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In 1921 G. I. Taylor introduced (with little discussion) the notion that the dispersion
of a conserved passive scalar in a turbulent flow is determined by the motion of fluid
particles (independent of the molecular diffusivity). Here, a hypothesis of diffusivity
independence is introduced, which provides a sufficient condition for the validity
of Taylor’s approach. The hypothesis, which is supported by DNS data, is that,
at high Reynolds number, the mean of the scalar conditional on the velocity is
independent of the molecular diffusivity. From this hypothesis it is shown that (at
high Reynolds number) the conditional Laplacian of the scalar is zero. This new
result has several significant implications for models of turbulent mixing, and for
the scalar flux. Primarily, a model of turbulent scalar mixing that is independent of
velocity is inconsistent with the hypothesis, and gives rise to a spurious source or
(more likely) sink of the scalar flux.

1. Introduction
In the paper ‘Diffusion by continuous movements’ Taylor (1921) postulated that

in a turbulent flow the mean field 〈φ(x, t)〉 of a conserved passive scalar can be
determined from the statistics of the motion of fluid particles. This observation forms
the basis for studies of turbulent dispersion (e.g. Batchelor & Townsend 1956; Hunt
1985).

In second-moment closures for turbulent flows, the mean field 〈φ(x, t)〉 is determined
differently, namely by solving the transport equation for 〈φ〉. This equation involves
the scalar flux (i.e. the velocity–scalar covariance 〈uφ〉) which is obtained as the
solution to a modelled transport equation (see, for example, Launder 1990).

Yet another approach is to solve a modelled transport equation for the joint
probability density function (PDF) of velocity and the scalar, and then to obtain the
mean scalar 〈φ(x, t)〉 as a first moment of the joint PDF (see e.g. Pope 1985). Part
of the modelled PDF equation is a mixing model which accounts for the effects of
molecular diffusion.

A second (but less widely appreciated) contribution of Taylor’s paper is the idea
of using a stochastic model to describe the motion of fluid particles. Over the years,
this idea has been extended as stochastic models have been proposed for other fluid-
particle properties such as velocity and the conserved passive scalar φ (see e.g. Pope
1994). From these stochastic models, PDF equations can be obtained without further
modelling assumptions; and, from the PDF equations, modelled second-moment
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equations can also be obtained (Pope 1985, 1994; Durbin & Speziale 1994). There
is, therefore, a close connection between these stochastic models and the mean scalar
field 〈φ〉 and scalar flux 〈uφ〉 obtained from PDF models, second-moment closures
and the turbulent dispersion approach.

The purpose of this paper is to make these connections precise, and to study
their implications. A principal result is that the expectation of the Laplacian ∇2φ(x, t)
conditioned on the velocity (i.e. 〈∇2φ(x, t)|U (x, t) = V 〉) tends to zero at high Reynolds
number. This result imposes a constraint on mixing models – one that is violated by
all models currently in use. It also implies that a modelled scalar flux equation can
be obtained from a stochastic model for fluid-particle velocity, independent of the
modelling for the scalar φ.

Previous studies of the effects of molecular diffusivity on turbulent dispersion
include the papers of Saffman (1960) and Sawford & Hunt (1986). Some of the ideas
used in the development below stem from the recent works of Dreeben & Pope (1997),
Fox (1996), Durbin & Shabany (1995) and Klimenko (1996).

2. Formulation
We consider the turbulent flow of a constant-property Newtonian fluid in an infinite

domain. The velocity field U (x, t) satisfies the continuity equation

∇ ·U = 0, (1)

and the momentum equation

DU

Dt
=
∂U

∂t
+U · ∇U = F (x, t) = ν∇2U − ∇p. (2)

Here, ν and p are the kinematic viscosity and pressure, and F (x, t) is written for the
net specific force on the fluid that causes the acceleration DU/Dt.

From the deterministic initial condition

φ(x, 0) = φ0(x), (3)

the field φ(x, t) of a conserved passive scalar evolves by

Dφ

Dt
= Γ∇2φ, (4)

where Γ is the molecular diffusivity. For convenience, the initial condition φ0(x) is
specified to be non-negative, zero at infinity, and normalized so that its integral over
the infinite domain is unity. (Thus, φ0(x) has the properties of a PDF.) It follows
from (4) that φ(x, t) also possesses these properties for finite positive times.

The Schmidt number is Sc ≡ ν/Γ , the Reynolds number is Re ≡ ûL/ν, and the
Péclet number is Pe ≡ ûL/Γ = ReSc, where û is a characteristic r.m.s. turbulent
velocity, and L is a characteristic turbulent integral length scale.

The Reynolds decomposition of the velocity and scalar fields are

U (x, t) = 〈U (x, t)〉+ u(x, t), (5)

and

φ(x, t) = 〈φ(x, t)〉+ φ′(x, t), (6)

so that the mean scalar equation is

∂〈φ〉
∂t

+ ∇ · 〈Uφ〉 =
∂〈φ〉
∂t

+ 〈U〉 · ∇〈φ〉+ ∇ · 〈uφ′〉 = Γ∇2〈φ〉. (7)



The vanishing effect of molecular diffusivity on turbulent dispersion 301

At high Reynolds and Péclet numbers, transport by molecular diffusivity is negligibly
small compared to mean-flow convection, and to convection by the turbulent scalar
flux 〈uφ′〉.

3. Diffusing particles
Following Saffman (1960) and Sawford & Hunt (1986), the starting point for our

description of turbulent dispersion is the concept of a diffusing particle, which is a
mathematical model for the motion of a molecule. The position X+(t) of a diffusing
particle evolves by the stochastic differential equation (SDE)

dX+(t) = U+(t) dt+ (2Γ )1/2 dW (t), (8)

where the particle’s velocity U+(t) is the local (continuum) fluid velocity,

U+(t) ≡ U (X+[t], t), (9)

and W (t) is an isotropic Wiener process. The initial particle position is random, with
the joint probability density function (PDF) of X+(0) being φ0(x).

It is important to appreciate that there are three distinct sources of randomness.
First, for a given realization of the flow and a given initial condition X+(0), there
is the randomness of the molecular motion expressed in the Wiener process W (t).
Second, there is randomness in the initial condition X+(0). And third, there is the
randomness of the turbulence that is manifest in a different velocity field U (x, t) in
each realization. An average over the first two sources of randomness (for a particular
realization of the flow) is denoted by 〈 〉I; whereas 〈 〉 denotes an average over all
three sources.

For a given realization of the flow, θ(x, t) is defined to be the PDF of X+(t). In
terms of Dirac delta functions, this can be written

θ(x, t) = 〈δ(X+[t]− x)〉I. (10)

As stated above, the initial condition X+(0) is random, with distribution φ0(x), that
is,

θ(x, 0) = φ0(x). (11)

It follows from (8) and (10) that θ evolves by

∂θ

∂t
+U · ∇θ = Γ∇2θ (12)

(see e.g. Pope 1985; Gardiner 1985).
The above two equations that determine θ(x, t) are identical to (3) and (4) that de-

termine φ(x, t). This establishes that the density θ(x, t) of particles evolving according
to the SDE, (8), provides an exact mathematical analogy for the conserved passive
scalar φ(x, t): on each realization of the flow, θ(x, t) and φ(x, t) are identical.

Diffusing particles are defined (by (8)) in terms of the diffusivity Γ . If Γ is set
to zero, then the particles become fluid particles, whose motion is due solely to the
motion of the fluid.

For a given value of Γ and for a given realization of the flow, the fields φ(x, t) and
θ(x, t) are numerically identical. But we continue to distinguish between them because
they represent fundamentally different quantities. The conserved passive scalar φ is
a physical quantity, whose governing equation (4) stems from Fick’s or Fourier’s
empirical law, and Γ is an empirically determined material property. In contrast, θ
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is a purely mathematical construction, based on (8), in which Γ is a non-negative
parameter that can be specified at will.

4. Equivalent statistics
Because the fields θ(x, t) and φ(x, t) are identical, so also are their statistics jointly

with velocity. The relevant joint statistics of φ(x, t) and U (x, t) are first defined, and
then they are related to those of X+(t) and U+(t).

With V = {V1, V2, V3} and ψ being sample-space variables corresponding to U and
φ, the one-point one-time joint PDF of U and φ is denoted by f(V , ψ; x, t). In terms
of delta functions it is

f(V , ψ; x, t) = 〈δ(U [x, t]− V )δ(φ[x, t]− ψ)〉. (13)

The PDF of velocity is

fu(V ; x, t) = 〈δ(U [x, t]− V )〉. (14)

The focus of the development is on the quantity g(V ; x, t) which has the following
equivalent definitions:

g(V ; x, t) ≡
∫ ∞
−∞
ψf(V , ψ; x, t) dψ

= 〈φ(x, t)δ(U [x, t]− V )〉
= 〈φ(x, t)|U (x, t) = V 〉fu(V ; x, t). (15)

Essentially, g contains information about the expectation of φ conditional on the
velocity, i.e. 〈φ(x, t)|U (x, t) = V 〉 which is abbreviated to 〈φ|V 〉.

Turning now to the properties of diffusing particles, for a given realization of
the flow, the fine-grained, one-time, single-particle joint PDF of X+(t) and U+(t) is
defined as

h′(V , x; t) ≡ 〈δ(X+[t]− x)δ(U+[t]− V )〉I. (16)

Averaging over all realizations, we obtain the joint PDF of X+(t) and U+(t):

h(V , x; t) = 〈h′(V , x; t)〉 = 〈δ(X+[t]− x)δ(U+[t]− V )〉. (17)

The correspondence between the statistics of φ(x, t) and U (x, t), and those of X+(t)
and U+(t) is that g(V ; x, t) is equal to h(V , x; t). Starting from (17), this observation
stems from the following steps:

h(V , x, t) = 〈〈δ(X+[t]− x)δ(U [X+(t), t]− V )〉I〉
= 〈〈δ(X+[t]− x)〉Iδ(U [x, t]− V )〉
= 〈θ(x, t)δ(U [x, t]− V )〉 = 〈θ|V 〉fu. (18)

(In the first line, (9) is substituted for U+(t). In the second line, the sifting property
of the delta function is used to replace X+(t) by x; and then the fact that U (x, t)
is non-random for a given realization is used to remove δ(U − V ) from the inner
expectation. The last line follows from the definition of θ, (10).) Thus, given the
equality of φ(x, t) and θ(x, t), a comparison of (15) and (18) indeed shows that g and
h are equal, and furthermore that 〈φ|V 〉 equals 〈θ|V 〉.

In the Appendix the exact evolution equations are derived for g (equation (A 3)),
h (A 10), 〈Uφ〉 (A 6) and 〈Uθ〉 (A 12).
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5. High-Reynolds number limit
5.1. Hypothesis of diffusivity independence

We introduce a hypothesis, which formalizes and extends a notion used by Taylor
(1921) and which has generally been accepted ever since: ‘At high Reynolds number
and high Péclet number, the conditional mean scalar field 〈φ(x, t)|U (x, t) = V 〉
is independent of the magnitude of the molecular diffusivity Γ (except close to
singularities arising from initial or boundary conditions).’ Since the density of diffusing
particles θ(x, t) is identical to φ(x, t), the hypothesis applies equally to 〈θ|V 〉. And,
in the particular case Γ = 0, θ is the density of fluid particles. Hence, an immediate
corollary is that, subject to the same conditions: ‘The conditional mean 〈φ|V 〉 of a
diffusive scalar (Γ > 0) is identical to the conditional density of fluid particles, i.e.
〈θ|V 〉 (for Γ = 0).’

These statements about the conditional mean apply also to the unconditional mean
〈φ〉 and to the scalar flux 〈Uφ〉 – since these quantities are determined by 〈φ|V〉
and fu.

In essence, Taylor (1921) assumes 〈φ〉 (for Γ > 0) to be identical to 〈θ〉 (for Γ = 0),
which implies the equality of 〈uφ〉 and 〈uθ〉. (Taylor does not explicitly state any
requirements such as high Reynolds number.)

As mentioned, the above hypothesis is generally accepted (for 〈φ〉 and 〈Uφ〉 at
least), and it is in accord with experimental data (e.g. data on mean concentration
fields in free shear flows). These data are not reviewed here. A more stringent test of
the hypothesis is given in §5.3.

It should be appreciated that the diffusivity-independence hypothesis, especially
with Γ = 0, applies only to the conditional mean 〈φ|V 〉. Other statistics, the scalar
variance and PDF in particular, have qualitatively different behaviours for Γ = 0
and Γ > 0.

5.2. Implications for the conditional Laplacian

With respect to the development in previous sections, the implication of the hypothesis
is that (subject to the specified conditions) g(V ; x, t) for a diffusive scalar (Γ > 0)
is identical to h(V , x; t) for fluid particles (Γ = 0), and consequently that these
two quantities evolve in the same way. A comparison of the evolution equation for
g (A 3) with that for h ((A 10) with Γ = 0) shows that there is a term-by-term
correspondence, except for the term fu〈Γ∇2φ|V 〉 in (A 3). An implication of the
hypothesis is, therefore, that this term vanishes at high Reynolds and Péclet number.
More precisely,

lim
Re,Pe→∞

{
L

ûφ̂
〈Γ∇2φ|V 〉

}
= 0, (19)

where the conditional Laplacian is normalized by the characteristic r.m.s. velocity û,

scalar φ̂, and integral length scale L.
The normalized conditional Laplacian in (19) can be re-expressed as

L

ûφ̂
〈Γ∇2φ|V 〉 =

{
L/û

φ̂2/〈Γ∇φ · ∇φ〉

}
φ̂〈∇2φ|V 〉
〈∇φ · ∇φ〉 . (20)

The term in braces is the ratio of the mechanical time scale L/û to the scalar
dissipation time scale. This quantity is of order one in the limit considered, so that
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(19) can be rewritten

lim
Re,Pe→∞

{
φ̂〈∇2φ|V 〉
〈∇φ · ∇φ〉

}
= 0. (21)

(In the term-by-term correspondence between (A 3) and (A 10), the terms 〈φF |V 〉
and 〈θF |V 〉 correspond. However, the argument above leading to (19) is weakened by
the fact that there is no proof of the equality of these two conditional expectations,
i.e. 〈φF |V 〉 for Γ > 0 and 〈θF |V 〉 for Γ = 0.)

5.3. Evidence from direct numerical simulations

Overholt & Pope (1996) performed direct numerical simulations (DNS) of a con-
served passive scalar (Sc = 0.7) with an imposed uniform mean scalar gradient in
homogeneous isotropic turbulence (with 〈U〉 = 0). Their measurements of 〈∇2φ|V , ψ〉
are used to test (21).

Two observations from the DNS are that both 〈φ|V 〉 and 〈∇2φ|V , ψ〉 are very well
approximated as linear functions of V and ψ. (Here V is the sample-space variable
corresponding to the component of velocity U in the direction of the mean scalar
gradient.) Specifically

〈φ|V 〉 = 〈φ〉+
φ̂

û
ρuφV , (22)

and

φ̂〈∇2φ|V , ψ〉
〈∇φ · ∇φ〉 = r

V

û
− (1 + rρuφ)

(ψ − 〈φ〉)
φ̂

, (23)

where û and φ̂ are the standard deviations of U and φ, ρuφ is the correlation coefficient

ρuφ =
〈uφ′〉
ûφ̂

, (24)

and the non-dimensional parameter r is determined from the DNS data.
These equations can be manipulated to yield

φ̂〈∇2φ|V , ψ〉
〈∇φ · ∇φ〉 =

1

1− ρ2
uφ(1− ζ)

{
ζ〈φ〉+ [1− ζ]〈φ|V 〉 − ψ

φ̂

}
, (25)

where

ζ = 1− r

ρuφ(1 + rρuφ)
. (26)

And from (25) we obtain

φ̂〈∇2φ|V 〉
〈∇φ · ∇φ〉 =

ζ

1− ρ2
uφ(1− ζ)

{
〈φ〉 − 〈φ|V 〉

φ̂

}
. (27)

It is evident from (21) and (27) that the DNS data are consistent with the hypothesis
providing that

lim
Re,Pe→∞

ζ = 0. (28)

Figure 1 shows the value of ζ obtained from the DNS as a function of the Taylor-scale
Reynolds number Rλ. There is every indication that indeed ζ tends to zero, in accord
with the hypothesis.

It would, of course, be valuable to assess the accuracy of the linear estimations
((22) and (23)) and of the value of ζ in other flows and at higher Reynolds numbers.
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Figure 1. The quantity ζ appearing in (25)–(28) as a function of the Taylor-scale Reynolds
number Rλ. From the direct numerical simulations of Overholt & Pope (1996).

5.4. Scalar-flux, dissipation and local isotropy

The equation for the scalar flux 〈Uφ〉 (A 6) contains a dissipation term of the form

εuφ ≡ (ν + Γ )〈∇φ · ∇u〉. (29)

A further deduction from the linear model (25) is

φ̂

û

〈∇φ · ∇u〉
〈∇φ · ∇φ〉 =

−ζρuφ
1− ρ2

uφ[1− ζ]
. (30)

Thus, at high Reynolds and Péclet number, as ζ tends to zero, so also does the
scalar-flux dissipation εuφ. This is confirmed directly by the DNS data of Overholt &
Pope (1996).

At high Reynolds number, if the velocity and scalar fields are locally isotropic,
then 〈∇φ · ∇U〉 is zero. For this reason, εuφ is generally assumed to be zero at high
Reynolds number. Notice that the assumption of local isotropy together with the
assumption that 〈∇2φ|V 〉 is linear in V implies that 〈∇2φ|V 〉 is zero. But by itself,
local isotropy does not imply that 〈∇2φ|V 〉 is zero.

In recent years, the local isotropy of scalar fields at high Reynolds number has
been called in question (e.g. Sreenivasan 1991). The clearest departure from local
isotropy is the persistence of the scalar derivative skewness in isotropic turbulence
with an imposed mean scalar gradient (e.g. Tong & Warhaft 1994; Overholt & Pope
1996). Consequently, it would be valuable to test (in high-Reynolds-number flows) the
diffusivity-independence hypothesis, and its implication that the correlation coefficient
between ∇φ and ∇u tends to zero.

6. Implications for stochastic models
The position, velocity and scalar value of a fluid particle are denoted by X+(t),U+(t)

and φ+(t) ≡ φ(X+[t], t). We now introduce stochastic models for these quantities,
denoted by X ∗(t),U ∗(t) and φ∗(t). If the models were perfect, then the joint statistics
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of X ∗,U ∗ and φ∗ would be identical to those of X+,U+ and φ+. The purpose of this
section is to deduce the implications for these models of the hypothesis of diffusivity
independence (which applies at high Reynolds and Péclet number).

By definition of a fluid particle, the position X ∗(t) evolves by

dX∗i (t) = U∗i (t) dt. (31)

For the velocity U ∗(t) and scalar φ∗(t), the models considered are reasonably general
diffusion processes:

dU∗i (t) = Ai(U
∗[t],X ∗[t], t) dt+ Bij(U

∗[t],X ∗[t], t) dWj, (32)

and

dφ∗(t) = a(U ∗[t], φ∗[t],X ∗[t], t) dt+ b(U ∗[t], φ∗[t],X ∗[t], t) dW ′, (33)

where W (t) and W ′(t) are independent Wiener processes. For the scalar φ∗, the drift
coefficient a and the diffusion coefficient b are completely general. But, because the
scalar is passive, in the velocity equation it would be inappropriate to allow the drift
coefficient Ai or the diffusion coefficient Bij to depend on φ∗.

These general models are analysed below. But, to fix ideas, we mention that the
simplest model for U ∗(t) is the simplified Langevin model (SLM) (Haworth & Pope
1986; Pope 1994); and the simplest model for φ∗(t) is the IEM or LMSE model
(Villermaux & Devillon 1972; Dopazo & O’Brien 1974). The IEM (interaction by
exchange with the mean) model is

dφ∗(t) = −Ω(X ∗[t], t)(φ∗(t)− 〈φ∗(t)|X ∗(t)〉) dt, (34)

where Ω(x, t) is a specified mixing frequency, and 〈φ∗(t)|X ∗(t)〉 is the model equivalent
of the mean 〈φ(x, t)〉 evaluated at the particle location.

From the stochastic model equations, (31)–(33), it is straightforward to derive model
evolution equations for a variety of statistics: this is done in the Appendix. For each
statistic defined above (e.g. f, g, h) the corresponding model statistics are indicated
by an asterisk (e.g. f∗, g∗, h∗).

According to the hypothesis of diffusivity independence, at high Reynolds and
Péclet number, g and h are equal. The stochastic models are consistent with this limit
if, and only if, the evolution equations for g∗ and h∗ are equivalent. It is shown in the
Appendix that these equations are indeed equivalent if, and only if, the conditional
mean drift of φ∗(t) is zero, i.e.

〈a∗|V , x〉 ≡ 〈a(U ∗[t], φ∗[t],X ∗[t], t)|U ∗[t] = V ,X ∗[t] = x〉 = 0. (35)

A consistent model therefore satisfies the condition 〈a∗|V , x〉 = 0 in the high-
Reynolds-number limit. (Note that there is no condition imposed on the diffusion
coefficient b.)

Most mixing models (i.e. specifications of a and b) take no account of the particle
velocity U ∗(t), and therefore in general do not satisfy 〈a∗|V , x〉 = 0. For example, for
the IEM model (34), we have

〈a∗|V , x〉 = −Ω(〈φ∗|V , x〉 − 〈φ∗|x〉). (36)

Only in special cases, e.g. when U ∗ and φ∗ are independent, is 〈a∗|V , x〉 zero.
Mixing models that involve a dependence on velocity have been proposed by Pope

(1985) and Song (1987). Pope (1994) observed that the IEM model is inconsistent
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with local isotropy, whereas the alternative

dφ∗ = −Ω(φ∗ − 〈φ∗|V , x〉) dt, (37)

is consistent. This model can be called IECM – interaction by exchange with the
conditional mean. It is immediately apparent that the IECM model (37) indeed
satisfies 〈a∗|V , x〉 = 0. It can be argued that a mixing model should ideally be local
in physical space, velocity space and composition space (Norris & Pope 1990; Masri,
Subramaniam & Pope 1996). Compared to IEM, the IECM model has the virtue of
being local in velocity space.

Fox (1996) proposed a blend of the IEM and IECM models, namely

dφ∗ = −Ω(φ∗ − ζ〈φ∗|x〉 − [1− ζ]〈φ∗|V , x〉) dt. (38)

It may be observed that this is equivalent to the linear model (25) that accurately
represents the DNS data (since 〈dφ∗/dt|φ∗ = ψ,V , x〉 obtained from (38) is the same
as the right-hand side of (25)). This model is in accord with the independence-of
diffusivity hypothesis provided that ζ tends to zero in the high-Reynolds-number
limit (cf. figure 1).

There are two important observations to make about the modelled equation (A 22)
for the scalar flux 〈U∗j φ∗〉. First, it contains the term 〈U∗j a∗〉 which vanishes if the
condition 〈a∗|V , x〉 = 0 is satisfied. If, on the other hand, a mixing model does not
satisfy 〈a∗|V , x〉 = 0 in the high-Reynolds-number limit, then it induces the spurious
source 〈a∗U ∗|x〉 in the scalar flux equation. For example, in the IEM model, this
source is −Ω〈φ∗U ∗|x〉.

The second observation from (A 22), again if the condition 〈a∗|V , x〉 = 0 is satisfied,
is that of all the stochastic model coefficients – Ai, Bij , a and b – the scalar flux is
affected only by A. As pointed out by Durbin & Shabany (1995), this suggests that
in developing improved stochastic models, A is best determined by reference to high-
Reynolds-number scalar flux data, rather than from Reynolds-stress data. Once A
is determined, then B can be determined by reference to Reynolds-stress data. In
practice, however, much of the available experimental and DNS data are at moderate
Reynolds numbers, at which 〈a∗|V , x〉 is not negligible.

Finally we observe that from a stochastic model for fluid-particle velocity alone
(i.e. given A and B) there follow high-Reynolds-number model equations for the
Reynolds stresses and scalar fluxes that are both realizable and consistent with the
diffusivity-independence hypothesis.

7. Conclusion
Taylor (1921) introduced the fundamental idea that the dispersion of a conserved

passive scalar in turbulent flow is determined by the motion of fluid particles (in-
dependent of the molecular diffusivity). Here, this idea is formalized through the
hypothesis of diffusivity independence, namely: At high Reynolds number and high
Péclet number, the conditional mean scalar field 〈φ(x, t)|U (x, t) = V 〉 is independent
of the magnitude of the molecular diffusivity.

It then follows (subject to the same conditions) that the mean 〈φ〉 and conditional
mean 〈φ|V 〉 of a diffusive scalar are identical to the density 〈θ〉 and conditional
density 〈θ|V 〉 of fluid particles.

From the correspondence between 〈φ|V 〉 and 〈θ|V 〉, it is deduced that the condi-
tional Laplacian 〈Γ∇2φ|V 〉 tends to zero in the high-Reynolds-number limit. Evidence
from DNS supports this deduction (figure 1).
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A consequence for turbulent mixing models (33) is that the conditional mean drift
of the scalar 〈a∗|V , x〉 should vanish at high Reynolds number. The IEM model (34)
is incorrect in this respect, but a variant – IECM (interaction by exchange with the
condition mean, (37)) – is correct.

In the high-Reynolds-number limit, the scalar flux 〈Uφ〉 is determined entirely by
the fluid-particle motion. Stochastic models for fluid-particle properties are consistent
with this observation if, and only if, the condition 〈a∗|V , x〉 = 0 is satisfied. Model
equations for the Reynolds stresses and scalar fluxes can be obtained from a stochas-
tic model for velocity. The model equations thus obtained are consistent with the
hypothesis of diffusivity independence and they guarantee realizability.

The results obtained here can be used to guide the development of improved
stochastic models and turbulence models. It should be appreciated, however, that
most experiments and direct numerical simulations are some way from the high-
Reynolds-number limit at which the present results apply.

This work was supported by the Air Force Office of Scientific Research, Grant
F49620-94-1-0098. I am grateful to Rodney Fox, Alex Klimenko, Laurent Mydlarski
and Zellman Warhaft for valuable comments on this work.

Appendix
A.1. Evolution equation for g(V ; x, t)

The evolution equation for the joint PDF of U (x, t) and φ(x, t), i.e. f(V , ψ; x, t) defined
by (13), is

∂f

∂t
+ Vi

∂f

∂xi
+

∂

∂Vi

{
f

〈
DUi

Dt
|V , ψ

〉}
+

∂

∂ψ

{
f

〈
Dφ

Dt
|V , ψ

〉}
= 0. (A 1)

Here, for any quantity Q(x, t), the mean conditioned on U (x, t) and φ(x, t) is written
〈Q(x, t)|U (x, t) = V , φ(x, t) = ψ〉 and is abbreviated to 〈Q|V , ψ〉. With DU/Dt given
by (2), and Dφ/Dt by (4), the PDF equation becomes

∂f

∂t
+ Vi

∂f

∂xi
+

∂

∂Vi
{f〈Fi|V , ψ〉}+

∂

∂ψ
{fΓ 〈∇2φ|V , ψ〉} = 0. (A 2)

The equation for g(V ; x, t) (defined by (15)) is obtained by multiplying (A 2) by ψ
and integrating over all ψ. The result is

∂g

∂t
+ Vi

∂g

∂xi
+

∂

∂Vi
{fu〈φFi|V 〉} − fuΓ 〈∇2φ|V 〉 = 0. (A 3)

With fu(V ; x, t) being the PDF of U (x, t), and with fφ|u(ψ|V ; x, t) being the PDF of
φ(x, t) conditioned on U (x, t), the manipulations leading to the above equation are,
for example, ∫ ∞

−∞
ψf〈F |V , ψ〉 dψ =

∫ ∞
−∞
fufφ|u〈φF |V , ψ〉 dψ = fu〈φF |V 〉. (A 4)

The evolution equation for the scalar flux

〈Ujφ〉 = 〈Uj〉〈φ〉+ 〈ujφ′〉, (A 5)

can be obtained by multiplying (A 3) by Vj and integrating over all V – or, more
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simply, directly from the equations for U and φ. The result is

∂

∂t
〈Ujφ〉 +

∂

∂xi
〈UiUjφ〉 = −

〈
φ
∂p

∂xj

〉
+ Γ∇2〈Ujφ〉

+ (ν − Γ )
∂

∂xi

〈
φ
∂Uj

∂xi

〉
− (ν + Γ )

〈
∂φ

∂xi

∂Uj

∂xi

〉
. (A 6)

A.2. Evolution equation for h(V , x; t)

Because X+(t) evolves by a diffusion process (8), so also does U+(t). From (9), the
infinitesimal increment in U+(t) is

dU+
i =

(
∂Ui

∂t

)+

dt+

(
∂Ui

∂xj

)+

dX+
j +

1

2

(
∂2Ui

∂xj∂xk

)+

dX+
j dX+

k

= F+
i dt+ (2Γ )1/2

(
∂Ui

∂xj

)+

dWj + Γ (∇2Ui)
+ dt, (A 7)

where the superscript + indicates, for example,

F+
i = Fi(X

+[t], t), (A 8)

and (2) and (8) have been invoked. Even though the velocity field U (x, t) is smooth and
differentiable, U+(t) inherits from X+(t) randomness and a lack of differentiability.

The evolution equation for h(V , x; t) is obtained from its definition and from the
SDE’s for X+(t) and U+(t). In this derivation, the following manipulation (similar to
18) is used:

〈Q+(t)δ(X+[t]− x)δ(U+[t]− V )〉 = 〈Q(x, t)〈δ(X+[t]− x)〉Iδ(U (x, t)− V )〉

= 〈Q(x, t)θ(x, t)δ(U (x, t)− V )〉

= 〈Qθ|V 〉fu. (A 9)

The equation thus obtained is

∂h

∂t
+ Vi

∂h

∂xi
+

∂

∂Vi
{fu〈θFi + Γθ∇2Ui|V 〉} = Γ∇2h

+ 2Γ
∂2

∂Vi∂xk

{
fu

〈
θ
∂Ui

∂xk
|V
〉}

+ Γ
∂2

∂Vi∂Vj

{
fu

〈
θ
∂Ui

∂xk

∂Uj

∂xk
|V
〉}

. (A 10)

By multiplying the above equation by Vj and integrating over all V we obtain the
equation for the particle convective flux 〈Ujθ〉:

∂

∂t
〈Ujθ〉+

∂

∂xi
〈UiUjθ〉 − 〈θFj〉 − Γ 〈θ∇2Uj〉 = Γ∇2〈Ujθ〉 − 2Γ

∂

∂xk
〈θ∂Uj

∂xk
〉, (A 11)

which can be re-expressed as

∂

∂t
〈Ujθ〉 +

∂

∂xi
〈UiUjθ〉 = −

〈
θ
∂p

∂xj

〉
+ Γ∇2〈Ujθ〉

+ (ν − Γ )
∂

∂xi

〈
θ
∂Uj

∂xi

〉
− (ν + Γ )

〈
∂θ

∂xi

∂Uj

∂xi

〉
. (A 12)
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Indeed, (A 10) for h can be put into the identical form to (A 3) for g by using the
following identity which stems from the definition of h (17):

∇2h = fu〈∇2θ
∣∣ V 〉+

∂

∂Vj
{fu〈θ∇2Uj

∣∣ V 〉}
− 2

∂2

∂xi∂Vj

{
fu

〈
θ
∂Uj

∂xi

∣∣ V〉}− ∂2

∂Vj∂Vk

{
fu

〈
θ
∂Uj

∂xi

∂Uk

∂xi

∣∣ V〉} . (A 13)

It may be observed that this equation for 〈Ujθ〉 is identical to that for 〈Ujφ〉, (A 6).

A.3. Evolution equations from stochastic models

The model quantity corresponding to the joint PDF f(V , ψ; x, t) is the joint PDF of
U ∗(t) and φ∗(t) conditional upon X ∗(t) = x, which is denoted by f∗(V , ψ|x; t).

The evolution equation for f∗ obtained from the given stochastic models (31)–(33)
is

∂f∗

∂t
+ Vi

∂f∗

∂xi
+

∂

∂Vi
{f∗Ai(V , x, t)} +

∂

∂ψ
{f∗a(V , ψ, x, t)}

=
1

2

∂2

∂Vi∂Vj
{f∗BikBjk}+

1

2

∂2

∂ψ2
{f∗b2} (A 14)

(where the arguments of B and b are the same as those of A and a, respectively).
The joint PDF of velocity, f∗u(V |x; t), and the quantity g∗(V |x; t) are defined in

obvious ways:

f∗u(V |x; t) =

∫ ∞
−∞
f∗(V , ψ|x; t) dψ, (A 15)

and

g∗(V |x; t) =

∫ ∞
−∞
ψf∗(V , ψ|x; t) dψ

= f∗u(V |x; t)〈φ∗(t)|U ∗(t) = V ,X ∗(t) = x〉. (A 16)

The evolution equation for g∗ is obtained by multiplying (A 14) by ψ and integrating:

∂g∗

∂t
+ Vi

∂g∗

∂xi
+

∂

∂Vi
{g∗Ai(V , x, t)} − f∗u〈a∗|V , x〉 =

1

2

∂2

∂Vi∂Vj
{g∗BikBjk}. (A 17)

In this derivation, the last term on the right-hand side arises as∫ ∞
−∞
f∗(V , ψ|x; t)a(V , ψ, x, t) dψ, (A 18)

and from the definition of conditional expectations it can be re-expressed as

f∗u(V |x; t)〈a(V , φ∗(t), x, t)|U ∗(t) = V ,X ∗(t) = x〉. (A 19)

For brevity, this is written f∗u〈a∗|V , x〉, and 〈a∗|V , x〉 is referred to as ‘the conditional
mean drift of φ∗’.

The evolution equation for h∗(V , x, t) is derived from its definition

h∗(V , x, t) ≡ 〈δ(X ∗(t)− x)δ(U ∗(t)− V )〉, (A 20)

(cf. (17)), and from the stochastic model equations, (31) and (32). The equation for h∗

thus obtained is identical to that for g∗ (A 17) except for the omission of the term in
〈a∗|V , x〉.
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The model quantity corresponding to the scalar flux 〈Uφ〉 is

〈U ∗(t)φ∗(t)|X ∗(t) = x〉 =

∫ ∞
−∞

∫
Vψf∗(V , ψ|x; t) dV dψ, (A 21)

which is abbreviated to 〈U ∗φ∗〉. From (A 14), the model equation obtained for 〈U∗j φ∗〉
is

∂

∂t
〈U∗j φ∗〉+

∂

∂xi
〈U∗i U∗j φ∗〉 = 〈φ∗A∗j 〉+ 〈U∗j a∗〉, (A 22)

where a∗ is written for a(U ∗[t], φ∗[t],X ∗[t], t), and similarly for A∗.
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