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Many flows of practical interest, such as those that are bounded by curved surfaces, 
could be calculated in curvilinear coordinates more accurately, conveniently, and economic- 
ally than in Cartesian coordinates. A calculation procedure is developed by representing 
the conservation equations in general orthogonal coordinates and so obtaining appropriate 
finite-difference equations. These equations are written in a similar manner to their Cartesian 
counterparts, thus enabling the procedure of Gosman and Pun (Imperial College Report 
HTS/73/2) to be adapted. The viability of such a procedure depends upon the ability to 
generate an orthogonal grid appropriate to a given flow geometry and consequently a 
grid-generation procedure is also developed: it is based on the solution, by an iterative 
finite-difference technique, of Laplace’s equation for the Cartesian coordinates of the 
orthogonal grid nodes. The combined procedures are tested and demonstrated by cal- 
culating the flow properties in a diffuser of sufficient divergence to cause recirculation. 

1. INTRODUCTION 

Several recent papers, [l-4], for example, have reported solutions of partial 
differential equations appropriate to recirculating flows. These equations were 
expressed in Cartesian or polar-cylindrical coordinates, rewritten in finite-difference 
form, and solved by an appropriate algorithm. In general, the geometric configuration 
of each flow situation was simple and the coordinate system used was a natural 
choice in that the flow boundaries were coincident with coordinate lines. Conse- 
quently, the finite-difference solution domain lay entirely within the flow field and, 
close to boundaries, the grid could be selectively refined in order to retain numerical 
accuracy in regions of high gradients: also, the coincidence of the boundaries with 
coordinate lines greatly simplified the specification of boundary conditions. 

There are, however, a variety of flows of practical interest for which rectangular 
coordinates are less appropriate and the previously mentioned benefits are lost. 
Separated flow in the vicinity of curved surfaces such as airfoils and turbine blades 
is better represented in a coordinate system which follows the curvature and so allows 
skin friction and heat transfer to be computed accurately. Similarly, a nonrectangular 
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coordinate system is more suited to the calculation of the flow in gas-turbine com- 
bustion chambers of varying radius. A further example is provided by the separated 
flow in the curved diffuser sketched in Fig. 1. Figures la and lb show this flow in 
rectangular and nonrectangular coordinates, respectively, and the advantages of the 
latter are apparent: the grid can be refined in the two boundary layers, the boundary 
conditions can be easily and more accurately imposed, and no wastage is caused by 
grid nodes external to the flow. 

a b 

FIG. 1. Sketch of flow in a diffuser: (a) rectangular coordinates; (b) curvilinear coordinates. 

Numerical methods have been developed to solve the conservation equations 
governing the flow in general curvilinear coordinates [5,6] but the complicated form 
adopted by the equations in these coordinates entails additional expense in terms of 
computer resources. However, in many situations an orthogonal grid is equally 
effective and the equations in orthogonal form are little more complicated than their 
Cartesian counterparts. One purpose of the present report is, therefore, to represent 
the elliptic equations, appropriate to viscous recirculating flow, in general orthogonal 
coordinates and to deduce the corresponding finite-difference equations. A novel 
procedure, developed for transforming equations into general orthogonal coordinates, 
has been used to obtain the transport equations for velocity and a general scalar 
quantity which may represent turbulent, thermodynamic, or chemical properties of 
the flow. Appropriate turbulence equations are discussed by Launder and Spalding [7] 
and by Pope and Wbitelaw [2] and equations to characterize turbulent reaction are 
appraised by Pope [8]. The finite-difference equations are presented for two- 
dimensional flows although the procedure is quite general. 

It will be shown that the equations can be solved as easily in orthogonal coordinates 
as in rectangular coordinates but an orthogonal grid, appropriate to a given flow 
geometry, cannot be specified as simply as a rectangular mesh. A second purpose 
of the report is, therefore, to describe a method for generating an orthogonal grid 
which is essential to the procedure as a whole. Barfield [9] developed a mapping 
procedure to generate orthogonal grids but, for consistency with the main exercise, 
it was decided to develop a finite-difference method. Amsden and Hirst [lo] and 
Thompson et al. [ll] reported finite-difference grid-generation procedures but they 
are not intended to produce orthogonal grids. The procedure reported here solves 
Laplace’s equation for the Cartesian coordinates of the orthogonal grid nodes by an 
iterative finite-difference technique and the only obstacle that was overcome in its 
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development was the determination and application of the appropriate boundary 
conditions. 

The solution method used to generate the grid nodes is also able to provide 
solutions to the potential-flow equations in a particularly convenient way. This is 
because the location of the streamlines can be made the subject of the equations 
(solved in stream-function space) rather than the normal practice of solving for 
stream function in position space: thus rather than specifying a constant value of 
stream function over the perimeter of a body or along a streamline, the coordinates 
of the body or streamline are specified for a constant value of the stream function. As 
a consequence, for unconfined flows, the procedure is able to generate free-stream 
boundary conditions for the velocity components which are necessary to the solution 
of the elliptic equations. Thus, the matching of the potential flow with the viscous 
flow procedure is achieved in an efficient manner. 

The contributions mentioned above are described in the next four sections entitled, 
“Transport Equations,” “ Equations in Orthogonal Coordinates,” “Finite-Difference 
Method,” and “Grid-Generation Procedure.” In the final section, results of calcu- 
lations designed to test the procedure are presented and discussed. 

2. TRANSPORT EQUATIONS 

In this section the differential equations which represent the flow are presented and 
discussed. The presentation of the equations in customary Cartesian tensor notation is 
intended to convey the physical basis of the equations without introducing compli- 
cated or unfamiliar notation appropriate to more general coordinate systems. 

The continuity and momentum equations for a flow without body forces are: 

and 
(+/at) + (i+Ui/%XJ = 0 (1) 

(%pu,/at) + (2pUiUj/axj) = -(i?p/plaxJ - (aTij/axj) (2) 

where p(x, t) is the averaged density at position x and time t: U is the averaged velocity, 
p the pressure, and Tij the stress tensor. The unknown Reynolds stresses, which at the 
high Reynolds number considered here are the only contributors to Tij , are determined 
from the k - E turbulence model in conjunction with the isotropic viscosity hypothesis, 

and 

(5) 
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Equations (3) and (4) account for the transport of the turbulent kinetic energy, k, 
and its rate of dissipation, E. The production of kinetic energy and the effective 
viscosity are given by, 

P = -(auJaxj) Tij (6) 
and 

pen = C,pk2/c (7) 

and the constants C, , C,, , C,, , uk , and uE are ascribed the values 0.09, 1.45, 1.90, 
1 .O, and 1.3, respectively, 

In addition to the hydrodynamic and turbulence equations, the transport equation 
for a general scalar quantity such as temperature or a mass fraction is also considered, 
i.e., 

where 4, the mass averaged value of the scalar, can also represent k and E. 
The closure provided by these equations was first used by Jones [12] although it 

stems from the earlier works of Chou [13] and Harlow and Nakayama [14]. A 
description of the modeling of the turbulence equation is given by Launder and 
Spalding [7] and for a criticism of the effective viscosity hypothesis and dissipation 
equation (which contain the major assumptions), the reader is referred to previous 
work [15, 161. The only aspect of the modeling which requires further explanation is 
the treatment of density fluctuations caused either by compressibility or by temper- 
ature or species gradients: the conventionally averaged equations for velocity and 
kinetic energy contain correlations between density and velocity fluctuations, which 
ential further modeling assumptions and produce extra terms for incorporation in a 
calculation procedure. On the other hand, the use of mass-weighted averaging results 
in equations which are similar to their constant density counterparts and as has been 
argued [17], the same modeling can be employed. Consequently, all of the dependent 
variables in Eqs. (l)-(4), except p and p, are mass averaged and it may be noted that 
the isotropic viscosity hypothesis (Eq. (5)) has been modified to ensure that the 
Reynolds-stress tensor contracts correctly even when the divergence of velocity is 
nonzero. 

The closure provided by these equations is completed by the specification of 
boundary conditions over the whole perimeter of the solution domain. The imposition 
of boundary conditions is straightforward except in near-wall regions where the 
following functions are added to the equations in order to account for the influence 
of laminar effects and to preclude the need for fine grid calculations in that region: 

where 

and 
YD ‘- = p(kDC:‘2)1’” (Y&L), E, = (C:‘“k,)“‘“/tcy, , 

.r 

YP 
cdy = (C;‘zk,)3’2 

0 

+ In (Ey,+). 
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TV is the wall shear stress and p the laminar viscosity. The subscript p refers to the 
grid node next to the wall and yP and U, are the normal distance and parallel velocity 
at that point. K and E are the constants in the logarithmic law-of-the-wall and have 
values of 0.4 and 8.8. 

3. EQUATIONS IN ORTHOGONAL COORDINATES 

In order to formulate finite-difference equations in general orthogonal coordinates, 
a less restricted representation of the equations presented above is required. The 
novel notation for orthogonal coordinates, introduced below, is well suited to this 
task in that it is a compromise between the simplicity of Cartesian tensor notation 
and the versatility of general tensors. There are a variety of ways in which the equations 
can be expressed in general orthogonal coordinates and many ways of performing the 
transformations: here, the equations are expressed in terms of the physical components 
of the tensors and the transformations are performed by a novel procedure. The 
justification for these choices is that the result is a simple and compact expression of 
the equations which retain their physical significance: the advantage of the compact 
notation is not merely aesthetic but leads to simple finite-difference equations and, 
consequently, to computational economy. 

Figure 2 is a sketch of an orthogonal coordinate system (in two dimensions for 
simplicity) where the orthogonal coordinates xi are shown relative to Cartesian 
coordinates 3. Distances in the general orthogonal coordinate system are relaetd to 
the Cartesian system through the metric tensor g,$ by 

where 

(a?~)2 = (d~~)~ = gij dxi dxj (9) 

g, = c !?zf E . 
t axa a.9 (10) 

ii’ 

FIG. 2. Orthogonal coordinate lines in Cartesian coordinates, Z. 
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It follows from the definition of orthogonality that only the diagonal elements of the 
metric tensor are nonzero and so (9) can be written in the simple form 

(ds)2 = (dxy = (hi dxi)2 = [dx(i)J2 (11) 

where the scale factors h, which are excluded from the summation convention, 
are given by 

hi ZE (giiy (no summation on i). (12) 

The physical components of displacement dx(i), which are defined by (1 l), represent 
displacements along coordinate lines measured relative to the coordinate system X. 
Similarly, the physical components of a contravariant vector are given by 

A(i) = hiAi (13) 

and represent the components of the vector in the direction of the coordinate lines 
measured relative to the Cartesian system. The advantages of expressing the transport 
equations in physical rather than co- or contra-variant form are that the vectors 
retain the same dimensions in all directions and all locations and that no additional 
terms arise due to stretching the coordinate system. 

The transport equations in general orthogonal form could be derived from control 
volume analysis, obtained by intuition or from geometric transformations, but all 
of these methods are prone to error. On the other hand, the transformation of the 
equations into general tensor notation and subsequent simplification for orthogonal 
coordinates can, in principle, be performed with rigor, but the tedium of the algebra 
virtually ensures erroneous results. The novel procedure adopted here is to transform 
the equations in Cartesian form directly into the general orthogonal system by way 
of the transformations derived in Appendix I. These transformations are obtained 
rigorously by using general tensors and involve the derivative a/ax(i), the divergence 
operator V(i), and coordinate variation terms Hi(j) where, 

and 

V(i) = hi j h I-1 a/ax(i) 1 h l/h, (14) 

ffi(j) e l/hihj ahi/axj = a/ax(j) In hi . (15) 

In Eq. (14), I h I is the product of the scale factors and represents the volume ratio 
between the coordinate systems: the coordinate variation term, Hi(j), represents the 
inverse of the radius of curvature of the j coordinate line and the suffix i is excluded 
from the summation convention. Quantities A in the Cartesian system X are trans- 
formed to quantities A in a general orthogonal system x by the following transfor- 
mations: 

Scalars. 
d ---f A, 

aA/ax, -+ a~px(i).. 
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Vectors. 

a&/Z, -+ [aA(i) - A(j) H,(i) + A(k) Hi(k) &j , 

a‘&/ax, ---f V(i) A(i). 

Second-order tensors. 

aAij/aXi + V(i) A(zj) - A(C) Hi(j) + Hj(k) A(jk). 

Appendix I contains general expressions for all transformations but those quoted 
above are sufficient to transform the transport equations as follows: 

+)/at + w[pw)l = 0, (16) 

+wwt + WWW u(j) + ~*tij)l = - ap*/w) + Hi(j)[pUti) u(i) + T*(C)] 

- WWW Ki) + ~*(ij>l, (17) 

+$/at + w)Epwi)+ - cpeffia,) a+jax(i)i = s, , (18) 

where the isotropic component of the turbulent stress has been added to the pressure, 
i.e., 

P* = P + $pk + f tLeifV(i) U(i) 

and 7* contains the anisotropic stresses, 

(19) 

T*(ij) = --pelf axtjj [ 
Wi) + T.8 __- 

ax(i) 
U(i) Hi(j) - U(j) Hj(i) + 2U(l) Hi(l) &I. (20) 

The production of turbulent kinetic energy is given by 

P = -T*(ij)[-g# - u(j) 4(i) + W f&t0 &] 

- i [pk + peffV(i) u(i)] V(f) U(l) 

+ U(l) &,[H,(l) + Hg(r)ll” - ?” [pk + p&‘(i) U(i)] V(l) U(I). (21) 

The physical interpretation of the scalar transport equation is straightforward and 
not unexpected; the change of p+ in time is balanced by the inflow of + due to 
convection and to gradient diffusion and by the source. The same form is adopted 
by the continuity equation but the momentum equation has gained source terms 
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due to coordinate curvature: these terms reflect the fact that momentum is conserved 
in a straight line not along a coordinate line. Thus, for example, the term 

S(j) = Hi(j) #d(i) U(i) - H,(i) pU(i) U(j) (22) 

represents a transfer of momentum for one coordinate direction to another and, since 
S(j) U(j) is zero, the transfer is conservative. That is, S(j) affects the direction of the 
velocity vector relative to the orthogonal coordinate system but not its length since 
the source due to S(j) in the equation for U(j) U(j) is zero. The additional terms in the 
relations for the stress tensor and the production of kinetic energy arise from the 
transformation of the velocity gradients and, as can be seen, P can be expressed as 
the sum of an identically nonnegative term due to the rate-of-strain and a term due 
to the divergence of velocity. 

4. FINITE-DIFFERENCE METHOD 

The calculation procedure solves the equations derived in the last section for steady, 
two-dimensional flows with, 

U(1) = u, dx(1) = dx, 

U(2) = v, dx(2) = ay. 

In Appendix II, the differential equations for this situation are expanded and it is seen 
that they have the common form, 

YO(pU$ - ra! %w4 + w)Go~rb - TV v/3Y> = sb (23) 

where the values of r, , r, , and S, appropriate to each variable are given in Table I. 
The differences between this equation and its Cartesian counterpart lie solely in the 
divergence operator and the source terms and, consequently, it was possible to obtain 
a finite-difference procedure for orthogonal coordinates by modifying one for 

TABLE I 
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Cartesian coordinates. Thus, the procedure reported here represents a modified 
version of that of Gosman and Pun [l] and details of the original procedure can be 
found in the above reference. 

The finite-difference equations are obtained by integrating the equations over the 
(two-dimensional) volume indicated on the finite-difference grid, Fig. 3. The value 

FIG. 3. Finite-difference cell. 

of the variable # in question is assumed known at the nodes P, N, S, E, and W, 
P, N, and S and P, E, and W lie on lines of constant x1 and x2, respectively. The 
integration yields, 

[lz” pU# - I’, g dy-f+’ + [I=+’ pV# - r, g dx-f+* = s’” In+‘& dx dy. (24) 
x-2 x-l 2-l x-2 x-1 x-2 

The left-hand side of this equation is the area integral of the flux of 4 due for con- 
vection and diffusion which is balanced, on the right-hand side, by the volume integral 
of the source. The form of this equation is identical to its Cartesian counterpart 
although, it should be recalled, in this instance dx and dy are functions of the scale 
factors which, in turn, are functions of the coordinates. In general, the following 
finite-difference approximations are made: 

and 

s”’ 1”’ S, dx dy M (S,), /” /‘-I dx dy = (S,), vol. 
CL2 o-1 ST8 r-l 

(27) 

Quantities such as (pU),+1 and (I’&+1 , if not known at the required locations, are 
obtained by interpolation and the remaining integrals are known functions of the grid. 
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Thus, a relation between h and neighboring values is obtained by substituting these 
approximations into Eq. (24), 

where AE = D,+ - Cz+ , A, = D, + C,- , etc., and, for high cell Reynolds 
numbers, these coefficients are modified according to the hybrid scheme of Gosman 
et al. [18]. 

If the pressure is known, then (28), written for each variable at each grid node, 
yields a closed set of algebraic equations, but there is no guarantee that the resultant 
velocity field would satisfy the continuity relation. The two problems of determining 
the pressure and satisfying continuity are overcome by adjusting the pressure field 
so as to satisfy continuity. The details of this procedure are given elsewhere (Gosman 
and Pun [l]) but it should be noted that it requires a specific juxtaposition of the 
velocity and pressure nodes (see Fig. 4). The pressure and other scalars are stored at 
the location (xil, xjz) while the corresponding U- and V-velocities are stores at 
[1/2(x? + x:-J, xjz] and [xil, l/2(xj2 + x:-~)], respectively. An advantage of this 
scheme is that, for scalar equations, the normal velocity is known at each face of the 
cell and, consequently, interpolation is avoided. 

FIG. 4. Juxtaposition of grid nodes. 

Attention is now focused on the computational problems posed by the curvilinear 
grid: the cell-face areas, the distance between grid nodes and the cell volumes, cannot 
be calculated from x1 and x2 as would be the case in Cartesian coordinates but require 
evaluation from, or storage as, two-dimensional quantities. If these quantities were 
stored it would involve five storage locations for each cell and, as there are three 
separate grids, this results in 15 storage locations per triad of nodes: thus, for a 
30 x 30 grid, 13,500 storage locations would be required. Although this is a large 
storage requirement, the geometry is calculated only once, whereas another possibility 
would be to store only the Cartesian coordinates of the grid line intersections and to 
calculate the geometric parameters each time they are required. This scheme requires 
only eight storage locations per triad of nodes but evaluating lengths through 
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Pythagoras’ theorem is computationally expensive. The method adopted is a com- 
promise requiring twelve storage locations and a minimum of arithmetic: it is based 
on the “double” grid formed by the intersection of all the lines on Fig. 4, both full 
and broken. The distance between each intersection is stored in the manner shown 
in Fig. 5 as are the volumes of each of the four “quarter-cells” surrounding the 
pressure node. Thus, the cell-face areas appropriate to any node (U, V, or p) are given 
by the sum of two of these lengths and the cell volumes are given by the sum of four 
quarter-cell volumes. A further saving could be accomplished by storing the volume 
of the complete U, V, and p cells but, it will be shown below, a knowledge of the 
four quarter-cell volumes proves useful in evaluating the source terms. 

FIG. 5. Finite-difference grid representation. 

The essential components of the finite-difference formulation have now been 
presented and, for details of the solution procedure, the reader is referred to Gosman 
and Pun [l]: there are, however, two further points worthy of mention. The first 
relates to the finite-difference approximation for the convective term (25) which, 
through the relation 

4 lr+l - H$P -t $E), (29) 

implicitly assumes an evenly disposed grid. For a scalar equation on a Cartesian grid 
the cell boundaries do lie halfway between grid nodes and so (29) is appropriate: 
for the velocity equations this is not necessarily the case and so linear interpolation 
is employed. General orthogonal grids add a further complication because linearity 
in the coordinate system does not reflect linearity in physical space; that is, referring 
to Fig. 5, although x, l = 1/2(xi1 + xi+J, it does not follow that dxeisj = dxwi+l,i . 
Consequently, in refining the procedure, it would be appropriate to replace (25) 
by an approximation based on the assumption of linearity in physical space. 

The second point, which has equal bearing on Cartesian procedures, relates to the 
evaluation of the production of turbulent kinetic energy, P. The method adopted 
here provides a more accurate volume integral than does (27) and treats the linkage 
between stress and strain consistently: the same finite-difference approximations for 
stress and strain are used in this context as are used in the momentum equations. 
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In Appendix II, P is expressed as the sum of the squared normal strains plus the 
square of the shear strain and, for variable density flows, terms involving the diver- 
gence of the velocity. Both the normal strains and the divergence of velocity are 
readily evaluated at the pressure node but the shear strains are known at each corner 
of the cell. Thus, the volume integral of the production of kinetic energy is evaluated 
from the normal strain and divergence terms at the pressure node multiplied by the 
cell volume plus the sum of the shear strain terms at the cell corners multiplied by the 
appropriate quarter-cell volume. The cell corners were also found to be the most 
convenient locations at which to store the coordinate variation terms H,(2) and H,(l). 

In summary, it has been shown that the similarity of the transport equations 
expressed in general orthogonal coordinates and in Cartesian coordinates allows 
Gosman and Pun’s [l] procedure to be used with the following modifications: 

(a) The incorporation of the additional source terms given in Table I. 

(b) Storing cell-face areas and cell volumes as two-dimensional quantities (which, 
along with H,(2) and &(I), increases the storage requirement by 14 locations per grid 
node). 

(c) Incorporating linear interpolation in physical space. 

5. GRID-GENERATION PROCEDURE 

A procedure is described which determines the Cartesian coordinates, Z, of the 
nodes of an orthogonal grid. For a given specification of grid boundary, for example, 
the duct shape shown on Fig. lb, and for the number and disposition of coordinate 
lines selected in each direction, the locations of the coordinate line intersections are 
determined. Consequently, by approximating the coordinate line between two nodes 
as a straight line, the grid distances shown on Fig. 5 can be calculated. 

Referring to Fig. 2, the condition of orthogonality leads to the following relations, 

d$ = h, d9 cos 0 + h2 dx2 sin 8, 

dX2 = -hl dxl sin 8 + h, dx2 cos 0, 
(30) 

from which it follows, 

axi h ax2 -=2-- ai2 h, axi 
axi hlax2’ axl=-~z? (31) 

and consequently 

where 

v23 = 0 3 Q52 = 0 (32) 

(33) 
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Thus, the Cartesian coordinates of the orthogonal grid, 9 and Z2, are seen to satisfy 
Laplace’s equation but, in this instance, its solution is not uniquely determined by 
the boundary conditions since the scale factors in the Laplacian are functions of the 
solution: that is, some function of the scale factors must be prescribed throughout 
the solution domain in order that the equations be determinate. This is most readily 
achieved by prescribing a constant value to the ratio a = h,/h, everywhere which 
allows Eqs. (32) to be rewritten as, 

a29 
yg3 + a2 

a9 
g$i3 = 0, 

a52 as2 
p + a2 p = 0. (34) 

In order to determine the boundary conditions appropriate to (34), consider the 
general situation illustrated in Fig. 6 in which the domain bounded by the lines 

FIG. 6. Solution domain: (a) in Cartesian space; (b) in orthogonal space. 

F,, = 0, F23 = 0, Fs4 = 0, and Fhl = 0 is to be represented in the orthogonal x1, x2-space. 
The solution of (34) in the x1, x2-space requires the specification of eight boundary 
conditions (two on each side) and the determination of the constant a which is unique 
for a given set of boundary conditions in each space. One boundary condition on each 
side is provided by the loci of the boundary (i.e., F,, = 0, etc.) while another is 
deduced from either of Eq. (31) by 

for the sides 12 and 34 or, for the sides 23 and 41, 

x2 = .-l 
I 

g d-x2 or 21 = -a-l 
s 

s dx2. 

Further, since X1 and X2 are known at each corner, a can be determined from any of 
the above relations. 

An appreciation of the interrelation of the boundary conditions may be gained by 
examining their application to the side 12, for example: as illustrated on Fig. 6, the 
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shape of the domain may be such that the function &(X1, X2) can be made explicit 
for Z2, i.e., 

z2 = 4F,,(Z1), (37) 

and so this relation, together with the first of Eqs. (35), 

xl = a t3x2/W dxl, 
s (38) 

form sufficient boundary conditions. In general, however, an explicit expression for E2 
in terms of X1 (or vice versa) may not exist over the whole length of one side since X2 
need not be a single-valued function of X l. Consequently, the implicit solution of 
F,, = 0 can have more than one root, introducing an ambiguity which can be avoided 
(or at least minimized) by adopting the following procedure. In regions where 
aF,,/W < W1,/aZ2, (38) is employed to determine S, and Z2 is deduced from 

F12(X1, X2) = 0. 

In regions where aF,,/aP > 8F12/Z2, Z2 is determined from 

x2 = -a aSlax dxl s 

(39 

(40) 

and X1 is deduced from F,, . That is, the boundary conditions are applied piecewise 
in such a way as to minimize any ambiguity by solving (39) for whichever of X1 or X2 
is least likely to be double valued. 

Equations (34) are solved by a straightforward finite-difference method involving a 
five-point scheme. The finite-difference equations are solved iteratively, line by line and 
after each iteration the boundary conditions and the value of a are updated. No 
relaxation was used in solving the finite-difference equations but an underrelaxation 
factor of 0.1 was applied to the updating of a: this does not necessarily represent an 
optimum value but it results in satisfactory convergence rates without affecting 
stability. Figure 7 shows an example of the grids produced by this method where 
alternate grids lines have been drawn to correspond to the basic grid used by the main 
procedure. It may be seen that uneven spacing has been used in order to concentrate 
nodes into regions where large variations in flow properties are expected. 

FIG. 7. Example of orthogonal grids generated. 
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6. RESULTS AND DISCUSSION 

A variety of simple flows were calculated in order to test the procedure. First, 
various aspects of the scheme were tested by calculating laminar flows with analytic 
solutions in which the flow is aligned with grid lines. For these cases the only in- 
accuracy was that caused by round-off error: the calculation of plane, linear shear, 
in Cartesian coordinates confirmed the correct treatment of the velocity-gradient 
terms and solid body rotation, calculated in polar-cylindrical coordinates, verified 
the treatment of pressure gradients. Linear, radial shear again calculated in polar- 
cylindrical coordinates was used to test the implementation of the additional terms 
due to coordinate curvature. 

In order to test the treatment of the convective terms, a flow not aligned with the 
coordinate system was chosen. Plane, quadratic shear was calculated in polar- 
cylindrical coordinates and in this case inaccuracy due to false diffusion or numerical 
smearing is to be expected. The flow was calculated for I < r < 2, 0 < ~9 < 1 
(in the usual notation) on an 11 x 11 grid and the velocity profile for 13 = 0.55 is 
compared with the analytic solution on Fig. 8. The maximum departure of the 
calculated value is 2.40/b indicating that the scheme is prone to error due to false 
diffusion but not more than any other of the same genre. 

I I 

i 

FIG. 8. U, against r; 0 = 0.55. Comparison of calculations with analytic result. 

To test the procedure for turbulent flows is more difficult since analytic solutions 
are not available. However, the turbulent recirculating flow over a backward facing 
step was calculated in Cartesian coordinates and compared with similar calculations 
performed with the original, Cartesian-coordinate, version of the algorithm: the 
agreement between the results was within round-off error. This, and the other tests 
mentioned, confirms that the level of accuracy of the procedure is the same as that of 
the Cartesian version from which it was developed but to establish this level under a 
variety of different flow conditions would be a separate, though valuable, exercise. 
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FIG. 9. Contours of stream function in diffusers of various expansion rates. 
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The combined grid-generation and flow calculation procedures were used to calcu- 
late flow properties in a symmetric duct resembling a diffuser: the initial width of the 
duct, D, was doubled by a sinusoidal curve of length L. Contours of stream function 
(defined to be zero at the wall and unity at the center line) are shown on Fig. 9 for 
values of L/D between 0.5 and 2.0. The calculations, performed on 20 x 16 grids 
such as that shown on Fig. 7, clearly show that the intensity and extent of the separated 
flow decreases with increasing values of L/D. Further results, and a discussion of their 
physical significance are reported elsewhere [19], and those shown on Fig. 9 are 
solely intended to demonstrate the capability of the procedure. The time and storage 
requirements of the Fortran computer program are 0.004 set/grid node/iteration 
(CDC 6600) and 11,000 words + 31 words/grid node. For the 20 x 16 grids men- 
tioned above, 150 iterations were required for convergence leading to 190 set of 
computation using 21,000 words of memory. The time requirement is comensurate 
with the original procedure but the storage requirement, though not excessive, is 
increased by 14 words/grid node. 

In conclusion, a finite-difference procedure has been developed to calculate the 
mean properties of turbulent recirculating flows in general orthogonal coordinates. 
With only a small penalty of computer storage, this allows flows bounded by curved 
surfaces to be calculated more easily, efficiently, and accurately than is possible in 
Cartesian coordinates. A novel method of transforming quantities into general 
orthogonal coordinates has been presented which facilitates the incorporation of a 
variety of transport equations into the scheme. In addition, a grid-generation proce- 
dure, based on the solution of Laplace’s equation by finite-difference means, has been 
developed. The procedure has been tested and sample calculations of turbulent 
recirculating flows have been performed. 

APPENDIX I 

A four-step procedure is presented for transforming equations written in Cartesian 
tensors into general orthogonal coordinates; and, the transformation relations 
established here allow equations to be transformed in a single step. The momentum 
equation, (2), is used as an example. 

Step 1. Write the equation in general tensor notation: 

ajat puj + ~puWj~,i = -P,~ - & . 

Step 2. Define the physical-component derivative as 

A(ij e-e 
hihj ... 

zm)’ It = h,,f,, . . . h, A 
ij.. . 

. ..1?n.n 

and multiply or divide the general tensor equation by the appropriate scale factors 
in order to obtain the equation in physical component form: 

5 8 I /26/z-7 
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Step 3. Expand the equation in terms of known quantities (e.g., hi) and operators 
(e.g., a/ax(i)). This step will prove to be no more complicated than the previous two, 
but some delay is required here in order to establish the relationship between the 
physical component derivative and known quantities. 

The particular form of the metric tensor in orthogonal coordinates, i.e., gij = hi2& , 
allows the physical-component derivative to be related to the covariant derivative of 
a covariant tensor: 

hihi -.- ij... hihj . . . 
hzh, . . . h, A . ..Zm.n = hzh, .., h, t?gQ3 **’ &w..zm . . . . n 

1 
= hihj . . . AZ,& . . . h, Ai+*zm.n 

= A(ij a*- Im); n. 

And, expanding the left-hand side gives 

where the Christoffel symbols are given by 

s 
I I P 4 

= g”YPq, r) 

and 

(pq, r) 7 ; ($$ + +J$ - S). 

Substituting the particular form of the metric tensor into these relations leads to 

where 

and 

Thus, with the further relation, 

l aA(ij --- Im) 1 
a.44 = hihj -a- hzh,h, 

aAtj.-z,T% _ A(ij 
axn 

*a* lm) C H,(n) 
.sdj.. . zm 
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the physical-component derivative is given by, 

A(ij ... lm); n = 
aA(ij v-f lm) 

ax(n) 
- A(sj ... hqj “,) *.. - A(ij ... Is)jmS ,,i . 

It may be seen that this expression is directly analogous to the covariant derivative 
of a covariant tensor and, consequently, (isn) can be regarded as the physical-com- 
ponent Christoffel symbol. 

In addition to the physical-component derivative, the divergence operator V(p) 
is defined so that Green’s theorem can be applied; 

V(p) EE 1 h 1-1 a/axp 1 h I/h,. 

It is readily shown that the physical component derivative and divergence are related 
by, 

V(i) A(ij ... Zm) = A(ij ..* Zm); i + A(is *a. /m)(js j) ... A(ij ... Is)(~~ i) . 

Thus, the application of the third step to the momentum equation yields, 

v f V(i)[pU(i) U(j) + T([j)] - [pU(i) U(s) + T(is)l(i' J = - -& . 

Step 4. Expand the physical component Christoffel symbols; 

v + V(i)[pU(i) U(j) + T(O)] = - & + mxpw w> + a1 

- Hj(i>[pU(i> U(j) + ml. 

From this procedure it is evident that the following transformations exist between 
quantities A in a coordinate system X and the equivalent quantity, A, in the general 
orthogonal system x: 

hiij...l, l aA(ij . . . lm) 
ax, W9 

- A(nj --- lm) H,(i) + A(sj -a- Zm) Hi(s) 6;, 

. . . - A(jj . . . ln) H,(m) + A(ij -*- Is) H,(s) S,, , 

aAij...l, ___ --t V(i) A(ij -*- In) 
a2i 

- A(ii a** Zm) Hi(j) + A(ji -*- Im) H,(i)--- 

- A(jj . . . Ii) H,(m) + A(mj **- li) H,(i). 
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These transformations written for a scalar, a vector, and a second-order tensor are 
quoted in the text and allow the transport equations to be expressed in general 
orthogonal coordinates. 

APPENDIX II 

The transport equations in orthogonal coordinates, when expanded for two- 
dimensional, steady flows, can be expressed in the common form: 

V,(PU* - c3w4 + V,(PV+ - -c aww = s, 

where, 
dx(1) = dx, U(1) = u, 

dx(2) = dy, U(2) = v, 

v, = (I/AZ> alax h, , v, = wh) ajay A, , 

and the values of .F, , r, , and Sti appropriate to each variable are given in Table I. 
$ = 1 corresponds to the continuity equation and the diffusivities and source 
appropriate to the V-equation are obtained from the U-equation by commuting U 
and V, 1 and 2, and x and y. The effective viscosity formula, being a scalar function 
of scalars, is the same as in Cartesian tensors while the production of kinetic energy 
is given by 

P = CLeff 12 [g + VH,(2)]’ + 2 [g + uH,(l)12 + [g + s - UH,(2) 

- 
VH,(1)12/ - $ [pk + peff(V,U + V,V)l(V,U + V,V). 
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