®? shows that the rapid pressure has
a deterministic effect on the turbulence, and hence,
does not cause the pdf to become Gaussian.

A completely satisfactory model for the non-dimen-
sional tensor C has yet to be developed. The best
available model is obtained by relating C to a fourth-
order tensor A that appears in Reynolds-stress
models. Multiplying Eq. (5.119) by (—f,v;) and inte-
grating we obtain

op't 1) Ot
— = — =2
<uk 0x; > <p 0x;
(5.123)

Now, the term {p"du,/0x ;> appears as an unknown
in the Reynolds-stress equation and is generally
modelled by,

ou oU>
<P”’&%> = pk Tox ! Ajktms
J

m

KUs>
)

—ax——— Cqm,j<u,‘uq).

(5.124)

where there are several suggestions for the tensor A
(Launder et al.,?° Lumley and Khajeh-Nouri®® and
Lin and Wolfshtein®'). Comparing these two
equations, we see that A and C are related by

(2/k)Cqm/j<uku >’ (5125)

jk{ m

and

Comej = %k(u,‘uqy YAjpim- (5.126)
From this last equation, Pope’? evaluated the tensor
C corresponding to Launder et al.’s model for A.

For many flows the quantitative performance of
Launder et al’s model may be adequate. But their
model—and all the others mentioned—do not
guarantee (weak) realizability. In the pdf model, the
(weak) realizability principle imposes no conditions
on C—except that it be finite. But, if the turbulence
becomes two-dimensional, the Reynolds stress tensor
becomes singular and then the right-hand side of Eq.
(5.126) becomes infinite, unless A satisfies a particular
condition. Current models for A do not satisfy this
condition and hence are badly behaved when the
turbulence becomes two-dimensional. In view of this,
it would be preferable to model C directly. The corre-
sponding model for A deduced from Eq. (5.125) would
then guarantee realizability.

5.4.1. Solution of the Poisson equation

An exact solution for the conditional rapid pressure
gradient is obtained in terms of the two-point condi-
tional expectation, Eqs (5.115-116). The solution
follows from a straightforward application of Green’s
theorem, but some care is needed to ensure proper
behavior at the origin and at infinity.

Letx and y = x +r be points within a regular region.
R with bounding surface S, Fig. 5.7. The length of the

(£

F1G. 5.7. Sketch showing points x and y inregion R.

separation vector r is
r=(r-r)"?3 (5.127)

n is the outward-pointing normal vector and §/dn
denotes the derivative in the direction of n.
The Poisson equation

6p“’ U,y o*u
V2 - =, 5.12
ox, - o, axox, OB
(where 0¢U, »/0x,, is uniform) has the solution
(1)
B2 _ 5y XU g DI, (5129)
0x; 0x,,
where
16%u
B, = — f f _[ "'(Y)dy, (5.130)
RT Oyc0y; = -
U1,
Y= —ds, 5.131
J\J‘ ay,an r ( )
and

1 ap'V(y) 0
@) = 5.1
I§ - ff &, Em —]dS. (5.132)

This solution follows directly from Green’s second
identity (see, for example, Ref. 92).

We now take the expectation of Eq. (5.129) con-
ditional on u(x) = v, and then take the limit as R tends
to infinity. In this process, both surface integrals
vanish. For I'?, for example, we have

Pl =0 =~ f J <M

=—— JJ —<pVx+1) Iu(a)=x>agn ds
(5.133)

Now as R, and hence r, becomes infinite, p‘*(x +r1)
becomes independent of u(x):

lim (pM(x+1)lux)=v) ={p") =0.
- (5.134)

Consequently the derivative of (p'V(x+1)/u(x)=v>
also tends to zero, yielding

lim <I?|u(x) = v) = 0.
R-x

-1
g(&)=_>%—d5

(5.135)

The same argument yields the same result for .
The conditional expectation of the volume integral,
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Eq. (5.130), is

(Brgjlu®)=v) = —— ffj < _)=!>dz
RT UY(C,V,
J‘J‘J‘ =
™ R ror,ér

x (U, (x+1)|u(x) =v>dr.

(5.136)

In the limit as R tends to infinity, this equation defines
the third-order tensor B,;(v),

Buj(v) = Rlim (Bjlux) =v)

_ 1 1 0?
T 6r
(5.137)

where [dr represents the volume integral over the
whole physical space. The convergence of the integral
is not in doubt since, as r tends to infinity,
{u,(x+1)lu(x) = v)> tends to zero more rapidly than
rol

The conditional expectations of all the integrals in
Eq. (5.129) have now been evaluated to yield the
required solution

Bm{j(v)

<6p‘”
0x;
(5.138)

where B,,; is given by Eq. (5.137). This solution is
useful because it shows explicitly the role of the mean
velocity gradient and because several properties of
B,; can be deduced. It is evident from Eq. (5.137) that
the result is unaffected by reversing the order of
differentiation: hence,

(u (x+r1)jux)=yv)dr,

Uz
0x,,

u(x) = !> =2p

¢

Bsj = B, (5.139)
The continuity equation, Eq. (5.109), at the point yis
Ou,(y) _ Oup(x+1)
v or. 0, (5.140)
-and hence
0
7 (mE+Du@) =v) =0.  (5.141)

Thus, in Eq. (5.137) the integrand vanishes if £ or j is
contracted with m:

B,.i=0,

mmj

(5.142)
and
Bosm = 0. (5.143)

(Eq. 5.143 also follows from Eqs 5.139 and 5.142).
The final property of B,,; is slightly more difficult to
obtain. Contracting £ and j in Eq. (5. 136) yields

(Brlu®) =y) = —— jfj; r 3, or,
' X (“m(l+£)|!(l) =yydr. (5.144)

Now the integrand is the Laplacian multiplied by the
Green’s function (1/r). Hence, from the exact solution

169

to Poisson’s equation®? we obtain

(Brselux) =v) = (u,(x)|ux) = v)
—L fj l—6—<u,..(§+z)lg(x) =vydS
ron

—IJ {Up(x +1)|u(x )-—u)——dS

(5.145)

The first term on the right-hand side is just v,,, while,
as r tends to infinity, the other terms vanish. Hence we
obtain

B (v) = Rlim (Bllux) =v) = v,. (5.146)

5.5. Langevin Model

In the previous two sections a model for the evolu-
tion of the velocity joint pdf f, is described. The
dissipation and return-to-isotropy terms are modelled
by the stochastic mixing and reorientation models
(Section 5.3), and a linear deterministic model is used
for the rapid pressure (Section 5.4). In this section an
alternative model for the evolution of f, is described.
This is the generalized Langevin model —a generaliza-
tion of Eq. (4.91) (see also Eq. 5.52). As in the previous
sections, we consider constant-density homogeneous
turbulence with uniform mean velocity gradients.

In terms of the velocity increment of a stochastic
particle,

A, U*(t) = U*(et+00)—-U*(r),  (5.147)
the generalized Langevin model is
ot o
AU = =2 ;p>+GU(U* U)ot
+BY2A5(W),, (5.148)
where W, is an isotropic Weiner process:
B WA (W) = 55, (5.149)

The second-order tensor G and the positive scalar B
define the particular model, and their determination is
discussed below. Both G and B can depend upon time
but are independent of U* and x (in homogeneous
turbulence). The first term on the right-hand side of
Eq. (5.148) defines the effect of the mean pressure
gradient on the stochastic particle to be the same as
that on a fluid particle.

With U* evolving according to the Langevin
equation (Eq. 5.148), the Eulerian pdf S (¥ %,0)
evolves by (cf. Eq. 4.105),

o o Lap

ot ok, T p ox, OV, ”av[f"*(V U
o

2BaVaV (5.150)

Although the fluctuating velocity field is (by
assumption) statistically homogeneous, the pdf
Ju*(¥; x, t) depends upon x (because the mean velocity
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{U(x,t)) is not uniform). It is useful, therefore, to
consider g(v; t)—the Eulerian joint pdf of the velocity
fluctuations:

g(v;t) = fi*(V;%,0), (5.151)
where
v=V-UR1)). (5.152)

When the evolution equation for g is derived from Eqs
(5.150-152), the spatial derivative and mean pressure
terms vanish, leaving

o9 Uy 2 1
5‘{axj G‘f}a_vi[g"fth

i
dv;0v;
(5.153)

This equation is qualitatively correct in that it
admits joint normal solutions. And, as noted in
Section 5.2.4, the term in B causes arbitrary initial
distributions to relax to Gaussians (for B > 0).

The coefficient B is determined by requiring that (in
a limited sense) the Langevin equation be a direct
model of fluid particle behavior. Consider a time
interval s that is much less than 7, but much greater
than the Kolmogorov time scale t,:

T,’ KIXKT.

(5.154)
The quantity
AU () =U"(+s)-U*(@),  (5155)

is the change in the Lagrangian velocity of a fluid
particle over the time interval s. According to
Kolmogorov’s (1941) hypotheses,®* the covariance of
AU () is (to first order in s):

(AU (AU (1)) = Coesd,

where C, is a universal constant.
From the Langevin model (Eq. 5.148) we obtain (to
first order in s):

(AUFOAUS (1)) = Bsdyj,

(5.156)

jo

(5.157)

for

O0<s<r. (5.158)

By comparing Eqgs (5.156) and (5.157), we see that (for
7, < s < 1) fluid particles and stochastic particles
have the same statistical properties provided that B is
chosen to be

B = Ce. (5.159)

For time intervals s much less than 1, the covariance
of A,U*(t) is of order s (Eq. 5.157), but for fluid
particles the covariance of A,U*(t) is only of order
52.93 Thus only in the limited range (5.154) does the
Langevin model provide a direct model of fluid
particle behavior.

For homogeneous isotropic turbulence (without
mean velocity gradients), the tensor G;; can be
deduced without further modelling assumptions. The
tensor must be isotropic (G;; o« 6;;), and the coefficient
of proportionality is determined by requiring that the

modelled equation yield the correct energy decay rate
(Eq. 5.67). Thus, for isotropic turbulence (with
{(U) =0), the Langevin equation, (Eq. 5.148),
becomes

1
AU = —(5+§CO) (81/2)UZ +(Coe) 28 (W),

(5.160)

Anand and Pope** used this model equation to
calculate the diffusion of heat behind a line source in
grid turbulence. Excellent agreement with the avail-
able experimental data was obtained for C, ~ 2.1.
Since, according to Kolmogorov’s hypotheses, C, is a
universal constant, we adopt this value for the general
model.

We now consider modelling G;;for the more general
case of homogeneous anisotropic turbulence with uni-
form mean velocity gradients. At this level of closure,
G can be a function of 7, {uu;) and 0(U,)/0x;. The
most general model for G contains far more scalar
coefficients than could possibly be determined with
confidence. Haworth and Pope®* considered a simpler
model for G that is linear in both the Reynolds
stresses and the mean velocity gradients:

KU
Gy = (2;6;+0a,b;;)/t1+ Hyp —;;ﬁ, (5.161)
¢

where
Hjiy = B160k + B20i bj¢ + B30y O
+716iibrs +720ibjr + 7301 b
+74bj;Oxr +Vsbuc b +yebic O, (5.162)

and the eleven coefficients «,,, B, and 7y, are to be
determined. (The anisotropy tensor b is defined by Eq.
5.74.)

In the alternative model presented in Sections
5.3-4, the stochastic reorientation model (that does
not depend upon d{U,)/dx,) simulates the effect of
the “slow” pressure p®, whereas a term linear in
d(U,;>/0x, simulates the effect of the “rapid” pressure
", Eq. (5.119). Similarly, the terms in «, and «, in Eq.
(5.161) could be identified with the slow pressure, and
the term in 0{U, >/0x, with the rapid pressure. Then,
it follows that H and C (Eq. 5.118) are related by

Hjis = 2Cj. (5.163)

However, the decomposition of Eq. (5.161) into slow
and rapid parts contains the implicit assumption that
the slow pressure is independent of mean velocity
gradients. There being no strong basis for this
assumption, we follow Jones and Musonge®® in re-
jecting it. As a consequence, H is not subject to many
of the constraints that otherwise follow from the
properties of B,,;(v) = v,C,m;j (see Section 5.4.1).

In the determination of the eleven coefficients in
Eqs (5.161-162), several subtleties arise.®* Since the
coefficients f, and y, multiply '

(U KU _

d = 0,
¥ ox, 0x,

(5.164)
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their values are irrelevant and can be set arbitrarily.
The requirement that the model yields the correct
kinetic energy evolution leads to the condition:

1 3 1
% = ‘<§+ZC0)_“2bijbﬁ‘T(?1 +B,+8; +§Y*)bk/

U
Ty*byibie M,

KU
% h ax,

5.1
o, (5.165)

where

Y=y, + 7.

Two other requirements are imposed: that the model
produces the correct response for the rapid distortion
of isotropic turbulence; and, that the multiplier of
(KU, /ox, —d{U,»/dx,) has the correct form in the
limit of two-dimensional turbulence.”® These two re-
quirements lead to the conditions

Bi=—1/5 B,=4/5 B,=—1/5, (5.166)
and

2 1
B.—Bs +§(72—73)+§(V5_75) =2. (5.167)

With the five conditions Eqs (5.165-167), six degrees
of freedom remain in the model.

The only other obvious source of information that
can be used to determine the coefficients is experi-
mental data on the evolution of Reynolds stresses in
homogeneous turbulence. But when the modelled
Reynolds stress equation is deduced from Eq. (5.161),
the coefficients appear in groups—only four of which
are linearly independent of Egs (5.166—167). Thus two
degrees of indeterminacy remain. Haworth and
Pope®* remove this indeterminacy by setting

(5.168)

Y4 = 0’
and
31
= —_——- *. .
"1 5737 (5.169)
This last equation simplifies Eq. (5.165) to
13 U
a, = -—(5+zCo)—azbijbﬁ—ty*bkib,-, 8x: ,
(5.170)

which is used to determine «,. The four remaining
coefficients (assumed constant) are determined by a
least-squares optimization against the available
experimental data. The values obtained are:

®; =3.7,9, =3.01,y; = —2.18 and y, = 4.29.
' (5.171)

The values of yg = —3.09 and y;, = — 1.28 then follow
from Eqs (5.167) and (5.169).

To summarize: for consistency with Kolmogorov’s
scaling - laws, the coefficient B in the Langevin
equation, (Eq. 5.148), is determined to be C,¢, where

the universal constant C, has the value 2.1. A model
for the tensor G; that is linear in both the anisotropy
tensor and the mean velocity gradients has been
proposed (Eqs 5.161-162). For homogeneous
turbulence, the resulting pdf equation yields a joint
normal distribution with the Reynolds stress
evolution closely matching experimental observa-
tions.

5.6. Joint Pdf Models

In the previous sub-sections, models for the con-
ditional expectations
¥>’

have been developed for homogeneous con-
stant-density turbulence, with no mean composition
gradients. With these models and a knowledge of the
turbulent time scale z(t), the evolution of the com-
position pdf f,(;¢), and of the velocity pdf f,(V;t)
can be calculated. But, in order to calculate the evolu-
tion of the velocity—composition joint pdf f(V, ;) it
is necessary to model each quantity conditional on the
joint events U =V and ¢ = y. Thus, in this sub-
section, we re-examine the models to see how they
should be modified in order to represent the expecta-

tions
(TV2$,|V, ), uV2U |V, > and <§—’:— v, ¢>-
Xj
(5.172)

For the homogeneous flows considered, the joint
pdf f(V,y;¢) is found to be a joint normal disiribu-
tion.%? Consequently, it is completely defined by the
means (U) and {¢), the Reynolds stresses {u;u;), the
scalar variances {¢,$;>, and the scalar fluxes {u;¢,>.
These scalar fluxes contain all the joint information:
Ju(¥) can be determined from (U) and <{uu;); f,(¥)
can be determined from (@) and {¢,¢;>: but the
additional information contained in {u;¢,) is needed
to determine the joint distribution f(V,y). (The
determination of the joint pdf from the first and
second moments is possible only because the pdf is
known to be joint-normal.)

The models presented above are modified in such a
way that the effect of the models on f, and f is
unchanged. The effects of the modifications are
revealed in the behavior of the scalar fluxes.

We consider first the decay of the scalar flux for a
single scalar ¢ in isotropic turbulence. For this case
the models described below yield the decay law

dCug)
—ga = —C g,

q

(TV2, Y5, (uV2U,| V> and <‘fi

0x;

(5.173)

where the positive coefficient C + depends upon the
details of the model.

Since both (¢'?) and <uu,> decay, it is inevitable
that {u;¢) also decays. It is more informative to study
the evolution of the correlation coefficient r,
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2
= (ud) <ui¢>/{§k<¢'2>}- (5.174)

This definition can be understood by noting that, if
the coordinate system is chosen such that the scalar
flux (which is a vector) is in the x,-direction, then Eq.
(5.174) becomes

r? = Cu ¢ {<uyuy > <9}

(cf. Eq. 2.110). If k, {¢'*) and (u;¢)> decay according
to Eqs (5.69, 5.25 and 5.173), then it follows that r
evolves by

(5.175)

dr
a = -C,r, (5.176)
where
1
C = C,-E(C¢+1). (5.177)

Sirivat and Warhaft®® provide experimental data
for the correlation coefficient r in decaying grid turbu-
lence. The data show that r decays, but a unique decay
constant C, is not evident. Values of C, in the range
0.35-0.85 are consistent with the data.

More recently, Shih and Lumley®’ have proposed a
nonlinear model which agrees well with a second set of
data from Sirivat and Warhaft®® obtained in grid
turbulence with a uniform mean temperature
gradient. If r* can be neglected in comparison to unity
(which is usually the case) this model reduces to the
decay law Eq. (5.176) with

C, =0.55C}. (5.178)
For the flows of Sirivat and Warhaft®® the value of C,,
is found to be approximately 1.6 which yields
C, ~ 1.4. Thus the experimental data do show that r
decays, but the value of the decay constant C, is
uncertain —if, indeed, it is a constant.

We now address the problem of combining models
for £,(V) and f,(y) to form a model for f(V, ). The
simplest assumptions are that the increment A, U* is
independent of ¢*, and that A;,¢* is independent of
U*. Since we are considering ¢ to be a set of passive
scalars, the first of these assumptions is most reason-
able. Certainly for fluid particles, A, U* is (deter-
ministically) independent of ¢*. We adopt this
assumption without reservation or further discussion.
The second assumption—that A, ¢* is independent of
U*—has no justification. However, we tentatively
adopt the assumption in order to explore its conse-
quence.

With the two independence assumptions, the
Langevin model for A;,U* (Eq. 5.160) can be com-
bined directly with the stochastic mixing model for
A, 9* (Eqs 5.35, 5.48 and 5.49). The resulting joint
model is now analyzed to determine its effect on the
scalar flux {u;¢,>.

With f(V,y) being represented by N stochastic
particles U*®, ¢*® pn=12... N, the change in
{u;¢,» in a small time interval dt is (to first order in 6t)

S. B. PopPE

N
A > =Ex 3 (U +4,U8) (6

n=1

+4,05") - UFr™}

1 N
=E< T {UrA,01 +9178,Ur").

n=1

(5.179)

Now A,,¢X™ is zero except, with probability ot/zy, for
the two elements p and g. If mixing takes place, then

1
Dy = —§(¢:(")‘“¢:("’), (5.180)
and similarly for A;¢*@. Thus, using Eq. (5.160) to
substitute for A, U*™, Eq. (5.179) becomes

Buud) =~z E[UFP(910— 1)
N

+ U?‘(")(tﬁ:m —_ ¢:(p))]

1 N 1 3 5t
—E *m | _{ 4= *(n)
N ,;{‘”‘ [ (2+4C">U' :

+ (Cos)l lear(Wz‘("))x]}

= & <C¢ +%+ > Co) Uiy

T 4
(5.181)

In the limit as 6t tends to zero we obtain the decay law
Eq. (5.173) with
13

C;=Cyt5+5C,.

5.182
2 4 ( )

This implies (Eq. 5.177) that the correlation coefficient
decay constant is

3 1

C,=-Co+x

C,.
4 27 ¢

(5.183)
Taking C, = 2.1 and the conservative value C, = 1.6,
this yields C, ~24—a far higher value than is
suggested by the data.

The reason that the model yields too large a value of
C, lies in the assumption that A;,¢* is independent of
U*. Molecular mixing is a microscale process. When a
fluid particle’s composition changes, it does so by
molecular exchange with neighboring fluid particles.
The velocities of neighboring fluid particles—or even
of particles separated by the Kolmogorov scale—are
strongly correlated. But in the stochastic mixing
model, the velocities of the two particles U*® and
U*@ are independent.

The following modified mixing model suggests
itself. The first particle to be mixed (denoted by p) is
selected at random as before. Its velocity and com-
position are U*®) and ¢*). The choice of the second
particle (denoted by g) is biased towards those whose
velocity U*@ is close to U*'). The mixing operation is
then performed as before. Depending on the amount
of bias, this model yields decay constants in the range
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3 1 3 1
ZCO—EC,,, <C < 1Co+3Ce  (5184)
or (taking C, = 2.1, C, = 2.0),
0.575 < C, < 2.575. (5.185)

Thus with biased selection, the modified mixing
model, in conjunction with the Langevin equation,
yields values of C, in the range of experimental
observations. (In the improved mixing model®® the
same effect can be achieved by biasing the amount of
mixing according to the velocity difference between
the two particles. This can be done in an efficient
algorithm, whereas an efficient algorithm for biased
selection is not evident.)

We now consider the use of the stochastic mixing
and reorientation models for A, U* (Section 5.3)
instead of the Langevin equation. If the stochastic
models for A, U* and A, ¢* are combined, and the
two independence assumptions are invoked (A;U* is
independent of ¢* and A, ¢* is independent of U*),
then the correlation coefficient r decays by Eq. (5.176)
with

1.1
C, = C34+5Co+5C..

: (5.186)

The three constants C,, C, and C, arise from the
three stochastic models—stochastic reorientation,
stochastic mixing in composition space, and
stochastic mixing in velocity space. Taking the values
C;=05(C,=15),C,=20and C, = 1, we obtain
C, = 2.0—again, a larger value than is suggested by
the data.

Rather than the second independence assumption,
an alternative hypothesis is that steep velocity
gradients cause steep composition gradients, and
hence mixing in y-space is correlated with mixing in
V-space. The following stochastic model accounts for
this correlated mixing, with the constant Cus
(0 < C,4 < 1) defining the degree of correlation.

The joint pdf f(V,y;t) is represented by N
stochastic particles U*™, ¢*® n =1,2,...,N. In the
small time interval dt, the probability of the occur-
rence of correlated mixing is 8t/z,,, where

T, = 7/(C s N). (5.187)

When correlated mixing occurs, two of the N
stochastic particles (denoted by p and g) are selected
at random without replacement and their properties
are replaced by:

Q"‘“’)(t +6t)= g*(q)(t +8t)= % [Q*(”(t) + E*“"(t)],

Q*,(p)(t +6t) = Q*(‘”(I +6t) = %[Q*(”)(I)+Q*(‘"(t)].

(5.188)

The effect of this model alone on the Reynolds
stresses and scalar variances is:

173
d{u,u;
<dt‘*1> = —Cupluii, (5.189)
and
d(‘:::?a) - —Cu¢<¢;¢’ﬂ>' (5.190)

Thus, in order to obtain the correct amou::: of mixing
(cf. Eqs 5.91 and 5.51), the stochastic mixing model in
composition space is used with the constant C,
modified to

Cy=Cy—Cpy» (5.191)

and the stochastic mixing model in velocity space is
used with the constant C,(= 1) modified to

C,=C,—C,p (5.192)

In other words, correlated mixings occur with prob-
ability C,,Ndt/t, composition mixing with prob-
ability Cy, N 6t/7, and velocity mixing with probability
C,Nét/z.

This combination of the three stochastic mixing
models and the random reorientation model produces
the correct evolution of the Reynolds stresses and
scalar variances, independent of the value of C,s- The
effect on the scalar-flux correlation coefficient r is to
cause decay according to Eq. (5.176) with

1
2

Thus a choice of C,, between unity and zero yields
values of C, in the range

1
C =Ci+3Co+3C,—Cop  (5.193)

, 11 L1
Ci+3Co=3 < C, < Cy43C,+3, (5194)
or (taking Cj = 0.5, C, = 2.0)
10<C, <20, (5.195)

which is closer to the observed range than Eq. (5.186).

5.7. General Flows

The models that have been presented are for inert,
constant-density homogeneous flows. They are well-
understood and tested even though some components
have yet to be finalized. But we wish to apply the joint
pdf equation to more complicated flows—inhomo-
geneous, variable-density reactive flows. Indeed, the
virtue of the pdf equation is that it facilitates the
treatment of these complications. In this section the
extension to general flows is discussed. The modelling
for these flows is less well established and far more
difficult to test. But, it is argued, the exact terms in the
joint pdf equation and the processes already modelled
account for the principal influences on the joint pdf.

5.7.1. Inhomogeneity

For a constant density Newtonian fluid with unit
Prandtl (or Schmidt) number (u = I'), the joint pdf
equation can be re-expressed as
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T W A IV vl (5.196)

The principal influence of inhomogeneity is to cause
convective transport in physical space. This effect
appears in closed form in the joint pdf equation
through the term V;df/éx;. In contrast, in second-
order closures, this term gives rise to the correlations
uguuds (ugu; > and (ud,¢y> which are generally
modelled by gradient diffusion. It is emphasized that,
in the joint pdf equation, the convective term is in
closed form and therefore no gradient diffusion
models are needed.

The first term on the right-hand side of Eq. (5.196)
represents transpgort in physical space due to
molecular diffusion, and (at high Reynolds number) is
usually negligible. Nevertheless, the term appears in
closed form and can be retained without additional
modelling being required.

The next three terms represent the effects of
dissipation and pressure fluctuations that have been
modelled in Sections 5.3-6. Since dissipation and (to a
lesser extent) the slow pressure are associated with the
smaller turbulent scales, it is reasonable to assume
that these processes are unaffected by inhomo-
geneities.

For flows remote from walls, it is assumed that the
rapid-pressure models still apply. An analysis of the
rapid pressure rate of strain®® shows that, to first
order, departures from homogeneity have no effect.
Near walls, however, the velocity gradients and
Reynolds stresses vary rapidly. Further, the analysis of
Section 5.4.1. has to be modified to include surface
integrals at the wall. Consequently, the models (Egs
5.119 and 5.148) (or at least the tensors C and G) have
to be modified: this is a subject for future work.

The final term in Eq. (5.196) represents transport
due to the fluctuating pressure. Pope’? suggested the
model

IV = gCuud o), (5197)
which is consistent with Lumley’s model'! for {p'u;».
But this model has not been tested.

5.7.2. Intermittency

Near to the edge of boundary layers and free shear
layers the flow is intermittent —sometimes turbulent,

magnitude (1 —y}aty, = 0.

sometimes non-turbulent.'®® Consider a high
Reynolds number jet which transports a conserved
passive scalar ¢,(x,t), where y = o+ 1. At the jet exit
¢, is positive, while in the non-turbulent, irrotational
fluid remote from the jet ¢, is zero. As the Reynolds
number tends to infinity, the condition ¢ (x,t)> 0
can be used as an indicator of turbulent fluid. That is,
if ¢,(x,t)>0, the fluid is in turbulent motion, if
¢,(x,t) = 0, the fluid is in irrotational, non-turbulent
motion. The intermittency factor y(x, ) is defined as
the probability of the fluid at (x, t) being turbulent. In
terms of the indicator ¢, the intermittency factor is

7(%,1) = P($,(x,1) > 0). (5.198)

The pdf of ¢,, f5, (¥ X, 1), is zero for Yy < 0, it has a
delta function of magnitude (1 —y(x,t)) at y, = 0, and
it has a continuous distribution for § > 0, see Fig. 5.8.
Integration over the delta function and over the con-
tinuous distribution yields

F foWrxndy, = 1oy ), (5.199)
(4]

and

Lw Jo, Wy X, 1) Ay, = y(x, ). (5.200)

The joint pdf f(V,¥;x,t) can be decomposed into
two parts: the first f.(V,;x,1t) is the joint pdf of U
and ¢ conditional upon the fluid being turbulent, the
second fy(V,¥;x,1) is conditional on the fluid being
non-turbulent:

f=Yr+A=)f (5.201)

In terms of fwr(_\[, ¥, ¥,; X, t)—the joint pdf of U, ¢
and ¢, —these two conditional pdf’s are

SrL¥sx.0=f (Y, ¥;% tld,>0)
= wam,(l_.di’ wy’ X, t)d‘l/-y/’y(.)ga t),

(5.202)
and

fN(Y.’S_b"E’ t) =f(y951£alstl¢y =0)

0.
= J;) fw,(xsﬂ, !l/«,;l, t)d!//.',/(l ._Y(X’ t))
(5.203)
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The reason for wanting to discriminate between
turbulent and non-turbulent fluids is that their
behavior is quite different. Consequently, a gain in
accuracy can be expected if different models are used
for the different states of the fluid. This can be done in
two ways. The first way (that followed by Kollmann
and Janicka'®!) is to derive and model the transport
equations for f7, fy-and y. The modelling that has been
discussed so far is appropriate to the turbulent part f.,
and different modelling can be applied to fy. The rate
at which non-turbulent fluid becomes turbulent is
determined by the transport equation for y.

The second approach—that used by Pope*® —is to
solve a  single transport equation for
Juge, V¥ ¥, %,8), but to use different modelling
depending on the value of y,. For y,>0 the
modelling appropriate to turbulent fluid is used, while
for y, = 0 non-turbulent models are used. The rate of
creation of turbulent fluid depends on the flux of Juge,
away from y,=0. Thus, rather than solving
equations for the conditional pdf’s f; and fy, the
equation for £, is solved using conditional modelling.
Pope*? presented such conditional models and used
them to make calculations of a self-similar plane jet.
The calculated intermittency factor and conditional
statistics agree well with the experimental data. But
since several of the conditional model constants were
chosen by reference to these experimental data,
further calculations are needed to assess the univer-
sality of the modelling,

5.7.3. Dissipation rates

In the particle-interaction and Langevin models,
rate information enters through the dissipation rate ¢
and through the turbulent time scale ,

T = kfe.

(Since the kinetic energy k can be determined from the
joint pdf, a knowledge of either 7 or ¢ is sufficient.) In
addition, the scalar dissipation rate
¢, 0¢; >
= (2I e B,
saﬁ ( / P ) < X ax

is implicitly modelled by the stochastic mixing model
to be

(5.204)

i i

&5 = Col P30/, (5.205)

(cf. Eq. 5.51). This raises the questions: how can 1 (or
¢) be determined ? Is Eq. (5.205) valid? and; if so, is Cy
a universal constant? The purpose of this subsection is
to outline the problems raised by these questions.

For simple flows, t(x,t) can be specified. For
example, Pope*?+*3 assumed 7 to be uniform across a
self-similar plane jet. But for most flows, a general
means of determining t(x,t) is required. Since k is
known in terms of £, an obvious method is to solve the
standard turbulence-model equation for ¢.1° Alterna-
tively a modelled- transport equation for t could be
solved.

To solve a modelled transport equation for ¢ (or 1)
is, most likely, the best available method for deter-
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mining 7. But there are two problems. First, the
representation of turbulence by a single scale most
likely limits the validity of the approach to reasonably
simple flows.!°2 Second, since measurements of ¢ are
scarce and difficult to perform, a modelled transport
equation for ¢ cannot be adequately tested. Thus the
one-point joint pdf method (in common with k—¢ and
Reynolds-stress models) may suffer from the
inaccurate (or at least uncertain) determination of e.

Scale information can be incorporated by con-
sidering multi-point pdf’s, or the joint pdf of state
variables and their derivatives. Work on these pdf’s
has been performed by Lundgren,'®3 Ievlev,'%*
Qian,'°% Meyers and O’Brien'°® and Pope.!°” None
of these methods has been applied to inhomogeneous
flows. While multipoint pdf methods hold great
promise for the future, they lie outside the scope of the
present work.

Attention is now turned to the scalar dissipation
and the model, Eq. (5.205). For a single, conserved,
passive scalar ¢, C, can be interpreted as the ratio of
velocity-to-composition decay time scales:

Cy = 1/14, (5.206)

where

Ty = %<¢'2>/s¢. (5.207)
By measuring the decay of k and {(¢'?) in grid turbu-
lence, C, can bé deduced. The measurements of Lin
and Lin!°® and those of Warhaft and Lumley'°® show
that C, is not a universal constant. For given experi-
mental conditions, C, remains constant as the
turbulence decays: but, depending upon the initial
conditions, values of C, from 0.6 to 2.4 have been
observed.

Warhaft!!® performed an experiment in which the
scalar fluctuations were induced differently than in
Refs 108 and 109. In this case C, is found in the range
1.2-3.1; and, for each of six configurations investi-
gated, C, decreased by about 40 % over the length of
the wind tunnel.

In another experiment performed by Warhaft!!!
grid turbulence with scalar fluctuations was passed
through an axisymmetric contraction. After the con-
traction C, was found to be in the range 1.9-3.1
(depending upon the configuration): C, then in-
creased significantly, nearly doubling by the end of the
tunnel.

It is abundantly clear that, with measured values in
the range 0.6-3.1, C, is not a universal constant. It
would appear to be preferable therefore to abandon
Eq. (5.205) and instead solve a modelled transport
equation for ¢,. Such equations have been
proposed —by Newman et al.,!? for example. At this
level of closure, any modelled equation for ¢,; implies
that (in decaying isotropic turbulence) the time scale
ratio C, has a unique behavior.®® Thus, Newman et
al’s model causes C, to remain at its initial value,
consistent with the data of Lin and Lin!%® and
Warhaft and Lumley.!°® But the model is then incon-
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sistent with Warhaft’s data.!1%111 Worse, the prin-
ciple of linearity and independence of conserved
passive scalars constrains the form of the modelled
equation for ¢,4 5o that a consistent model is incapable
of allowing C,, to remain constant.

The discussion above centers on scalar fluctuations
in decaying grid turbulence. But for shear flows in
which the scalar and velocity fields share a common
history and common boundary conditions, Eq. (5.205)
may be less unrealistic. Béguier et al.!'3 deduced the
value of C, from data of three shear flows: a boundary
layer, pipe flow and a plane wake. The value C, = 2.0
fits the data to within 20 9 over nearly all of the flows.
Thus, at present, Eq. (5.205) may provide the best
model for &,q, but further investigations are clearly
needed.

Finally, we draw attention to the fact that none of
the models presented depends upon the molecular
transport properties. At high Reynolds number it can
be assumed!'# that the dissipation processes are
controlled by the large scales of the turbulence, inde-
pendent of the viscosity and diffusivity. However,
many flows of interest are at moderate Reynolds
numbers. It is possible to include a Reynolds number
dependence in the modelling (see, for example, Ref.
11), but this has yet to be done in pdf methods.

At moderate Reynolds number, the different
molecular diffusivities of different species are known
to have a significant effect in some reactive flows.!!*
Also, when the Prandtl or Schmidt numbers are far
from unity —in liquids, for example —the modelling of
the mixing terms may not be realistic. Again, this is a
topic that has yet to be addressed in pdf methods.

5.7.4. Variable density

In the low Mach number flows considered, the
density p(¢) can vary significantly due to variations in
composition (and enthalpy). In both inert mixing
experiments and combustion experiments, density
variations of a factor of five or more are not
uncommon. It is clear, therefore, that the density
variations have a significant effect on the flow, and
that it would be inappropriate to treat them as small
fluctuations.

In the joint pdf equation (Eq. 3.109) it is remarkable
that the terms pertaining to convection, buoyancy, the
mean pressure gradient, and reaction appear in closed
form irrespective of variation of density in com-
position space. The conditional Lagrangian equation
(cf. Eq. 4.49) corresponding to these terms is

5 18] g—(V<p)/p(@)
E é | =186 (5.208)
% 18}
It may be seen that the conditional-particle

acceleration due to the mean pressure gradient is
inversely proportional to the density—light fluid is
accelerated more than heavy fluid. Libby and Bray!!'®
have suggested that this effect is the cause of counter-
gradient diffusion in premixed flames. None of the
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other terms in Eq. (5.208) contains the density
explicitly.

The effect of variable density on the conditional
expectations is largely unknown. The major effect is
likely to be on the fluctuating pressure p’. The Poisson
equation for the pressure becomes ’

oU, 0U; dp (DU,
2= i 0V 9P i_g
P p@xj 6x,-+6xj<Dt g,)

D (oU;\ %1
=)=
Dt \ox;/ 0x;0x;

For a constant-density Newtonian fluid, only the first
term is non-zero, but, it may be seen, additional terms
arise due to density gradients, the velocity divergence
and the shear stresses. Not only are there additional
influences on p’, but p’ also affects the pdf in different
ways. For example, the term

%)
P 0x;

appears as a source in the turbulent kinetic energy
equation. (In constant-density flows the divergence of
velocity is zero and so pressure fluctuations do not
affect the kinetic energy.)

The effect of variable density on the modelled terms
is a subject for future work. It is emphasised, however,
that even in variable-density flows the terms per-
taining to convection, buoyancy, the mean pressure
gradient, and reaction appear in closed form in the
joint pdf equation.

(5.209)

5.7.5. Laminar flamelets

In the stochastic mixing model for f,(¥), it is
assumed that the rate of mixing is inversely propor-
tional to the turbulent time scale t. This assumption
(modified by the comments of Section 5.7.3) is valid
provided that the steepest gradients—which provide
the dominant contribution to (I'V2¢ |y ) —are caused
by turbulent straining. But rapid reactions can also
produce steep composition gradients. This effect is
studied in more detail for an idealised premixed
turbulent flame.

Let the single scalar ¢ be the progress variable
(normally denoted by ¢®°) that is zero in the unburnt

1
0 05 1.0
¢

F1G. 5.9. Density p and reaction rate S against ¢ (arbitrary
scale).
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fuel-air mixture and unity in the fully burnt products.
Assuming simple gradient diffusion, the transport
equation for ¢ is (Eq. 3.20)

D¢ 0o (.06
PDr = 8_x‘.<r5x_>+ps’

where the density p(¢), the diffusivity I'(¢), and the
reaction rate S(¢) are known functions of ¢. Typical
variations of p(¢), and S(¢) with ¢ are shown in Fig.
5.9. Note that S(0) = S(1) = 0, and S(¢) = 0.

Equation (5.210) admits a steady one-dimensional
solution corresponding to a plane premixed laminar
flame. At x;, = — oo let the velocity be the laminar
flame speed S, (U, =S,, U, = U3 =0) and let the
mixture be unburnt, ¢ = 0. At x, = oo there are pure
products ¢ = 1, and the velocity is U, = S,p(0)/p(1),
U, = U, = 0. With these boundary conditions there
is a steady one-dimensional solution to Eq. (5.210):

#(x,t) = O(x,). (5.211)

This solution is sketched in Fig. 5.10. (The origin has
been arbitrarily chosen so that ®(0) = 1/2.) The
laminar flame speed S, is the unique velocity
U, (x, = — o) for which a stationary solution exists.

From the laminar flame profile ®(x, ), any function
of the solution can be determined. For example,

(5.210)

0¢ 0 _
b—x—i -a;l = gx(x,), (5212)
where
2
9x(xy) = [M] . (5.213)
dx,

Further, since ®(x, ) increases monotonically with x,,
g(x,) is a unique function of ®:

9x(x1) = g(®). (5.214)
Thus, from the above three equations we obtain

0] _
Bl

This result has been obtained for a stationary flame
normal to the x, coordinate direction with the origin
chosen so that ®(0) = 1/2. But the left-hand side of
Eq. (5.215) is a scalar that depends only on gradients
of ¢—it is unaffected by an arbitrary reorientation,
shift, or translation of the coordinate system. Conse-

(5.215)

0.5

0 X,

F1G. 5.10. Premixed laminar flame profile ®(x, ) against Xy.
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F1G. 5.11. Quantity h(®) against ®, Eq. (5.216) (arbitrary
scale).

quently, Eq. (5.215) holds for any plane premixed
laminar flame governed by Eq. (5.210), irrespective of
its orientation or of a superimposed uniform fluid
velocity.

In the same way, the right-hand side of the con-
servation equation for ¢ (Eq. 5.210) is known:

[—6—<F?2)+p8] =h(®), (5.216)
ax,- 6x,» p=0

where

d (_d d
h(®) = h(x,) = K(r d—;)—%pS = S,p(O)a—?.
1 1 V1

(5.217)

The function h(®) is sketched on Fig. 5.11. It is clear
from the last expression in Eq. (5.217) that
h(0) = h(1) = 0, and h(®) > 0.

We return now to high Reynolds number turbulent
premixed flames and consider two extreme cases.
First, when the laminar flame thickness §, is much
larger than the Kolmogorov scale n (d,/n > 1), the
steepest gradients are due to turbulent straining.
Then, mixing proceeds at a rate inversely proportional
to the turbulence time scale t in accord with the
stochastic mixing model. In the second extreme case
(0./n < 1), the steepest gradients are found within
laminar flamelets. Burnt and unburnt mixture are
separated by a reaction sheet (which may or may not
be simply connected). Turbulence strains this sheet
and causes it to wrinkle. But, in the extreme limit
considered, the strain rate is small (compared with
S¢/d,) and the radius of curvature is large (compared
with J,). Thus, locally, the flame sheet behaves like a
plane premixed laminar flame.

In the transport equation for the joint pdf f(V, ),
the conditional expectation of the right-hand side of
Eq. (5.210) appears. With the assumption of laminar
flamelet combustion this becomes

8 (.09 _
<5Z <r g)ﬂsllﬂ w> =h(y), (5218)

i i

where h is the known function given by Eq. (5.217).
We thus reach the remarkable conclusion that for
laminar flamelet combustion the reaction and mixing
terms appear in closed form.

Using this result (Eq. 5.218), Pope and Anand*’
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have made joint pdf calculations to compare the
properties of premixed flames in flamelet and distri-
buted combustion.

6. SOLUTION ALGORITHM

6.1. Introduction

Throughout the development, the ability to solve
the modelled joint pdf equation has been a prime
consideration. The joint pdf can be represented com-
putationally by the discrete representation, and its
evolution can be computed via stochastic models. In
this section an algorithm is outlined to solve the
modelled joint pdf equation for an unsteady, variable-
density, three-dimensional turbulent reactive flow.
Variants of the algorithm for simpler flows are
outlined in Section 6.8.

In the last section, alternative models are presented.
The solution algorithm is described for the velocities
being modelled by the Langevin equation, and the
scalar dissipation being modelled by the stochastic
mixing model. Solution algorithms for other modelled
pdf equations follow by analogy. It is assumed that the
time scale t(x, ¢) is known.

The discrete representation, on which the solution
algorithm is based is reviewed briefly in Section 6.2.
From a given initial condition at t = ¢, the algorithm
marches in time with small time steps At. In the time
interval At, several different processes simultaneously
affect the evolution of the joint pdf. But the method of
fractional steps'!” (outlined in Section 6.3) is used so
that the effects of some of these processes can be
treated sequentially. In the first fractional step
(Section 6.4), the pdf evolves under the influence of all
processes except stochastic mixing, convection, and
the mean pressure gradient. Stochastic mixing takes
place during the second fractional step which is
described in Section 6.5. In the third fractional step
(Section 6.6), the mean pressure is determined by an
indirect algorithm. Then the joint pdf evolves under
the influence of convection and the mean pressure
gradient.

The algorithm described provides the solution in
terms of the discrete representation of the joint pdf.
But normally, the information sought is mean quanti-
ties, such as U(x, t), §(x, t) or §,(¢(x, t)). Furthermore,
the mean velocity, the Reynolds stresses, and the mean
velocity gradients appear in the modelled pdf
equation and must, therefore, be determined from the
solution. An obvious way to determine means—that
described in Section 3.4—is to divide physical space
into cells. Then an ensemble average over the particles
in a cell approximates a density-weighted mean at the
cell location, Eq.(3.89). But this method —though con-
ceptually useful—has little merit as a computational
scheme. As described in Section 6.7, the method of
least-squares cubic splines can be used to determine
means from the discrete representation of the joint
pdf. This is a computationally-efficient method that
reduces the statistical error.

6.2. Discrete Representation

We consider the turbulent flow within a three-
dimensional volume of physical space—the solution
domain. At time ¢, the mass of fluid within the solution
domain is M(t). The mass density function
F(V,y,x;t)is represented by N(t) stochastic particles
in state space, each particle representing a fixed mass
Am. At time t, the state of the nth stochastic particle is

U*™(t), o*™ (), x*™(t),n = 1,2,..., N(2).
6.1)

As time proceeds, the states of the stochastic particles
change—some particles may leave the solution
domain and some may enter as prescribed by the
boundary conditions. The discrete mass density
function, and the discrete pdf of the stochastic particle
states are given by

FLLY.x;0) = p) i (VY5 x.1)
—am'Y, (Y - U3~ )5l —x*").

n=1
(6.2)
In the numerical solution, the states of the N
stochastic particles are known, but their expected
states are not. Nonetheless, the connection between

the discrete representation and the joint pdf is best
viewed in terms of expectations:

FNV¢.x;0) =<(FRN¥.x51)), (6.3)
or

TV ¥sx,0) = RV X,0).

It follows that % must satisfy the consistency con-
dition

(6.4)

IJ(fﬁ(X,ﬂ,l; t)ydvVdy

N(t)
= <Am i 5(1—&*‘"’[t])> =<p 1),

n=1

(6.5)

(cf. Eqs 3.82 and 4.107). Equivalently, & } must satisfy
the normalization condition (Eq. 4.108)

JJ(%‘G(L%L; 1)) [p(Y)] ' dV.dy

- <Am ) / p@g*‘"’[r])> =1

n=1

(6.6)

The pressure algorithm ensures that Eqs (6.5-6) are
satisfied.

6.3. Fractional Steps

The modelled equation for # (V, ¥, x; t) to be solved
is .
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oF oF 1 Kp)\oF o -
i +<gj“@W)W W[Sz(!ﬁ)-/]
- i*F
uav[(V U)«/']+ C°86V6V

+2c¢{2° J FWHYF G~V +¥)

P -y dsg'—f} / 2 6.7)
The terms on the left-hand side are exact (cf. Eq. 3.109),
while the first two terms on the right-hand side are from
the Langevin model (cf. Eq. 5.150). The final term is due
to the stochastic mixing model. It is a generalization of
the right-hand side of Eq. (5.40) to a set of 6 com-
positions in variable-density flow.
Equation (6.7) can be written

= (P, +P,+P3)7,

oF
= (6.8)

where P,, P, and P, are operators corresponding to

different processes. We define

0 1
jﬁxj

Xpy
pW) ox; V)

to correspond to the effects of convection and the mean
pressure gradient. Similarly, P, corresponds to the
stochastic mixing model and is defined so that P, # is
equal to the final term in Eq. (6.7). The remaining
processes are contained in P, :

Py= - (69)

P o oS
P =—g— 52 %
1= TGy, S“aw, E
1 02
v,—
Gy U) G,,1+2coaaVaV

(6.10)

where I is the identity operator.

Equation (6.8) shows that all the processes affect the
evolution of & simultaneously. But the method of
fractional steps can be used to calculate the evolution of
Z by considering the sequential action of each of the
processes over sufficiently small time intervals At.

Starting from the given initial condition & (t,), the
methodis used tocalculate % (t)— afirst-order approxi-
mationto & (t)—at successive time steps. For each time
step, the method is defined by the three fractional steps:

F.t)= (I+AtP)F (1), 6.11)
- F(t) = U+ AtP)F (1), 6.12)

and
F(t+At) = (1 4+ AtP,)F,(2). (6.13)

Before discussing these steps, we first verify that % (t)
is, as claimed, a first-order approximation to Z(t).
Using Eqs (6.11-12) to eliminate %, and %,, Eq. (6.13)
becomes
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F(t+At)= (1+AtP;)(I+AtP,) (I + AtP ) F (t),
=(I+At[P,+P,+P3]+At*[P,P,+ PP,
+P,P,]+A*P,P,P)#(t)
=F(t)+ At(P, + P, + P3)Z (t)+ O(Ar?).
(6.14)

A second expression for # (t + At) is obtained from the ‘

Taylor expansion of & about ¢:
oF  *F A
F+At) = F(t —At
(t+an =20+ T

a
A

~ 07
= F(t)-i-WAH-(ﬁ(Atz)‘ (6.15)
Thus, equating the right-hand sides of the last two
equations and dividing by At we obtain

oF
ar

which, except for the first-order truncation error, is the
same as Eq. (6.8). Consequently # (¢) approximates
Z (t) with an error of order At.

The three fractional steps (6.11-13) are qualitatively
the same. We examine the third step since P, is the
simplest of the operators. In the limit as At tends to zero,
and if the other two steps are omitted (orif P, and P, are
set to the null operator), then Eq. (6.13) corresponds to
the differential equation

oF

= =P.F
ot 3

= (P, +P,+P)F +0(Ar),  (6.16)

oF 1a<p>af
Tox; ply) dx; ovy

That is, it corresponds to % evolving under the
influence of convection and the mean pressure gradient
alone. For finite At, Eq. (6.13) corresponds to the
approximate solution of this differential equation by the
explicit Euler method, from the initial condition f'z(t):

F(t+At)= F,(t) + AtP, F,(t)

0Fy(t)
At (py 0F,(t)
@ ox; oV

The details of the implementation of the three
fractional steps are described in the next three sub-
sections. While we have defined each step as an explicit
Euler step (Eqs 6.11-13), we note that any other scheme
(that is at least first-order accurate) yields qualitatively
the sameresult (Eq. 6.16). Having established that & isa
first-order approximationto &, itisnolonger necessary
to distinguish between the exact and approximate
solution to the evolution equation: henceforth both are
denoted by #.

(6.17)

=Z,()- Aty

(6.18)

6.4. First Fractional Step

Although the first fractional step contains most of the
processes, it is nevertheless the simplest to explain and
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implement. The step corresponds to solving the
equation

0F oF
V.—
FRCE A awats,(wsﬂ ,,aV[( 0,71
1 i’F
+§C°eavjavj’ (6.19)

for a time interval At, from the initial condition # (t).
This is simply achieved since Eq. (6.19) is the evolution
equation corresponding to the stochastic system

A UF =g;6t+G;[U¥— j]5t+(coe)”2Aax(Wi)u
Aér¢z = u(Q*)ét:
Asx¥ =0, (6.20)

(cf. Eqs4.99-100). Integrating these equationsfor a time
At using the explicit Euler method yields (to first-order
in At):

UHt+At)= U¥+At{g,+G,[U*-T 1}
+ (CoeAt)2g,,
aft+ A0 =@ +ALS,(9*),

xF(+A)=x}, (6.21)

where all quantities on the right-hand side are at time ¢,
and ¢ is a standardized joint normal random vector.

Thus in the first fraction step, the states of each of the
N(t) stochastic particles change independently
according to Eq. (6.21).

The computational work needed to evaluate Eqs
(6.21), depends crucially upon the reaction scheme. For
each particle in an inert constant-density flow, about
forty arithmetic operations are needed to perform the
integration. But for a complicated reaction scheme
involving many species (for example Westbrook and
Dryer®®) many thousands of operations may be
required to evaluate the sources S,(¢*). A computation-
ally efficient algorithm is possible only if the sources S
can be evaluated efficiently. If the number of com-
position variables ¢ can be reduced to three or less then
S can be tabulated (once) and then 4¢ operations per
particle are required to obtain the values of § from the
table. For combustion calculation, the simplified
reaction schemes of Westbrook and Dryer!!? are well-
suited to this purpose.

6.5. Second Fractional Step: Stochastic
Mixtg Model

In the second fractional step the position x* and
velocity U* of the stochastic particles are unaltered,
while the compositions may change by mixing.

The stochastic mixing model is described in Section
5.2.3 for the case of homogeneous turbulence. In that
case, in the small time interval ét, the probability of a
pair of particles mixing is

C,Nét/z.

Consequently, the probability of the nth particle being
selected is

S. B. PorE

2C,ot/t,

since, if mixing takes place, two out of the N particles are
selected. Similarly, for the generalinhomogeneous case,
in the small time interval At the probability of the nth
particle being selected is

P™ = 2C,At/t(x*™[f],1). (6.22)

(Clearly At should be chosen to be significantly smaller
than t.)

A simple computational algorithm to select particles
is to generate N independent random numbers ™,
n=12,...,N, each uniformly distributed between
zero and one. If

o™+ P™ > 1, (6.23)

then the nth particle is selected for mixing. (A more
efficient, general, and complicated algorithm is given in
Ref. 85.)

Mixing takes place locally in physical space, and this
is reflected in the pairing of the selected particles.
Each particle selected is close (in physical space) to
its partner. A simple algorithm to accomplish this
local pairing, is to divide physical space into cells, and
to pair particles within each cell.t This introduces a
truncation error of the order of the cell size, but there
is little computational penalty in making this size very
small (compared to flow length scales).

The pairs of particles mix, as in the homogeneous
case, according to Eq. (5.48). This completes the second
fractional step.

6.6. Third Fractional Step: Convection and
Mean Pressure Gradient

In the third fraction step, the equation
6.9'7+ oF 1 &KpyoF
ot Uoax; p(y) ox; av;’
is integrated for a time interval At from the initial
condition &, (t)to yield & (t + At).In this subsection we
describe both the numerical solution of Eq. (6.24) and
the determination of the mean pressure.

Correspondingto Eq. (6.24), the evolution equations
for stochastic particle properties are:

(6.24)

dU*
dt ¢*[t])[ <P>xw» (6.25)¢
do*
a (6.26)
and
& =U* 6.27
a (®)- 6.27)

The initial conditions—denoted by x*, U?, ¢ —are
the properties after the second fractional step. Equa-
tions (6.25-27) are integrated approximately so that the

t There are several solutions to the problem presented by
having an odd number of particles in a cell—but this is a
computational detail.
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properties after the third fractional step—¢®, U®),
x®—are at least a first-order accurate approximation

to the exact solution—U*(t+At), P*(t+At),
X*(t+At).t
" From Eq. (6.26) we obtain
9P = 9@ = ¢*(t+Ar). (6.28)

Consequently, in this fractional step, the particle’s
density remains constant. To aid the notation, we define
the particle’s (constant) specific volume by

o* = 1/p(¢?). (6.29)

The pressure algorithm described below determines
the mean pressurefield to first order. The gradient of this
mean field is denoted by P(x),

P(x) = V<p(x, 1)) + O(Ar), (6.30)

and, for the moment, is assumed to be known. Then,
Eq. (6.25) is integrated by

U® = UD — At *P(x@)

= U*(t+At)+ O(Ar?). (6.31)

Having determined U*(¢ + At) to first order, x* (t+Ar)
can be determined (from Eq. 6.27) to second order:

x® = x® 1 LA 4 yoy
= = 2 — - s

= x*(t+Ar)+O(AL3). (6.32)

It may be seen from Eq. (6.32) that, as with all
Lagrangian methods, convection is treated without
reference to a grid, and spatial derivatives do not have to
be evaluated. Consequently the problems of false dif-
fusion and artificial viscosity encountered in finite-
difference schemes!!® are avoided.

To summarize, if the mean pressure is known, the
third fractional step consists of determining ¢, U®
and x® from Egs (6.28), (6.31) and (6.32).

In principle, the mean pressure can be determined by
solving the Poisson equation, Eq. (4.129). But the
evaluation of the source terms—especially 82( p »/0t* —
is computationally impracticable. Instead, an indirect
algorithm is used which results in an elliptic equation for
{p>. The algorithm is based on an observation that
follows directly from the propositions established in
Section 4.7: the normalization condition (Eq. 4.108 or
6.6)is satisfied if, and only if, the mean pressure satisfies
the Poisson equation. We deduce, then, the mean
pressure field that causes the consistency condition to
be satisfied at time ¢t + At.

For simplicity (and without loss of generality) we
consider a single particle (i.e. N = 1). Then, with a mass
M of fluid in the solution domain, the consistency
condition at time t + At is

M{o*o(x —x*[t+6t])) = 1. (6.33)

1 The superscripts (2) and (3) refer to the states after the
second and third fraction steps, not to the second (n=2)and
third (n = 3) particles. Below, we write x>" to denote the
state of the nth particle after the second fraction step.

An elliptic partial differential equation for ¢ p) is now
obtained by manipulating Eq. (6.33).
If there were no mean pressure gradient, then
x*(t + At) would assume the value
X =xP4+UDA;. (6.34)

And in general, from Eqs (6.31-32) it follows
1
x*(t+At) =x' —EAtzu*E(g‘z’H O(Ar). (6.35)

Substituting this expression for x*(t + At) in Eq. (6.33),
and expanding the delta function as a Taylor series in x
about x’ yields

M= <U*5(l—l')+%Atz(z»“)zpi(im) 65%—5’)>
+0(Ar?)
= h(l)+1At2 i«”*)zpi(l(z))(s@—f))
2 Ox

+0(AB), (636)
where
h(x) = (o*8(x —x)). (6.37)

Since x' approximates x’ with an error of order At, the
term in P can be re-expressed as

<(v‘;)2P:(2(.‘2’)5(§—l')> ={*PPx?)o(x —x?))

+0(Ar)
={(»*)*0(x—x?))P,(x)
+0(At)
(%) a;;’i 2Lo4n,  (639)
where
7(x) = {(»*)?6(x —x?)). (6.39)

The last step in Eq. (6.38) simply uses the definitions
of P (Eq. 6.30) and y(x). Substituting this result (Eq.
6.38) into Eq. (6.36) yields

Kp>

1 0
M= h(l)+§Atza—xi{7(l)Txi} +0(A),

(6.40)
and hence the required elliptic equation for {pyis

0 0
é;{y@)%} = 2[M~' — h(x))/AF + O(AY).

(6.41)

The equations derived above are used in a five-step
scheme to determine the mean pressure and then to
perform the third fractional step:

(i) the function y(x) (Eq. 6.39) is determined (or rather
approximated) from the initial positions x®*” and
specific volumes »*® of the N stochastic particles;

(ii) foreach particle,x'™isdetermined from Eq.(6.34);
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(iii) the function h(x) (Eq. 6.37)is determined from x'®
and »*®;

(iv) Eq.(6.41)issolved to obtain a first-order approxi-
mation to {p(x,t)>; and then

(v) Egs (6.31-32) are solved to obtain x> and
U®m_approximations to x*®(t+At) and
U*M(t + At).

6.7. Determination of Means

The algorithm described previously provides a
solution to thejoint pdfequation in terms of the discrete
representation, Eq. (6.2). For this solution to be useful,a
method of determining mean quantities from the
discrete representation is required. In order to compare
theory with experiment, it is desirable to determine all
the mean quantities that are measured —themeans{U)
and (¢); the second, third and fourth moments; pdf’s
fu, (Vi3 %, 1) and fy, (Y45 %,1); and the joint pdf’s of two
variables. (Joint pdf’s of more than two variables
cannot readily be presented graphically.)

Not only are mean quantities required as outputs
from the solution, but they are also needed within the
solution algorithm. In the first fractional step, 0,

~ r— . .
oU,/éx; and u/uj must be determined in order to
evaluate the second-order tensor G;;. And in the third
fractional step, the functions h(x) and y(x) (Eqs 6.37 and
6.39) must be determined as part of ‘the pressure
algorithm.

In this section, the determination of means is
considered by reference to a one-dimensional example.
It is shown that the straight-forward method of
approximating meansby ensemble averages over cellsis
hopelessly inaccurate, especially for derivatives and
pdf’s. But the method of least-squares cubic splines
provides a more accurate alternative.

The one-dimensional example considered is of a
normally-distributed random variable ¢(x) in the
interval 0 < x < 1. The mean is specified to be

{P(x)y = 3x*sin (nx), (6.42)
and the uniform standard deviation is
o= =1/4. (6.43)
<¢p>
1.0 -
0.0
1 1 1
0.0 0.5 1.0

X

FiG. 6.1. Quantity {¢(x)> against x: @ ensemble average
from 1000 samples and 20 cells; exact result.
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The discrete representation of the pdf £, (¥; x) is

‘2 8 —™)o(x—x"), (6.44)

1
f¢N('l’§x) = -I—V—,,= .
where x™ is the nth sample of a uniformly-distributed

random variable (0 < x® < 1) and ¢™ is

P = (B +0E”, (645)

where &® is the nth sample of a standardized normal
random variable. The number of samples N ischosen to
be 1000.

The x-axis is divided into twenty equal-sized cells
(K = 20). Figure 6.1 shows the ensemble average of ¢
for each cell compared with the specified mean, Eq.
(6.42). Some scatter is evident, but the overall agreement
is satisfactory: the r.ms. error is 0.029. The second
derivative d?(¢)>/dx? is calculated from the cell
averages by the three-point central difference. The
result, shown on Fig. 6.2, shows erratic behavior, the
r.m.s. error being 30.1. Not only is the inaccuracy
unacceptable, but also errors of this magnitude in 0 U,/
0x,,, for example, when fed back into the solution
algorithm, would inevitably lead to numerical in-
stability.

An alternative method of determining means is least-
squares cubic splines (de Boor'2°). A cubic spline is
piecewise cubic polynomial which is continuous and
has continuous first and second derivatives. The x-axis
is divided into L equal intervals, and within each
interval the function (i.e. (¢)) is approximated by a
cubic polynomial. Thus there are 4L polynomial coef-
ficients. Atthe (L — 1) points between the Lintervals, the
function and its first two derivatives are continuous.

n

20 - -1

-a0 |

FiG. 6.2. Term d2({¢p(x)y/dx? against x: @ from central
difference of cell averages: exact result.
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0.0

FIG. 6.3. Term d2(¢(x)y/dx? against x: @ from least-
squares cubic spline; exact result.

This condition determines 3(L — 1) of the coefficients,
leaving L + 3 to be determined. These remaining coef-
ficients are determined by requiring that the mean-
square error between the spline and the data points
(¢™,x™) be minimized. (An efficient algorithm using
B-splines is described by de Boor.!29)

With six intervals (L = 6), the least-squares cubic
spline approximates {¢(x)> with an r.m.s. error of
0.015—abouthalfthat of the cell averages. The approxi-
mation to the second derivative shown on Fig. 6.3 shows
a more striking improvement. The r.m.s. error is 3.7, a
factor of 8 less than that for the cell average. To obtain
the same accuracy with cell averages, the number of
particles would have to be increased to N = 64,000,
withanincreaseinstorage and computer time of afactor
of 64. Clearly then, least-squares cubic splines provide
an efficient method of determining mean quantities.

The main reason for the improved accuracy of the
least-squares cubic splines is the reduction in the
number of degrees of freedom in the approximation
from 20 (K =20) to 9 (L+3 = 9). But the optimum
value of L is not known a priori—too large a value

f¢Nl)

20~

increases the statistical error, while with too small a
value, the mean profile cannot be resolved. A more
sophisticated technique that overcomes these diffi-
culties is to use smoothing cubic splines,! 212! with the
smoothing parameter determined by cross-valida-
tion.'22:123 This method has proved successful in
several Monte Carlo solutions of the pdf
equations.27-43:45

We consider now the determination of pdf’s from the

- discrete representation, taking fs(W;1/2) as our

example. A straight-forward method is to form a
histogram with interval Ay from the ensemble of
particles in the cell centred at x = 1/2. Figures 6.4 and
6.5 show the histograms for Ay = 0.25 and Ay = 0.1
compared with the specified Gaussian pdf. It isimmedi-
ately apparent that this approximation is inadequate:
for large Ay (Fig. 6.4) the resolution is poor; for small
Ay (Fig. 6.5) the histogram is not smooth.

Toestimate the pdffrom a finite number of samples is
a standard problem for which many algorithms have
been proposed, see for example Refs 124-128. (The
method of Crump and Seinfeld!2”+128 is particularly
interestingin that it is directly analogous to cubic spline
smoothing using cross validation.)

All the methods mentioned must compromise
between statistical error and truncation error. If the cell
(in this case at x = 1/2) is small, then there are few
samples from which to estimate the pdf. But the
estimated pdf is an average over the cell, so that if the
cell is too large, significant truncation error results.

A method that does not require a compromise
between truncation and statistical error is to use least-
squares cubic splines (in x) to determine the distribu-
tion function F4(y; x) for the discrete values of ]

¥, = £AyY, (¢ integer). (6.46)

Then, at x = 1/2, a least-squares cubic spline (in V) is
used to approximate the continuous distribution
function Fy4(y; 1/2). The pdf fs(¥; 1/2) is then ob-
tained by differentiating F 4 (y; 1/2) with respect to /A

Figure 6.6 shows the pdf obtained using this
technique with Ay = 0.05, 6 splines in x, and 14 splines

A

0.0 - 0S5

1.0 1.5 v

FIG. 6.4. Histogram (with interval Ay = 0.25) compared with the pdf fe(W:1/2).



184 S. B. PorE

30h _
fo¥)
20k [
/
| Lk
o |
00 05 %) .5 v

FIG. 6.5. Histogram (with interval Ay = 0.1) compared with the pdff,(¥;1/2).
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FiG. 6.6. Pdf f,(y;1/2) against y: —————~— Gaussian; from least-squares cubic splines with 1000
samples.
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FiG. 6.7. Pdf f,(¥;1/2) against : —————~ Gaussian; from least-squares cubic splines with 10,000

samples.
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iny between y = —1/2and ¢ = 2. It may be seen that
the agreement with the Gaussian is better than for the
histograms, but it is still not very good. In addition, the
approximated pdf contains small negative values, thus
violating a fundamental property of pdf’s.

Since f,(; x) contains all the one-point statistical
information about ¢(x), it is not surprising that it is
difficult to obtain an accurate approximation to the pdf
from just 1000 data points. Figure 6.7 shows the
approximation to f,(y; 1/2) obtained by the cubic-
spline techniques when the number of data points is
increased by a factor of 10 (i.e. N = 10,000). It may be
seen that the agreement is now satisfactory. Fortun-
ately, satisfactory estimates of simple means (e.g. {¢>)
can be obtained with far fewer data points.

6.8. Variants

The solution algorithm has been described for a
general three-dimensional flow. We consider here the
simplifications possible for one and two-dimensional
flows, for self-similar flows, and for boundary-layer-
type flows.

If, in a given coordinate system, the joint pdf does not
vary in one coordinate direction, then the flow is
statistically two-dimensional. For example, in polar-
cylindrical (r, ¢,2) coordinates, the flow is two-dimen-
sional (axisymuuetric) if

a%f(x,yi; r,0,z,t)=0. (6.47)
In the discrete representation of the joint pdf, the
location of the nth particle is r™, 8™, z. But since (for
axisymmetric flows) no mean property depends on 6,
the value of 6™ is irrelevant and need not be calcu-
lated. Thus, the location of the particle is adequately
specified by r™ and z™.

The simplification afforded by the two-dimension-
ality is not that 8™ need not be calculated, since the
integration of the stochastic equation for 6 is trivially
simple. Rather, the simplifications are that mean
quantities (e.g. (U), V{p)) are determined as functions
of only two variables, and that (in the stochastic mixing
step) three-dimensional cells are replaced by two-
dimensional cells.

In the implementation of the stochastic models, the
solution domain is divided into K cells, the kth being
centered at x,, and having volume ¥,. For axisym-
metric flows, the cells are two-dimensional areas on the
r—z plane, the kth centered at (r,, z,) having an area 4,.
This cell represents the volume ¥, of the body of
revolution formed by revolving A4, about the axis:

¥, =~ 2nr Ay (6.48)

Now with N,(t) particles in the kth cell, each one
representing a mass Am, the mean density is

{p(res 2, t)) =~ AmN /¥, (6.49)

Hence, the particle number density on the r-z plane is

2
N4, ~ (—A—”,;) nprozt)y.  (6.50)

The accuracy with which means can be determined
from the particle properties depends upon the particle
number density. It is evident from Eq. (6.50) that near
the axis of symmetry (small ) the particle number
densityisrelativelylow and consequently meanscannot
be determined accurately. It is desirable to control the
particle number density (and hence the accuracy) inde-
pendently of the coordinates and of the mean fluid
density. This can be achieved by a system of adjustable
weights: the nth particle with weight W™ represents a
mass W™Am. The corresponding discrete representa-
tion of the joint pdf is

FIV x50 =pW)fF(V.¥;x,1)
N
=Am Z W‘"’é(_\i—g*‘"’)

n=1
X 3( — $*)3(x—x*")

where the mass of fluid in the solution domain is

(6.51)

N
M=Am Y W®.
n=1
From this it follows that for an axisymmetric flow, the
particle number density in the r—z plane is

2n -
Ny /A =~ (m) rp(r, 2, 1)) /Wi, (6.52)

where W, is the average weight of particlesin the kth cell.
It may be seen that a uniform particle number density
can be achieved by choosing the weights to be propor-
tional to r{p>.

(The implementation of the stochastic models has to
be modified to account for particles of different
weights.)

For one-dimensional flows, the solution algorithm
becomes still simpler. Only one coordinate is needed,
and all mean quantities are functions of a single spatial
variable.

Self-similar free shear flows —jets, wakes and mixing
layers—are two-dimensional. But a transformation of
the dependent variables (U and ¢) can be used to make
the transport equations for statistical quantities
dependent upon a single spatial variable. Thus, for a
self-similar plane jet, Pope*?**® solved the joint pdf
equation for f(V,y;n,t), where n is the normalized
cross-stream variable.

A simplification is also possible for some free shear
flows that are not self-similar. The simplification—
which is analogous to the boundary-layer approxi-
mation—can be applied when the flow is predomin-
antly in one direction. More precisely, there must be
negligible probability of negative velocity in the
dominant flow direction. Consider, for example, the
statistically two-dimensional turbulent mixing layer
formed between two parallel streams, Fig. 6.8. The joint
pdf equation is to be solved in the solution domain
bounded by the flow surfaces a, b, ¢ and d (that are
infinite in the spanwise x;-direction). A fluid particle
path (in x-space) is sketched on Fig. 6.8. Provided that
the velocity U, is always positive, all fluid particles
within the solution domain entered through the
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F1G. 6.8. Sketch of a two-dimensional mixing layer showing a fluid particle path.

surfaces a, b and c: none entered through the down-
stream surface d. Consequently, in order to solve the
jointpdfequation,boundary conditionsarerequired on
the surfaces a, b and ¢, but not on the surface d. An
algorithm that exploits these observations is now out-
lined.

Rather than the massdensity function, the dependent
variable considered is the axial momentum density
function

MY, x1,%;) = ViF(Lg,x1,%,). (6.53)

From the modelled equation for &# (Eq. 6.8) we readily
obtain

[
ax, ox,
= (Py+P,+P3)F
= (P, +P,+P3)H/V,, (6.54)

where the operators P, and P, are defined as before
(Section 6.3) while the operator P corresponds to
lateral convection and the mean pressure gradient:

0 1 Kp) o
-Vt —.
26x2 p(¥) ox; oV;

Starting from the given boundary condition at
x; = 0, the method calculates .# at successive axial
locations separated by a small distance Ax,. We define
At(V;) to be the time taken for a particle with constant
axial velocity ¥, to pass from x, to x, + Ax, :

At(Vy) = Ax,/V;.
Then, from Eq. (6.54) we obtain
M(xy+Ax)= [T+ At(V,){P, + P, + P, }14(x,)
+O[AL(V,)*]
= [+ At(Vy)P31[I + At(V,)P,]
x [1+At(Vy)P 14 (x,)+ O[At(V,)*],
(6.57)

Py = (6.55)

(6.56)

where I is the identity operator.

It may be seen that this equation for #(x, + Ax,) is
directly analogous to Eq. (6.14) for Z(t+At).
Consequently analgorithm for .# directly analogousto
that for & described in Sections 6.3—6 is possible. The

algorithm for .# differs in three respects. First, the
discreterepresentationisused toapproximate .# rather
than #. Consequently each stochastic particle
represents a fixed amount of axial momentum rather
than afixed mass. Second, ineachfractionalstep, the nth
particle evolves for a time

At™ = Ax, /U™, (6.58)

rather than for a fixed time At. Third, the axial pressure
gradient is assumed to be uniform across the flow and is
determined from the free-stream conditions. The
pressure algorithm described in Section 6.6 is used to
determine the lateral pressure gradient.

This algorithm is clearly inapplicable to flows in
which U, is likely to be zero or negative, since then At™
would be infinite or negative, Eq. (6.58). In addition,
since the truncation error is of order Ax,/U¥, the
method is most easily applied to flows in which U¥ is
never very small (compared to a characteristic velocity
difference).

7. COMPOSITION JOINT PDF

The velocity—composition joint pdf f(V,y;x,t)
contains all the one-point statistical information about
the velocity and compositions. In order to solve the
modelled transport equation for f, the only information
requiredisthe turbulent time scale t(x, t) (and, of course,
initial and boundary conditions). An alternative
approach that has been used by several authors?%:27-3¢
is to treat the velocity field with a conventional turbu-
lence model, and to solve amodelled transport equation
for the joint pdf of the compositions. This alternative
approach is described in this section.

Most of the composition pdf calculations have been
performed in conjunction with the k—¢ turbulence
model.'® Modelled transport equations are solved for
the turbulent kinetic energy k and its rate of dissipation
&. The turbulent time scale 7 is obtained from

T = k/e, (7.1)
and a turbulent viscosity uy is defined by
pr = (pYC,k2, (72)

where the constant C,, is ascribed the value 0.09. The
turbulent viscosity is used to determine the Reynolds
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stresses through the isotropic viscosity hypothesis:

oU, aU,
T -2 040)
ox;  0x;

2 oU,
Z5.. k — . 7.3
+3 lj(<p> +#T aX;) ( )
This is the simplest possible consistent gradient-
diffusion model for momentum transport. The analo-
gous gradient-diffusion model for composition trans-
port is,

-~ B(Ea
prui¢;=-Tr Fe (7.4)
Xi
where the turbulent diffusion coefficient is
Ir= #T/Uw (7.5)

and the turbulent Schmidt number o, is taken to be 0.7.

If the mean density {p(x,t)) is known, then the
equations for k,e and the mean velocities U form a
closed set. In this approach, the mean density is deter-
mined from the solution to the modelled composition
joint pdf equation.

7.1. Composition Joint Pdf Equation

The joint pdf of the compositions ¢ is fs (Y5 X, t). The
transport equation for f, can'be derived either from the
_conservation equation for ¢, (following the procedure
of Section 3.5), or, more simply, by integrating the
equation for f(V, ¥/; x, t) (Eq. 3.109) over velocity space.
By either method the result is:

[p(sli)f¢] + [p(,'li)< Uil fs]

oJf

l/,m[/?(xk)s W] = . [< 511>f£]- (7.6)

There is some advantage in considering the density-
weighted (Favre) joint pdf j;, and the composition
mass density function %:

Fo X3 1) = P W3 %,0) = p(W)fp (U3 %, 1)
(1.7)

The second term in Eq. (7.6) can be re-expressed as
PWICUNY Sy = [0+ [¥)1<p> Ts
=[O0+ (Y1 (7.8)
Then the joint pdf equation can be written (in terms of
the composition mass density function) as

o7y O0F) |
e [Sa(!k'%]

o [/ran
oy, | \p ox;

The first two terms represent the rate of change of %,
following a particle moving with the mean velocity U;
the third term represents the effect of reaction. Both
these terms are in closed form whereas the terms on the

!1£>f/'¢ ] ——[<“"|ﬂ>9”¢]
(1.9

right-hand side of Eq. (7.9) contain conditional expecta-
tions that have to be modelled. The first term on the
right-hand side represents transport in composition
space due to molecular mixing. The stochastic mixing
model (Section 5.2.3) accounts for this process.

The final term in Eq. (7.9) represents transport in
physical space due to turbulent velocity fluctuations. In
the velocity—composition joint pdf equation this
process appearsin closed form. But the composition pdf
f6 contains no information about the velocities and so
the conditional expectation {u” |y ) has to be modelled.
Most calculations have been performed using the
gradient-diffusion model®*:

oy
ox,

The composition pdf approach—in which transport
equations are solved for f; (or %), k,eand U— hastwo
disadvantages compared to the velocity—composition
pdfapproach—inwhich transport equationsaresolved
for f(V, ¥; X, t) (or #)and . First, because of the use of
the isotropic viscosity hypothesis (Eq. 7.3), the k—¢
model provides a far less accurate closure for the
velocity field. Second, the turbulent convection of fq, has
tobemodelled, whereas that of fappearsin closed form.
The assumption of gradient-diffusion transport Egq.
(7.10) is particularly questionable in variable-density
reactive flows. Nevertheless, for simplé free shear flows,
the k—& model and the gradient-diffusion assumption
may be reasonably accurate. Then the composition pdf
approachhastheadvantagethat thetransportequation
for % is simpler to solve than that for .

While the composition pdf approach is inferior to the
velocity—composition pdf approach, it still retains the
valuable attribute of being able to treat nonlinear
reactions without approximation. Consequently, it
avoids the closure problem encountered when mean-
flow or second-order models are applied to reactive
flows.

Py U\ fy = —Tr o= (7.10)

7.2. Solution Algorithm

In this section we outline a solution algorithm for the
modelled composition joint pdf equation that is analo-
gous to the algorithm for f(V,y;x,t) described in
Section 6. But first, we mention two different methods
that have been used previously. Janicka et al.25 used a
finite-difference technique to solve a modelled trans-
port equation for f,({; x4, x,) in a jet diffusion flame.
For one, or maybe two, composition variables finite-
difference solutions are possible, but, as the number of
variables increases, the computational requirements
become prohibitive. Pope3? has devised a combined
finite-difference/Monte Carlo method in which the
computational effort increases only linearly with the
number of composition variables. Consequently it can
be used?7-32 to solve the equation for the joint pdf of
many compositions.

The algorithm briefly described here (like that of
Section 6) does not require a finite-difference grid in
physical space, and so the truncation errors associated
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with finite-difference approximations are avoided.
Consequently this algorithmis to be preferred over that
of Pope.32

The modelled equation for the composmon 1ass -~

density function %, (¥, x; t) can be written

0% 0
a—f+—[ T~ [rra (%/<p>)]

S, (ﬂ)./@] +P, %, (7.11)

5!//1
where the operator P, corresponds to the stochastic
mixing model. Using the method of fractional steps,
reaction and then mixing can be treated in the way
described in Sections 6.4-5. In the third and final
fractional step, the spatial transport terms are treated;
which amountstosolving Eq. (7.11) with the right-hand
side set to zero. As is now described, this is readily
achieved since the left-hand side of Eq. (7.11) corre-
sponds to a diffusion process in physical space.

With M being the mass in the solution domain, and
x*(t) and ¢ *(¢) being the position and composition of a
stochastic particle, the composition mass density
function can be written

Fo,x:1) = MCO(Y — 9*(1))d(x —x*(1))) -

(1.12)

We consider the diffusion process

Asx*(t) = D(x*[1],1)dt + [B(x*[1],1)]'* A5 W,,
(7.13)

where the coefficients D and B are to be determined and
W, is an isotropic Weiner process. This process is
directly analogous to Eq. (4.81). Hence from Eqgs (4.88),
(4.39)and (7.12) we obtain the corresponding evolution
equation for %:

oF @ 1 o
2 D.#F]--—~ _[BZF,]=0.
ot T, P%e) =3 arax, (BTe) =0

(7.14)

In order for the diffusion process Eq. (7.13) to
correspond to the spatial transport in the modelled pdf
equation, Eq. (7.14) should be the same as Eq. (7.11)
with the right-hand side set to zero. This requirement
determines the coefficients to be

B =2I'1/{p>, (7.15)
and
. 1 '
=U+—VI 7.16
D __+<p> T ( )

Thus, in the solution procedure, spatial transport
(during the time interval At)is accounted for by moving
each stochastic particle independently by

x*(t+At) = 5*(!)+At[ﬂ+—1——VI‘T]
<p> 1)

+ [2Atrr/<é>]§lﬁ)§ (7.17)

where ¢ is a standardized joint normal random vector.
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8. CONCLUSIONS

The aim of this work has been to describe the
derivation, modelling, and solution of pdf transport
‘equations for turbulent reactive flows. The main con-
clusions are now summarized, and the attributes of the
velocity—composition joint pdf approach are discussed
in Section 8.2.

8.1. Summary

At low Mach number, a turbulent flow of a single-
phase mixture of species can be described by the velocity
U(x,t) and by a set of o scalars ¢(x,t). Any thermo-
chemical property of the mixture can be determined
from ¢(x,t) and a reference pressure p,.

Thejoint pdf f (V, ¥; X, t) is the probability density of
the simultaneousevents U(x,t) = Vand ¢(x,t) = y. At
each point and time (x,t), the velocity—composition
joint pdf f contains a complete statistical description of
U and ¢, but it contains no two-point information. The
mean of any function of U and ¢ can be determined from
£, Eq. (3.42). In variable-density inhomogeneous flows,
rather than the joint pdf f, it is most convenient to
consider the mass density function & (V,y,x;t) =
PV, Y5 x,1)

The three independent velocity variables V, the ¢
composition variables ¥, and the three position
variables x form a (6 + o)-dimensional sample space
called state space (or V-y—x space). Any random
vector (U*, ¢* x*) has the same joint pdf as U(x,?)
and ¢(x, t) provided that:

(i) the joint pdf of x* is proportional to the mean
density {p(x, 1)), Eq. (3.82), and

(ii) the joint pdf of U* and ¢* is equal to the density-
weighted joint pdf of U and ¢ at x*—
J(V, 5 x*,1)—Eq. (3.84).

Consequently, the mass density function can be
represented by N samples of such a random vector
(U*™, p*™ x*™) n=1,2,...,N, Eq. (3.76). Each
sample of the random vector corresponds to a point in
state space and can be thought of as the state of a
notional particle. The expected particle number density
in state space is proportional to the mass density
function; the expected particle number density in
x-spaceis proportionaltothe mean fluid density;and, at
given x, the expected particle number density in V-
space is proportional to the density-weighted joint pdf

A transport equation, Eq. (3.109) for the velocity—
composition joint pdf can be derived without assump-
tion from the transport equations for U and ¢. For a
variable-density flow with arbitrarily complex and
nonlinear reactions, it is remarkable that in this
equation the effects of convection, reaction, body
forces and the mean pressure gradient appear exactly
and do not have to be modelled. The effects of
molecular processes and of the fluctuating pressure
gradient appear in the joint pdf equation as con-
ditional expectations that have to be modelled.
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The joint pdf equation can also be derived by a
Lagrangian approach. The Lagrangian conditional
joint pdf f; (V, ¥, x; t|V,, Yo, Xo) is the joint pdf of the
fluid particle state (U*,¢$*,x™) at time ¢, conditional
upon its state being (V, o, X) at time t,. This is the
transition density for turbulent reactive flows: the
mass density function at time ¢ is equal to the mass-
probability-weighted integral of f; over all initial
states, Eq. (4.24).

Many different systems of particles can evolve with
the same pdf as fluid particles. But there is only one
such deterministic system. In this system, the N
notional particles are called conditional particles and
have the states (U™, ¢™, ™; n=1,2,...,N). The
rate of change of state of conditional particles is equal
to the conditional expectation of the rate of change of
state of fluid particles. The trajectories of conditional
particles in the augmented state space (V— Y—x—t
space) are called conditional paths. These conditional
paths define a formal solution to the joint pdf trans-
port equation, Eqgs (4.52) and (4.56). A physical inter-
pretation of this solution is provided in Section 4.5—
loosely, probability is transported along conditional
paths.

The essence of the whole approach is to construct a
system of stochastic particles whose evolution is
simply computed and in which the pdf evolves in the
same way as the pdf of fluid particles. Poisson
processes and diffusion processes (described in
Section 4.6) provide the basis for such a stochastic
system.

The modelling is guided primarily by the known
behavior of homogeneous turbulent flows. In these
simple flows, the joint pdf f(V,y;t) adopts a joint
normal distribution. The aim of the modelling is there-
fore to produce a joint normal distribution whose first
and second moments evolve correctly.

For homogeneous turbulence, the joint pdf
f(V,y;t) is represented by an ensemble of N
stochastic particles with states (U*"(r), ¢*™(t);
n=1,2,...,N). The modelling is performed, not
directly in the joint pdf equation, but indirectly by
prescribing the behavior of the N stochastic particles.

The primary effect of molecular diffusion on the
composition variables ¢ is to decrease the variance
{$, 93> while leaving the mean (¢, unchanged, Eqs
(5.50-51). The stochastic mixing model is used to
produce this effect. Pairs of stochastic particles are
randomly selected from the ensemble (at a rate deter-
mined by the turbulent time scale t) and their com-
positions ¢* adopt their common mean composition,
Eq. (5.48).

Alternative models are presented for the effects of
the fluctuating pressure gradient and viscous dissi-
pation. The first is based on stochastic particle-inter-
action models, and the second on the Langevin
equation.

With the particle-interaction models, in homo-
geneous turbulence with no mean-velocity gradients,
the decay of turbulence energy and the return to
isotropy of the Reynolds stresses is simulated by the

stochastic mixing model and the stochastic reorienta-
tion model. In the stochastic mixing model, pairs of
particles are randomly selected and their velocities
adopt their common mean velocity, Eq. (5.83). In the
stochastic reorientation model, pairs of particles are
randomly selected and are randomly reorientated in
velocity space (Eq. 5.93). Both energy and momentum
are conserved in this process. The effect of these two
models on the Reynolds stresses (Eq. 5.80) is to cause
decay and return to isotropy in accord with Rotta’s
model. Mean-velocity gradients give rise to rapid-
pressure fluctuations. A deterministic model for their
effect (to be used in conjunction with the particle-
interaction models) is presented in Eq. (5.122) and
shown to be consistent with Reynolds-stress models,
Eq. (5.126).

In the alternative—Langevin —model, the velocity
U*(t) of a stochastic particle evolves according to a
diffusion process, Eq. (5.148). In the small time
interval 8t, U¥(t) changes deterministically by an
amount 6tG;;U¥, and randomly by amount (Bédt)* /¢
(where ¢ is a standardized joint normal random
vector). For consistency with Kolmogorov’s scaling
laws, the coefficient B is determined to be C ¢, where
C, =21 is a universal constant. A model for the
tensor G;; has been proposed (Egs 5.161-162). For
homogeneous turbulence, the resulting pdf equation
yields a joint normal distribution with the Reynolds-
stress evolution closely matching experimental data.

The extension of these models to inhomogeneous,
variable-density reactive flows is discussed in Sections
5.6 and 5.7.

In Section 6, a solution algorithm is described to
solve the modelled velocity—composition joint pdf
equation for unsteady, three-dimensional, variable-
density flows. The velocities are modelled by the
Langevin equation, and the scalar dissipation by the
stochastic mixing model.

The mass density function is represented by N
stochastic particles in state space, Eq. (6.2). Given the
states of the particles at time ¢, the states at time ¢+ At
are calculated through a sequence of three fractional
steps. In the first fractional step, the velocities and
compositions evolve due to reaction, the Langevin
model and buoyancy, Eq. (6.21). In the second frac-
tional step, the particle compositions change
according to the stochastic mixing model. And in the
third fractional step, the particle positions and
velocities change due to convection and the mean
pressure gradient.

The determination of the mean pressure field is an
integral part of the third fractional step. The indirect
algorithm used is based on the observation that the
stochastic particle number density in physical space
should be proportional to the mean fluid density. The
mean pressure is determined—as the solution of an
elliptic partial differential equation—by requiring that
this condition be satisfied. (Subtle connections
between the mean pressure, the mean continuity
equation, and consistency conditions are discussed in
Section 4.7).
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The algorithm provides a solution to the pdf equa-
tion in terms of stochastic particle properties. A con-
ceptually simple way to obtain mean quantities is to
divide physical space into cells, and then to form
ensemble averages over the particles in each cell. In
Section 6.7 it is shown that this straightforward
method is hopelessly inaccurate, and better methods
based on cubic splines are described.

For simpler flows —one and two-dimensional flows,
self-similar flows, and boundary-layer-type flows—
variants of the solution algorithm are described
in Section 6.8. )

The composition joint pdf approach is discussed in
Section 7. In this approach, the mean velocity and
turbulence fields are determined using a standard
turbulence model and a modelled transport equation
is solved for the joint pdf of the compositions
fs(¥;x,t). This approach is inferior to the velocity—
composition approach in that a turbulence model is
required and the turbulent transport of fs has to be
modelled—usually by gradient diffusion, Neverthe-
less, nonlinear reactions can still be handled without
approximation, and the approach may be adequate
for simple flows. A solution algorithm for the
modelled composition transport equation is de-
scribed in Section 7.2.

8.2. Discussion

In the following four subsections we discuss: the
inherent limitations of one-point closures; the
advantages of the pdf approach compared to other
one-point closures; aspects of the modelling in need of
improvement; and the computational requirements of
the solution algorithm.

8.2.1. Limitations of one-point closures

The joint pdf method —in common with most other
turbulence models!®!! —is a one-point closure. The
joint pdf contains no length-scale or time-scale in-
formation (see Section 2.9). In modelling the joint pdf
equation, the time scale t has to be specified either
directly, or indirectly through a modelled transport
equation for & The direct specification of scale
information is only possible in simple flows, and the
validity of the modelled dissipation equation has often
been called into question (e.g. Ref. 102). In addition, as
discussed in Section 5.7.3, one-point closures are
incapable of correctly determining the scalar dissi-
pation rate—at least in grid turbulence.

These inherent problems do not invalidate the
approach. For simple shear flows, for example, the use
of the modelled dissipation equation is justifiable,!°?
and the scalar dissipation time scale appears to be
simply proportional to 7.!'*> For more complex
flows —with rapidly changing scales —the modelling is
less secure, but the magnitudes of the errors resulting

from the modelling inadequacies have yet to be.

quantified. (Several multi-point pdf methods have
been suggested.)*3~107
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8.2.2. Advantages of the pdf approach

Since the joint pdf provides a complete one-point
statistical description of the flow field, the pdf
approach has advantages over other one-point
closures. The principal advantages are that reaction
and convection transport can be treated without
approximation, even in variable density flows.

For constant-density homogeneous flows, the
models for the effects of the fluctuating pressure
gradient and for molecular mixing are compatible
with Reynolds-stress models and hence are equally
accurate. For inhomogeneous flows, the joint pdf
equation can be expected to be more accurate since
additional models are required in the Reynolds-stress
equations. Thus even for inert, constant-density flows,
joint pdf calculations can be expected to be more
accurate than Reynolds-stress calculations. But the
pdf approach has the additional advantage of being
able to handle, without approximation, nonlinear
reactions and the effect of variable density on con-
vection.

8.2.3. Model improvements

Several aspects of the modelling need to be refined,
but we identify two areas in particular need of further
study.

The treatment of scalar dissipation by the improved
stochastic mixing is only partially satisfactory.
Prandtl or Schmidt number effects are not accounted
for nor can the model be justified when reaction times
are of the order of the Kolmogorov time scale (or
smaller).

As discussed in Section 5.7.4, the large density
variations encountered in flows of interest undoubt-
edly have a significant influence on the modelled
terms. But little is known about the nature and mag-
nitude of variable-density effects.

In addressing these and other modelling questions,
we expect that direct numerical simulations of homo-
geneous turbulence!?°-13! will play a central role. In
the past, modelling has been guided by theory and
experimental data. But it is now possible to solve the
governing flow equations for homogeneous turbu-
lence at Reynolds numbers comparable to those of
wind-tunnel experiments. From the computed flow
fields, multi-point statistical information can be
extracted, and this provides an additional source of
guidance to modelling. In the joint pdf equation, the
modelling is most naturally viewed in Lagrangian
terms. While Lagrangian statistics are extremely diffi-
cult to obtain experimentally, it is relatively easy to
obtain them from direct numerical simulations.!3!

8.2.4. Computational considerations

The usefulness of the pdf approach depends on the
existence of a practicable means of solving the
modelled equations. Many Monte Carlo calculations
have been performed, both for the velocity—com-
position joint pdf*?~#® and for the composition joint
pdf27-32 Typical computational requirements are
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50,000 words of storage, and 5 min of CPU time on a
mainframe computer.

None of the calculations referenced above are for
the general three-dimensional case for which the
solution algorithm has been described (Section 6): the
most difficult case treated so far is a jet diffusion
flame.*S Nevertheless, the modest computer require-
ments for the calculations performed give every
reason to suppose that the Monte Carlo method will
prove practicable for more difficult cases.
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