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A discussion of the applicability of an effective-viscosity approach to turbulent 
flow suggests that there are flow situations where the approach is valid andyet 
present hypotheses fail. The general form of an effective-viscosity formulation 
is shown to be a finite tensor polynomial. For two-dimensional flows, the co- 
efficients of this polynomial are evaluated from the modelled Reynolds-stress 
equations of Launder, Reece & Rodi (1975). The advantage of the proposed 
effective-viscosity formulation, equation (4.3), over isotropic-viscosity hypoth- 
eses is that the whole velocity-gradient tensor affects the predicted Reynolds 
stresses. Two notable consequences of this are that (i) the complete Reynolds- 
stress tensor is realistically modelled and (ii) the influence of streamline curvature 
on the Reynolds stresses is incorporated. 

1. Introduction 
An effective-viscosity hypothesis relates the Reynolds stresses solely to the 

rates of strain of the fluid and to scalar quantities. The validity of such a hypo- 
thesis depends upon two conditions: first, the flow must be such that the 
Reynolds stresses are solely a function of those quantities considered and, second, 
the predicted Reynolds stresses must reflect experimental observations. Clearly, 
if the first condition is satisfied, then an effective-viscosity hypothesis exists 
that will satisfy the second. The object of this work is to obtain a more realistic 
effective-viscosity hypothesis than those currently employed. 

The f i s t  effective-viscosity hypothesis was proposed by Boussinesq (1877) : 

(where Ul,z is the only non-zero (mean) velocity gradient and peff is the effective 
viscosity). This formula has been used with considerable success by, among 
others, Ng (1971) for wall boundary layers and by Rodi (1972) for free shear 
flows. However, Bradshaw (1  973) has observed that the Boussinesq hypothesis 
fails for boundary layers over curved surfaces and inferred that this failure is 
due to the form of the stress-strain relation rather than to the inapplicability of 
an effective-viscosity approach. 

For flows in which more than one Reynolds stress is needed to close the mean 
momentum equations, the Boussinesq hypothesis may be generalized to give the 
isotropic-viscosity assumption 
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where k is the turbulence kinetic energy. While (1.2) has been used, with success, 
in recirculating flows (e.g. Runchal & Spalding 1971), it cannot be held to repre- 
sent the Reynolds-stress tensor. For example, in nearly homogeneous shear flow 
(where, as will be shown in the next section, an effective-viscosity approach is 
valid) Champagne, Harris & Corrsin (1970) measured 

all = 0.3, cc22 = -0.18, a33 = -0.12, aI2 = 0-33, 

where aij = uiuj/ZC - $aij, 
whereas, at best, (1.2) will predict 

Thus the mechanism that causes the inequality of the normal stresses cannot be 
accounted for with an isotropic-viscosity hypothesis. However, it  was argued 
above that, in a situation where an effective-viscosity approach is valid, there is 
an effective-viscosity hypothesis that will predict the Reynolds stresses correctly. 

The failure of isotropic viscosity hypotheses to give correct predictions of 
many flow situations is due either to inapplicability of an effective-viscosity 
approach or to inadequacy of the isotropic-viscosity hypotheses. By formulating 
an improved effective-viscosity hypothesis, it  is the object of this work to 
remove the latter cause of failure. 

The approach adopted in the next two sections, that of formulating a con- 
stitutive relation for the Reynolds stresses, is similar to that employed by Lumley 
(1970). First the quantities to be included in the constitutive relation are deter- 
mined and then it is shown that the relation between these quantities may be 
expressed as a finite tensor polynomial to form the general effective-viscosity 
hypothesis. In  forming the tensor polynomial Lumley (1970) made illicit use 
of the alternating tensor density and so the result and some of the conclusions 
based upon it were incorrect. 

- 

a,, = a22 = a,, = 0, aI2 = 0.33. 

2. The effective-viscosity approach 
The basic assumption of an effective-viscosity hypothesis is that the Reynolds 

stresses are uniquely related to the rates of strain and local scalar quantities. 
As this assumption is not valid for all flows, it is necessary to define the restricted 
class of flows for which it is valid. In  addition, in order to  effect closure, the 
number of scalar quantities that need be considered must be limited. 

An effective-viscosity assumption implies that the stresses are determined 
locally whereas the exact Reynolds-stress equations show that they may be 
convected by both the mean and fluctuating velocities. For an effective-viscosity 
assumption to be valid, these transport terms must be negligible. It is readily 
seen, from the transport equations, that the triple correlation (which accounts 
for turbulent convection) will be zero only when the Reynolds stresses and con- 
sequcntiy the rates of strain are homogeneous. Thus homogeneity of the rates 
of’ strain is a necessary condition for the effective-viscosity approach to  be valid. 

Lumley (1970) shows that the mean velocity field and boundary values of the 
fluctuating velocity are sufficient to determine the Reynolds stresses and assumes 
that, far from boundaries, the boundary conditions serve at most to set the 
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levels of the time and length scales. With this assumption it follows that in a 
homogeneous flow (where the rates of strain contain all the information about 
the velocity field) the Reynolds stresses are a function of the rates of strain and 
scaling parameters only. 

On dimensional grounds, at least two scaling parameters are needed to relate 
the Reynolds stresses to the rates of strain. These two scales may be chosen as a 
velocity scale v and a time scale r;  v2 provides the dimensions of stress and r 
may be used to non-dimensionalize the rate of strain. Two scaling parameters 
that may be derived from the mean velocity field are 

0, = (qq)$, 7, = (7&qp. 
However v, may not be chosen as the velocity scale because, although U, changes 
under a Galilean transformation, does not. Also since the macro time scale 
of turbulence, defined by rt = k/e ,  

where 6 is the turbulence dissipation rate, has been found to be independent of 
r, in simple shear flows (Lumley 1970), the two scaling parameters must be 
independent of the mean velocity field. Two scaling parameters are sufficient 
provided that all macroscales of turbulence are proportional; this assumption 
can be justified only at  high Reynolds numbers, when any influence of the 
laminar viscosity may be excluded. Various authors’ proposals for the two 
scaling parameters are given in Launder & Spalding (1972, p. 95). A convenient 
choice, and the one employed below, is that of k and E .  The fact that rt and r, 
are independent in any real flow situation means that the flow cannot be homo- 
geneous and consequently some transport of Reynolds stresses occurs. However, 
in nearly homogeneous flows, where local effects dominate transport effects, 
an effectivo-viscosity hypothesis may provide an adequate representation of the 
Reynolds stresses. 

The restrictions, assumptions and conclusions of the above argument may be 
stated thus: for a high Reynolds number nearly homogeneous flow, the Reynolds 
stresses are uniquely related to the rates of strain and two independent scaling 
parameters, provided that all macroscales are proportional and that the boundary 
conditions affect only the scaling parameters. 

3. The general effective-viscosity hypothesis 
In $2, physical arguments were employed to limit the number of quantities 

needed to determine the Reynolds stresses. In  this section, by applying dimen- 
sional analysis, imposing invariance under co-ordinate transformation and 
exploiting the tensor properties of q, and w, the form of the general stress- 
strain relation will be deduced. 

The two scaling parameters k and e may be used to normalize the Reynolds 
stresses and the rates of strain as follows: 

aii = ”i”j/k - #aij, 
S i j  = S ( W  (Q, j + q,d, 

(3.1) 

(3.2) 
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a and s are non-dimensional symmetric tensors with zero trace (sii = 0 owing to 
incompressibility) and w is non-dimensional and antisymmetric. The task of 
determining uiuj is equivalent to that of determining aij and, on dimensional 
grounds, sij and wi j  contain all the information given by I%, E and qlj. Thus 

- 

a,. 13 = a . . (s ,w) .  23 (3.4) 

In  continuum mechanics the assumption of material difference is frequently 
made in order to remove the dependence of a upon o, however, as indicated 
by Lumley (1970), such an assumption is unfounded in the present context. 
For simplicity the following abbreviated notation will be introduced: 

sw = sikwki, so sw = sikwklslmwmj, etc., 

s2 = sikskj, (92) = sikski, etc., I = &. 
(This is equivalent to considering the matrices associated with the tensors.) 

The most general expression for (3.4) is an infinite tensor polynomial: 

where the coefficients C may be functions of the invariants {sai 

Fortunately, owing to the Cayley-Hamilton theorem, the number of inde- 
pendent invariants and linearly independent second-order tensors that may be 
formed from s and o is finite. This means that the infinite polynomial (3.5) may 
be expressed as a finite polynomial and that the coefficients G are functions of 
a finite number of invariants. Since a is symmetric and has zero trace, only 
independent tensors with these properties need be considered. 

For flows in which the velocity and the variation of mean quantities in one 
co-ordinate direction are zero, s and w may be taken as two-dimensional tensors. 
As the number of linearly independent tensors and invariants in two dimensions 
is significantly less than in the general case, the two- and three-dimensional 
forms are treated separately. 

The independent tensors and invariants are determined in appendix A. For 
two-dimensional flows there are only three linearly independent tensors T which 
are symmetric and have zero trace: 

SQZ w k .  .}. 

To = + I 8  - $I2,? T1 = S, T2 =z sw - US. 
There are two non-zero independent invariants : 

In the general three-dimensional case there are ten tensors and five invariants: 

TI= S, T2 = sw -US, 

T3 = s2 - +I(s'), T4 = w2 - $I{w~}>, 
T5 = u s 2  - S ~ O ,  

T' = WSCO'- O'SO, 

T9 = 0 . 9 5 ~  +- S'CO' - ~ I ( S ~ W ~ > ,  

T6 = 0% + SW' - $l{sw2), 
T*= S O S ~ - S ~ O S ,  

TIO = C O S ~ C O ~  - w2s2w 

t I, and I, are the Kronecker deltas appropriate to two and three dimensions respec- 
tively. The propriety of the use of 1, is verified in appendix A. 
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and {s2>, {@, {s3>, {WZS), (02s2) .  

The infinite tensor polynomial (3.5) may now be expressed in the closed form 

a = GATA (3.6) 
A 

(0  6 h 6 2 in two dimensions; I < h < I0 in three), or reverting to the unnor- 
malized Reynolds stress, the general expression for any (tensor invariant) 
effective-viscosity hypothesis is 

(3.7) 
- 
u U ~ U ~  = $kSij + k 2 CAT;-. 

A 

The significance of (3.6) is that the Reynolds stresses are known functions of a 
finite number of known tensors and the same number of unknown scalars. The 
unknown scalars are in turn functions of a finite number of known invariants, 
For example, the task of formulating an effective-viscosity hypothesis for two- 
dimensional flows has been reduced to that of determining three scalars which 
may be functions of only two invariants. 

4. Proposed effective-viscosity hypothesis 
In  order to complete the effective-viscosity hypothesis, the unknown functions 

G appearing in (3.6) must be determined. This will be done for two-dimensional 
flows by relating the general effective-viscosity hypothesis t o  the modelled 
Reynolds-stress equation of Launder et d. (1975). 

In  order to reduce this equation to one solely in terms of Reynolds stresses 
and velocity gradients it is necessary to model the transport resulting from small 
departures from homogeneity. This is done through the algebraic stress model 
suggested by Rodi (1972): 

transport of u4zci M ( F , / k )  (transport of k )  = (viui/k) ( P - e ) ,  (4.1) 
where P is the production rate of turbulence kinetic energy. Applying (4.1) to 
the Reynolds-stress equation of Launder et al. (1975) gives 

- - 

("i./k) ( P  - 6) = - q, k - U i i k  q& - $€aij - C,(E/k) (Ti& - $kSij) - 
+&C2+8) (- U j , k + ~ p k  ?&+$P&,) 
- &( 300,- 2) k ( q , j  + q,i) 
+A( gc, - 2) (w Uk,j + uj~,q Uk,,i + $PSij), 

- 
or, in the present notation, 

a = -g[b,s+b2(as+sa-21,{as))-b,(ao-wa)], ( 4 4  

where b, = A, b, = gi(5--9C2), b, = &(7C2+1), g = (C,+P/e-l)-1. 

C, and C, are constants appearing in the modelled Reynolds-stress equation, for 
which values of 1.5 and 0.4, respectively, were suggested. 

Equation (4.2), which is a set of simultaneous equations, may be expressed 
as an explicit relation of the form of (3.6) (see appendix B): 

a = -2C,[s+gb,(so-os)+gb2{s2)(gI , -  12)], (4.3) 

(4.4) cp = @,g( 1 - 2 { 0  2 } b2 3g 2 - gb;g2{S2}) -?  where 
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The proposed effective-viscosity hypothesis (4.3) is of the form of (3.6) with 

GO = 4Cll gb2{s2}, G1 = - 2Cp, G2 = -2Cpgb,. 

The Reynolds-stress equation of Launder et al. (1975), the algebraic stress model 
and the proposed effective-viscosity hypothesis will all predict the same Reynolds 
stresses provided that the transport is well modelled by (4.1). 

For practical purposes (4.3) may be simplified. If the Reynolds stresses are 
only required to effect closure in the mean momentum equations and to  calcu- 
late the production rate of kinetic energy, then only the part of wj 
that is anisotropic in the plane normal to the direction of homogeneity need be 
specified. Reverting to standard notation, (4.3) may be written as 

A solution of the mean momentum equations using ui"i as given by (4.3) or 
as given by (4.5) will produce identical results. Equation (4.5) differs 

from an isotropic-viscosity hypothesis only by the inclusion of the last tepm. 

5. Discussion 
The advantages of the proposed effective-viscosity hypothesis over isotropic- 

viscosity hypotheses may be demonstrated by comparing the values of the 
Reynolds stress predicted by each in a simple flow. For this purpose a flow in 
which U, is the only non-zero component of the mean velocity and x2 the only 
direction of variation is considered below. 

For this flow the general effective-viscosity formulation (3.6) gives 

"1, = -*Go 

"22 = -*Go 

a12 = &W/4 q , z ,  

- 8GZ[(k/4 U1,2l2) 

+ -kG2"k/d U1,2I2> 

a33 = $Go, 

a,, = a2, = 0. 

It may be seen that G1 does not influence the normal stresses and that GO 
and G2 do not influence the shear stress. A finite value of G2 causes a,, and aZ2 
to  differ and Go enables a,, to depart from zero. Clearly, if Go and G2 are set to 
zero, as is the case in an isotropic-viscosity hypothesis, then the observed dif- 
ferences between the normal stresses cannot be predicted. This inherent deficiency 
in isotropic-viscosity hypotheses suggests that they will provide an inadequate 
closure for more complex flows, where more than one component of the Reynolds 
stress is required to close the mean momentum equations. 

The choice of G1, and consequently C., is of paramount importance as it 
dictates the predicted shear-stress level. Figure 1 shows the variation of C,, 
given by (4.4)) as a function of (r and Q, where d = (i{s2})* and s1 = ( - &{w2))*. 
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FIQURE 1. Variation of Cp with u and a. 

This variation of CF may be compared with previous suggestions: 

Prandtl-Kolmogorov C, = constant, 

Bradshaw, Ferriss & Atwell (1967)T C, cc rl, 
Rodi (1972) c, = q p / +  

While the two latter expressions are in accord with the present proposal in that 
they predict a decrease in Cp with increasing r ,  none of the above expressions 
allows for any dependence of Cp upon the rotation invariant Q. This omission is 
tantamount to assuming that the Reynolds stresses are materially indifferent; 
that is, to assuming that the Reynolds stresses are unaffected by solid-body 
rotations. The use of this unfounded assumption is most likely responsible for 
the short-comings of these isotropic-viscosity hypotheses in predicting flows 
with streamline curvature. 

While the proposed effective-viscosity hypothesis has advantages over iso- 
tropic hypotheses, its predictions are identical to those of the algebraic stress 
model and it has the disadvantage of being restricted to two-dimensional flows. 
(The three-dimensional form is so intractable as to be of no value.) However the 
solution of the mean momentum equations expressed in terms of the effective- 
viscosity formula offers two advantages over the use of the algebraic stress 
relation. First, the inter-relation between strain and stress is retained within the 
differential equation, thus increasing numerical stability, and second, the time- 
consuming solution of the algebraic stress (simultaneous) equations is not needed. 

A solution procedure based on an isotropic-viscosity hypothesis may use the 
proposed formulation simply by evaluating C, through (4.4) and including the 
additional term in (4.5). 

f a cc s/a may be considered as a tensor-invariant expression of Bradshaw’s hypothesis 
alz = constant. 

22 F L M  72 
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Appendix A 
Tensor functions in two dimensions 

Consider three arbitrary two-dimensional second-order tensors a, b and C. The 
Cayley-Hamilton theorem states that 

c2 = c{c}-~12({c}2-{c~)). (A 1) 

(A 2)  

(A 3) 

Substituting c = a+ b into (A 1) gives 

ab+ ba = a{b}+ b{a}- 12({a}{b}-{ab}) 

bab = &(a- I,{a}) ({b},- {b2}) + b{ab}. 

and post multiplying (A 2) by b 

Provided that the transposes of a and b may be expressed as linear functions 
of a and b, a general polynomial term in a and b is given by 

P = aal bpi a% bh.. .aan bPm, (A 4) 

where ai and pi may take any positive integer value. Define the extension of P as 
n + m and the partial orders of Pin a and b to be max ai and max pi respectively. 

If the partial order of P is greater than one, it may be reduced to a sum of 
polynomials of partial order one by repeated substitution of (A 1). If the exten- 
sion of these polynomials is greater than two they may be reduced to a sum of 
polynomials of extension less than twoby repeated application of (A 3). Of the two 
possible tensor functions of extension two (ab and ba) only one is independent 
owing to (A 2). Thus the independent tensor functions are I , ,  a, b and ab (or ba). 

Independent invariants of two second-order tensors in two dimensions 

Any invariant may be formed by taking the trace of the general polynomial 
expression P. If P may be reduced to polynomials of lesser partial order and 
extension, then {P} will be given by the trace of the reduced polynomials. Thus 
the independent invariants may be taken as the traces of all the linearly indepen- 
dent tensors and the invariants required to reduce the general polynomial, i.c. 
{a>, {b}, {ab), {aZ} and {b2}. 

Application to the present situation 

Section 3 requires the determination of all the independent tensor functions that 
are symmetric and have zero trace and the independent invariants that may be 
formed from s and w. s is symmetric and has zero trace, o is antisymmetric. 

In general the tensor functions will be I,, s, w and sw. From these, only two 
tensor functions may be formed that are symmetric and have zero trace, viz. 
5 and 50-ws. However, although the velocity field is two-dimensional, the 
Reynolds-stress tensor is not. The tensor functions must therefore be expressed 
as three-dimensional tensors, and the three-dimensional Kronecker delta I, 
must be included. This Ieads to the further tensor function $I3- &I2. Thus the 
complete sel; is +I3 - $I , ,  s and sw -0s. 

Of the five possible independent invariants, only two are non-zero: {s2} and 
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(0,). Possible doubts concerning the practice of mixing two- and three-dimen- 
sional tensors can be dispelled. If, for example, the direction x3 is the one in 
which there is no variation, then 

Clearly I, expressed in three dimensions is not an isotropic tensor in that it may 
change under a Cartesian transformation. However, as a preferential co- 
ordinate system has been chosen, it is sufficient that I, transforms correctly 
within the restrictions of that system. That is, so long as I ,  transforms as an 
isotropic tensor for all transformations in the xl, x, plane, as it does, it is a pro- 
perly defined and behaved quantity. 

Independent tensors a d  invariants in  three dimensions 

The procedure used in two dimensions is also applicable to three dimensions. 
The procedure is reported by Spencer & Rivlin (1959, 1960) and the results for 
this situation are quoted in the text. 

Appendix B. Evaluations of the functions G 

possible to define scalar functions H and J as follows: 
Since the tensors T are all linearly independent functions of s and o it is 

TYS + STY - $ l , ( s T ~ }  = I: yHhTh, 

TYW - UTY = C yJ’Th. 

(B 1) 

(B 2) 

h 

h 

Substituting (3.6), (B 1) and (B 2) into (4.2) gives 

As the T’s  are independent, their coefficients on either side of (B 3) may be 

equated; CY = -g(b16,y+b2CGhAHY-b3CG‘hJy). (B 4) 
h h 

Hence, having evaluated H and J with the aid of (A 1)-(A 3), there results a set 
of simultaneous equations for G: 

, Go = 2b,g(s2}G1, 

G1 = - g(bl - ib2Go - 2b3(02}  G’), 
G2 = b3gG1. 

Solving for G and substituting in (3 .6 )  gives 

a = - 2 C p [ s + g b , ( s o - ~ s ) + g b , { s 2 } ( ~ 1 3 -  12)1, 

where cp = Bgb,( 1 - 2g2b;{02} - $b;g2(S2)) -?  

22-2 



340 8. B. Pope 

R E F E R E N C E S  

BOUSSINESQ, T. V. 1877 M8m. pres. Acad. Sci., 3rd edn, Paris XXIII, p. 46. 
BRADSHAW, P. 1973 Effects of streamline curvature on turbulent flow. AGARDograph, 

BRADSHAW, P., FERRISS, D. H. & ATWELL, N. P. 1967 Calculation of boundary-layer 

CHAMPAGNE, F. M., HARRIS, V. G. & CORRSIN, S. 1970 Experiments on nearly homo- 

LAUNDER, B .  E., REECE, G. J. & RODI, W. 1975 Progress in the development of a 

LAUNDER, B. E. & SPALDING, D. B. 1972 Mathematical Models of Turbulence. Academic. 
LUMLEY, J. L. 1970 Towards a turbulent constitutive relation. J .  Fluid Mech. 4f, 413- 

434. 
NG, K. H. 1971 Predictions of turbulent boundary-layer developments using a two- 

equation model of turbulence. Ph.D. thesis, University of London. 
SPENCER, A. J. M. & RIVLIN, R. S. 1959 The theory of matrix polynomials and its appli- 

cation to the mechanics of isotropic continua. Arch. Rat. Mech. Anal. 2, 309-336. 
SPENCER, A. J. M. & RIVLIN, R. S. 1960 Further results in the theory of matrix poly- 

nomials. Arch. Rat. Mech. A n d .  4, 214-230. 
RODI, W. 1972 The prediction of free turbulent boundary layers by use of a two-equation 

model of turbulence. Ph.D. thesis, University of London. (See also Imperial College, 
Mech. Engng Dept. Rep. HTS/72/24.) 

RUNCHAL, A. K. & SPALDINU, D. B., 1971 Steady turbulent flow and heat transfer down- 
stream of a sudden enlargement in a pipe of circular cross-section. Imperial College, 
Mech. Engng Dept. Rep. EF/TN/A/39. 

no. 169. 

development using the turbulent energy equation. J .  Fluid Mech. 28, 593-616. 

geneous turbulent shear flow. J .  .Fluid Mech. 41, 81-139. 

Reynolds-stress turbulence closure. J .  Fluid Mech. 68, 537-566. 


