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ABSTRACT

Our quantitative knowledge of combustion chemistry is embodied in de-
tailed reaction mechanisms, which continue to advance in their scope and
accuracy. In computations of combustion in complex flows (e.g. multidimen-
sional laminar flows, turbulence simulations or turbulent combustion mod-
elling) the computational cost of using a detailed reaction mechanism is ex-
cessive, and usually prohibitive. Consequently, there is motivation to develop
computationally-simpler approximate methods based on detailed reaction
mechanisms. In this paper, a new method (TGLDM) for the simplification of
chemical kinetics is presented and demonstrated. A fundamental assumption
in all simplification strategies—made explicit in manifold methods—is that
the thermochemical compositions everywhere in a reactive flow lie close to
a low-dimensional manifold in the high-dimensional composition space. In
the TGLDM method, the low-dimensional manifold (of dimensional d > 1)
My is formed by the reaction trajectories from a (d — 1)-dimensional genera-
tor. For the simplest case of a 1D manifold for premixed combustion, M; is
just the reaction trajectory originating from the unburnt mixture composi-
tion. The method is developed here in the context of premixed combustion,
and is demonstrated for a CO/H,-air mixture. For the severe test case of a
transient perfectly stirred reactor, it is shown that the 2D TGLDM method
accurately describes the evolution of major and minor species.



INTRODUCTION

There are now many examples of laminar flame calculations based on the
solution of conservations equations incorporating detailed reaction schemes
(e.g. Smooke et al. [1], Warnatz [2]). These schemes may involve of order
50 species and 200 reactions. Consequently their use in complex flows is
computationally expensive, and indeed the computational time required is
often prohibitive. To perform computations of complex reactive flows, it is
desirable, therefore, to have a simplified description of the chemistry, based
on many fewer variables than the number of species. The reason to suppose
that such a simplification is possible, is that reactive systems typically en-
countered in combustion contain many modes that relax on time scales much
smaller than the flow time scales, and that therefore can be decoupled.

There has been much work in recent years on reduced kinetic mechanisms
for different fuels (see e.g. refs. 3, 4, 5). Part of the reduction process is to
make specific assumptions, such as partial equilibrium or steady-state. The
approach presented here is somewhat different, in that it is a general method-
ology applicable to any fuel, and that specific assumptions are avoided—
although certainly there are assumptions and approximations inherent in
the method. Such general approaches have previously been attempted by
Keck [6], Chen [7], Frenklach [8], and ourselves [9, 10]. The method consid-
ered here— Trajectory-Generated Low-Dimensional Manifolds (TGLDM)—is
distinct from our earlier approach [9, 10]—Intrinsic Low-Dimensional Man-
ifolds (ILDM)—although it shares the same motivation, and many of the
same concepts. The two methods are contrasted in the discussion, below.

The TGLDM method is applicable to any single-phase reactive system:;
but, for simplicity of exposition, it is developed here in the context of pre-
mixed combustion. In the next section, the equations governing premixed
combustion are presented from a geometric viewpoint. Then the basic con-
cepts and issues in manifold methods are presented. These main issues are:
the definition of the manifold; its parametrization; and the specification of a
projection matrix. The specifics of the TGLDM method are then described,
and test results are reported for both 1D and 2D manifolds. The test consid-
ered is a transient perfectly-stirred reaction (PSR) for a CO/H;-air mixture.
A “truncated projection”—designed to further reduce the computational cost
of the method—is then described and tested. The paper closes with a dis-
cussion of various aspects of the TGLDM method.



FORMULATION

We consider the simplest case of constant-pressure premixed combustion
(with the neglect of radiative heat loss, differential diffusion, and Lewis num-
ber effects). Consequently, the pressure p, the enthalpy A, and the elemental
composition of the mixture are constant and uniform.

There are n. elements and ng species. At a given position x and time ¢,
the mass fraction of species « is mq, and the specific mole number of « is

d)a - ma/M(a)v (1)

where M(,) is the molecular weight. Together with p and h, the n, mole
numbers ¢, completely define the thermochemical state of the fluid.

The composition space C is defined to be ns-dimensional Euclidean space;
and we introduce the set of orthonormal basis vectors e, (o = 1,2,...,n;).
Then the fluid composition is represented by the point ¢ = e, ¢, in compo-
sition space. (Summation is implied over repeated suffices, unless they are
in parentheses.)

The element vector (for element () is defined by

Hp = €allag; (2)

where 15 is the number of atoms of element 3 in a molecule of species a.
Then the specific element mole number of element 3 is

Xg = Paltap = @ P (3)

This is simply the number of kg-moles of element ( in a kg of mixture: and,
for the premixed combustion considered, it is constant and uniform.

The realizable region Cg is defined to be the subset of composition space
C corresponding to compositions that can occur. The two conditions that
realizable compositions satisfy are that mass fractions are non-negative

¢a20,a:1’2""7n3’ (4)
and that the specific element mole numbers equal their known constant values

¢'p’ﬁ:Xﬁ,/B:1,2)"'ane' (5)



Together, these last two equations identify C as a convex (ny—n,)-dimensional
polytope.

There are two distinguished points in Cr. The first is the point cor-
responding to unburnt mixture (denoted by ¢™), the second is the point
corresponding to equilibrium (denoted by ¢°).

For the given pressure and enthalpy, all thermochemical properties are
known functions of ¢. Equations of state give the temperature 7'(¢) and
density p(¢), and the detailed reaction mechanism gives the reaction rate
vector S(¢), i.e. the rate of change of ¢ due to reaction.

A central concept in the TGLDM method is that of a reaction trajectory,
which is now defined. The equation

d
Za(t) = S(4(1)), (6)

governs the evolution of a spatially-homogeneous composition field (which,
because of homogeneity, is unaffected by convection and diffusion). Starting
from the initial condition ¢(0) = ¢* (where ¢* is any point in Cg), the
solution to Eq. (6) after time ¢ is denoted by ¢ (¢, ¢*). The curve

{¢"(t,¢7) 1 t € [0,00)} (7)

is called the reaction trajectory generated by ¢*, and ¢*(t, ¢*) gives its co-
ordinates parametrized by time ¢. It is assumed that the reaction rate S is
non-zero everywhere in Cg except at equilibrium, where it is of course zero.
This, together with the fact that the Gibbs free energy decreases along the
trajectory, ensures that as t — oo all trajectories converge on the equilibrium
point ¢°. In addition, the smoothness of S ensures that trajectories do not
cross prior to their convergence on the equilibrium point.

At a given point x in an inhomogeneous premixed reactive flow, the com-
position ¢(t) evolves by

0p(x,t

P061) _ S, 1)) + Fix. 1), 0
where F(x,t) denotes the effects of convection and molecular diffusion. It
should be observed that, while the reaction rate S is a known function of the
local composition, the effects of inhomogeneities embodied in F depend on

the velocity and composition field in the neighborhood of x. Hence, in the
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present development, we regard F(x,t) as an unknown perturbation (with
no implied assumption that it is “small”).

Examples and test results are given below for a CO/H,-air mixture. In
this there are 4 elements (C, O, H, N) and there are 13 species (H,O, CO,,
N2, 02, HQ, CO, OH, H, O, HOQ, HCO, H202 and CHzO), i.e. Ne =
4, ny = 13. The initial mixture consists of CO, Hy, Oy and N, in the mole
ratios 24:18:21:97, at a temperature of 300K and a pressure of 1 bar. The
reaction mechanism, consisting of 67 elementary reactions, is the same as
that used by Maas & Pope [9].

BASIC CONCEPTS OF MANIFOLD METH-
ODS

The fundamental assumption of manifold methods is that (at any point and
time in the reactive flow) the composition ¢(x,t)—viewed as a point in the
realizable composition space Cr—is close to a low-dimensional attracting
manifold, M. For definiteness, we consider a two-dimensional manifold M in
Cr parametrized by two variables v and v. The mapping from the parameter
space P (i.e. a region of the u—v plane) to the manifold is denoted by ®(u, v).
That is, to every point (u,v) in the parameter space, there corresponds a
realizable composition ®(u,v).

Restated, the fundamental assumption is that there is a manifold M
(with coordinate @(u,v)) and there are parameter values u(x,t) and v(x,t)
such that @(u[x,t], v[x,t]) provides an adequate approximation to ¢(x,t).
Consequently, the thermochemical state of the fluid at (x,t) is characterized
by just two variables (u(x,t) and v(x,t)); and the evolution of the compo-
sition field can be determined from the evolution equations for these two
variables (deduced below), rather than from the n, evolution equations for
¢ (i.e. Eq. 8).

What is the basis for this fundamental assumption? What can cause the
composition ¢—which has a large number (n; — n.) of degrees of freedom
in Cp—to be confined to a two-dimensional manifold? The validity of the
assumption depends on the reaction rates S(¢) and on the magnitude of the
perturbations F; a complete discussion is provided by Maas & Pope [9, 10].
Simply put, if all but two of the degrees of freedom in the reaction scheme



have time scales much smaller than that associated with F, then a compo-
sition ¢(¢) that is not on the manifold, will (due to reaction) very rapidly
approach the manifold. In the end, the validity of the assumption, and the
magnitude of the approximation involved must be determined empirically by
tests such as those described below.

At a given point x, we want to determine the time evolution of u(t) and
v(t) such that (u(t),v(t)) remains a good approximation to ¢(t). The rate
of change of ®(u(t),v(t)) is a vector in the tangent plane of the manifold:

specifically 5 5
& U ov

o~ Pa T )
where the tangent vectors are
_ 09P(u,v) _ 0P(u,v)
b, (u,v) = 5 and @D,(u,v) = 5 (10)

The rate of change of ¢(t) (i.e. ¢ =S +F, see Eq. 8), on the other hand, is
not constrained to lie in the tangent plane. Hence 0#/0t and d¢/dt cannot
be equated. But the evolution of ¢ can be made to approximate that of ¢
by equating 0®/0t to a projection of O¢/0t onto the tangent plane. With
P(u, v) denoting a specified (n, x ns) projection matrix, the above reasoning
leads to the equation

ou ov
b,—+b,—=P-(S+F). 1
o P~ .
Then it is a matter of algebra to show that u evolves by
0
73%:us+up:P“-(S+F), (12)

where 4, = P*-S , ur = P*-F , and the projection vector P*(u,v) is

P* = {(Qv : Qv) dsu P - (ﬁu : 451,) év : P}/{(Qu : dsu) (Qv : év) - (dsu : ¢v)2} .
(13)

And similar equations express v/t in terms of a second projection vector
| S

From the above development, it may be seen that the principal issues in
manifold methods are



i) the definition and determination of the manifold M, including its di-
mensionality.

ii) the determination of a suitable parametrization of M and the identifi-
cation of the parameter space P.

iii) the specification of the projection matrix P.

Different manifold methods correspond to different treatments of these three
issues. Indeed (as discussed by Maas & Pope [9, 10]) most reduced kinetics
schemes can be viewed as manifold methods, and hence the implied specifi-
cation of M, P and the parametrization can be deduced.

The computational implementation of manifold methods consists of two
stages. In the first (pre-processing) stage (which needs to be performed only
once for a given mixture) the following quantities are tabulated as functions
of v and v: @, u;, = P*-S, v, = P*-S, P*, P’ as well as any other
thermochemical variable required in the flow calculation or needed for output
(e.g. temperature and density). Then, in the second stage, during the flow
calculation, u(x,t) and v(x,t) are taken as the independent thermochemical
variables. At any (x,t), all thermochemical properties are determined by
interpolation from the tables (e.g. #(u,v)). Hence the perturbation F due to
convection and diffusion can be evaluated, and the dot product p = P*-F
formed. The equation for u (Ou/dt = s+ ur) can then be advanced in time
by, and similarly for v.

TRAJECTORY-GENERATED MANIFOLDS

The ILDM method developed by Maas & Pope [9, 10] is in some senses
optimal: the manifolds generated are “most attracting,” and the projection
matrix is appropriately based on the eigenvectors of 9S,/0¢s. But the imple-
mentation of the method is somewhat involved, largely because the method
per se does not provide a parametrization of the manifold.

In the Trajectory-Generated Low-Dimensional Manifold (TGLDM) method
now presented, the emphasis is on simplicity. The manifolds are defined in
terms of reaction trajectories, and hence can be constructed simply by in-
tegrating Eq. (6). The way in which the manifolds are defined introduces a
natural parametrization, with the parameter space P being extremely simple



(e.g. the unit circle or square in 2D). The perpendicular projection is used,
so that the projection vectors can be simply determined from the manifold,
without further appeal to the kinetics.

An important property of trajectory-generated manifolds is that the re-
action-rate vector S is in the tangent plane. Hence the projection does not
affect S (i.e. P-S = S), and so the choice of projection affects only the
treatment of the perturbation term P - F.

We now define the one-dimensional and two-dimensional manifolds for
the TGLDM method.

The one-dimensional manifold M; is simply the reaction trajectory gen-
erated by the mixing point, ¢™, i.e.

My ={¢™(t,¢™) 1t € [0,00)} . (14)

This is obtained by integrating the Eq. (6) (i.e. ¢ = S(¢)) from the initial
condition ¢(0) = ¢™, corresponding to unburnt mixture.

The solution of Eq. (6) yields ¢%(t, ¢™), i.e. the manifold parametrized
by time ¢. It is more convenient to use the normalized arclength along the
trajectory as the parameter: hence we define u to be the arclength along the
trajectory from ¢™, normalized by the total arclength. Consequently u =0
corresponds to unburnt mixture, © = 1 corresponds to equilibrium, and so u
can be interpreted as a reaction progress variable. And with )(u) denoting
the composition on the manifold, we have $(0) = ¢™ and (1) = ¢°.

The 1D manifold M, is formed by the trajectory from the single point
¢™. The 2D manifold M, is formed by the trajectories generated by all
points on a curve G, which is called the manifold generator. A specific choice
of G is given below: here we itemize its basic required properties:

i) G is a simple closed curve in the realizable composition space, Cg.
ii) G contains the mixing point ¢™.

iii) Coordinates of points on G are denoted by ¢(6), where the parameter
6 takes values in the interval [0, 27].

It is convenient—and possible without imposing further requirements—to
choose the parametrization so that

¢%(0) = ¢°(2m) = ™. (15)
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Coordinates of points on the 2D manifold M, are denoted by ®(r,6),
where r and 6 are the polar coordinates of points in the parameter space P,
which is the unit disk (see Fig. 1). For given 6, ®(r, 0) is the trajectory gener-
ated by the point ¢“(#) on the generator curve, with r being the normalized
arclength, in this case measured from the equilibrium point, ¢°.

Thus in the parameter space P (Fig. 1) the origin (r = 0) corresponds
to equilibrium (#(0,60) = ¢°); the unit circle (r = 1) corresponds to the
generator curve (®(1,6) = ¢°(6)); and radial lines (constant ) correspond
to trajectories. The point (r,6) = (1,0) corresponds to the mixing point
(#(1,0) = ¢™), and the straight line segment between this point and the
origin is the 1D manifold (M) (u) = &(1 — u,0)).

It remains to specify the manifold generator G. If the kinetics are such
that a 2D manifold method can be successful, then all trajectories rapidly
approach a 2D attracting manifold (i.e. the intrinsic 2D manifold). To an
extent, then, the choice of G may not be crucial: for, however G is chosen,
the resulting manifold (except near G itself) will be close to the same at-
tracting manifold. However, clearly G should be as “big” as possible, so as
to maximize the overlap between M and the 2D intrinsic manifold.

Following the above arguments we now describe the specification of G
which is based on the extreme values of major species. With there being n.
elements, the number of major species is specified to be n,, = n. + 2. For
the CO/H,-air system (n. = 4), a sensible choice of the major species is:
CO, H,, Oy, Ny, H,O and CO,. It is convenient to number the major
species 1,2,...,n,,, and then the remaining minor species are numbered
N + 1, Ny +2,..., N,

The major species space Cyy, is the n,,-dimensional sub-space of C spanned
by e, es,...,e,, . The realizable region in this space Cys g is the intersection
of Cps and Cg: it represents all realizable compositions in which the minor
species are zero. The region Cy g is defined by n. equality constraints from
Eq. (5), (ns — ny,) equality constraints from the requirement that the minor
species are zero, together with the inequalities ¢, > 0 (Eq. 4). Hence there
are ny — 2 equality constraints in total, so that Cpg is a two-dimensional
convex polytope: its boundary 0Cg and its vertices correspond to extreme
values of the major species.

For the CO/Hj-air mixture used in the examples, the curve 0Cp g con-
tains the mixing point ¢™, and hence satisfied all the requirements of the
generator G. For this case, we take OC g to be the generator G.

10



In general, however, ¢™ need not be contained in 9C s r: for example, ¢p™
would not be in dC g if the unburnt mixture contained non-zero quantities
of H,O and CO,. The above treatment is modified to handle the general
case as now described and shown on Fig. 2.

For each fuel species (e.g. CO) there is an overall reaction (i.e. CO +
%02 — CO,), and to each such reaction there is a corresponding reaction
vector. The overall reaction vector S° is defined as the sum of these reac-
tion vectors, weighted with the specific mole number of the reactant in the
mixture. This vector is used to divide the realizable major species region
Car into two parts (Ci;z and Cj;) depending on whether the dot product
S°. (¢ — ¢™) is non-negative, or negative, respectively. We then take the
boundary of C};z, denoted by 8C;r, to be the generator G (see Fig. 2).

For the CO/Hj-air system, the procedure described above was used to
produce the 2D TGLDM. Figure 3 shows this 2D manifold in 13-space pro-
jected onto the CO; — H50 plane. The line around the perimeter is the
generator G, which contains the mixing point. The other solid lines are tra-
jectories (i.e. ®(r,0),0 =constant), which originate on G and terminate at
equilibrium. It may clearly be seen that these trajectories converge on a 1D
manifold, and then move along this manifold to ¢,. The bold line is the 1D
TGLDM M, i.e. the trajectory generated by ¢,,.

The three dashed lines shown on Fig. 3, are &(r, §) for the values r = 1,1
and %. It may be seen that, in places, the constant r lines and the constant 8
lines (i.e. trajectories) become aligned. This is a natural consequence of the
bunching and convergence of trajectories, on which the method depends. But
it indicates that the 7 —  parametrization is ill-conditioned. For example,
where the parameter lines become parallel, so do the tangent vectors 0&/dr
and 0$/00. Then the denominator in Eq. (13) becomes zero.

It is necessary, then, to reparametrize the manifold to avoid this ill-
conditioning. In the new parametrization chosen, the parameters v and v
are the Cartesian coordinates of the unit square. Hence the singularity that
occurs at 7 = 0 is also removed. (Space limitations do not permit a descrip-
tion of this reparametrization procedure.)
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RESULTS: PERFECTLY-STIRRED REAC-
TOR

For a simple test case corresponding to a perfectly stirred reactor (PSR),
we now demonstrate the performance of the 1D and 2D TGLDM methods
compared to detailed-kinetics calculations.

Using the full kinetics mechanism, the transient PSR calculations consid-
ered amount to the solution of the set of ordinary differential equations

%‘ﬁ(t) =S(¢(t) — (¢(t) — ™), (16)

with the initial condition ¢(0) = ¢°. Here w is a specified rate, which is the
inverse of the PSR residence time (i.e. w = 1/7,¢s). The term in w is the per-
turbation F (see Eq. 8) that tends to move ¢(t) off the manifolds. For values
of w greater than the blow-out value wy ., the long time solution to Eq. (6)
is very close to ¢™, while for w < wy,,, it corresponds to stable (but incom-
plete) combustion. From the detailed kinetics solutions of Eq. (6) it is found
that wyo & 1.53 X 10%s7! (i.e. Tho, = 1/wh,e. & 0.065ms). For all the tests
reported below we specify the value w = 10*s™! = 0.65w o (Tres = 0.1ms).
This is a severe test of simplified schemes: for example, the temperature
drops from its equilibrium value of 2,248K to a steady-state value of 1,459K.

Figure 4 shows the specific mole fractions of the major species Oy, H,O
and CO, against time. It may be seen that the 2D manifold method is in
excellent agreement with the detailed scheme, and the agreement for the 1D
method is also good—although there are discernible differences.

Figure 5 shows the corresponding results for H,, which shows very in-
teresting behavior. Just after 1075s, there is an undulation in the detailed-
scheme profile, which the 2D manifold method manages to follow, so that
for large times the error in the 2D method is just a few percent. But the 1D
manifold does not follow this behavior, and it underpredicts the asymptotic
value by 35%. The results for the minor species are similar to those or Ho.

TRUNCATED PROJECTION

In the 2D manifold method, the evolution equations are solved for u and v,
i.e. Ou/0t = s+ 1p, where i, and ur are the rates of change due to reaction
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and the perturbation F, respectively. In the implementation of the method,
1, is tabulated, and i is obtained from its defining equation: i = P* - F.
This involves the following operations: given u and v, P*(u,v) and ®(u,v)
are obtained by interpolation from the tables; F (which depends on ¢) is
determined; and then up is evaluated as P* - F. Both P“ and F are n,-
vectors, and hence if many species are involved (e.g. n; = 50), the amount of
computational work required by this evaluation is large. And the tabulation
of the two ns-vectors P*(u,v) and P”(u, v) requires considerable storage.

Motivated by these observations, we have developed a simplified approx-
imate method for evaluating 4y and vr. It amounts to truncating the pro-
jection vectors P* and P"in a particular basis.

In the my-dimensional composition space C, consider a new set of or-
thonormal basis vectors e,, obtained by a rotation of the e, axes. And let a
tilde denote the components of any vector in this basis. Thus, in particular,
we have ¢ = e, ¢, = éad;a, F =e,F, = é&,F, and P* = e P} = éaf);‘.

Now % is a scalar, and hence is the same in any Cartesian coordinate
system: up =P*-F = P*F, = P;‘F‘a.

The essential idea is to find a coordinate system (i.e. a choice of &,) in
which only the first few components of p}; are non-negligible. Then, if there
are n, of these non-negligible components, iy can be approximated by

Tlp _ B
Up R Z:IP(?X)F(Q). (17)

Consequently, the computational work and storage required to evaluate up
scale with n, rather than with n,.

There are certainly good reasons to suppose that such a coordinate system
can be found. If the last n. basis vectors &, (a = ns—ne, ns—ne+1, ..., ng)
are chosen to span the same subspace as the element vectors s (Eq. 2) then
the last n. elements of P* are zero. And if, at a particular point on the
manifold, €; and €, are chosen to span the same subspace as the tangent
vectors @, and P, then (at that location) all but the first two components
of P* are zero.

The general method used to select the coordinate system is based on this
last observation. We define the n, x n, matrix Tog to be the area-average
“covariance matrix” of the tangent vectors on the manifold. That is, with
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angled brackets denoting an area average,

Top = (Pua®up) + (PoaPip), (18)

where &, = ¥, — (P,). Then for each v, the basis vector €, is chosen
to be an eigenvector of T,s, corresponding to the ~-th largest eigenvalue.
This procedure results in the average error (appropriately defined) in the
approximation Eq. (17) to be minimized for each choice of n,. The error is
zero for n, > ns; — ne.

The efficacy of the truncated projection is clearly demonstrated in Fig. 6.
This shows the 2D TGLDM calculation of Hy (compared to the detailed
scheme) for n, = 2,3 and 13. Clearly, the error incurred by truncating the
projection is negligible for n, > 3 and is not large for n, = 2. Results for the
other species support the same conclusions.

DISCUSSION

For convenience, the composition space C has been taken to be Euclidean.
This implies a physical significance to the inner product in composition
space—which cannot be justified on physical (or chemical) grounds. The in-
ner product enters the development in two places: in the use of S°- (¢ — ¢™)
to define the generator G; and in taking P to be the perpendicular projec-
tion. On physical grounds, it is preferable to base P on the eigenvectors of
9S.(@)/0¢p (see Maas & Pope [9]). This removes the dependence of P on
the inner product, but adds some complexity to the procedure. It is left to
future work to determine how the choice of P affects the accuracy of the
method.

In this paper we have considered 1D and 2D manifolds M; and M,.
(It is also consistent to define the zero-dimensional M, manifold to be the
equilibrium point ¢,.) The method can be extended to the general case of
d dimensions (1 < d < ng; — n.) as follows. The number of major species
is specified to be n,, = n. + d, so that the realizable region of the major-
species space Cyg is d-dimensional. Its boundary OCpyp (or 8Cig) then
forms the (d — 1) generator G that generates the d-dimensional manifold
M. The hierarchy of manifolds thus defined (Mg, My, ..., Mu, _n.)
then has the property that Mg_; is contained in My, and that the ultimate
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manifold M,,,_,, consists of the whole realizable region Cr, and at this level
the method becomes exact.

For the premixed combustion considered here, there are (n.+1) fixed ther-
mochemical variables, namely the pressure p, the enthalpy A and (n. — 1)
independent element mass fractions. In other situations, one or more of
these quantities may vary in space or time. To take a specific example,
in the simplified treatment of two-stream non-premixed combustion, all of
these variables have a known linear dependence on the mixture fraction &.
The TGLDM manifold method can be applied as described above, but with
¢ being an additional parameter. Hence corresponding to the 2D manifold
from premixed combustion, we obtain a 3D manifold for non-premixed com-
bustion, with coordinates ®(u, v, ).

The present TGLDM method should be regarded as an alternative to—
not a replacement for—the ILDM method. The advantages of TGLDM are:
simplicity; that a natural parametrization is provided; and that a manifold
of guaranteed simple topology is produced. On the other hand, the choice of
the generator G requires the designation of certain species as “major”, and
may (close to G) produce a manifold that is far from the optimum produced
by the ILDM method. Future tests and experience with the methods will
clarify and quantify their relative merits.
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Fig. 1: Sketch of the parameter space P for the 2D TGLDM, M,, showing
points corresponding to equilibrium, the mixing point, the generator

G, and a reaction trajectory. P; is the parameter space for the 1D
manifold M;.
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Fig. 2: Sketch of the major-species relizable region C g, showing the defi-
nition of the manifold generator G.
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Fig. 3: The 2D TGLDM manifold M, projected onto the CO; — H,0 plane.
Reaction trajectories go from the manifold generator G (the perimeter
of the figure) to the equilibrium point (®). The 1D TGLDM manifold

is the bold line from the mixing point (3) to equilibrium. The dashed

lines are the projections of ®(r,6) for r = %, 1 and 3.
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Fig. 4: Specific mole numbers of major species against time for the transient
PSR test case, with w = 10*s~!. Solid line, full kinetics; solid symbols,
2D TGLDM,; open symbols, 1D TGLDM.
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Fig. 5: Specific mole number of H, against time for the transient PSR test
case, wth w = 10%~!. Solid line, full kinetics; solid symbols, 2D
TGLDM; open symbols, 1D TGLDM.
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Fig. 6: Specific mole number of H, against time for the transient PSR test
case, with w = 10%s™!, for the 2D TGLDM with different truncations

of the projection. Solid line, n, = 13 (i.e. no truncation); triangles,
n, = 2; circles, n, = 3.



