Chapter 11

Combustion Modeling Using
Probability Density Function Methods

S. B. Pope

I. Introduction

ROBABILITY density function (pdf) methods have been applied to

a variety of turbulent flows both with and without combustion. In
general, single-phase, low-Mach-number flows have been considered, in
which radiation is not a major factor. For such flows, the fundamental
dependent variables are the velocities U(x,t) and the compositions ¢(x,?)
(e.g., the species mass fractions and enthalpy). Different probabilistic ap-
proaches to modeling turbulent flows can be categorized according to the
statistics of U(x,f) and & (x.f) that are considered. For example, in a mean-
flow closure, (U(x,t)) and {(dp(x,t)) are the primary dependent variables; in
second-order closures, the variances (1), (b,bp) and covariances (u,b,)
are also included. Angled brackets denote means (i.e., mathematical ex-
pectations), and u,(x.r) = UJ(x,t) — (U(x,1)) and &/ (x.1) = b (x.1) —
(&, (x,1)) are the fluctuating components of U, and &, respectively.

In pdf methods, the dependent variable is a pdf, or joint pdf of U(x.t)
and d&(x,r). The pdf contains information equivalent to all the moments;
hence, in this sense, pdf methods are more comprehensive than moment
closures (e.g., second-order closures). The methods that have proved most
successful are based on one-point, one-time pdf’'s, which contain infor-
mation at each point in the flow separately, but no joint information at
two or more distinct points.

In the last 15 years, pdf methods have advanced from being only of
theoretical interest to a small group of specialists, to being a practical
approach for calculating the properties of turbulent reactive flows. In ad-
dition to having been applied to idealized flames and simple laboratory
flames, as the subsequent review indicates, the methods have been applied
to flames requiring multistep chemical kinetics (e.g., Refs. 1 and 2) and
to computationally difficult flows (e.g., that in the cylinder of a spark-
ignition engine’-*).

Copyright © 1990 by the American Institute of Aeronautics and Astronautics. All rights
reserved.

349



350 COMBUSTION MODELING USING PDF METHODS

This chapter reviews the work on pdf methods with some emphasis on
the numerical issues and on the applications to turbulent combustion. In
the next section, the different pdf methods are described, along with the
modeling they entail. Monte Carlo methods have proved to be the most
successful means of solving pdf transport equations. The essence of these
solution techniques is described in Sec. III. Sections II and III briefly
describe the principal features with no attempt at rigor. The theoretical
foundations of pdf methods (including the modeling and Monte Carlo
solution algorithms) are described comprehensively by Pope.” Section IV
reviews the applications of pdf methods to turbulent diffusion flames and
premixed flames. Recent applications to constant-density inert flows have
been reviewed in Ref. 6. In Sec. V, some of the outstanding problems and
future directions are assessed.

II. PDF Methods

A. Definitions and Properties

Let ¢ denote the value of a composition variable (the mass fraction of
oxygen, for example) at a particular location x, and time ¢, in a turbulent
reactive flow. For ease of exposition, we suppose that the flow can be
realized any number of times, and the time ¢ is measured from the initiation
of the flow. Thus, from each realization we obtain a value of ¢; given the
nature of turbulence, these values are, in all probability, different. In other
words, ¢ is a random variable. It is not possible to predetermine the value
of ¢ that will be obtained in a given realization. However, it is possible to
ascribe probabilities to its value being in a given interval: this can be done
through the pdf.

For every random variable, we introduce an independent (sample-space)
variable: in particular, { is the sample-space variable corresponding to ¢.
The cumulative distribution function (cdf), F (), is then defined as the
probability that ¢ is less than ¢:

Fy(¥) = Prob{d < y} (1)
And the pdf of ¢, f,(¥), is defined to be

_d
fo(b) = a Fo(b) o)

Whereas Fy(¥) is a probability function, f,() is a probability density
function. That is, f,({) is the probability per unit ¢ of the event ¢ = .
Equivalently, f,({) dy is the probability of the ¢ being in the range <
é=¢ + di.

The three fundamental properties of the pdf [in addition to Eq. (2)]
follow: ,

fob) =0 ©)]
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since probabilities are nonnegative;

[ nwyaw=1 (@

since Prob{d < <} = 1 and Prob{¢ < —=} = 0; and, for any (nonpath-
ological) function Q(d),

@ = |”_fuw) 0w v )

Equation (5) shows that, if the pdf is known, the mean (or mathematical
expectation) of any function of the random variable can be calculated. In
particular, the mean ($) and the mth central moment (&) (m > 1) can
be determined (if it exists).

For a general turbulent reactive flow, we need to consider a set of ¢ =
1 composition variables ¢ = {d,, b,, ..., ,}. Accordingly, the o sample-
space variables ¥ = {{);, V>, ..., U} are introduced, and the joint pdf of
&, fo(W) is defined to be the probability density of the compound event
¢ = "" (i‘e'v d)l = lblﬂ ¢2 = ‘l’z» s d)(r = lll(,).

Clearly, the joint pdf defined at the particular location x, and time ¢,
can be defined at any (x,r). We denote by f, (¥:x,1) the joint pdf of d(x.¢).
It is important to realize that this is a one-point, one-time joint pdf: it
contains no joint information between ¢ at two or more positions or times.
The pdf method described in the next subsection is based on fy(U;x,1),
which is called the composition joint pdf.

Another pdf method described (in Sec. I1.C) is based on the velocity-
composition joint pdf, f(V;x,t). Here V. = {V,, V5, V;} are the three
independent velocity variables, and f is the probability density of the com-
pound event {U(x,r) = V, d(x,0) = .

In the treatment of variable-density flows, two other probability func-
tions prove useful, and are now defined. By assumption (see Ref. 5), the
set of composition variables is sufficient to determine the fluid density.
Thus, if the composition is ¢, the density is given by the function p,(d).
which can be determined from a thermodynamic calculation. Conse-
quently, at (x,?) the fluid density is

p(x.0) = p,(d[x.1]) (6)

and the mean density [evaluated using Eq. (5)] is

o) = | Fulthse.p, )

where integration is over the whole of the composition space. Having made
the distinction between the different functions p(x,f) and p,(¢b), we now
follow conventional (if imprecise) notation and denote both by p.

Favre, or density-weighted, pdf’s are defined by, for example,

o) = p(W)fo(W)Kp) M
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It then follows that density-weighted means are given by

60 _ [ ]
=89 " owiw) aw ®

[cf. Eq. (5)]. The mass density function F is defined by
FVbxir) = p(b)f(V.lsx.t) ©)

The use of these functions is made apparent in the next two subsections.

B. Composition Joint PDF Equation
Dopazo and O’Brien” were the first to consider the transport equation:
for fo,(¥;x,f). Since then, a number of derivations have been given.58-1
Here we state the result, and refer the reader to Ref. 5 for a detailed
derivation. '
The composition &, (x.t) evolves according to the conservation equation
Do, __lwr o @
Dt p ox;
where J* is the (molecular) diffusive flux of ¢, and S,—a known function
of ¢—is the rate of creation of ¢, due to chemical reaction. The pdf
transport equation corresponding to Eq. (10) is

Vo g Ys 9

o b OSE + S,
1 M) + ——| (L2
- <_p> 5;1 [<p><u,|‘1’>f¢] + a¢u[<p ox; lb> ¢:| W

On the left-hand side, the first two terms represent the rate of change
following the Favre-averaged mean flow. The third term is—in composi-
tion space—the divergence of the flux of probability due to reaction. The
form of this term gives this pdf method its advantage over other statistical
approaches. Since S(W) is known, f,, is the subject of the equation, and {,
is an independent variable, the term contains no unknowns. Thus, however
complicated and nonlinear the reaction scheme, in the composition joint
pdf equation the effect of chemical reaction is in closed form, requiring
no modeling. ’

In contrast, the terms on the right-hand side require modeling. The
quantity (u"|{s) is the conditional mean of the Favre velocity fluctuation
(¢’ = U — U)—conditional, that is, upon the event ¢ = 5. The term in
(u'|Ws) represents the transport of f, in physical space by the fluctuating
velocity. Although there have been other suggestions, this term generally
is modeled by gradient diffusion:

O e N 1
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where I'; is a turbulent diffusivity. Such gradient transport models are, of
course, subject to many objections, especially when applied to variable-
density reactive flows. The final term in Eq. (11) represents the effect of
molecular mixing. It is generally treated by a stochastic mixing model (see,
for example, Refs. 5, 12, and 13). Although some aspects of this modeling
are discussed later, the cited references should be consulted for a full
account.

The composition joint pdf equation [Eq. (11)] is not a self-contained
model. Mean momentum equations must be solved for U, and a turbulence
model (k-€, say) is needed to determine both I';(~k%/e) and the mixing
rate (~e/k) used in the stochastic mixing model.

C. Velocity-Composition Joint PDF Equation

Two shortcomings of the composition pdf approach are that turbulent
transport ((u/]s)) has to be modeled, and that the velocity and turbulence
fields have to be treated separately. Both of these shortcomings are over-
come in the velocity-composition joint pdf approach.

The instantaneous momentum equation is

DU, v, dp
L N T 13
PDr T ax, oy, ¥ (13)
where 7; is the stress tensor, p the pressure, and g the gravitational ac-
celeration.
From this equation [and that for ¢, Eq. (10)], the following equation

can be derived® for the mass density function F(V.{.x;t) [Eq. (9)]):

R 2 DR U TVY A
[gj p(ds) aij an + U, [JPSa(lb)]

_af i w], N\
- ‘Wj[< 0x; ’ ax; V’¢>‘f/p(¢)]
¢ Ly o )g 14
| o |V )%/p®) (14)

None of the terms on the left-hand side requires modeling. In order, the
terms represent the following: rate of change with time; transport in po-
sition space (by both mean and fluctuating components of velocity); trans-
port in velocity space (by gravity and the mean pressure gradient); and,
as before, transport in composition space due to reaction.

The terms requiring modeling [on the right-hand side of Eq. (14)] are
means conditional on the compound event {U(x.,t) = V, &(x,t) = ¥}. The
term involving J*—as in the composition pdf equation—represents mo-
lecular mixing. The remaining term involving 7, and p’ represents transport
in velocity space due to molecular stresses and the fluctuating pressure
gradient. A discussion of how the term can be modeled is deferred to the
next subsection.

— +V,—+
at ox;
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It may be seen, then, that the velocity-composition joint pdf method
retains the advantage of treating reaction without approximation, and, in
addition, treats transport in physical space (turbulent convection) exactly,
thus avoiding gradient-diffusion assumptions. It also provides a more com-
plete closure: the mean velocity U(x,t), the Reynolds stresses, and indeed
all one-point velocity-composition statistics can be calculated from %. The
model equation for % is not quite self-contained because the modeled terms
require a knowledge of the turbulent time scale (k/€) that cannot be de-
duced from F.

D. Lagrangian Viewpoint

Thus far, the Eulerian view has been adopted: we have considered func-
tions [e.g., F(V,b,x;1)] at a fixed position x. It proves extremely helpful,
both to the modeling and to the numerical solution technique, to take the
alternative Lagrangian viewpoint also.

Let x*(¢), U* (), and & *(¢) denote the position, velocity, and compo-
sition of the fluid particle that was at a reference point x, at a reference
time ¢,. These particle properties evolve according to

de() _

2 = U = UG 1) (15)

since, by definition, a fluid particle moves with the local fluid velocity;

a1 faw] [ 1 o
a Y TE T e [ ox, ]x* " {6x,- p(d™) axi}.n 1o
[from Eq. (13)]; and

dbd _ o _ gy - [

= = 0= Sue7) {ax,}h )

[from Eq. (10)].

The connection between these equations for the properties of a fluid
particle and the equation for the mass density function & [Eq. (14)] is
immediately apparent. Equation (14) can be written

oF 0

o1 + __?__ [ i o =
o o FUTD ]+ g [FAD) Sy @D = 0 (18)

where the expectations are conditional on the compound event {x*(f) =
x, Ut (t) = V, &+ (t) = ¥}. Furthermore, it may be noticed that the terms
in braces in Eqgs. (16) and (17) appear on the right-hand side of Eq. (14)—

that is, they need to be modeled—whereas all other terms appear on the
left-hand side and are treated exactly.

E. Stochastic Models

The standard approach to turbulence modeling is to construct consti-
tutive relations for the unknown correlations (see, for example, Ref. 14).
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In the context of the mass density function, this approach is to model the
unknown conditional expectations on the right-hand side of Eq. (14) in
terms of known quantities, i.e., functions or functionals of F(V ls.x;f).
However, the Lagrangian viewpoint offers a different approach to mod-
eling, namely, to use stochastic processes to simulate unknown contribu-
tions to U* (r) and & *(¢) [i.e., the terms in braces in Eqs. (16) and (17)].

To illustrate this approach, we consider U*(¢)—a stochastic model for
U*(¢). If the model is accurate, then U*(¢) is (statistically) an accurate
approximation to U™* (¢). In general, the time series U* is not differentiable.
Consequently, we express the models in terms of the infinitesimal incre-
ment

dU*(t) = U*(t + dt) — U*(1) (19)

rather than in terms of the derivative dU*/dr. Note that for a deterministic,
differentiable process [e.g., U" ()], the infinitesimal increment is nonran-
dom (i.e., zero variance) and is of order dr.

In view of the equation for U*(¢) [Eq. (16)], the increment dU* can be

written
. 1 | &p s
dU; (gj (") [ ox :|X*>dt + dUj (20)

where (similar to U*) x* and ¢* are models of x* and ¢ *. The stochastic
increment dUS models the effects of the fluctuating pressure gradient and
viscous stresses, whereas the term in df is an exact expression for the effect
of gravity and the mean pressure gradient.

Two types of models for stochastic increments such as dU® have been

tt J— h the ctnchact del i : ___
Piodedses, iRsdate mef s ARSI I8 TR ThiS S, e Mim-

itesimal increment dUS is nearly always zero. But with probability of order
dt, the increment is of order unity. Thus, the time series is a piecewise
constant, with a finite number of jumps per unit time.

The second type of model uses diffusion processes in which dU® is a
random variable with (conditional) mean and variance both of order d.
Note that this implies that the rms is of order dr'?, and hence the process—
though continuous—is not differentiable. The different variants of the
Langevin model are diffusion processes (see, for example, Refs. 5, 15-17).

For more information on this general modeling approach, the reader is
referred to Ref. 5, whereas the current status of the Langevin model is
described in Ref. 17.

III. Numerical Solution Algorithms

The velocity-composition joint pdf f(V ls;x,¢) is a single function defined
in a multidimensional space. In general, f depends on the three velocity
variables, o composition variables, three spatial variables, and time— (7
+ o) independent variables in all. In many cases, the dimensionality may
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be less, but still large. For example, in a statistically stationary and two-
dimensional flow with a single composition variable, f(V,,;x,,x,) depends
on six independent variables. The composition joint pdf f,({s;x,f) in general
depends on (4 + o) variables; however, for the simpler flow cited earlier,
fo(y5x1,%,) is a function of just three variables.

Given the large dimensionality of joint pdf’s, it is clear that conventional
grid-based numerical methods (e.g., finite differences) are impractical for
all but the simplest cases. Just to provide an accurate representation of a
function of six independent variables is a major task. Consequently, al-
though one or two finite-difference solutions have been obtained for
folUi3x1.x5) (e.g., Refs. 9 and 10), all investigators currently use Monte
Carlo methods instead.

In the next subsection, the general Monte Carlo method devised by Pope?
to solve for the velocity-composition joint pdf is outlined. Then, in Sec.
I11.B, Monte Carlo solution algorithms for the composition joint pdf are
reviewed.

A. Monte Carlo Method for the Velocity-Composition Joint PDF

The Monte Carlo method to solve the modeled equation for the velocity-
composition joint pdf is conceptually simple and natural. Rather than dis-
cretizing the space, we discretize the mass of fluid into a large number N
of representative or stochastic particles. At a given time ¢, let M be the
total mass of fluid within the solution domain. Then each stochastic particle
represents a mass Am = M/N of fluid. The nth particle has position x*(f),
velocity U"™(r), and composition ¢(r).

Starting from appropriate initial conditions, the particle properties are
advanced in time by the increments

dx™(r) = U™(e) dt 2n
du”(t) = [g — p(d™)'V(p)] dr + dU® (22)
dd™(r) = (&™) dt + dbs (23)

where dUS and dé® are the stochastic increments that simulate molecular
processes and the fluctuating pressure gradient. At symmetry boundaries,
particles are reflected; at inflow boundaries, particles are added with ap-
propriate properties; and, at outflow boundaries, particles are discarded.
Although wall boundaries have been treated,'® a comprehensive account
of this treatment is not available in the literature.

The correspondence between the ensemble of stochastic particles and
the joint pdf has been established by Pope.> The main results follow:

1) The expected density of the stochastic particles in physical space

[Am g: ®x - x‘")(t)])]

is equal to the fluid density {(p(x,t)). )
2) The joint pdf of the stochastic particle properties U*)(r), db*(¢) is
the density-weighted joint pdf f(V s;x"[¢],¢).
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3) From particle properties, expectations [e.g., U(x,t)] can be approx-
imated as ensemble averages, with a statistical error of order N~ 12,

The accurate numerical determination of means [such as U(x,f)] from
the particle properties [x(")(f), U(¢)] is far from trivial. The straightfor-
ward method is to bin the particles in physical space, and then to approx-
imate U (at bin centers) as the ensemble average formed from the particles
within the bin. Although correct in principle, this method produces large
statistical errors. An accurate alternative, based on statistical techniques,
is to estimate means in terms of cubic splines.>-1°

Several implementations of the algorithm based on Eqgs. (21-23), and
variants of it, have been reported. For example, the turbulent jet diffusion
flame calculations reported in Sec. IV are performed using a ‘“‘boundary-
layer”” variant.” Haworth and Pope?® report a variant of the algorithm
designed specifically for self-similar shear flows. From a numerical stand-
point, this work is of particular interest, because the convergence of the
method (as N~'?) is demonstrated. The basic algorithm has been imple-
mented and demonstrated for statistically two-dimensional recirculating
flows by Anand et al.’® Haworth and El Tahry?# report calculations of the
three-dimensional time-dependent flow in the cylinder of a spark-ignition
engine. In these calculations, the pdf algorithm is coupled to a conventional
finite-volume algorithm that is used to calculate the mean pressure field
and the turbulent time-scale field.

B. Monte Carlo Algorithms for the Composition Joint PDF

Two different algorithms have been proposed to solve the modeled trans-
port equation for the composition joint pdf.

The algorithm proposed by Pope® is similar to that described earlier for
the velocity-composition joint pdf. Again, it is a grid-free algorithm in
which the mass of fluid is discretized into N stochastic particles, the nth
of these having position x"(#) and composition ¢b(¢). In each time step,
the composition is incremented according to Eq. (23), while the position
is incremented by

dx™(t) = O(x"[t),f) dt + dxS (24)

where the stochastic component dx® causes a random walk to simulate
gradient diffusion. No implementations of this algorithm have been re-
ported in the literature.

A different Monte Carlo algorithm for the composition joint pdf that
has been used extensively was devised by Pope.2! In this method, there is
a finite-difference grid in physical space. At each grid node, the compo-
sition joint pdf is represented by N particles, the nth having composition
&™)(r). Reaction and mixing are performed according to Eq. (23), while
particles are moved from node to node to simulate convection and turbulent
diffusion. This algorithm is used in the premixed flame calculation of Refs.
21 and 22, and in the diffusion flame calculations of Refs. 2, 23, and 24.
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IV. Turbulent Flame Calculations

A. Turbulent Diffusion Flames

Some of the first pdf calculations are of turbulent diffusion flames.
The calculations reported by Nguyen and Pope® are the first use of the
Monte Carlo method for jet flames. The results include demonstrations of
convergence of the solutions as N~"2 tends to zero.

In the calculations cited earlier, the thermochemistry is handled in a
simple manner—by assuming chemical equilibrium, for example. This re-
duces the number of composition variables to one, namely, the mixture
fraction &. Finite-rate, multistep kinetics have been used by Pope and
Correa? (see also Ref. 28), Jones and Kollmann,** and Chen and Koll-
mann.??® A computational challenge is to implement the integration of
the rate equation, i.e.,

9.10.23.25.26

dé
> = S(4) 25)
in an efficient manner. This equation has to be integrated for every particle
on every time step to determine the change in composition due to chemical
reaction. All investigators have used table look-up algorithms. In the con-
ceptually simplest algorithm, the change in composition A¢ over the time
step At is tabulated as a function of the composition ¢ at the start of the
step.

Considerable attention has been paid to the CO/H,-air turbulent dif-
fusion flame studied experimentally by Drake et al.* Using the velocity-
composition joint pdf approach, Pope and Correa?’ and €orrea et al.?®
report calculations based on a partial equilibrium assumption. This reduces
the number of composition variables to two: the mixture fraction ¢, = £
and a reaction progress variable ¢, = m (for the radical recombination
reactions). Consequently, the general set of coupled ordinary differential
equations [Eq. (25)] reduces to the single equation

d
L2 Si(b1.0) (26)

since the mixture fraction is conserved (i.e., S, = 0). The numerical in-
tegration of Eq. (26) is a simple task. As an example of the joint pdf
calculations made for this CO/H,-air turbulent diffusion flame, Fig. 1 shows
the profiles of the mean mole fractions of the major species at an axial
location of 25 nozzle diameters. It may be seen that there is good agreement
between the measurements and the calculations. Further comparisons can
be found in the originai works.?”-?

Again using the velocity-composition joint pdf approach, Haworth et
al.31*2 have made calculations of the CO/H,-air flame using a flamelet
model. In this approach, the instantaneous composition of the fluid is
assumed to be a unique function of the mixture fraction § and of its dis-
sipation rate x. Consequently, the determination of statistics of composi-
tion—the mean density, for example—requires a knowledge of the joint
pdf of £ and x. The pdf of £ is determined from the velocity-mixture fraction
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pdf equation, whereas different assumptions are made about the distri-
bution of x.

B. Turbulent Premixed Flames

The composition joint pdf approach using the Monte Carlo method has
been applied to premixed flames by Pope' and McNutt.?? The former
calculation demonstrated the ability of the pdf method to handle nonlinear
reaction kinetics. A three-variable kinetics scheme was used to calculate
the oxidation of CO and the formation of NO in a propane-air flame
stabilized behind a perforated plate.

1
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01

Mean Mole Fractions
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0.0 I~ f‘__‘-!___!__‘
000 20 40 60 80 100 120 140

Radial Position, ria

Fig. 1 Comparison of velocity-composition joint pdf calculations (lines) with ex-
perimental data (symbols) for a turbulent syngas diffusion flame.”” Mean mole
fl:actions against radial distance (normalized by the nozzle radius a) at an axial
distance of 25 nozzle diameters. Symbols: ©, H,; &, CO; O, CO,; <, O,.
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The works of McNutt,2 Pope and Anand,* and Anand and Pope** are
concerned with the idealized case of a statistically steady, one-dimensional
turbulent premixed flame. In Ref. 34, the velocity-composition joint pdf
method is used, and the effects of variable density are studied. It is shown
that, similar to the Bray—Moss—Libby model,** the pdf method is capable
of accounting for countergradient transport and large turbulence energy
production due to heat release. The application of the method to a spark-
ignited turbulent flame ball is described by Pope and Cheng.*

Turbulent premixed combustion usually occurs in the flamelet regime.’
This fact presents a challenge to any statistical approach, since the small
scales of the composition fields are no longer governed by the turbulent
straining motions, rather they are determined by reaction and diffusion
occurring in thin flame sheets. Pope and Anand® present and demonstrate
a model applicable to the flamelet regime. However, as discussed by Pope,>¥7
this model is not entirely satisfactory. An alternative approach to treating
flamelet combustion is the stochastic flamelet model of Pope and Cheng.*®
This can be viewed as a pdf approach in which a modeled pdf equation is
solved by a Monte Carlo method. In this case, however, the pdf is not that
of fluid properties (i.e., velocity and composition), but is rather the pdf
of flamelet properties (i.e., position, area, and orientation of flamelets).

V. Discussion and Conclusion

The works reviewed briefly in the previous section demonstrate that pdf
methods provide a practicable means of calculating the properties of tur-
bulent reactive flows. Calculations have been made with thermochemical
schemes involving up to three composition variables with finite-rate ki-
netics.!'? The Monte Carlo method used to solve the pdf equations has
been implemented for a variety of flows, including two-dimensional recir-
culating flows'® and the three-dimensional transient flow in a spark-ignition
engine.>*

The most advanced method considered here is the velocity-composition
joint pdf approach. This approach has the advantage, compared with mo-
ment closures, that chemical reaction can be treated exactly, without ap-
proximation. Compared with the composition joint pdf approach, it has
the advantages that turbulent transport is treated exactly, and that a sep-
arate turbulence model is not needed to determine the Reynolds stresses.

A shortcoming of the velocity-composition joint pdf approach is that it
does not provide a completely self-contained model, in that the turbulence
frequency (w) = (e)/k must be determined by separate means. For example,
in some calculations of simple free shear layers, it has been assumed that
(w) is constant across the flow, and scales with the mean-flow velocity and
length scales.”-?” In more complex flows, another approach is to solve the
standard model equation for (e} (e.g., Ref. 3), or, similarly, to solve a
modeled equation for (w) deduced from those for k and (e).”

A natural extension is to consider f(V,is,(;x,f)—the joint pdf of velocity,
composition, and dissipation. This is the probability density function of
the compound event {U(x,) = V, &(x,f) = ¥, e(x,t) = {}, where &(x,f)
is the instantaneous mechanical dissipation. Following some preliminary
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investigations,>*4} a satisfactory model equation for f(V.s,{;x.t) has been
developed.*!*2 The incorporation of dissipation within the pdf allows more
realistic and accurate modeling. More important, however, the single equa-
tion for f(V,s,(;x,f) provides a completely self-contained model for tur-
bulent reactive flows.

There are three major areas in which progress can be expected in the
next five years. The first area concerns turbulent mixing models. As dis-
cussed in Sec. II, the stochastic mixing models used in pdf methods lead
to discontinuous composition time series—this is clearly contrary to the
physics of the problem. Nevertheless, the stochastic models have many
advantages over alternative suggestions in spite of their lack of physical
appeal. For inert mixing, their performance is generally acceptable; for
reactive flows, especially in the flamelet regime, their performance is highly
suspect. We expect that stochastic models will be improved and refined to
account better for the microstructure of the composition fields, and also
to allow mixing and reaction to proceed simultaneously at finite rates.

The second area of expected progress is in the computational imple-
mentation of complex kinetics. When the Monte Carlo method is used to
solve the joint pdf equation for an inert flow involving o compositions, the
computer time and storage increase nearly linearly with . In a naive
implementation with complex reaction kinetics, it is necessary to solve the
coupled set of o ordinary differential equations

d
_% = S(d1, by ooiu bp), 0 = 1,2, .0 (27)

for each particle, on each time step. The right-hand side (which is a com-
bination of reaction rates) is computationally expensive to evaluate scaling
roughly as o2, and, as is well known, the set of equations is likely to be
stiff. Hence, such a naive implementation is impractiable for all but the
lowest values of o.

As mentioned in Sec. IV.A, the more efficient alternative approach
followed by all investigators is to implement Eq. (27) through a table look-
up scheme.?*?’ To date, this has been done on an ad hoc basis, although
progress toward a general methodology can be expected.

The third area of expected progress is in the determination of the mean
pressure field (p(x,t)) using the Monte Carlo algorithm. For thin shear
flows, the mean pressure is determined readily by invoking the boundary-
layer approximations. For statistically stationary, constant-density, two-
dimensional recirculating flow, an algorithm to determine (p) has been
developed and demonstrated.!” However, for the general case, a compu-
tationally efficient and robust algorithm needs to be developed. (In the
three-dimensional transient calculations of Refs. 3 and 4, the Monte Carlo
method is coupled to a finite-volume code that determines {p).)
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