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An alternative foundation is developed for the large-eddy simulation (LES) of
turbulent flows. It is based on ‘self-conditioned fields’, for example, the mean velocity
field conditional on a discrete representation of the filtered velocity field. It is shown
that the self-conditioned velocity field minimizes the residual kinetic energy, and that,
with the ideal model, the method yields the correct one-time behaviour as determined
by the Navier–Stokes equations. The approach is extended to the self-conditioned
probability density function (PDF) of compositions. Compared to LES formulations
based on the filtered velocity and the filtered density function, the self-conditioned
field approach has several advantages: for laminar flow, and in the direct-numerical-
simulation limit, the residual fluctuations are zero or exponentially small; full account
is taken of the probability distribution of turbulent fields; there are no commutation
issues; and there are no issues with filtering at walls, where the self-conditioned
velocity is zero. The exact evolution equations for the self-conditioned velocity and
composition PDF are derived. Basic models are presented, and the development of
improved models is discussed.

1. Introduction
Large-eddy simulation (LES) is a well-established approach for the simulation of

turbulent flows (see e.g. Pope 2000; Sagaut 2001; Lesieur, Métais & Comte 2005;
Grinstein, Margolin & Rider 2007). An essential idea in LES is to use a reduced-
order description of the turbulent flow, so that the LES evolution equations remain
computationally tractable even at high Reynolds number, for which case direct
numerical simulation (DNS) is intractable (or at least extremely expensive). There are
many variants of LES, differing in their definition of the reduced-order description,
in the evolution equations solved and in their numerical implementation (see e.g.
Schumann 1975; Rogallo & Moin 1985; Boris et al. 1992; Pope 2001; Bazilevs et al.
2007). Arguably, the dominant approach to the reduced-order description is ‘filtering’,
so that LES evolution equations are solved for the spatially filtered velocity field.

Simply put, the present work offers an alternative to the filtering approach.
LES evolution equations are instead solved for ‘self-conditioned fields’, which are
defined and explored below. The motivation for introducing the self-conditioned field
approach is to overcome some shortcomings and deficiencies of the filtering approach.
(In describing the new approach as LES, the word ‘large’ should not be taken entirely
literally, since (as discussed in § 6.2) the method can represent coherent small-scale
features, such as laminar boundary layers and mixing layers.)

† Email address for correspondence: s.b.pope@cornell.edu
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To develop the ideas involved, we consider the turbulent flow of a fluid of constant
and uniform density, ρ. The velocity field U(x, t) is solenoidal

∂Ui

∂xi

= 0, (1.1)

and satisfies the momentum equation
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where ρτij is the stress tensor, ν is the uniform kinematic viscosity and p(x, t) is the
pressure.

Let W (x, t) denote the velocity field considered in an LES. Then, in nearly all LES
approaches, the evolution equations solved are
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and
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, (1.4)

where ρτ̃ij is an ‘effective’ stress. The differences between LES approaches based on
these fundamental equations are:

(a) how W (x, t) is defined, interpreted and deemed to correspond to U(x, t);
(b) how the effective stress is specified; and
(c) how (approximate) numerical solutions are obtained.

This work focuses on item (a), which has an impact on item (b). We do not consider
item (c), except to discuss (in § 6.2) the spatial resolution necessary for the accurate
numerical solution of (1.3) and (1.4).

1.1. The filtering approach

In the filtering approach, W (x, t) is taken to be the spatially filtered velocity field,
U(x, t), defined by

U(x, t) =

∫
D

U( y, t) G(x, y − x) d y, (1.5)

where integration is over the flow domain D, and G(x, r) is the specified filter function,
satisfying the normalization condition∫

D
G(x, y − x) d y = 1. (1.6)

The residual velocity field is then defined by

U ′(x, t) = U(x, t) − U(x, t). (1.7)

We consider two types of filtering. In ‘spatial filtering’, the filter function is taken
to be positive, G � 0. Among other things, this condition ensures that filtered species
mass fractions and the filtered density function are non-negative. This type of spatial
filtering is generally used for inhomogeneous flows, and examples of positive filters
are the top-hat and Gaussian filters. The characteristic filter width, Δ(x), is defined
by

Δ(x)2 = 4

∫
D

G(x, y − x)| y − x|2 d y. (1.8)
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For homogeneous turbulence, we consider ‘spectral filtering’ in which the filtered
field corresponds to all Fourier modes of wavenumber less than the specified cutoff, κc.
While this sharp spectral filter can be expressed as a spatial filter, the corresponding
filter function, G, has negative portions, and its second moment does not exist. Instead
of (1.8), the characteristic filter width is defined as Δ = π/κc.

In this paper, we primarily consider spatial filtering applied to inhomogeneous
flows. Some of the issues that arise in the spatial filtering approach (i.e. taking
W = U) are as follows:

(i) For a laminar flow, U differs from U by an amount generally of order Δ2; or,
equivalently, the residual velocity U ′ is of order Δ2.

(ii) The same applies to turbulent flows in the DNS limit (which is defined and
examined in § 2).

(iii) In the filtering approach (as usually presented) no account is taken of the
fact that, given a filtered velocity field U(x, t), there is a corresponding probability
distribution of velocity fields U(x, t). Consequently, for a given filtered field U(x, t),
there is a probability distribution of rates of change ∂U(x, t)/∂t .

(iv) At best, the statistics of the LES velocity W correspond to statistics of the
filtered velocity field U (which depend on the non-physical filter function G(x, r)),
whereas it is the statistics of the (unfiltered) velocity field U , which are of fundamental
significance.

(v) For non-uniform filters (e.g. with spatial variation of Δ(x)), the divergence of
U(x, t) is, in general, non-zero. Hence, taking W to be solenoidal (1.3) incurs some
error.

(vi) At points xw on a stationary solid wall, where the no-slip and impermeability
conditions U(xw, t) = 0 apply, the filtered velocity U(xw, t) is non-zero (unless the
support of the filter function G(xw, y − xw) is confined to points on the wall).

1.2. The self-conditioned field approach

The idea of defining LES fields in terms of conditional means is due to Fox (2003).
The present work is a substantial development and expansion of this idea.

Many previous works (e.g. Adrian 1990; Langford & Moser 1999; McComb,
Hunter & Johnston 2001 and references therein) have considered conditional means
of residual quantities (conditional on LES fields), as we do in this paper. Note,
however, that this is different from Fox’s idea (further developed here) of using
conditional means to define the LES fields.

The simplest self-conditioned field approach is now outlined, with a fuller
description provided in §§ 3 and 4. A set of nc conditioning variables
C(t) = {C1(t), C2(t), . . . , Cnc

(t)} is defined, most simply as components of the filtered
velocity at points on a mesh. Thus, in this case, C(t) provides a finite approximation
to the filtered velocity field. Then the self-conditioned velocity field is defined as

W (x, t) ≡ 〈U(x, t) | C(t)〉, (1.9)

i.e. W is the mean over the probability distribution of turbulent velocity fields U(x, t)
for which the conditioning variables are C(t). (This definition is refined below; see
(3.11) and (4.2).)

This construction is illustrated in figures 1 and 2 for a simple one-dimensional
scalar test case described in Appendix A. Figure 1 shows four samples of a random
process U (x) which, by construction, have the same filtered values C at the nc =5
specified mesh points. This simply illustrates that, given the filtered field C at mesh
points, the underlying field U (x) is random with significant variations. The filter used
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Figure 1. Four samples (lines) of a random process U (x) and their filtered values C
(symbols) at nc = 5 mesh points. By construction, the four samples have the same value of C .

is a top hat of width 1/5. Figure 2 shows the corresponding filtered fields U (x), and
the conditional mean field W (x) (conditional on the five filtered values), which is
known exactly in this Gaussian test case. Note that, given C , U (x) is also random
(except at the mesh points), whereas W (x) is non-random and differs from U (x) at
the mesh points.

Returning to the general case, to expand on the description of the conditioning
variables C(t), we consider a mesh with M points (e.g. the mesh used in the numerical
solution of the LES equations), and hence there are nc =3M conditioning variables,
corresponding to the three components of the filtered velocity at each of the mesh
points x(m), m =1, 2, . . . , M . The value of the nth conditioning variable can then
alternatively be expressed as

Cn(t) = UIn
(x(mn), t)

=

∫
D

UIn
( y, t) G(x(mn), y − x(mn)) d y

=

∫
D

Ui( y, t) K
(n)
i ( y) d y, (1.10)

where In = 1, 2 or 3 is the component of velocity, and x(mn) is the mesh point associated
with Cn; and the last line identifies the nth ‘conditioning kernel’ as

K
(n)
i ( y) = δiIn

G(x(mn), y − x(mn)). (1.11)

The field W (x, t) defined by (1.9) is referred to as being ‘self-conditioned’, because
it contains full information about the conditioning variables. That is, (1.9) and (1.10)
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Figure 2. The filtered processes U (x) (solid lines) corresponding to the four sample
processes U (x) in figure 2 and the conditional mean W (x) = 〈U (x) | C〉 (dashed line).

lead to

Cn(t) =

∫
D

Wi( y, t)K (n)
i ( y) d y. (1.12)

In comparison to the issues raised by the filtering approach (enumerated above), the
self-conditioning field approach (i.e. taking W = 〈U |C〉) has the following attributes:

(i) For a laminar flow, 〈U |C〉 is identical to U; or, equivalently, the residual velocity
U ′ ≡ U − 〈U |C〉 is zero.

(ii) In the DNS limit, the residual velocity is exponentially small (as explained and
justified in § 2).

(iii) From its definition, 〈U |C〉 explicitly accounts for the probability distribution
of turbulent velocity fields, and there is a unique rate of change ∂〈U(x, t)|C(t)〉/∂t .

(iv) The mean 〈〈U |C〉〉 is the Reynolds averaged (unfiltered) velocity field 〈U〉.
(This mean is over the distribution of conditioning variables.)

(v) The operations of spatial differentiation and taking the conditional mean
commute, and hence 〈U |C〉, is solenoidal (for an incompressible flow).

(vi) At points xw on a stationary solid wall, 〈U(xw, t)|C(t)〉 is zero.
Furthermore, the specification W (x, t) = 〈U(x, t)|C(t)〉 minimizes the residual

velocity. More precisely, out of all possible specifications of the LES velocity field
W (x, t) based on a knowledge of C(t), the self-conditioned velocity field yields
the smallest residual, U ′(x, t) ≡ U(x, t) − W (x, t), in the sense that the specification
W = 〈U |C〉 minimizes the residual kinetic energy. It is readily shown that the
conditional residual kinetic energy,

1
2
〈|U(x, t) − W (x, t)|2 | C(t) = c〉, (1.13)
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is minimized (for each x, t) by W (x, t) = 〈U(x, t)|C(t)〉, and hence the mean residual
kinetic energy,

kr ≡ 1
2
〈|U − W |2〉 = 1

2
〈〈|U − W |2 | C〉〉, (1.14)

is also minimized by the self-conditioned velocity field.

1.3. Outline

In § 2, we define the DNS limit and substantiate the claims made above concerning
the behaviour of the filtering and self-conditioned field approaches in this limit. In
§ 3, we develop the basic concepts of self-conditioned fields and how they can be used
for turbulent simulations. This development is performed in the phase space of the
velocity field, drawing on the work of Temam (1991), in order to make explicit the
distribution of turbulent velocity fields and related concepts.

In § 4, we describe the method to simulate turbulent flows using the self-conditioned
velocity field, and the relevant equations are derived in Appendix B. The merits of
this approach relative to the filtering approach are further discussed.

In § 5, the approach is extended to consider the self-conditioned probability density
function (PDF) of composition, of particular relevance to reacting flows. Previously,
several LES of reactive flows have been based on the filter density function (FDF)
(Pope 1990; Gao & O’Brien 1993; Colucci et al. 1998; Raman & Pitsch 2007).
Compared to the FDF approach, the self-conditioned PDF approach has similar
advantages to those enumerated above. In particular, in laminar flow and in the
DNS limit, the PDF has zero or exponentially small variance, whereas the FDF
has variance of order Δ2. These considerations are of some significance in turbulent
combustion, where the DNS limit can be approached (given the strong increase of
viscosity and diffusivity with temperature), and the differential diffusion of species
can be influential. The self-conditioned PDF equation is derived in Appendix C.

In § 6, there is a discussion of modelling issues, the spatial resolution required by
the self-conditioned fields, the near-wall behaviour, the use of spectral filtering, the
choice of conditioning variables and various extensions of the approach. Conclusions
are drawn in § 7.

The essential contribution of this paper is to provide a different and advantageous
conceptual basis for LES. Significant new models are not proposed, but the self-
conditioning approach provides simpler, more fundamental limiting behaviours
(especially the DNS limit) that provide guidance and constraints on models.

2. The DNS limit
An important consideration in this work is the ‘DNS limit’, which is now defined

and considered, first for the filtering approach and then for the self-conditioned field
approach.

For a given turbulent flow, let Δ◦(x) be a specified reference filter width (with
0 <Δ◦ < ∞). Then, the DNS limit corresponds to the specification Δ(x) = εΔ◦(x) and
the limit ε → 0. For a simple spatial filter, a Taylor-series analysis of (1.5) shows
that the residual velocity and the residual kinetic energy vary as ε2 in this limit, thus
substantiating the claims made above (items (i) and (ii) in § 1.1).

For spectral filtering the picture is different. We consider LES of homogeneous
isotropic turbulence with a sharp spectral filter, with cutoff wavenumber
κc = π/Δ = π/(εΔ◦). It is well established (see e.g. Pope 2000) that at very high
wavenumber (in the far dissipation range) the energy spectrum function E(κ) decreases
exponentially with wavenumber κ , approximately proportional to κ−5/3 exp(−βκη),
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where η is the Kolmogorov length scale and β ≈ 2 is a constant. It follows that (for
κcη � 1) the residual kinetic energy kr varies with κ in the same way, and hence is
proportional to ε5/3 exp(−γ /ε), where γ ≡ πβη/Δ◦. Thus, in the DNS limit ε → 0,
the residual kinetic energy kr tends to zero much faster than any power of ε; and we
describe it as being ‘exponentially small’.

To examine the DNS limit in the self-conditioned field approach, we consider the
simplest base case, in which the conditioning variables are defined as the filtered
velocities (with filter width Δ◦) at the Mo mesh points (with mesh spacing comparable
to Δ◦). For the DNS limit ε → 0, we require that both the filter width and the mesh
spacing scale with ε: hence the number of conditioning variables increases as ε−3. We
can consider, for example, approaching the limit by successively halving ε (starting
with ε = 1). At each halving of ε, the filter width Δ and the mesh spacing are halved,
and the number of conditioning variables, nc, increases by a factor of 8.

We claim that for the self-conditioned field approach in the DNS limit, the residual
kinetic energy is exponentially small. To provide some evidence for this claim, we
consider homogeneous isotropic turbulence, with the uniform mesh spacing being
equal to the filter width Δ = εΔ◦, and with ε being sufficiently small that Δ is very
small compared to η. The mesh is capable of representing Fourier modes up to the
cutoff wavenumber κc = π/Δ. Consider, first, the hypothetical case of the velocity
field being composed solely of the nc =3M Fourier modes represented on the mesh.
Then, there is a one-to-one correspondence between these nc Fourier modes and the
nc constraints, and so 〈U |C〉 equals U , and the residual velocity is zero. It follows,
then, that for the case of a turbulent velocity field, the residual kinetic energy arises
from Fourier modes of U of wavenumber larger than κc. These high-wavenumber
modes contribute directly to kr , and also indirectly as they affect C(t) and hence
〈U |C〉. However, the energy in the high-wavenumber modes is exponentially small,
and hence so also is kr . While this argument pertains to the simplest case, there
is reason to suppose that the conclusion is true in general, namely, that for the
self-conditioned field approach in the DNS limit, the residual kinetic energy kr is
exponentially small.

3. Formulation in function space
In this section, we develop the necessary concepts by considering a turbulent flow

described by its velocity field u(t) in a function space H, which is the appropriate
phase space of incompressible velocity fields. The conditioning variables C(t) are
defined by a specified mapping from H to the nc-dimensional conditioning space
C. The reduced description considered consists of the self-conditioned velocity field
〈u(t)|C(t) = c〉 and the PDF of C(t), denoted by fc(c; t).

The simulation approach is based on the observation that the same information
(i.e. 〈u(t)|c〉 and fc) can be obtained by solving a deterministic evolution equation for
a self-conditioned velocity field, w(t), from a distribution of initial conditions, w(0).

3.1. The distribution of turbulent velocity fields

The self-conditioned velocity field 〈U(x, t)|C(t)〉 is defined as a conditional mean
over the distribution of turbulent velocity fields. The purpose of this section is to
clarify the nature of this distribution. In practice, turbulent flows are random, because
of the randomness inherent in initial conditions, boundary conditions, material
property variations, etc. For such random flows, we can consider the probability distri-
bution of the velocity field U(x, t). However, this probability distribution is determined
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not only by the sources of randomness but also by the chaotic nature of the solutions
of the Navier–Stokes equations. Arguably, the essence of turbulent flows is more
concerned with the latter. Consequently, in this subsection and the next, we examine
the appropriate distribution for the case in which all randomness is removed. We do so
by drawing on the picture developed by Temam (1991) for the deterministic (chaotic)
solutions to the Navier–Stokes equations for channel flow. (A similar development is
described in Foias et al. 2001.) We then address the general, random case in § 3.3.

We consider the constant-property Navier–Stokes equations applied to the spatially
periodic channel flow. The smooth channel walls are located at y =0 and y = Ly . The
velocity field is periodic in the mean-flow direction, x, and in the spanwise direction,
z, with periods Lx and Lz large compared to Ly . The density ρ, kinematic viscosity ν

and mean pressure gradient d〈p〉/dx are specified. For fixed aspect ratios Lx/Ly and
Lz/Ly , the problem specification involves a single non-dimensional parameter, which
can be taken to be the friction Reynolds number Reτ = (|d〈p〉/dx|L3

y/(8ρν2))1/2. A
non-trivial deterministic initial condition is specified at time t = 0. The solution for the
velocity field at time t , (t � 0) is denoted by u(t), and is an element of the appropriate
function space, H, which is the phase space of incompressible flow fields satisfying
these boundary conditions.

Temam (1991) shows that there is an invariant attractor A in H of finite dimension,
nA, such that, at all large times, u(t) is arbitrarily close to A. The attractor A and
its dimension nA depend solely on Reτ . For sufficiently small Reτ , nA is zero, and
A is the single fixed point corresponding to steady laminar flow. But we consider
sufficiently large Reτ (corresponding to fully turbulent flow) so that nA is large (but
finite) and A is most likely fractal.

We now modify the problem statement by requiring that the initial condition u(0) be
on the attractor. Then, since A is invariant, the solution {u(t), t � 0} is a trajectory
in H, which remains on the nA-dimensional attractor A for all time.

It is assumed that the system is ergodic, so that long time averages converge, and
are independent of the initial condition. A measure μu can then be defined such that,
with δu being a region of the function space H, μu(δu) is the fraction of time that
u(t) spends in δu, i.e. μu is the frequency distribution. The measure μu is non-zero
only on the attractor A, and its integral

∫
H dμu over the entire space is unity.

3.2. Conditioning variables

As described in the Introduction and exemplified by (1.10), we define C to be a set of
nc conditioning variables. In general, we consider nc to be small compared to nA, since
we are seeking a reduced-order description of the flow. However, we also consider
the limiting cases of laminar flow, and the DNS limit, for which nc exceeds nA. Let C
denote the nc-dimensional conditioning space, and let c be the sample-space variable
(i.e. a general point in C). As a generalization of (1.10), the conditioning variables
can be written as

C(t) = K (u(t)) , (3.1)

where K is a specified linear function from the infinite-dimensional function space
H to the nc-dimensional conditioning space C. We require that the conditioning
variables be linearly independent (so that every point in C is mapped from H).

With δc being a region in C, we denote by A(δc) all velocity fields u on the attractor
which are mapped to δc by K:

A(δc) ≡ {u ∈ A : K(u) ∈ δc} . (3.2)

Note that A is nA-dimensional and C is nc-dimensional so that for nA >nc, A(c) may
be composed of multiple (nA − nc)-dimensional regions corresponding to multiple
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leaves of the attractor. The frequency measure in C is

μc(δc) =

∫
u∈A(δc)

dμu. (3.3)

For a region δc of positive measure, the conditional mean of u is

〈u | C ∈ δc〉 =

∫
u∈A(δc)

u dμu∫
u∈A(δc)

dμu

=
1

μc(δc)

∫
u∈A(δc)

u dμu. (3.4)

By shrinking δc to the point c and assuming the necessary continuity properties, we
can define the conditional mean field 〈u|C = c〉. This conditional velocity field (〈u|c〉
in an abbreviated notation) is an nc-dimensional manifold in the function space H
(e.g. parameterized by C1, C2, . . . , Cnc

): 〈u|c〉 need not be on the attractor.
The measure μc can be re-expressed in terms of a density function fc(c), such that,

for any region δc of C, ∫
δc

fc(c) dc =

∫
δc

dμc. (3.5)

Then the unconditional (Reynolds) mean of u can be obtained as

〈u〉 =

∫
H

u dμu =

∫
C

〈u|c〉fc(c) dc. (3.6)

For the deterministic case under consideration, we re-define the DNS limit as being
achieved when nc is sufficiently large (nc � nA), and the conditioning variables are so
chosen that each velocity field u in A is mapped by (3.1) to a distinct value of c. In
this limit, we have 〈u|c〉 = u, and so the residual velocity is zero.

The space H can be decomposed into two subspaces, H̃ and Ĥ, which are

mutually orthogonal with respect to the inner product of H, where Ĥ is the kernel

of K (so that K(û) = 0 for all û in Ĥ). Correspondingly, u can be decomposed as

u = ũ + û with ũ ∈ H̃ and û ∈ Ĥ. Note that H̃ is nc-dimensional. The upshot of this
development is the observation that conditioning on c is equivalent to conditioning

on ũ, and that it is the subspace H̃ which is of fundamental significance, rather than
the particular choice of conditioning kernels. (The decomposition u = ũ + û and the
choice of conditioning variables is discussed further in Appendix D.)

3.3. Generalization

The development above pertains to the long-time behaviour of a particular
deterministic flow. We wish to generalize some of the results to turbulent flows
with random initial conditions and to flows which are not statistically stationary. For
this case, a finite-dimensional attractor may not exist, but there nevertheless appears
to be no inherent difficulty in considering the following generalizations.

The flow field u(t) evolves deterministically in a phase space H from an initial
condition u(0) drawn from a specified probability distribution. At time t there is
a probability measure μu(t); there are conditioning variables C(t), defined by (3.1),
which have a PDF fc(c; t); and the conditional velocity field is 〈u(t)|C(t) = c〉.

For simplicity of the subsequent development, we exclude randomness in boundary
conditions and material properties, so that the velocity field evolves deterministically.
However, there does not appear to be any difficulty, in principle, in including these
additional sources of randomness.
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3.4. Equivalent deterministic reduced system

We write the Navier–Stokes equation as

du

dt
= a(u(t)), (3.7)

thus implicitly defining the function a(u). It follows from the definition of the
conditioning variables C(t) (3.1) that they evolve by

dC
dt

= K
(

du

dt

)
= K (a(u(t))) . (3.8)

Note that, while du/dt is determined by u, in contrast dC/dt is not determined by C .
We now draw on the ideas of ‘equivalent systems’ (Pope 1985) and ‘ideal

LES’ (Langford & Moser 1999; Pope 2000) to construct a system that evolves
deterministically with the same one-time statistics as C(t) and 〈u(t)|C(t) = c〉. First,

we define Ĉ(t) to evolve by the deterministic equation

dĈ
dt

=

〈
dC
dt

| C(t) = Ĉ(t)

〉
, (3.9)

from the random initial condition Ĉ(0), sampled from the initial PDF, fc(c; 0). It

follows that C(t) and Ĉ(t) have identical one-time distributions, since their PDFs
evolve by the same Liouville equation

∂fc

∂t
+

∂

∂ci

[
fc

〈
dCi

dt
| c

〉]
= 0, (3.10)

from the same initial condition. (This result requires that dĈ/dt does not vanish
anywhere, which is the case for a turbulent flow with a reasonable specification of
the conditioning variables.)

We now define the self-conditioned velocity field w(t) by

w(t) = 〈u(t) | C(t) = Ĉ(t)〉. (3.11)

Since Ĉ(t) has the same distribution as C(t), it follows that w(t) has the same

distribution as 〈u(t)|C(t)〉. Given that Ĉ(0) is random, the initial condition w(0) is
random, but subsequently w(t) evolves deterministically, by an equation of the form

dw

dt
=

〈
du

dt
| C(t) = Ĉ(t)

〉
+ R(Ĉ(t), t). (3.12)

A specific form of this equation is derived in Appendix B, where the term R is
identified (see (B 12)–(B 15)).

From (3.11) we obtain

K(w(t)) = K(〈u(t) | K(u(t)) = Ĉ(t)〉) = Ĉ(t), (3.13)

showing that w(t) is indeed a self-conditioned field. Hence, it is unnecessary to solve

(3.9) for Ĉ(t), since it can be obtained from the solution to (3.12) for w(t) and the

application of (3.13). Likewise, Ĉ(t) can be eliminated from (3.12) in favour of w(t)
to yield an evolution equation of the form

dw

dt
= B(w(t), t), (3.14)
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where B is defined by the right-hand side of (3.12).
Based on the ideas developed above, the use of the self-conditioned velocity fields

to simulate the turbulent flow is now explained and the central result is stated.

We denote by ŵ(t) the model for w(t) = 〈u(t)|C(t) = Ĉ(t)〉, which is specified to
evolve by

dŵ

dt
= B̂(ŵ(t), t), (3.15)

from a random initial condition ŵ(0), drawn from a specified distribution, where

B̂ is a specified model for B . Solving (3.15) for one initial condition is analogous
to performing a large-eddy simulation. We denote by 〈 〉ŵ(0) the mean over the
distribution of initial conditions, which can be approximated by the ensemble mean
of multiple simulations (with independent initial conditions).

The model is deemed to be ideal if (a) the initial condition ŵ(0) has the same
distribution as w(0) (and hence also the same as that of 〈u(0)|C(0)〉), and (b) the

modelled rate of change B̂(w, t) equals B(w, t). It follows from this definition that, for
the ideal model, the distributions of ŵ(t) and w(t) are identical, because ŵ(t) and w(t)
evolve identically (deterministically) from initial conditions with the same distribution.
Furthermore, since w(t) has the same distribution as 〈u(t)|C(t)〉, it follows that the
model ŵ(t) is identically distributed to the self-conditioned velocity field, 〈u(t)|C(t)〉.
Thus, for the ideal model we have

〈u(t) | C(t) = c〉 = 〈ŵ(t) | K (ŵ(t)) = c〉ŵ(0) , (3.16)

and that the distribution of K(ŵ(t)) is identical to that of C(t) (and Ĉ(t)).
Given that there are nc conditioning variables, it follows that 〈u(t)|c〉 lies in a

(possibly time-dependent) manifold of dimension at most nc. For an ideal model, ŵ(t)
lies in the same manifold. The deficiencies of a non-ideal model may be manifest
in two ways: first, (3.16) may not be satisfied; second, ŵ(t) may lie in a different
manifold of different dimension.

3.5. Distinction between self-conditioned fields

This subsection emphasizes the distinction between three different self-conditioned

velocity fields, 〈u(t)|c〉, 〈u(t)|Ĉ(t)〉 and 〈u(t)|C(t)〉. The primary distinction is between
their time rates of change.

To clarify issues, we define the deterministic function uc(t, c) by

uc(t, c) ≡ 〈u(t) | C(t) = c〉 = 〈u(t) | c〉, (3.17)

where the last part is simply an abbreviated notation. This function has partial
derivatives ∂uc/∂t and ∂uc/∂ci , where of course ∂uc/∂t is the time rate of change at
fixed c. Thus

〈u(t) | c〉 = uc(t, c), (3.18)

is a determined quantity with determined time rate of change

∂〈u(t) | c〉
∂t

=
∂uc(t, c)

∂t
. (3.19)

By definition, 〈u(t)|Ĉ(t)〉 is

〈u(t) | Ĉ(t)〉 = uc(t, Ĉ(t)). (3.20)
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Note that Ĉ(t) evolves deterministically from a random initial condition (by (3.9)), so

that dĈ/dt is a determined function of Ĉ(t). Thus we obtain(
∂〈u(t) | Ĉ(t)〉

∂t

)
Ĉ(t)=c

=
∂uc(t, c)

∂t
+

(
dĈi

dt

)
Ĉ(t)=c

∂uc(t, c)
∂ci

=
∂uc(t, c)

∂t
+

〈
dCi

dt
| C(t) = c

〉
∂uc(t, c)

∂ci

, (3.21)

showing that, given Ĉ(t), ∂〈u(t)|Ĉ(t)〉/∂t is a determined quantity, which differs from
∂uc/∂t by the final terms in (3.21).

By definition, 〈u(t)|C(t)〉 is

〈u(t) | C(t)〉 = uc(t, C(t)). (3.22)

Note that C(t) is random, and the rate of change dC(t)/dt is ‘not’ determined by
C(t). Thus, the rate of change(

∂〈u(t) | C(t)〉
∂t

)
C(t)=c

=
∂uc(t, c)

∂t
+

dCi(t)

dt

∂uc(t, c)
∂ci

(3.23)

is random, even given C(t).
In summary, while we have

〈u(t) | c〉 =
〈
u(t) | Ĉ(t)

〉
Ĉ(t)=c

= 〈u(t) | C(t)〉C(t)=c , (3.24)

the rates of change

∂〈u(t) | c〉
∂t

,

(
∂〈u(t) | Ĉ(t)〉

∂t

)
Ĉ(t)=c

and

(
∂〈u(t) | C(t)〉

∂t

)
C(t)=c

(3.25)

are different: the first two are determined, while the third is random.
In the self-conditioned approach to LES, the velocity field considered is

w(t) ≡ 〈u(t) | Ĉ(t)〉. (3.26)

This is more fully described as ‘the self-conditioned velocity field, with conditional
mean evolution’.

3.6. Summary

The self-conditioned field approach for simulating turbulent flows consists of solving
a deterministic model equation, (3.15), for the field ŵ(t), which is a model for the

self-conditioned velocity field with conditional mean evolution, w(t) = 〈u(t)|Ĉ(t)〉. For
the ideal model, the one-time statistics of ŵ(t) are identical to those of the self-
conditioned velocity field 〈u(t)|C(t)〉. For statistically stationary flows, these statistics
can be obtained from long time averages. For non-stationary flows, they can be
obtained from ensemble averages over simulations with initial conditions drawn from
the distribution of 〈u(0)|C(0)〉.

4. The self-conditioned velocity field
The ideas introduced in the previous section are developed here in a more definite

form by invoking the Navier–Stokes equations ((1.1) and (1.2)) governing the velocity
field U(x, t) in a turbulent flow of a constant-property fluid.
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The nth conditioning variable is defined by (1.10) as

Cn(t) =

∫
D

Ui( y, t)K (n)
i ( y) d y, (4.1)

where K
(n)
i is a specified conditioning kernel and integration is over the flow domain.

The self-conditioned velocity field is

W (x, t) ≡
〈

U(x, t) | C(t) = Ĉ(t)
〉

, (4.2)

which is simply written as W = 〈U |Ĉ〉.
The equations governing W (x, t), derived from the Navier–Stokes equations in

Appendix B, are described here. First, we discuss some of the properties of W (x, t).
Because the conditioning variables C(t) do not depend upon x, it follows that the

operations of taking the conditional mean and spatial differentiation commute (as is
explicitly confirmed by (B 5)). Mass conservation then yields

∂Wi

∂xi

= 0. (4.3)

Let Q denote any function of the turbulent velocity field U(x, t). The conditional

mean of Q, 〈Q|Ĉ〉, can be decomposed as

〈Q | Ĉ〉 = QW (Ĉ) + QR(Ĉ), (4.4)

where QW (Ĉ) denotes the contribution that is known in terms of W , and QR(Ĉ)
denotes the residual contribution (due to conditional variations of the residual

velocity U ′(x, t) ≡ U(x, t) − 〈U(x, t)|Ĉ〉). The unconditional mean can be obtained
by integrating over the PDF, fc:

〈〈Q | Ĉ〉〉 =

∫
C

〈Q | c〉fc(c) dc

= 〈QW (Ĉ)〉 + 〈QR(Ĉ)〉. (4.5)

We consider three informative examples. First, let Q =Q0 be non-random or a
deterministic function of c, Q =Q0(c). Then

〈Q | c〉 = Q0(c), QW (c) = Q0(c), QR(c) = 0. (4.6)

This observation substantiates several of the claims made in the Introduction: in
laminar flows 〈U |c〉 equals U , and there are no residual fluctuations, and on a
stationary solid wall 〈U(xw, t)|c〉 is zero.

Second, we consider the viscous term Q = ν∂2Ui/∂xj∂xj in the Navier–Stokes
equations. For this we have〈

ν
∂2Ui

∂xj∂xj

| Ĉ
〉

= ν
∂2

〈
Ui | Ĉ

〉
∂xj∂xj

= ν
∂2Wi

∂xj∂xj

, (4.7)

so, again, there is no residual contribution. This result applies to all linear operations
on U (at fixed time).

Third, we consider the two-point velocity product Q =Ui(x, t)Uj ( y, t). In this case,
we have〈

Ui(x, t)Uj ( y, t) | Ĉ
〉

= Wi(x, t)Wj ( y, t) + cov(Ui(x, t), Uj ( y, t) | Ĉ), (4.8)
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where for any two quantities P and Q, the ‘conditional covariance’ is defined by

cov(P, Q | c) ≡ 〈PQ | c〉 − 〈P | c〉 〈Q | c〉 . (4.9)

On the right-hand side of (4.8), the first term corresponds to QW and the second term
corresponds to QR .

The momentum equation for W (x, t), derived from the Navier–Stokes equations in
Appendix B ((B 12)–(B 17)), can be written as(

∂

∂t
+ Wj

∂

∂xj

)
Wi = ν

∂2Wi

∂xj∂xj

− 1

ρ

∂p̃

∂xi

+
∂τR

ij

∂xj

+ Ri, (4.10)

where p̃ is the conditional pressure 〈p|Ĉ〉, which can be determined from a Poisson
equation in the usual way; τR

ij is the residual stress, defined by

τR
ij = −cov(Ui, Uj | Ĉ); (4.11)

and the term R, identified and discussed more fully in Appendix B, represents a
transfer of momentum in conditioning space.

In order to use (4.3) and (4.10) in a simulation, it is necessary to model the unknown
quantities τR

ij and R. A discussion of modelling in deferred to § 6.1, save to say:
(i) In a model, there is every reason to take R to be zero (see (B 17) for further

discussion).
(ii) Standard models and approaches (e.g. the dynamic Smagorinsky model) can

be applied.
(iii) A difference, compared to the filtering approach, is the behaviour imposed on

τR
ij is limiting cases such as laminar flow and the DNS limit.

5. The self-conditioned composition PDF
We now extend the discussion to consider a single composition variable φ(x, t)

governed by the conservation equation

Dφ

Dt
= Γ ∇2φ + S(φ), (5.1)

where Γ is the constant molecular diffusivity, and S is the chemical source term,
which is a known function of φ. This suffices to develop the concepts involved in
the self-conditioned PDF. (It is straightforward to extend the concepts and equations
to the more general case of a set of compositions with different diffusivities in a
variable-density flow.)

The conditioning variables C(t) are extended to include variables of the form

Cm(t) =

∫
D

L(m)(φ(x, t))K (m)
φ (x) dx, (5.2)

where L(m)(φ) is any specified function of φ, and K
(m)
φ (x) is a specified conditioning

kernel. Thus Cm(t) can include filtered values of nonlinear functions of φ.
The quantities considered in the simulation are W (x, t), the self-conditioned velocity

field (as previously), and g(ψ; x, t), the (one-point, one-time) self-conditioned PDF
of φ(x, t). Let fφ|c(ψ |c; x, t) denote the PDF of φ(x, t) conditional on C(t) = c. Then
g(ψ; x, t) is defined by

g(ψ; x, t) = fφ|c(ψ | Ĉ(t); x, t). (5.3)
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It is verified in Appendix C that W (x, t) and g(ψ; x, t) are self-conditioned, that is,
given W and g, conditioning variables of the form of (4.1) and (5.2) can be evaluated.

It follows from its definition that g is a PDF, and hence has the properties

g(ψ; x, t) � 0, (5.4)∫ ψ+

ψ−

g(ψ; x, t) dψ = 1, (5.5)

g(ψ; x, t) = 0 for ψ < ψ− and ψ > ψ+, (5.6)

where ψ− and ψ+ are the lower and upper bounds on φ. The conditional mean and
variance are

φ̃(x, t) ≡ 〈φ(x, t) | Ĉ(t)〉 =

∫ ψ+

ψ−

ψg(ψ; x, t) dψ, (5.7)

and

φ̃
′′2 (x, t) ≡ cov

(
φ(x, t), φ(x, t) | Ĉ(t)

)
=

∫ ψ+

ψ−

(
ψ − φ̃(x, t)

)2

g(ψ; x, t) dψ. (5.8)

Very importantly, for a laminar flow we have

φ̃(x, t) ≡ 〈φ | Ĉ〉 = φ, (5.9)

φ̃
′′2 = 0, (5.10)

g(ψ; x, t) = δ
(
φ̃(x, t) − ψ

)
. (5.11)

These results ((5.9)–(5.11)) are in contrast to those for the filter density function, for
which the variance is of order Δ2.

To expand on this observation, figure 3 shows a profile φ(x) corresponding to a thin,
laminar diffusive layer. As may be seen, the filtered profile φ(x) is much broader, and

the second moment of the FDF φ2 − φ
2

is large (over 80 % of its maximum possible
value of 1/4). Both of these undesirable characteristics are due to spatial smearing,
which is completely avoided in the self-conditioned approach (viz. (5.9)–(5.11)).

The evolution equation for the self-conditioned PDF is derived in Appendix C
(C 10). It is of standard form, except for a source term Rφ (analogous to R), which
represents a flux in the conditioning space. The simplest closed model equation is
given as (C 11).

6. Discussion
6.1. Modelling

We consider the modelling of the residual stress τR
ij appearing in the momentum

equation for the self-conditioned velocity and compare it to the analogous task in
the filtering approach. Similar considerations apply to the modelling in the self-
conditioned PDF equation.

The momentum equation for the self-conditioned velocity, (4.10), is of the standard
LES form (once the term R is neglected). The conditioning variables do not appear
explicitly in the momentum equation, (4.10): they enter through the definition of the
residual stress, τR

ij , (4.11). (The same is true of the filter in the filtering approach.)
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Figure 3. Scalar profile φ(x) (solid line) in a thin, laminar diffusive layer; the corresponding

filtered profile φ(x) (dashed line); and the second moment of the FDF φ2 − φ
2

(dot-dashed
line). The unit top-hat filter is used.

The difference between the momentum equations used in DNS, Reynolds-averaged
Navier–Stokes (RANS) and LES is solely in the way the effective stress τ̃ij is related
to the velocity field being considered. Obviously, how the stress is modelled is crucial
to the success of the method.

We consider now, in general terms, the approaches used to develop and test LES
models for the residual stress, and how these can be used with the self-conditioned
approach, in contrast to the filtering approach. The approaches include:

(i) The derivation of exact (unclosed) evolution equations and the identification of
conservation and invariance properties.

(ii) The determination of the behaviour of the stress τ̃ij in limiting cases, especially
for laminar flow, the DNS limit and the RANS limit.

(iii) A posteriori testing in which statistical results from a simulation are compared
with measurements (or DNS).

(iv) A priori testing in which modelled and measured values of τ̃ij are compared.
(v) A spectral analysis in which properties of the stress and its model are deduced

from a model turbulence spectrum (e.g. Lilly 1967).
(vi) Dynamic procedures based on scale invariance (Germano et al. 1991) or

deduced scale dependence (Meneveau, Lund & Cabot 1996).
(vii) Deconvolution techniques, which provide estimates of part of the residual

motions, based on the resolved velocity field.
With respect to (i), the evolution equation for the self-conditioned fields have been

derived. The term in R in (4.10) indicates that the momentum of the velocity field
W (x, t) may not be exactly conserved, although it is in the mean. In a model, given the
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current state of knowledge, there is every reason to take R to be zero. Nevertheless,
a possible model is mentioned in Appendix B (B 19). Apart from the term in R,
the self-conditioning approach appears advantageous in that the mass conservation
equation is more straightforward, with ∇· W (x, t) = 0 for incompressible flows. It may
also be observed that the stress τR

ij is Galilean invariant and contains no cross terms.
As already discussed, the self-conditioned approach is advantageous with respect to

(ii). In particular, in laminar flow W equals U (i.e. the residual velocity is zero), and in
the DNS limit the residual velocity is exponentially small. In contrast, U differs from
U in a way that depends on the specification of the filter, with the residual velocity
scaling as Δ2.

A posteriori testing is the ultimate test of any LES model, and its application
is similar for the self-conditioned and filtering approaches. Note, however, that in
the self-conditioned approach, the unconditional mean 〈W (x, t)〉 models 〈U(x, t)〉,
independent of the conditioning variables, whereas in the filtering approach, 〈W (x, t)〉
depends on the filter. Also, with the self-conditioned approach, it is possible to perform
a posteriori testing of conditioned quantities, e.g. 〈W (x, t) | C1 = c1〉 compared to
〈U(x, t) | C1 = c1〉 for a single condition such as the filtered velocity at a point (or for
a small number of conditions). As demonstrated by Wang, Tong & Pope (2004), it is
feasible to extract such conditional statistics from experiments, as it is from DNS.

An apparent disadvantage of the self-conditioning approach is that in practice
it is extremely difficult, if not impossible, to measure or even explicitly represent
quantities conditioned on many variables. This represents an obstacle to a priori
testing. It should be appreciated, however, that a priori testing of filtered models on
a realization-by-realization basis is dubious at best, and appropriate testing requires
significant conditioning (Pope 2000).

Spectral analysis, dynamic procedures and deconvolution techniques are most likely
applicable to the self-conditioned approach, but the underlying theories have yet to
be developed.

The pragmatic approach to the initial modelling of the self-conditioned equations is
to use existing LES models that have proved successful in a posteriori tests, modified
as necessary to conform to DNS and other limits. The filter width Δ(x) appearing in
such models is interpreted as the characteristic width of the kernel used to define the
conditioning variables (4.1).

6.2. Spatial resolution

In the numerical solution of the LES equations for the filtered velocity, U(x, t), the
usual practice is to specify the filter width Δ(x) to be proportional to the local
numerical mesh spacing, denoted by h(x), for example, Δ(x) = 2h(x). The spatial
filtering attenuates scales smaller than Δ, so that the resulting filtered fields can
indeed be resolved (to a level deemed acceptable) on a mesh of spacing h. A ‘good’
LES model for the residual stress ensures that the ‘modelled’ filtered velocity field has
the same resolution requirements.

For the self-conditioned velocity field the picture is different. Consider, for example,
the turbulent mixing layer that develops behind a splitter plate on which there are
laminar boundary layers of characteristic thickness δL. Some distance downstream,
the characteristic thickness of the turbulent mixing layer, δT , may be very large
compared to δL, and the conditioning variables C(t) may be defined based on kernels
of width Δ ≈ (1/10)δT , say, which may be large compared to δL. Regardless of how
the conditioning variables are defined, in a region of steady laminar flow, we have

〈U | c〉 = U . (6.1)
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Thus, the self-conditioned velocity field varies on scales as small as δL, and hence
requires spatial resolution of this order. In other words, as this example illustrates,
the spatial resolution h needed to resolve the self-conditioned fields can be small
compared to the length scale Δ associated with the conditioning variables.

Is this good or bad?
The answer is a matter of viewpoint. From the viewpoint that an LES should

consider only ‘large eddies’, and that the LES velocity field should be resolvable
on a specified grid, then this behaviour of 〈U |c〉 is undesirable. We, however, take
the different viewpoint that there is merit in a reduced-order model representing
the dynamically most important processes, regardless of scale. For fully developed
turbulent free shear flows, the dynamically most important motions are indeed the
large eddies. However, it is well appreciated that even the gross features of turbulent
flows can be strongly influenced by the details of fine-scale features connected to the
initiation of the flow and the turbulence – such as the states of the boundary layers
on the splitter plate for the mixing layer.

As a second example, in turbulent jet flames, immediately downstream of the jet
exit, there is a very thin diffusive mixing layer (possibly reacting) between the fuel in
the jet and the air in the co-flow, which, depending on the conditions, may resemble
a mildly wrinkled laminar mixing layer. The details of this fine-scale mixing process
are likely to have a significant influence on the downstream development of the flame.
There is merit, therefore, in representing and resolving these fine-scale processes, as
is done by the self-conditioned composition PDF (but not by the FDF) even for Δ

large compared to the diffusive-layer thickness.
The fact that self-conditioned fields may have smaller length scales than the

specified kernel width, Δ, means that the appropriate resolution is not known a priori.
Consequently, adaptive mesh refinement (or a similar methodology) is required, or at
least a methodology to assess the adequacy of a specified mesh.

For the case of the thin viscous or diffusive layers in the two examples discussed
above, fine resolution is needed only in the gradient direction. Consequently, the
number of mesh points required is essentially independent of Reynolds number.

6.3. Near-wall behaviour

To examine the self-conditioned velocity field for wall-bounded turbulent flows, we
consider again a fully developed channel flow (as in § 3).

For LES based on filtering applied to near-wall flows, Pope (2000) distinguishes
between LES–NWR (with near-wall resolution) and LES–NWM (with near-wall
modelling). In LES–NWR, the filter width Δ at the wall is of order the viscous length
scale δν , and it increases no more than linearly with the wall-normal distance y, so
that the principal three-dimensional unsteady near-wall structures (which scale with
δν) are resolved (to some extent). An LES based on the self-conditioned velocity with
conditioning variables having the same specification of Δ(y) is likely to be essentially
the same (although issues related to filtering at the wall are avoided). In LES–NWR,
with either filtering or self-conditioning approaches, the computational cost increases
as a power of Reynolds number, and hence the method is infeasible at high Reynolds
number.

In the alternative LES–NWM, which is applicable at high Reynolds number, the
filter width Δ scales with the mean flow length scale (e.g. channel width or boundary-
layer thickness), and hence Δ/δν is large and increases with Reynolds number. In this
case the behaviour of the filtered and self-conditioned velocity fields is different. For
example, 〈U |c〉 includes the steep variation in the wall-normal (y) direction of the
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velocity U1 in the mean-flow (x) direction. Hence, close to the wall, a mesh spacing
in y of order δν is required to resolve 〈U1|c〉.

A crucial question is the resolution requirement in the tangent plane (x–z) of the
wall, and this may depend on the specification of the conditioning variables. If the
required resolution in the tangent plane scales with Δ, then the computational cost
scales as the logarithm of Reynolds number, so that the method is applicable at high
Reynolds number.

To a large extent, this application of self-conditioned LES is similar to a hybrid
LES/RANS method. Far from the wall it is dominantly LES, with the bulk of the
turbulent kinetic energy and shear stress being in the three-dimensional, unsteady,
resolved motions. However, as the wall is approached, the bulk of the stress is modelled
(as τR

12) or is viscous (ν∂〈U1|c〉/∂y), and the unsteadiness and three-dimensionality are
strongly attenuated.

6.4. Spectral filtering

We have primarily considered spatial filtering and the self-conditioned field approach
based on positive conditioning kernels. In this subsection, we make some observations
on spectral filtering.

With a spectral filter (or with any other filter for which the filter function G contains
negative portions), the filtered species mass fractions φ(x, t) can be negative, as can the

filter density function. In contrast, the self-conditioned species φ̃(x, t) ≡ 〈φ(x, t)|Ĉ(t)〉
is non-negative, because it is the mean of non-negative fields. Similarly, the self-
conditioned PDF is non-negative, irrespective of the conditioning variables.

Following Fox (2003), we can consider homogeneous turbulence and represent the
velocity field U(x, t) as the infinite sum of Fourier modes with coefficients denoted

by Û(κ, t). With the sharp spectral filter with cutoff wavenumber κc, the Fourier

modes of the filtered field U(x, t) are Û(κ, t)H (κc − |κ |), where H is the Heaviside
function. With the self-conditioned field approach, the Fourier coefficients of the
residual velocity field are

〈Û(κ, t)H (|κ | − κc) | C(t)〉, (6.2)

where C(t) consists of all of the Fourier coefficients with |κ | <κc. It may be observed
that the residual field is zero:

(i) if the Fourier modes above the cutoff are statistically independent of those
below the cutoff, or

(ii) if the field is Gaussian, or
(iii) according to the linear mean-square approximation.

The last two results stem from the fact that different Fourier modes are uncorrelated.
Since turbulent velocity fields are not Gaussian, it appears that the residual velocity

field is not exactly zero (as suggested by Fox 2003). But it may be relatively small,
since it arises solely because of nonlinear, non-Gaussian effects.

6.5. The choice of conditioning variables

The optimal choice of conditioning variables is discussed in Appendix D, and three
possible definitions of ‘optimal’ are considered. These are based on a decomposition
of the velocity field (D 11) and the associated kinetic energies (D 13).

The first possibility is, for a given value of nc, to choose the conditioning kernels
to minimize the residual kinetic energy k′ (D 14). Roughly, this has the benefits of
maximizing the resolved energy, minimizing the modelling required and minimizing
the value of nc required to achieve the DNS limit.
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The second possibility is to employ ‘eigen-conditioning’ such that the self-

conditioned velocity field 〈U | C〉 is in the nc-dimensional subspace H̃ defined by the
conditioning kernels. The benefit is that 〈U | C〉 is of the smallest possible dimension
(i.e. nc). Whether such eigen-conditioning exists is an open question.

The third possibility is to maximize the energy k̃ associated with the component

of the self-conditioned velocity in the subspace H̃. This is achieved by choosing the

conditioning kernels such that H̃ is the subspace spanned by the first nc proper
orthogonal decomposition (POD) modes.

6.6. Extensions

We have described two specific methods based on the self-conditioned velocity, 〈U |Ĉ〉,
and the self-conditioned composition PDF, g(ψ; x, t). As with other LES approaches,
other fields can be considered, including the residual kinetic energy, the residual stress
tensor, the PDF of velocity, and the joint PDF of velocity and a set of composition
variables.

Furthermore, different types of conditioning variables can be considered, based on
the different quantities mentioned (velocity, energy, PDFs), with a different spatial
structure (which enters through the kernels K

(n)
i (x) in (4.1)). These kernels can be

based on filtering, wavelets, Fourier modes, POD modes, and other orthogonal and
non-orthogonal basis functions. However, this conditioning information enters solely
into the modelling, and current models typically admit only a simple specified length
scale Δ(x).

7. Conclusions
An alternative basis for large-eddy simulation has been developed based on self-

conditioned fields. In the simplest case, the nc conditioning variables, C(t), provide
an approximate representation of the filtered velocity field U(x, t). The reduced
description of the flow is provided not by U(x, t) but by 〈U(x, t)|c〉, which is the
mean velocity field conditioned on C(t) = c. This field is said to be self-conditioning,
because the value of the conditioning variables can be deduced from the field itself.

The velocity field considered in the LES is

W (x, t) ≡
〈

U(x, t) | C(t) = Ĉ(t)
〉

, (7.1)

where Ĉ(t) is defined to evolve by

dĈ(t)

dt
=

〈
dC(t)

dt
| C(t) = Ĉ(t)

〉
. (7.2)

The field W (x, t) evolves deterministically from random initial conditions. A
fundamental result justifying the approach is that the one-time distribution of W (x, t)

and Ĉ(t) is identical to that of 〈U(x, t)|C(t)〉 and C(t). An exact (unclosed) evolution
equation for W (x, t), (B 12), is deduced from the Navier–Stokes equations.

The approach is extended to composition fields, relevant to turbulent reactive flows,
by considering the self-conditioned PDF of composition g(ψ; x, t), for which an exact
evolution equation is derived (C 10). Further extensions are discussed in § 6.6.

Some characteristics of the self-conditioned field approach, which distinguish it
from the filtering approach, are the following:

(i) For laminar flow, W (x, t) is identical to U(x, t): there are no residual
fluctuations.
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(ii) In the DNS limit, the residual velocity field is exponentially small.
(iii) Full account is taken of the probability distribution of turbulent velocity fields.
(iv) The means (over initial conditions) of W (x, t) and g(ψ; x, t) are the (Reynolds)

mean velocity, 〈U(x, t)〉, and the (unconditional) composition PDF (not their filtered
counterparts).

(v) The operations of spatial differentiation and taking the conditional mean
commute, so that W (x, t) is divergence free in incompressible flow.

(vi) Repeated application of the conditional mean has no effect, and hence
conditional variances (and the residual stress) contain no‘cross terms’.

(vii) At points xw on a stationary solid wall, W (x, t) satisfies the no-slip and
impermeability conditions W (xw, t) = 0.

(viii) Laminar boundary layers (and other non-random fine structures) are resolved
by the self-conditioned fields, even if the length scale Δ(x) associated with the
conditioning variables is much larger. Hence, for the accurate numerical solution of
the equations for self-conditioned fields, the mesh spacing h(x) may need to be smaller
than Δ(x) (locally, and in the gradient direction).

As in most approaches to LES, the modelling of the residual terms is crucial. The
general issues related to modelling are discussed in § 6.1. As a starting point, existing
models can be used, with modifications as necessary to conform to the DNS limit.

The residual stress τR
ij is strongly dependent on the choice of conditioning variables

C(t). Two opportunities for future research are to make this dependence more explicit,
so that models for τR

ij can incorporate directly information about the conditioning
variables, and to develop tractable methodologies for determining near-optimal
conditioning variables.

For discussions on this work and for comments on a draft of this paper, I am
grateful to Rodney Fox, John Guckenheimer, Konstantin Kemenov, Alex Klimenko,
Robert Moser, Heinz Pitsch, Pavel Popov, Dale Pullin and Alex Vladimirsky. This
work is supported by the Air Force Office of Scientific Research under grant FA-
9550-09-1-0047.

Appendix A. Conditioned Gaussian process
To provide illustrative examples of conditioned random processes, we describe here

a simple, one-dimensional, Gaussian process. The results obtained are used to generate
the processes shown in figures 1 and 2.

We consider a periodic Gaussian random process U (x) in the interval [0, 1], which is

completely characterized by its mean Ũ (x) and autocovariance R(x, y) ≡ 〈U ′(x)U ′(y)〉,
where U ′(x) ≡ U (x) − Ũ (x) is the fluctuation. It is simplest to consider a finite
representation of the process, so we consider a fine, uniform grid in x, consisting of
m grid points x1, x2, . . . , xm, and we represent the process by

u = ũ + u′, (A 1)

where u is the m-vector of the values of U (x) sampled at the grid points (i.e.

ui = U (xi)), and similarly the m-vectors ũ and u′ are the values of Ũ and U ′ on the
grid.

Since U (x) is a Gaussian process, both u and u′ are Gaussian random vectors, and
we can express u′ as

u′ = V1/2ξ , (A 2)
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where V is the covariance matrix Vij = R(xi, xj ), and ξ is an m-vector of independent
standardized Gaussians (〈ξi〉 =0, 〈ξiξj 〉 = δij ). It is convenient to work in terms of u′

(since it has zero mean) and then u is readily recovered from (A 1).
The nc conditioning variables C are defined by

C = Ku′, (A 3)

where K is a specified, full-rank nc × m matrix. If Ci represents a filtered value of the
process, then the ith row of K contains the corresponding quadrature weights at the
grid points.

With c being a specified nc-vector, the conditioned process considered is (u′ | C = c).
Since this process is also Gaussian, it depends linearly on c and can be written as

(u′ | C = c) = Mc + D1/2η, (A 4)

where M is an m × nc matrix, D is the positive semi-definite m × m conditional
covariance matrix, and η is an m-vector of independent standardized Gaussians
(which is independent of ξ ). The matrices M and D are determined below. Thus, (A 4)
can be used to generate random samples of the conditioned Gaussian process, and
the conditional mean of the process is

〈u | C = c〉 = ũ + Mc. (A 5)

The matrices M and D are uniquely determined by equating the expressions for
〈u′cT〉 and 〈u′u′T〉 obtained from (A 2) and (A 4). From (A 2) and (A 3) we obtain

〈u′CT〉 = VKT, (A 6)

while from (A 4) we obtain

〈u′CT〉 = 〈(u′ | C)CT〉 = MKVKT. (A 7)

Thus, equating the right-hand sides of these two equations, we obtain

M = VKT(KVKT)−1. (A 8)

Similarly, we have

〈u′u′T〉 = V=MKVKTMT + D, (A 9)

where the latter two parts stem from (A 2) and (A 4), respectively. Hence D, is
determined as

D = V − MKVKTMT. (A 10)

The particular case shown in figures 1 and 2 has the following specifications:

Ũ (x) = 1
2
sin(2πx), (A 11)

σ (x) ≡ R(x, x)1/2 = 1
2
[1 + sin(2πx)], (A 12)

R(x, y) = σ (x)σ (y) exp(−[20(x − y)]2), (A 13)

and with K corresponding to top-hat filters of width 1/5 at nc = 5 equally spaced
locations.
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Appendix B. Derivation of the self-conditioned momentum equation
The equation governing the evolution of the self-conditioned velocity field

〈U(x, t)|C(t) = c〉 and

W (x, t) ≡
〈

U(x, t) | C(t) = Ĉ(t)
〉

, (B 1)

are derived, using the delta-function technique from PDF methods (see e.g.
Appendix H of Pope 2000).

The PDF of the conditioning variables C(t) can be expressed as

fc(c; t) = 〈δ (C(t) − c)〉 . (B 2)

For any quantity Q(x, t), its conditional mean 〈Q|c〉 is given by

fc(c; t) 〈Q(x, t) | C(t) = c〉 = 〈Q(x, t) δ(C(t) − c)〉 . (B 3)

Since C(t) and fc(c; t) have no dependence on x, differentiation of (B 3) with respect
to xi yields

fc

∂

∂xi

〈Q | c〉 =

〈
∂Q

∂xi

δ(C − c)
〉

, (B 4)

and hence
∂

∂xi

〈Q | c〉 =

〈
∂Q

∂xi

| c
〉

. (B 5)

Thus, the operations of spatial differentiation and taking the condition mean
commute. Applying this result to the continuity equation (1.1) yields

∂

∂xi

〈Ui | c〉 = 0. (B 6)

A result needed in the sequel is that repeated conditioning has no effect, i.e.

〈〈Q | C = c〉 | C = c′〉 = 〈Q | C = c〉. (B 7)

This follows simply because 〈Q|C = c〉 is non-random.
For any two quantities P and Q, the conditional covariance is defined as

cov
(
P, Q | c

)
= 〈PQ | c〉 − 〈P | c〉〈Q | c〉
=

〈(
P − 〈P | c〉

) (
Q − 〈Q | c〉

)
| c

〉
, (B 8)

where the last line follows from (B 7). Thus, in contrast with the case for filtering,
repeated conditioning has no effect, and there are no ‘cross terms’ in the conditional
covariance.

Since C(t) and fc(c; t) depend on t , taking the temporal derivative of (B 3) is more
involved, and yields

∂

∂t

[
fc 〈Q | c〉

]
= fc

〈
∂Q

∂t
| c

〉
− ∂

∂ci

[
fc

〈
Q

dCi

dt
| c

〉]
, (B 9)

which, for Q = 1, yields the Liouville equation

∂fc

∂t
+

∂

∂ci

[
fc

〈
dCi

dt
| c

〉]
= 0. (B 10)

From the above two equations, we obtain(
∂

∂t
+

〈
dCi

dt
| c

〉
∂

∂ci

)
〈Q | c〉 =

〈
∂Q

∂t
| c

〉
− 1

fc

∂

∂ci

[
fc cov

(
Q,

dCi

dt
| c

)]
. (B 11)
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Two important observations are, first, that the left-hand side of (B 11) evaluated for

c = Ĉ(t) is the rate of change of 〈Q(x, t)|C = Ĉ(t)〉, where Ĉ(t) evolves by 〈dC/dt |Ĉ〉,
(3.9); and, second, that the conditional covariance (on the right-hand side of (B 11)) is
zero if the conditional fluctuations, Q−〈Q|c〉 and dC/dt−〈dC/dt |c〉, are uncorrelated,
or if either one is zero.

We mention in passing that (B 11) is a new and rather fundamental equation, which
may have uses in other contexts and fields. In the conditional moment closure (CMC;
Klimenko & Bilger 1999), the evolution of quantities like 〈Q|c〉 are considered for
fixed values of the conditioning variable c. In contrast, (B 11) shows the evolution of

〈Q|Ĉ(t)〉, that is, with the conditioning variable evolving at its conditional mean rate.

The evolution for the self-conditioned velocity field W (x, t) ≡ 〈U(x, t)|C(t) = Ĉ(t)〉
is obtained from (B 11) (with the substitution Q =Ui) and with ∂Ui/∂t obtained from
the momentum equation (1.2). The result can be expressed as(

∂

∂t
+ Wj

∂

∂xj

)
Wi =

∂τ̃ij

∂xj

+ Ri, (B 12)

where the effective stress is

τ̃ij = 〈τij | Ĉ〉 + τR
ij , (B 13)

where τR
ij is the residual stress

τR
ij ≡ −cov(Ui, Uj | Ĉ), (B 14)

and the final term is

Ri = − 1

fc

∂

∂cj

[
fc cov

(
Ui,

dCj

dt
| c

)]
, (B 15)

evaluated at c = Ĉ .
For the constant-property Navier–Stokes equation, the stress is

τij = ν

(
∂Ui

∂xj

+
∂Uj

∂xi

)
− p

ρ
δij , (B 16)

where ν is the kinematic and p(x, t) is the pressure. Since differentiation and taking
the conditional mean commute, we obtain, simply,

〈τij | Ĉ〉 = ν

(
∂Wi

∂xj

+
∂Wj

∂xi

)
− δij

ρ
〈p | Ĉ〉. (B 17)

Substitution of these results into (B 12) leads to the final form for the momentum
equation for the self-conditioned velocity, which is (4.10).

We make the following comments and observations about R, the final term in the
momentum equation, defined by (B 15).

(i) The term appears as a specific force and hence is a source or sink of momentum.
(ii) The term does not appear as the divergence of a stress, and consequently it

can cause the conditional momentum of the field
∫

D ρW (x, t) dx to change.
(iii) From the definition of R we have∫

C
fc R dc = 0, (B 18)

showing that the term does not affect the mean momentum ρ〈W (x, t)〉. Thus, the
terms represent a flux of momentum in conditioning space.
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(iv) In a model, it is expedient to take R to be zero, and, given the current state of
knowledge, there is no reason to do otherwise.

(v) The previous point notwithstanding, the simplest non-trivial model satisfying
(B 18) is the linear relaxation model

R(x, t) = −(W (x, t) − 〈W (x, t)〉)/τR(x, t), (B 19)

where τR is a specified relaxation time scale. This model could be implemented by
performing simultaneously an ensemble of simulations (with initial conditions drawn
from the specified distribution), so that the mean 〈W (x, t)〉 can be approximated as
an ensemble average.

The simplest model equation for W (x, t) is obtained by (a) using a turbulent
viscosity model for the residual stress τR

ij and (b) neglecting the term R.
The result is the standard model LES equation(

∂

∂t
+ Wj

∂

∂xj

)
Wi =

∂

∂xj

[
(ν + νR)

(
∂Wi

∂xj

+
∂Wj

∂xi

)]
− 1

ρ

∂p̃

∂xi

, (B 20)

where νR is the modelled turbulent residual viscosity, and p̃ is the modified pressure,
which is determined by a Poisson equation.

Next, we verify that 〈U(x, t)|c〉 is self-conditioning, and hence so also is W (x, t).
The nth condition is (4.1)

Cn(t) =

∫
D

Ui(x, t)K (n)
i (x) dx, (B 21)

and (B 3) with the substitution Q =Ui is

fc(c; t)〈Ui(x, t) | C(t) = c〉 = 〈Ui(x, t) δ(C(t) − c)〉. (B 22)

Multiplying this last equation by K
(n)
i (x) and integrating over all x, we obtain

fc

∫
D

K
(n)
i (x)〈Ui | c〉 dx =

〈∫
D

K
(n)
i (x)Ui(x, t) dx δ(C(t) − c)

〉
= 〈Cn(t) | c〉fc = cnfc. (B 23)

This equation (when divided by fc) yields the required, consistent result

cn = Cn(t) =

∫
D

K
(n)
i (x)〈Ui | c〉 dx. (B 24)

This result is not completely trivial: it depends on the conditioning operation being
independent of t and the conditioning variables being independent of x.

Finally, we mention an alternative technique that can be used to derive the above
equations and more. Let the velocity field be written as

U(x, t) =

nb∑
n=1

b(n)(x)un(t), (B 25)

where {b(n)(x), n = 1, . . . , nb} is a set of vector-valued basis functions and
u(t) = {u1(t), u2(t), . . . , unb

(t)} are basis function coefficients. This representation is
certainly possible for nb sufficiently large, possibly infinite.

The conditioning variables C(t) (defined by (4.1)) are given by

C(t) = Ku(t), (B 26)
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where K is the constant nc × nb matrix with components

Knm =

∫
D

K
(n)
i (x)b(m)

i (x) dx. (B 27)

Standard techniques can be used to derive the evolution equation for the joint PDF
of u and C , and hence of the PDF of u conditioned on C = c. This equation is of
interest in its own right, and can also be integrated to obtain the evolution equation
for 〈U(x, t)|c〉.

Appendix C. Derivation of the self-conditioned composition PDF equation
In addition to the velocity field, we consider a single composition variable φ(x, t)

evolving by

Dφ

Dt
= −∂Ji

∂xi

+ S(φ), (C 1)

where S is the chemical source term, and J is the molecular flux

Ji = −Γ
∂φ

∂xi

, (C 2)

where Γ is the molecular diffusivity. A single composition is considered for simplicity,
but there is no difficulty in extending the analysis to multiple compositions.

The conditioning variables are extended to include variables of the form of (5.2).
In addition to the PDF, fc(c; t), of the conditioning variables, (B 2), we consider

the joint PDF fφc(ψ, c; x, t) of φ(x, t) and C(t):

fφc(ψ, c; x, t) = 〈δ(φ(x, t) − ψ) δ(C(t) − c)〉, (C 3)

and the PDF of φ(x, t) conditional on C(t) = c:

fφ|c(ψ | c; x, t) = fφc(ψ, c; x, t)/fc(c; t). (C 4)

The standard delta-function technique is used to derive the evolution equation for
fφc, and then the equation for fφ|c is obtained from (C 4). Similar to (B 11), the
equation for fφ|c is(

∂

∂t
+

〈
dCi

dt
| c

〉
∂

∂ci

)
fφ|c = − ∂

∂ψ

[
fφ|c

〈
∂φ

∂t
| φ, c

〉]
+ Rφ, (C 5)

where Rφ is defined by

Rφ ≡ − 1

fc

∂

∂ci

[
fcfφ|c

(〈
dCi

dt
| φ, c

〉
−

〈
dCi

dt
| c

〉)]
. (C 6)

The term Rφ represents a source due to a flux in conditioning space, and it satisfies∫
C

fcRφ dc = 0, (C 7)

(similar to (B 18)), and ∫ ψ+

ψ−

Rφ dψ = 0, (C 8)

(where ψ− and ψ+ are the lower and upper bounds on φ) so that the normalization
of fφ|c is preserved.
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We now define g(ψ; x, t) to be the PDF of composition conditioned on Ĉ(t),

g(ψ; x, t) ≡ fφ|c(ψ | Ĉ(t); x, t), (C 9)

so that the left-hand side of (C 5) (evaluated at c = Ĉ(t)) is simply ∂g/∂t . Then
substituting (C 1) for ∂φ/∂t , we obtain(

∂

∂t
+ Wi

∂

∂xi

)
g = − ∂

∂xi

[
g(〈Ui | ψ, Ĉ(t)〉 − 〈Ui | Ĉ(t)〉)

]
− ∂

∂ψ

[
g

(
S(ψ) −

〈
∂Ji

∂xi

| ψ, Ĉ(t)

〉)]
+ Rφ. (C 10)

The simplest model equation for g is obtained by (a) using a gradient diffusion
model for the spatial flux due to residual velocity (the first term on the right-hand
side of (C 10)), (b) modelling the molecular term by the interaction by exchange with
the mean (IEM) mixing model plus a mean diffusion, and (c) neglecting Rφ . The
result is the model equation(

∂

∂t
+ Wi

∂

∂xi

)
g =

∂

∂xi

(
ΓR

∂g

∂xi

)
− ∂

∂ψ

[
g

(
S(ψ) − ωR(ψ − φ̃) + Γ

∂2φ̃

∂xi∂xi

)]
, (C 11)

where ΓR and ωR are the modelled residual diffusivity and mixing rate, and φ̃(x, t) is
the conditional mean field

φ̃(x, t) ≡ 〈φ(x, t) | Ĉ(t)〉 =

∫ ψ+

ψ−

ψg(ψ; x, t) dψ. (C 12)

Finally, we verify that g(ψ; x, t) is self-conditioning, for conditioning given by (5.2).
Taking the conditional mean of this equation, we obtain

〈Cm(t) | C(t) = Ĉ(t)〉 = Ĉm(t)

=

∫
D

〈L(m) (φ(x, t)) | C(t) = Ĉ(t)〉 K
(m)
φ (x) dx

=

∫
D

∫ ψ+

ψ−

g(ψ; x, t)L(m)(ψ) dψ K
(m)
φ (x) dx, (C 13)

showing that Ĉm(t) is determined by g(ψ; x, t).
For the simplest case of L(m) being the identity (i.e. L(m)(ψ) = ψ), then the

corresponding conditioning variable is

Ĉm(t) =

∫
D

φ̃(x, t)K (m)
φ (x) dx. (C 14)

Appendix D. The choice of conditioning variables
In this appendix, we consider the optimal choice of conditioning variables and

make some related observations. We consider deterministic, ergodic, channel flow (as
introduced in § 3.1), in which the velocity field U(x, t) is on an nA-dimensional attractor
A in the function space H. These considerations are based on a decomposition of
the velocity field (D11) which is now described.
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The nc conditioning variables C(t) are defined by the nc-vector of conditioning
kernels K(x) (whose components, K1(x), K2(x), . . . , Knc

(x) are vectors in physical
space). Specifically, we have that the nc-vector of conditioning variables is

C(t) =

∫
D

K(x) · U(x, t) dx. (D 1)

We require that the nc conditioning kernels be linearly independent on the attractor
A, which implies that nc is no larger than nA.

As in § 3.2, we decompose the function space H into two mutually orthogonal

subspaces H̃ and Ĥ, and correspondingly the velocity field U(x, t) is decomposed

as U = Ũ + Û (with Ũ ∈ H̃ and Û ∈ Ĥ). The defining property of the infinite-

dimensional subspace Ĥ is∫
D

K(x) · Û(x, t) dx = 0 for all Û ∈ Ĥ, (D 2)

so that Û makes no contribution to the conditioning variables. Given U , both C and

Û can be determined, and then Û can be decomposed as

Û(x, t) = 〈Û(x, t) | C(t)〉 + U ′(x, t, C(t)), (D 3)

i.e. into its conditional mean 〈Û(x, t) | C(t)〉 and the conditional deviation
U ′(x, t, C(t)), which is implicitly defined by the above equation.

The subspace H̃ is nc-dimensional, it is orthogonal to Ĥ, and we introduce for it an

orthonormal basis b̃(x). We treat b̃(x) as an nc-vector, but note that its components

(b̃1(x), b̃2(x), . . . , b̃nc
(x)) are divergence-free vector-valued functions in physical space.

The orthonormality conditions are∫
D

b̃(x) · b̃(x)T dx = I

∫
D

dx, (D 4)

where I is the nc × nc identity matrix. In this basis, Ũ can be expressed as

Ũ(x, t) = b̃(x)Tũ(t), (D 5)

where ũ(t) is an nc-vector of scalar-valued basis-function coefficients. Pre-multiplying
this equation by K(x)· and integrating over the domain, we obtain

C(t) =

∫
D

K(x) · Ũ(x, t) dx =

∫
D

K(x) · b̃(x)Tũ(t) dx = L̃ ũ(t), (D 6)

where L̃ is the non-singular nc × nc matrix defined by

L̃ ≡
∫

D
K(x) · b̃(x)T dx. (D 7)

Equation (D 6) shows that there is a one-to-one linear relation between C and ũ, so

that we can re-express Ũ as

Ũ(x, t) = b̄(x)TC(t), (D 8)

where the nc-vector of basis functions b̄(x) is defined by

b̄(x)T = b̃(x)TL̃
−1

, (D 9)
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and is uniquely determined by K (independent of the particular choice of the basis

b̃). Equation (D 8) shows the non-trivial result that Ũ is a determined linear function

of C . It then follows simply that the conditional mean of Ũ is the known linear
function:

〈Ũ(x, t) | C(t) = c〉 = b̄(x)Tc. (D 10)

From (D 8) and (D3) we obtain the decomposition

U(x, t) = b̄(x)TC(t) + 〈Û(x, t) | C(t)〉 + U ′(x, t, C(t)). (D 11)

On the right-hand side, the first term is the known linear component in H̃; the first
and second terms together give the conditional mean 〈U(x, t) | C(t)〉; and the third
term gives the deviation of U(x, t) from this conditional mean.

The volume-average mean kinetic energy is

k ≡
∫

D

1

2
〈|U(x, t)|2〉 dx

/ ∫
D

dx, (D 12)

which can be decomposed as

k = k̃ + k̂ + k′, (D 13)

where the three terms on the right-hand side correspond to the three terms on the
right-hand side of (D 11), e.g.

k′ ≡
∫

D

1

2
〈|U ′(x, t, C(t))|2〉 dx

/ ∫
D

dx. (D 14)

On the basis of this decomposition, we consider three possible definitions of optimal

conditioning variables, namely, those which minimize k′, k̂ and k′ + k̂.
Minimizing the residual kinetic energy k′ may be optimal from a modelling

viewpoint. The maximum possible energy is explicitly represented in the self-
conditioned field, and the residual stresses requiring modelling are in some sense
minimized. Minimizing k′ is also optimal in the sense that, as nc is increased, the
DNS limit is achieved with the smallest possible value of nc.

An interesting question is: for a given value of nc, can the conditioning kernels
be chosen such that the nc-dimensional manifold 〈U(x, t) | C(t) = c〉 is in the

nc-dimensional subspace H̃? For such ‘eigen-conditioning’ (if it exists), k̂ is zero,
and the self-conditioned velocity field is a known linear function of the conditioning
variables, i.e.

〈U(x, t) | C(t)〉 = b̄(x)TC(t). (D 15)

On the basis of this observation, the choice of conditioning variables that yields

k̂ = 0, or which minimizes k̂, or which minimizes the dimension of 〈U(x, t) | C(t) = c〉
may be optimal from the viewpoint of numerical simulations, since it requires the
smallest number of basis functions to accurately represent the self-conditioned velocity
field.

Finally, we consider minimizing the sum k′ + k̂ of the two quantities previously
considered for minimization, to yield a compromise between the benefits of minimizing

either one alone. This is equivalent to maximizing k̃, which is a well-known property
of the POD basis (see e.g. Holmes, Lumley & Berkooz 1996). That is, given nc,
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the energy k̃ associated with the velocity field Ũ in H̃ =span(b̃) is maximized by b̃
spanning the same subspace as the first nc POD modes.

Of the three minimization problems considered, only for the last one is there
an established minimization procedure, i.e. the POD methodology; and even this is
unlikely to be tractable except for simple model problems (since the computational
work involved scales as the cube of the number of basis functions required to resolve
U(x, t)). Nevertheless, it is a useful, if not surprising, conclusion that the POD modes
provide a good basis for the conditioning variables.
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