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Abstract—There are several phenomena that can be described to advantage in terms of surfaces
within a turbulent fluid. Examples are: turbulent mixing (particularly at high Schmidt number);
turbulent premixed flames; and, turbulent diffusion flames. These phenomena can (under appropriate
conditions) be analyzed in terms of material surfaces, propagating surfaces, and constant-property
surfaces, respectively. Deterministic and probabilistic equations are developed for the evolution of the
local properties of these surfaces.

The local geometry of regular surfaces is described by the surface element properties: position;
normal to the surface; principal curvatures and directions; and, fractional area increase. Exact
evolution equations for these properties are derived which reveal the effects of various processes—
straining, and surface propagation, for example. For material surfaces and simple propagating
surfaces these equations are closed with respect to surface properties: that is, given the velocity field,
the equations can be solved from specified initial conditions. The circumstances that can lead to a
breakdown of regularity of an initially regular surface are determined.

The fundamental one-point Eulerian probabilistic descriptor of a regular surface is the surface
density function. From this can be determined the expected surface-to-volume ratio and the joint
probability density function of the surface properties. An exact evolution equation for the surface
density function is derived and discussed. For material surfaces and simple propagating surfaces the
only unknowns in this equation are statistics of the velocity field. These statistics can be modelled (via
Langevin equations, for example) and then the surface-density-function equation can be solved by a
Monte Carlo method.

1. INTRODUCTION

In most theoretical approaches to turbulence and turbulent combustion, the fundamental
quantities considered are fluid properties (e.g. velocity, temperature, composition) at one or
more points in space and time. But there are several mixing and reaction phenomena that can
be described to advantage in terms of surfaces (or infinitesimal surface elements) within the
fluid. We cite three examples to illustrate the three types of surfaces considered—material
surfaces, propagating surfaces, and constant-property surfaces.

Consider the mixing of two bodies of fluid in turbulent motion that initially contain uniform
but different concentrations of a contaminant. We consider the material surface that is initially
coincident with the interface between the two bodies of fluid. Subsequently this material
surface is convected, bent and strained by the turbulent motion. Because of the initial
concentration difference across the material surface, a diffusive layer develops.

At early times the mixing near each point on the material surface can be well approximated
as a transient one-dimensional diffusion process (normal to the surface) in a uniform strain field

(see Fig. 1). With y being the coordinate normal to the surface, and ¢(y, 1) being the
normalized concentration, the diffusion equation is
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where D is the diffusion coefficient and sn(¢) is the rate of strain normal to the surface. The
solution to this equation (with the boundary conditions indicated on the figure) is
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where o(t) is given by
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Fig. 1. Diffusive layer separating bodies of fluid with ¢ =0 and ¢ =1.

(This analysis is valid as long as o is small compared to the Kolmogorov scale, to the radii of
curvature of the surface, and to the distance to the closest intersection of the y axis with the
material surface. It is most useful at high Schmidt number since then the growth of the diffusive
layer is relatively slow.)

Thus the early stages of turbulent mixing can be completely described by the position,
orientation, and strain history of each point on the material surface.

A similar approach to mixing problems has been taken by Batchelor [1] and Ottino et al. [2],
and extended to reactive systems by Chella and Ottino [3] and Lundgren [4].

A propagating surface is defined to be a surface that propagates normal to itself at a speed w
relative to the fluid. The speed w may vary over the surface but is positive everywhere. Thus a
surface point with position X(¢) moves with the velocity

X(t) = U(X[t], 1) + wX[e])N(X[z]), (1.4)

where U(x, ¢) is the Eulerian velocity field, and N is the normal to the surface. (The sign of N
determines the direction of propagation.)

The best example of a phenomenon that can be naturally described by a propagating surface
is a turbulent premixed flame [5]. Provided the laminar flame thickness is much smaller than
other length scales (e.g. the radii of curvature of the flame), then the flame can be regarded as
a surface separating burnt and unburnt fluid. This flame surface is convected, bent and strained
by the turbulence, and propagates normal to itself (and relative to the unburnt reactants just
ahead) at the local flame speed, S, (i.e., w=S)). To a first approximation S, is equal to the
flame speed S, of an unperturbed, plane laminar flame. To a second approximation [6] S
depends on the flame stretch S and on the thermochemical properties of the mixture.

Flame stretch, introduced by Karlovitz et al. [7], is the local fractional rate of increase of
surface area. Since the overall combustion rate is the product of the flame speed §; and the
flame area, the rate of change of flame area and hence the flame stretch S are important
quantities whether or not §; depends on S. The flame stretch depends both on the rate of strain
in the reactants and on the curvature of the surface [8, 9].

Thus in this example, as well as the position and orientation of the surface, its curvature is
also an important property.

The third type of surface considered is a constant-property surface. Let ¢(x, t) be a property
(e.g. temperature or concentration) that has a known evolution equation of the form

P.‘B:

= (§+ U,.-a—%)¢=®, ; (1.5)

ot

where the source ® may contain functions and derivatives of ¢. (It is assumed that © and the
initial and boundary conditions are such that ¢ is twice differentiable.) Then with ¢, being a
constant, at time ¢ the points X that satisfy the equation

¢’(X’ t) = o, (16)

form a constant-property surface.
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Again we draw an example from turbulent combustion, in this case a turbulent diffusion
flame. According to simple theory [10, 11], reaction takes place only when the mixture fraction
¢(x,t) is very close to the stoichiometric value ¢o. That is, there is a reaction sheet
surrounding the constant property surface defined by eqn (1.6). Recently, more elaborate
theories have been proposed [12, 13] in which the properties of the reaction sheet depend upon

the local straining. Marble and Broadwell [14] have developed a complete model of turbulent
diffusion flames based on the notion of reacting surfaces.

The normal to a constant property surface is

N=V¢/|Vg|, 1.7)
and the surface propagates (relative to the fluid) at the speed

__D¢
w=-2/1vg), (1.8)

(see Gibson [15] and eqn (2.24)). In view of eqn (1.8), all three types of surface can be regarded
as constant-property surfaces or as propagating surfaces (though the propagation speed w may
not be positive). A material surface is a propagating surface with w = 0, or a constant-property
surface with D¢/Dt =0. A propagating surface can be treated as a constant-property surface
with D¢/Dt=-w|V¢|; and a constant-property surface can be treated as a propagating
surface with w = —D¢@/Dt/|V¢|.

While a constant-property surface evolves in time, at any instant it is completely determined
by the current property field ¢(x, ¢), independent of the surface’s past history. Thus, rather
than considering evolution equations for a constant-property surface, an alternative approach is
to deduce the surface properties from the property field ¢(x,¢) and its evolution. This
approach, which has been extensively explored by Gibson [15], is most likely more useful, since
a knowledge of the property field ¢(x, ¢) is needed in order to determine the propagation speed
w [eqn (1.8)]. Consequently, here we give less consideration to constant-property surfaces than
to material and propagating surfaces.

In this paper we begin to develop the exact deterministic and probabilistic equations
governing the evolution of surfaces in turbulent flow. Our attention is confined to local
properties of regular surfaces. The local properties of a surface element are: its position; the
normal to the surface; the principal curvatures and directions; and, the fractional area increase
of the element. These properties are described in the next section.

A regular surface [16] has finite curvature everywhere and has no self-intersections, critical
points, or edges (at least within the fluid). We consider surfaces that are initially regular, and
whether they remain regular is an important question that is addressed in Section 4. A material
surface remains regular, but a propagating surface can develop singularities (infinite curvature)
and self-intersections. A constant-property surface [eqn (1.6)] has critical points wherever the
gradient of ¢ is zero on the surface, but is otherwise regular.

A surface can be defined implicitly through an equation of the form F(X,t)=0 [cf. eqn
(1.6)], or it can be defined explicitly as X(u, v, t), where u and v are parameters. Then the
evolution of the whole surface is determined by 3%/3t or 8X/4t. But in order to obtain a
tractable probabilistic description, rather than considering the whole surface, we want to study
the local surface properties listed above. A probabilistic description of the whole surface would
resemble the functional formalism of Hopf [17] (see also Monin and Yaglom [18]) which has
not proved tractable when applied to flows of interest. Instead, the one-point probabilistic
description of local surface properties developed here is closely analogous to the pdf method
[19] which has been successfully employed to calculate the properties of several turbulent
flames (see, for example [20-22]). -

Previous work on material surfaces has been limited to considering the stretching rate of a
surface element and the related topic of material-line stretching [2, 23-25]. Brakke [26] and
Sethian [27] considered the evolution of curvature in propagating surfaces, but in the absence
of turbulence. In three respects the present work extends our knowledge of the evolution of
surfaces in turbulence: propagating and constant-property surfaces (as well as material
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surfaces) are treated; the evolution of all local surface properties (including curvature) are
considered; and, probabilistic as well as deterministic evolution equations are derived.

The local properties of a surface element are defined and described in the next section, and
their evolution equations are presented and discussed in Section 3. The breakdown of
regularity of the surfaces is considered in Section 4. The probabilistic description of surfaces in
turbulent flow is introduced in Section 5. This is based on the surface density function F from
which can be deduced the expected surface area per unit volume Z, and the joint probability
density function of the surface properties. Evolution equations for F and Z are derived and
discussed in Section 5.

This work has three principal uses:

(i) The concepts and exact equations developed here can help to guide experiments (e.g.
[28]) and phenomenological models (e.g. [14]) involving surfaces.

(ii) In direct numerical simulations of turbulence, the deterministic surface evolution
equations provide an alternative means of computing the evolution of surfaces.

(iii) The probabilistic description provides the theoretical basis for the stochastic modelling
of the evolution of surfaces. The structure of the equation for F is the same as that of
joint pdf equations [19] and similar stochastic modelling and Monte Carlo methods can
be used.

2. SURFACE ELEMENT PROPERTIES

Figure 2 is a sketch of part of the surface at a fixed time . The coordinates of the points on
the surface are X(u, v, t), where u and v are local coordinates (not necessarily orthogonal)
used to parametrize the surface. The unit normal vector to the surface is N(u, v, f). By
assumption the surface is orientable. For a material surface the choice of sign of N(u, v, f) is
immaterial; for a propagating surface N(u, v, t) is chosen to be in the direction of propagation;
and, for a constant-property surface it is chosen to be in the direction of V¢.

We are interested in the surface in the neighborhood of an arbitrarily chosen surface point.
A surface point is defined, first, by its location on the surface at a reference initial time ¢,; and,
second, by the specification that it remains on the surface by moving relative to the fluid (if at
all) in the direction of the local normal to the surface. Thus the position X°(¢) of the surface
point (denoted by O) originating from

XO(tO) . X(um Vo, tO); (2 1)

b

by

Fig. 2. Sketch of part of the surface showing the B and E coordinate systems.
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evolves according to the equation

d% X°(f) = UX[t], 1) + w(X°[N(?), 2.2)

where N° is the normal at X°. For a material surface w is zero, and the surface point is also a
material point or fluid particle. For a propagating surface w is the specified rate of propagation
that may vary over the surface; and for a constant-property surface w is given by eqn (1.8).

This definition of a surface point needs to be refined when the fluid velocity is discontinuous
across the surface. (In a premixed flame, the component of velocity normal to the surface is
discontinuous across the surface but, to a first approximation, the tangential components are
continuous [5, 6,29].) Let U and U~ denote the fluid velocities on the positive and negative
sides of the surface respectively (that is, the sides approached from X + |¢| N and X — |¢| N,
respectively). Then, by definition the surface point X°(¢#) moves at a velocity w(X°[¢])N°(¢)
relative to the fluid on the positive side of the surface. Thus, eqn (2.2) remains the defining
equation. (In the context of premixed flames, this definition is consistent with the convention of
referring quantities to the side of the reactants.) Henceforth the velocity U and its derivatives
dU,/dx; and 3°U,/3x; dx; refer to the fluid on the positive side of the surface, and are defined
by a limiting process if need be.

The parametrization of the surface can be chosen at will, and does not affect the intrinsic
surface properties. Having chosen the initial parametrization, it is convenient to let ¥ and v
remain constant following a surface point. Then, for the surface point originating from
X(u, v, ty), eqn (2.2) can be rewritten

oX(u, v, t)

" =UX[u, v, t], t) + w(u, v, t)N(u, v, t). (2.3)

We shall study the evolution of the surface in the neighborhood of the surface point O, with
location X°(¢) and normal N°(¢). Two Cartesian coordinate systems are used (see Fig. 2). The
B coordinate system has fixed orthonormal basis vectors b;, b, and bs. In this system, the
coordinates of the surface point O are X7(¢):

X°(f) = b.X2(). (2.4)

The E coordinate system has its origin at O, and has time-dependent orthonormal basis vectors
e.(?), e,(t) and es(t). The basis vector es(t) is the normal to the surface N°(¢), and hence e;(t)
and ey(t) are in the tangent plane at O. The initial orientation of e,(f) is arbitrary, but
subsequently e;(f) and e,(f) are made to rotate with the angular velocity of the fluid in the
tangent plane.
In the E coordinate system, a point on the surface has coordinates y;(u, v, t) relative to
X°(2):
X(u, v, t) = X°(t) + &;yi(u, v, ). (2.5)

In a sufficiently small neighborhood of O, y; is a single-valued function of y, and y, (since, by
assumption, the surface is regular). We can therefore introduce the height function

h(yl) )’2, t) =}’3(u; 'U, t); (26)

which measures the height of the surface above the tangent plane.
Since the surface is tangential to the e; — e, plane at y =0, we have

oh oh
h(0,0,¢)= (—) = (—) =0. 2.7
( ) a)’ 1/ y=o0 3}’2 y=o
Consequently, a Taylor series expansion for 4 about the origin is

1 2<azh> ( &*h ) 1 2(8%) 5
— 12 LR W Y A B ) 2.8
h(y1, y2, t) 2Y1 3y2 y=o+}’1)’2 ESETY 2}’2 EXEI (r”) (2.8)

ES 26:5-D
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where

r=yi+y3 (2.9)
Significant simplifications result from introducing the following notation. A Greek suffix can
take the values 1 or 2 only. Differentiation with respect to y, is denoted by, for example,

oh h
o =— » af = . (2. 10)
e 9Ya Oyp
And the superscript o (e.g. hg) indicates that the quantity is evaluated at the surface point
X°(¢). Now eqn (2.8) can be written more compactly as

1
h(y1, y2, 1) =3 hop()ya v + O(r). (2.11)

(As usual, repeated suffices imply summation.)

The symmetric second-order tensor h%4(f) contains information about the curvature of the
surface at O: the eigenvalues k; and k, of h2p are the principal curvatures (k; =k,), and the
eigenvectors ef and e} are the corresponding principal directions. With y* and y} being
coordinates in the e} and e; directions, the height function can be written

1 1
h=3ka(y 1V +5 ka2 + 0. @.12)

As illustrated in Fig. 3, the principal curvatures are (in absolute magnitude) equal to the
inverse radii of curvature of the surface. The significance of the signs of k, is also illustrated on
the figure.

The final quantity of interest S°(f) measures the amount by which the surface element has
been stretched since an initial reference time f,. The infinitesimal area da(u,, v,, t) of the

h (0, 1)

| -

h(yx, 0)

R, =1/k,>0

N

L .

7

Fig. 3. Sketch of the surface in the neighborhood of O.
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b2

by

Fig. 4. Sketch of part of the surface showing the infinitesimal area da®.

surface element sketched on Fig. 4 is

da®(t) = A°(¢) du dv, (2.13)
where
12). Q). §
A, v, 1) = Ex'a'i?l' 2.14)
The stretch factor S°(t) defined by
S°(t) =In{A°(¢)/A°(t)}, (2.15)

is the logarithm of the ratio of the surface element areas at times ¢ and #,. This is an intrinsic
property (i.e. independent of the parametrization) and its rate of change—the stretch rate—is
independent of ¢,.

We have now defined all the properties of a surface element. They are: its position X°(¢); the
normal to the surface N°(¢); the principal curvatures k; and k,; the principal directions e} and
e;; and, the stretch factor S°(¢). All these are intrinsic properties of the surface. They depend
on the initial surface element position X°(#,), but are independent of the parametrization and
of the choice of e, and e,.

In the next section we discuss the evolution equations for the following properties: X°(¢),
ei(), ext), es(t), hop(t), ki(t), kx(t) and S°(¢). These properties are again independent of the
parametrization—though e,, e, and h3g obviously depend upon e,(¢) and e,(¢).

2.1. Constant-property surfaces

Some of the surface properties of a constant-property surface can be related to derivatives of
the field property ¢(x, t) at the surface point.
Since ¢ is constant on the surface, V¢ must be normal to it: hence

N=V¢/|Vo|. (2.16)

In the neighborhood of the surface point X°, the defining equation [eqn (1.6)] can be
rewritten

X[y, v, 1], 1) = P(X°(t) + ea(t)ya + €s(Dh (1, Y2, 1), 1) = o (2.17)
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A Taylor series expansion of ¢ about X° then yields

1
P°+ Py + 5 PepYayp + $Sh + O(r>) = ¢, (2.18)
Now since
¢°=¢o, ¢2=0, and ¢3=|V¢|, (2.19)
we obtain
1
h= 5 DY Ys!IVO| + OF). (2.20)

And comparing this result with eqn (2.11), h34 is given by
o= —Pop/IVP|. (2.21)

The propagation speed w of a constant-property surface [eqn (1.8)] is deduced by
differentiating the defining equation with respect to time:

3
> ¢ (X[u, v, ], 1) =0, (2.22)

or

] 3
> o(x, )+ Vp(x,1)- P X(u, v, t)=0. (2.23)

Substituting eqn (2.3) for 8X/dt, and recalling that the normal is V¢/|V¢|, we obtain the
required result:

w(u, v, ) = —{%‘? / ’V‘p'}x(u,u,,)' (2.24)

3. EVOLUTION EQUATIONS

The purpose of this section is to present the evolution equations for surface element
properties, and to give a simple physical interpretation of each term in these equations. The
evolution equation for the surface point location X is stated in the previous section [eqn (2.2)],
while the evolution equations for h%g, e; and S° are derived in Appendix A. From these
equations, the evolution equations for the principal curvatures k, and k, are deduced here. It
is assumed that the fluid velocity U and the propagation speed w are twice differentiable
functions of position. ‘

The evolution equation for the surface point X°(¢) [eqn (2.2)] requires little comment, except
to note that, for a constant-property surface, as a critical point develops (|V¢|° tends to zero)
the propagation speed may tend to infinity [eqn (2.24)].

The rotation of the normal to the surface N° = e, (relative to the fixed B coordinate system)
is due to surface gradients of the net propagation speed w + U;. Equation (A. 17) can be
rewritten:

€= —ea{a;;a (w+ U3)}0, (3.1

where the over-dot denotes the time derivative, and the superscript o indicates that the
quantity is evaluated at the surface point (i.e. at y=o0). (It should be noted that U is the
Eulerian velocity—relative to the fixed B coordinate system—even though the components
and derivatives are referred to the moving E coordinate system. In addition, U and its
derivatives pertain to the fluid on the positive side of the surface.)

The unit vectors in the tangent plane (e,, @ =1, 2) evolve due to the rotation of e;, and by
the specification that they rotate (in the tangent plane) with the angular velocity of the fluid.
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Equation (A. 18) can be rewritten:

é —l{an’—%}o +{ O w+u. }
205y oy PG, T e 3-2)

Because of this specified rotation, the evolution of k9 depends only on the symmetric part
of the velocity-gradient tensor. Thus we introduce the rate-of-strain tensor

sy =32 U »
Y 2\ay  ay/’ (3.3)

and denote by sy and st the rates of strain normal to the surface and in the tangent plane:
SN=S —(ﬂ]—s)o ST=S, 3.4)

‘ N 33 ay3 H T aa* .
The dilatation rate is then
oU\°

AE(EZ) =ST+SN' (3.5)

The symmetric two-dimensional tensor hgg contains all the information about the curvature
of the surface at the surface point. The evolution equation for £35 [eqn (A.27)] can be written:

2 o
hop= { 9 w+ U3)} + snhog — (Syghay + 8yahgy) + WohohYg. (3.6)
3)’ @ ayﬁ
From this equation we deduce the rate of change of the principal curvatures. A superscript * is
used to indicate that a quantity is evaluated in the principal axes of h3s. Thus, in principal axes,
hog itself is
hi1 =k, h3 =k, hi=h3=0. (3.7)

From the eigenvector—eigenvalue equation it can be shown [30] that the rate of change of the
eigenvalues at time ¢ is equal to the rate of change of the diagonal components in the fixed
coordinate system that at time ¢ coincides with the principal axes. (This result is not obvious
since the principal axes change with time.) Thus from eqn (3.6) we obtain

-1={82(W+U3)

3yt oy’ } + (sn — 25T1)ky + wok3. (3.8)

Recall that y{ is the coordinate in the principal direction ef. The equation for k, is similar.
The first term in eqn (3.8) is the rate of bending of the surface, which is due to second
derivative (in the tangent plane) of the net propagation speed w + Us. Since the other terms in
the equation are linear or quadratic in k;, only this first process can bend a plane surface. The
bending process is illustrated on Fig. 5 which shows the bending due to (8°U;/3y$?)° of an
initially plane surface. After a time d¢, the surface at yf = £dy] moves in the y; direction by an
amount 6h: ‘ .
3
6’h‘ 2(8yi“2

h(yX,0)

)O(éyi‘)zét; (3.9)

Ry=1/k,

m\ Y3n

_3},1& 0 3},1*

)'1!

Fig. 5. Sketch showing the effect of bending on an initially plane surface.
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h(y1*, 0)

Fig. 6. Sketch showing the effect of positive normal strain to increase curvature.

and the surface in the neighborhood of the origin is a cylinder of radius R;:

26h <azU3>°

R =k=~Gm~ 5r

(3.10)

In the simplest case of an initially plane material surface in homogeneous isotropic
turbulence, the mean (h%g) is zero by symmetry. The bending (3%Us/ 9y, 9yg)° is a random
process, with zero mean, that scales with the Kolmogorov microscales. Consequently, due to
bending alone, the standard deviations of k; and k, increase initially linearly with ¢, but
ultimately as #' (assuming that (8°Us/y, 9y;)° and h3s have finite correlation times).

The second term in eqn (3.8) represents the action of strain to modify existing curvature.
Positive strain normal to the surface (s >0) causes an increase in the absolute magnitude of
ki, as illustrated in Fig. 6. Conversely, positive strain in the tangent plane (s3; > 0) causes a
decrease in |k,| (Fig. 7). Whether the overall effect of straining is to increase or decrease the
curvature is clearly an important question. For homogeneous isotropic turbulence, the question
is addressed in Appendix B, but a clear answer is not evident. Straining that is uncorrelated
with the curvature tends to decrease curvature, whereas persistent straining increases
curvature. A plausible conjecture is that a balance between bending and straining develops,
leading to a stationary distribution of curvatures that scales with the Kolmogorov scales.

The final term in eqn (3.8) represents the rate of change of curvature due to the propagation
of the surface. Retaining this term alone, eqn (3.8) becomes

ky=wok2, (3.11)
or, in terms of the radius of curvature R, =1/k,,
R, = —w°. (3.12)

As illustrated in Fig. 8, the propagation speed w® is also the rate of change of the radius of
curvature. The figure shows the case in which k; is zero and w® is a positive constant. Then the
surface corresponds to an element of a cylinder of radius |R,| that is expanding (Fig. 8a) or
contracting (Fig. 8b) depending upon whether the center of curvature is in the direction of —N
or of N. In the latter case, after a time R,(¢)/w®, the radius of curvature becomes zero, and the

¥

h(yX, 0)

x
51
-— —

*
= = %

Fig. 7. Sketch showing the effect of positive strain in the tangent plane to decrease curvature.
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(a) (b)

R, (t+31)

=R, (t+8¢)

Fig. 8. Sketch showing the effect of propagation on an initially cylindrical surface element with (a)
negative curvature, and (b) positive curvature.

principal curvature k; becomes infinite. The development of such a singularity is discussed
further in the next section.

The stretching rate $° is the rate of change of the stretch factor S° and measures the
fractional rate of increase of surface area at the surface point X°. From eqn (A.15) we obtain

§° = 51— wo(ky + ky). (3.13)

For a material surface (w°=0), the well-known result is that the fractional rate of change of
surface area is equal to the rate of strain in the tangent plane. As conjectured by Batchelor [23]
and proved by Cocke [24], in incompressible isotropic turbulence, the mean of st is positive.
Hence, on average, surface elements are stretched by the turbulent straining.

The second term in eqn (3.13) represents the fractional rate of change of surface area due to
the propagation of the surface. For the cases depicted in Figs 8a and 8b, the rates are w°/|R|
and —w°/|R,| respectively. In general, the fractional rate of change of area is the same as that
for a sphere of radius R = 2/(k; + k,) expanding (or contracting) at the speed R=w°

In Appendix A, eqn (3.13) is compared to previous expressions for the stretchmg rate (or
flame stretch), in particular that of Chung and Law [9]. It is shown that all of these expressions
are consistent, but that eqn (3.13) has the advantage of separating the effects of straining and
curvature in a Gallilean invariant manner.

To close this section, we draw attention to the remarkable fact that for a material surface, or
for a propagating surface with constant speed w, the surface element equations are closed with
respect to surface properties. By this we mean that, given the velocity field U(x, r) and initial
conditions for any surface element, the evolution equations for X°, e;, h3s and S° (eqns (2.2),
(3.1), (3.2), (3.6) and (3.13)] form a closed set. Thus each surface element evolves
independently. It is not obvious that this should be the case: one might have expected, for
example, that the equation for h94 contained third or fourth derivatives of the height function
(hopy O hapys)-

4. BREAKDOWN OF REGULARITY

We have assumed the surfaces under consideration to be regular. We now examine how an
initially regular surface can cease to be regular because of the development of a singularity, an
internal edge, a self-intersection, or a critical point.

4.1 Singularity

The development of a singularity is accompanied by the curvature |k,| or |k,| becoming
infinite. For a material surface (w = 0), eqn (3.8) has the solution

Ut )} ar,

(0 = kel )+ [ 10, 0{ S5

(4.1)
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24,

Fig. 9. Sketch to show the formation of a singularity caused by propagation.

where

I, 1= exp{ f sn(t) = 255,(t") dt”}. 4.2)

Since in turbulence the first and second velocity derivatives are bounded it follows that |k;|
(and similarly |k,|) can grow at most exponentially with time. Thus a material surface does not
develop a singularity in finite time.

As observed in the previous section, a surface propagating with a constant velocity w can
develop a singularity as k, tends to + co: this is illustrated in Fig. 9. There are, however, two
mechanisms by which the development of a singularity may be avoided. First, it is possible that
the action of turbulent straining could prevent the formation of a singularity—or at least make
it improbable. It has been suggested that this occurs in some turbulent premixed flames (see
[31]). Second, a singularity may be avoided if w increases with curvature.

To examine this second possibility further, we consider the two-dimensional case (k,=
0, €3 = e,) in which the fluid is quiescent (U =0, everywhere), and in which the propagation
speed depends on the curvature k;. Then eqn (3.8) reduces to

. ) ok,

where w is the rate of change of w with k; (evaluated at the surface point). As Sethian [27] has
observed, this is a reaction-diffusion equation, and it is reasonable to expect that if w, is strictly
positive a singularity does not develop, because of the smoothing action of the diffusive term.
This has not been proved however.

In the extension to the three-dimensional case (but still in quiescent fluid) we suppose that
the propagation speed depends on the mean curvative H = }(k; + k). Then, from eqn (3.8) we
obtain

8/
H= *(WH—E)+w°kaka, (4.4)

where wy is the rate of change of w with H. Again, for positive wy, the diffusive term has a
smoothing effect on H. But this is far from proof that a singularity in k, or k, is avoided.

(We have assumed that the propagation speed w is twice differentiable. If instead w is
continuous but not differentiable, then a singularity develops instantly.)

Excluding critical points, a constant-property surface cannot have singularities. This follows
directly from eqn (2.21) and the assumption that ¢(x,f) has bounded second spatial

derivatives.
4.2 Internal edges

The way in which an internal edge (i.e. a slit or a hole) might develop is illustrated in Fig. 10.
It requires that two initially adjacent surface points (O and P) become separated by a finite
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f t>1

Fig. 10. Sketch illustrating the formation of internal edges as the points O and P separate. (Subject to
the assumption made, this cannot occur.)

distance. It is now shown that this cannot happen (if the surface is otherwise regular) and hence
slits or holes cannot develop.
The surface point O has position

X°(¢) = X(uo, Vo, 1), 4.5)
while the position of P is
XO(t) = X(up, Up, 1) = X(t) + AX(2) = X°(t) + e(t) Ayi(1). (4.6)

This equation defines the separation vector AX and its coordinates Ay, in the E system. The
evolution equation for Ay, can be obtained from the equations already derived. With Ar being
the separation

(Ar)*= Ay, Ay, 4.7)
we obtain

Ay, = Ays{ses — Whop} + O(Ar?). (4.8)

Provided there are no critical points or singularities, w° and hgg are finite, as is 5,p. Thus, if the
terms of order Ar? can be neglected, eqn (4.8) shows that Ar grows at most exponentially with
time. Hence for all time ¢ > ¢,

lim {Ar(¢)}=0, (4.9)
Ar(to)—0
showing that initially adjacent surface points cannot develop a finite separation. Thus the
development of an internal edge as depicted on Fig. 10 cannot occur.
(If w varied discontinuously over the surface then internal edges would develop. But, by
assumption, w varies continuously.)

4.3 Self-intersections

Figure 11 illustrates the evolution of a surface that leads to a self-intersection. Just as the
surfaces touch (Fig. 11b) at time ¢ the two points O and P are coincident, and the normals are
opposite:

XP(t) =X(t),  N°(n)=-N°(5). (4.10)

(a) 1 (b) ,>1 (c) 1>1

Fig. 11. Sketch illustrating the evolution of a surface leading to a self-intersection at time ¢,
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A material surface (every point of which is a fluid particle) cannot experience a
self-intersection. Let r(¢) be the distance between two initially distinct fluid particles (r(t,) > 0).
By a method similar to that used in Section 4.2, it is readily shown that r(¢) can decrease at
most exponentially with time. Thus, the first of eqns (4.10) cannot be satisfied in finite time.

Neither can a constant-property surface experience a self-intersection. The second of eqns
(4.10) requires that (V¢)° and (V)P have opposite signs. But since V¢ is a continuous
function, this cannot occur. '

A propagating surface obviously can experience self-intersections just as depicted on Fig. 11.
In such a case, whether the theory breaks down or not depends upon the physics of the
problem. If, physically, part of the surface can pass through another part without affecting its
propagation, then the surface equations developed above remain valid through the intersec-
tion. But in the simple model of a premixed turbulent flame the intersecting surfaces annihilate
each other, and in doing so generate cusps (labelled “c” in Fig. 11c). The evolution equations
for the local surface properties can neither detect the occurrence of a self-intersection, nor
describe the resulting cusps.

4.4 Critical points

The parametrization X(u, v) of the regular surface provides a one-to-one mapping of the
surface points in three-dimensional space to the two-dimensional parameter space (u, v). At a
critical point mo such mapping exists. Crudely, at a critical point the surface is not
two-dimensional. A simple—but extreme—example is of a constant-property surface (defined
by ¢(X) = ¢o) in a fluid in which the property ¢(x) has the value ¢o everywhere. Then every
point in the fluid is a surface point, and every point is a critical point.

For an initially regular surface, the development of a critical point is accompanied by a
breakdown in the parametrization. In terms of surface properties this is indicated by the stretch
factor §° eqn (2.15) becoming infinite. The evolution equation for S° [eqn (3.13)] shows that S°
remains finite provided that s, w,, k; and k, are finite. Thus a regular material or propagating
surface cannot develop a critical point.

A constant-property surface has a critical point wherever V¢ is zero. If O is a critical point at
time ¢, then a Taylor series expansion of ¢(x, t) about (X°, t,) is

: 1
X +byx, to-+ 81) = °+ G5t +3 Py, - - (4.11)

(b)

(c)

fo + Isfl \ /’ \ /
\ /

Fig. 12. Sketch showing a critical point in a constant-property surface: ¢° and one cigenvalue of ¢3
positive [eqn (4.12)]. :
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Thus at time ¢, + ¢, the surface points (if any) X° + b;Y; in the
neighborhood of O satisfy (to first order)

PIYY, = —25td°. (4.12)

The nature of the surface near the critical point depends, then, on the eigenvalues
(A®, A@, 4®) of ¢%. We briefly describe the normal cases in which ¢° and A?) are non-zero.

If ¢° and all the eigenvalues are positive, then at time #, —|5¢|, the surface is an ellipsoid
that contracts to the critical point at time #,. At time ¢, + |6t| there are no surface points in the
neighborhood of O. If all eigenvalues are positive but $° is negative, then at time t, + |5t| the
surface is an expanding ellipsoid that did not exist prior to #,. Similar situations arise when all
the eigenvalues are negative, but the normal N points inward rather than outward.

If ¢° and one eigenvalue (A, say) are positive and the other eigenvalues are negative, then
at time t, — |6¢| the surface consists of two paraboloids (Fig. 12a) that join at time ¢, (Fig. 12b)
to form a single tube (Fig. 12c). If ¢° is negative, the reverse of this process occurs.

Even though (in normal cases) the critical point exists just for an instant, the breakdown in
the parametrization is permanent.

5. PROBABILISTIC DESCRIPTION

In this section the probabilistic description of the surface at a single fixed point is presented.
The extension to many points and to points moving with the surface is straightforward.

First, statistical properties of the surface are defined. These definitions are conceptually
straightforward, but is is less straightforward to obtain mathematical expressions for them: this
is done in Appendix C. Then, from these mathematical expressions, probabilistic evolution
equations are derived (in Appendix C) and discussed.

The expected surface-to-volume ratio Z(x, t) measures the probability of the surface being at
x at time ¢. Let 8V be an infinitesimal volume at x, and let A be the area of the surface within
6V at time . (6A may well be zero.) Then 2(x, ¢) is the expectation of 6A/6V. A second
physical interpretation of X is that its inverse is a striation thickness [2]. If the surface is
multiply folded so that locally it appears like parallel planes, then the mean distance between
these planes is =~'. [An expression for X is given by eqns (C.1) and (C.2)].

The unit vectors e;(f) and the tensor hjg(t) describe the geometry of the surface in the
neighborhood of the surface point X°(¢). It is convenient to introduce the direction cosines

a;(t)=b; - (1), (5.1)

which are the components of e; referred to the fixed B coordinate system.
The joint pdf £,(H, A; x, ¢) is defined to be the probability density of the joint events

C = {h2p(t) = hap, a;(t) = 83}, (5.2)

conditional upon x being a surface point at time t. The four independent variables A= {hA)}
and the nine independent variables A = {a;} are sample-space variables corresponding to hgg
and a;. From this joint pdf, any one-point surface geometry statistic can be determined. For
example, at (x, ), the mean square curvature is

1, 0 1 NP P
(M) =2 ((RD) + (R2)) =5 (eghte) = [ [ AOLA X ) Buphep dB1GR, (53)
where integration is over the whole sample space. (It may be noted that, in view of the
relations h%s = h§, and a;a,; = Oy, the joint pdf contains some redundant information.)
Together £ and f; provide a complete one-point statistical description of the surface. The

most natural descriptor of the surface is their product

F([ﬂ],&, x;t) = 2(x, t)fs(ﬂ, A;x, 1), (5.4)
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which is called the surface density function. If F is known, Z and f, can be recovered by
S(x, f) = f f F(, A, x; 1) diT dA, (5.5)

and

LA, A; x,t)= F@, A, x; 1)/2(x, t). (5.6)

An evolution equation for the surface density function F is derived in Appendix C and
discussed below. In order to understand this equation we need to define surface means and
conditional surface means. If Q(x, 1) is any field property (e.g. Ui(x,t)), the (unconditional)
surface mean (Q(x, )), is the expectation of Q(x, ) conditional upon x being a surface point
at time ¢. Similarly if R(¢) is a surface property (e.g. h9,(t)) then (R(t) | x), is the expectation
of R(¢) at x (conditional upon x being a surface point at time ¢). Equations (C.7) and (C.8)
provide expressions for these unconditional surface means.

The conditional surface mean (R(t)). is the surface mean of R (¢) conditional upon the events
C [eqn (5.2)]: . .

(R(®)e = (R() |H(1) = A, A°(r) = A, x)),. (5.7

Equation (C.20) is an expression for (R(t))..
The evolution equation for the surface density function F is [eqn (C.24)]

OF o8 .. 3 i 9 /io\ L /o
5+3—,x,-(<Xi>CF)+%(<haﬁ>CF)+éﬁ_ij(<aij>0F)— (S )cF- (5.8)

The right-hand side corresponds to a source of F due to stretching of the surface. At (M, A, x),
the source is linearly proportional to F and to the conditional rate of stretching (S$°).. The
terms on the left-hand side are the rate of increase of F and divergences of fluxes in x, [l and A
spaces. The fluxes are proportional to F and to the conditional rates of change of the
corresponding surface properties.

The evolution equation for the expected surface-to-volume ratio = is obtained by integrating
eqn (5.8) over all H and A: the result [eqn (C.30)] is

oz 9 .. ‘o

5t o (K202 = (8| x),2. (5.9)
Thus there is a source of X that is linearly proportional to = and to the (unconditional) surface
mean stretching rate. In physical space, the flux of I is proportional to ¥ and to the
(unconditional) surface mean velocity of the surface.

As written, the evolution equations for F and 3 [eqns (5.8) and (5.9)] contain no physics:
they are mathematical deductions from the definitions of these quantities. The physics enters
when the conditional means of the rates of change are evaluated from the deterministic
evolution equations for the surface properties. This is done in Appendix C [eqns (C.25)-
(C.28)]. The important conclusion is that the conditional means are functions of the
independent variables H and A and of the conditional surface means of U, w and their first and
second derivatives.

Consider a surface propagating with a fixed velocity W or a material surface (i.e. W =0). For

this case we have ow )
w

= ) = =0. 5.10

we=W, <8x,~>c <8x,-8x,->c 0 (5-10)

Then the only unknowns in the evolution equation for F are (U)., (3U;/ dx;). and
(8°U;/3x; 3xy. ). Consequently only these velocity-field statistics are required in order to solve
the equation for F.

Consider, further, a propagating surface (e.g. a premixed flame), the propagation speed of
which depends arbitrarily on the surface curvature and linearly on the rate of strain in the
tangent plane. This dependence can be written

w® = Wy(H°, M°) + Wy(H°, M®)s, (5.11)
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where
0 — o 0 — 1 o (o]
H =haa: M =5haﬂ afs (512)
and W, and W, are given functions. For this case, the conditional surface mean of w is
(W) =Wy(H, M) + Wy(H, M), {3U,/3x;)., (5.13)
where
. L~ 1
H=h,, and M= 5 haphap. (5-14)

Thus (w), is known in terms of the independent variables, W;, W, and (8U;/dx;).. To this
extent the variation of w with curvature and strain can be incorporated without introducing
further unknowns. The surface variations of w (e.g. the term (dw/dx;).4;,) cannot be
incorporated so simply. But in some circumstances their neglect may be justifiable.

The surface density function F(H, A, x;¢) is a function of a large number of independent
variables—17 for the general case. If the conditional means were known (via modelling, say)
the evolution equation for F could, in principle, be solved. But because of the large
dimensionality, conventional numerical methods (e.g. finite-differences) are impracticable. This
is precisely the same problem faced in pdf methods (see, for example, [19]), and the same
solution is available: the evolution equation can be solved by a Monte Carlo method.

It is beyond the scope of this paper to describe the Monte Carlo method and associated
modelling, and to prove its convergence to the evolution equation for F. We note however that
Monte Carlo solutions to the equation for F are quite feasible: several solutions to pdf
equations of large dimensionality have been obtained (see [19] for references). In the Monte
Carlo method for F, the principal quantities to be modelled are the velocity and its first two
derivatives following a surface element. Pope and Cheng [37] have applied the method to
turbulent premixed flames, using models based on the Langevin equation [19, 32, 33].
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APPENDIX A

Derivation of Deterministic Evolution Equations

In deriving the evolution equations for the local surface properties, our starting points are the evolution equation for
the surface point location:

X
o W v ) =UX[u, v, 1, )+ w(u, v, )N, v, 1); (A1)
the representation of X in the B and E coordinate systems:
X(u, v, 1) =b,X7() + e,(t)y:(u, v, 1); (A2)
and, the definition of the height function
h(Yl[ur v, 1], yolu, v, 1], 1) =y3(u, v, t). (A.3)

In order to simplify the notation in the subsequent derivations, the arguments (u, v, t, etc.) are generally omitted, a

superscript o denotes quantities evaluated at the surface point X°(f) = X(u,, v, f), and an over-dot (e.g. X) denotes a
time derivative.

Stretch factor
The vector A(u, v, t) is defined by
A=X, XX, (A.49)

where the subscripts denote differentiation with respect to u and v. The scalar A(u, v, t) is the modulus of A, and the
normal to the surface is

N=A/A. (A.5)
The stretch factor is defined by

S(u, v, t)y=In{A(u, v, t)/A(u, v, ty)}. (A.6)
Differentiating eqn (A.6) with respect to time we obtain

S=A/A=A-A/A%

=N- (X, XX, +X, XX,)/A. (A7)
An expression for Xu is obtained by differentiating eqn (A.1) with respect to u:
X, =X, VU+N[X, - Vw] + wN,, (A.8)

and similarly for Xv When this expression is substituted into eqn (A.7), the term in N makes no contribution since
N-(NXX,) is zero. Thus we obtain .
S=N-([X, VU] XX, +X, X[X, - VU])/A
+wN- (N, XX, +X, XN,)/A. (A.9)
The evaluation of eqn (A.9) is facilitated by the observation that the left-hand side is an intrinsic function (Gi.e.

independent of the parametrization), while the right-hand side contains no time derivatives. Thus, the right-hand side

can be evaluated with any parametrization, the simplest being ( Y1, ¥2) in place of (u, v). In this case we obtain, from
eqn (A.2),

X=X+e,y, + ek, (A.10)



The evolution of surfaces in turbulence 463

and then,
X, =e, +esh,, (A.11)
where the subscript « (except in e, ) indicates the differential with respect to y,. The normal is
N = (—e,h, +e3)/(1+ hghg)'?, (A.12)
(where the denominator is A), and its derivative with respect to y, is
N, = —egh,g/A —Nh,ghg /A (A.13)

At the surface point X°(¢), h?, is zero and so we obtain, simply,

Xo=e,, No=e; A°=1, No=—esh%. (A.14)

°=
With these expressions, evaluating eqn (A.9) at the surface point X°(¢) yields:

§°=U°, ,— wohS,. , (A.15)

In eqn (A.15) it should be noted that U is the Eulerian velocity—relative to the fixed B-coordinate system—even
though the component and derivative are referred to the moving E-coordinate system. This equation is compared to
previous expressions for flame stretch at the end of this appendix.

Normal to the surface
Differentiating eqn (A.5) yields
N=A/A-NS
=(X, XX, +X, XX,)/A—-NS. (A.16)

Once eqns (A.8) and (A.9) have been used to substitute for X,, X, and S, the right-hand side is an intrinsic property
that contains no time derivatives. Thus, as before, it can be evaluated with (y,,y,) replacing the (u,v)
parametrization. At the surface point X° this yields:

N° = —e, (U3 o + W3). (A.17)

Rotation of the E-coordinate system

The unit vector e;, being identical to N°, evolves according to eqn (A.17). The requirement that e; - e; does not
change with time, then shows that the e; component of é, must be (U3 , + wg). In order to aid the interpretation of
the equations, the unit vectors in the tangent plane (e, and e,) are made to rotate with the angular velocity of the fluid
in the tangent plane. This yields

.1
&, = Eep(U‘;,o,— U3 ) + e5(U3, o + w2). (A.18)
Height function
Differentiating eqn (A.3) with respect to time (with u and v fixed) yields
h+hoyo=Ys. (A.19)
Note that 7 is the rate of change of h at fixed y, and y,, while y, is the rate of change of y, at fixed u and v. An evolution
equation for y, is obtained by differentiating eqn (A.2) with respect to time, taking the dot product with e;, and then
using eqn (A.1) to substitute for X:
y; = —¢;* &Y+ (U; — U}) + (WN, — w°Np). (A.20)
We are interested in & only in the immediate neighborhood of X°. Specifically, since h° and h, are zero, we are

interested in the second derivative h34 that contains the information about the local curvature. Expanding 4 in a Taylor
series about y, =0, we obtain

.01 °
b= h%3ays + O0°), (A1)

where r*=y,y,. Thus H?,B can be obtained by determining h to second order in r from Eqn (A.19). This, in turn,
requires that [from eqn (A.20)] y, be determined to second order and that y, be determined to first order (because 4,
is of order r). This is achieved by expanding the terms in brackets in eqn (A.20) in Taylor series. For y, we obtain:

. l 0l].0
ytx = E(U?r,ﬁ + Ug,o:)yﬁ -Ww hntﬂyﬁ + 0(7'2), (A22)
and for y,:

o 1 (*] (] o
Y3 = EyayB{Ua,aﬁ +wapt Usshos— woho hig) + o(r’). (A.23)

Substituting the last two results into eqn. (A.19) yields:

. 1 o o o
h= >YaYs {533h%p = 25,610, + US, o5 + Wog + Woho h3s) + o), (A.24)
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where 5,4 are the components of the rate-of-strain tensor

1
Sap =5 U5+ U3 o). (A.25)

In eqn (A.24), all the terms in braces are symmetric except for that containing s,5. This term can be rewritten

1
b2 Yﬁ{_syﬁh?ry} = Eyayﬁ{ - (sth:ry + s‘ynrh[oi'y)}' (A26)

Then, comparing eqn (A.24) with eqn (A.21) we deduce that hgg evolves by

hap=s3hop = (Syshty + Syahf,) + US ap + wog + whS . (A.27)
Equations in fixed coordinates

The evolution of the surface properties is best understood in the moving E coordinate system: but for some purposes

(e.g. those of Section 5) we need to express the evolution equations in the fixed B coordinate system. The direction
cosines a;(t) are defined by

a;(t) =b; - €;(t), (A.28)
and hence they evolve according to

a;(t) =b; - &(1). (A.29)
Then the velocity gradients can be transformed by

aU,\°
Uyp= (—') a,,a;, (A.30)
L] 3x,~ i

for example. It should be understood that, on the left-hand side the components of U, g pertain to the E-system while,
on the right-hand side the components of 3U;/ Ox; pertain to the B-system.

The best way to express gradients of the propagation speed w depends upon the case considered. We suppose w to
be defined for all x and hence obtain

° Fw \°
waﬂ_ (m) a,-,a,- N (A.31)

for example.
With these transformations, the complete set of surface evolution equations is:

X7 = UP + wa, (A.32)
o
§°= (g_x) %ialjo ~ Wi, (A.33)
7

‘°—lan ano o o o azio 3w 0p,0 30

=y a—x] +8—x,- {aisajshaﬂ - ai’y(hayaiﬂ + hﬁyaja)} + 3%, x, a;+ 3, oxy Ao trg + Wohg hyp, (A.34)
aU)\°(1 ow\°®
i = (gi) {'iaiﬂ(afﬁakcr - ajaakﬂ) + ai3aj3aka} + (a_x]> a,~3aj“, (A35) »
and
i = ~au] (3)) anoua + (32) au (A.36)
37 T Gia ax, 38k o, i (- )

Again, note that differentiation and the components of U° are referred to the B-coordinate system.

Comparison of expressions for stretching rate

In the context of premixed laminar flames, several different expressions for the stretching rate—or flame
stretch—have been reported [8, 9, 34]. Matalon demonstrated that his expression is consistent with Buckmaster’s while
Chung and Law demonstrated that theirs is consistent with Matalon’s. Hence it suffices here to show that the present
expression [eqn (3.13) or (A.15)] is consistent with Chung and Law’s. But it is also observed that the present

expression has the advantage over the previous formulae of separating the effects of straining and curvature in a
Gallilean invariant manner.

Chung and Law’s expression for flame stretch can be written
§=Vi-Vi+(V-N)V;-N, (A.37)
_ where V is the total velocity of a surface point,

V=U+wN, (A.38)
Vr is the velocity in the local tangent plane
Vr=V-N(V:-N), (A.39)
and Vr is the two-dimensional gradient operator in the local tangent plane. Using the following relations: ‘
Vr=Ur=U-N(U:N), (A.40)

Vi N=—(k, +k,), (A.41)
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and
5p=Vp+ U, (A.42)
Chung and Law’s expression [eqn (A.37)] can be rewritten:
S§=Vr-Up—(w+U-N)(k, + k), (A.43)
while eqn (A.15) becomes:
§=Vy-U—w(k, +k,). (A.44)

The equivalence of eqns (A.43) and (A.44) is readily demonstrated. From eqns (A.40) and (A.41) we have
Vi Up=V:- U= (V7-N)(U-N)
=V U+ U-N(k, +ky). (A.45)

Thus, substituting eqn (A.45) into eqn (A.43) we obtain eqn (A.44).

Both eqns (A.43) and (A.44) appear to separate the stretching rate into a straining in the tangent plane and a term
due to the mean curvature (k, + k,). But the second expression is to be preferred since the two terms on the right-hand
side of Eqn (A.44) are invariant under Gallilean transformations, while those in eqn (A.43) are not. Thus the
separation of the straining and curvature effects in eqn (A.44) is independent of the motion of the coordinate system.

APPENDIX B

Effect of Strain on Curvature

We consider the effect of strain on the curvature of a material surface in homogeneous, isotropic, incompressible
turbulence. The magnitude of the curvature is characterized by the mean-square curvature

1 1.4 .6
M =§(k% +k2) =5haﬁhmﬁ' (B.1)

It may be seen from eqn (3.6) or (3.8) that strain could cause the principal curvatures (and hence M) to increase
exponentially with time. The question addressed here is: does strain cause the curvature to increase without bound, or
does strain tend (on average) to decrease curvature? If the latter is the case then a balance between bending and
straining would be established leading to a distribution of curvatures centered, presumably, on the inverse of the
Kolmogorov length scale.

The effect of straining alone on h3 is [eqn (3.6)]
hop=—sth%s — (;ph%y + SyahBy), (B.2)
where the continuity equation

sy+sr=A=0, (B.3)
has been used to eliminate s.

Uncorrelated straining

The rate-of-strain in the tangent plane can be decomposed into isotropic and deviatoric parts

Sep = %s-réwﬂ + S5op (B.4)
Equation (B.2) can now be written
hSp = —251h%s— (s)shSy + 5,ah5,), (B.5)
and hence we obtain for the mean-square curvature
M = =25t M — (s1,gh%h3% + 5} uh B, h2p). (B.6)

Now, on taking the mean of this equation, if the final term could be neglected (on the ground that s, and hg,hjg are
uncorrelated), then we obtain
nM)

= 2{sp). ’ (B.7)

Since it has been proved [24, 25] that (s is positive, it follows that uncorrelated straining tends to decrease curvature.

Persistent straining

Since ;5 and h3g are (for the case considered) isotropic and s,z has zero mean, these tensors will be uncorrelated if
their principal axes are independent. But we show now that persistent straining tends to align the principal axes.

Consider the case in which s, and sy are constant, and e,(f) and e,(f,) are chosen to be the principal directions of
Sap- Then in the E coordinate system s,z is

35T + st 0

/
0 =S — ST

2

ES 26:5-E
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where

1
s3~=s{15§(s11—s22). (B.8)

The effect of straining alone on 49 is then [eqn (B.5)]:

drhs, h;’z]__ [ha’; h‘;z] [—h;as'T 0 ]
dt[h;n 20 I PY Y I I R | (B-9)
to which the solution is
1) h(l)Z(t)jI__ _ _ [h(ﬁ(to)e_brr(hm) h1a(to) ]
[h;a(t) h(n ) = PCB D] T e () g gehe | (8.10)

Consider the case in which h{,(f,) is positive and s} is negative. Then h3:1(t) increases exponentially with time
compared to the other components, and hence e} becomes aligned with e,. In general, the eigenvector of h94(ef or e3)
corresponding to the eigenvalue of greatest absolute magnitude (k, or k,), tends to become aligned with the principal
direction of the smallest principal strain in the tangent plane.

It may readily be seen from eqn (B.10) that the mean-square curvature increases exponentially if |s/| is greater than
ST.

The above considerations show that the fate of the mean-square curvature depends upon the alignment of the
principal axes of strain and curvature. The question whether M increases without bound is unanswered.

Gauss curvature
Another measure of curvature is the Gauss curvature

K=kik,. (B.11)
For the case considered, from eqn (3.8) we obtain
; U, >° ( 3*U, )"
=—4s:K + k . B.1
S T trE ®12)

Since on average sy is positive, the effect of strain is clearly to tend to decrease In |K|. But, for two reasons, this
observation is insufficient to show that the principal curvatures remain bounded. First, k, (say) can become infinite
while K tends to zero. [This occurs with persistent straining and st <s <0, see eqn (B.9).] Second, if |kq| or |k,
becomes large, the effect of straining can be overwhelmed by the effects of bending [the final two terms in eqn (B.12)].

APPENDIX C

Probabilistic Evolution Equations

In this appendix, several one-point surface statistics are defined and related to the parametrized description of the
surface. These statistics are: the expected surface-to-volume ratio =; the surface mean (Q), of a property Q; the joint
pdf f; of the surface properties H° and A; the surface density function F; and, the conditional surface mean (Q),. Then
the evolution equations for F and X are derived.

Expected surface-to-volume ratio
It is shown that the expected surface-to-volume ratio Z(x, f) is given by

2(x, 1) = (Z'(x, 1)), (C.1)

where the fine-grained surface-to-volume ratio 2'(x, ¢) is defined by
Z'(x,t) = J-J 8(x— X[u, v, 1])A(u, v, t) du dv. (C2)
a,

Here 8(x) denotes the delta-function product 8(x,)d(x,)8(x5), A(u, v, t) is given by eqn (2.14), and % is the region in
the parameter space corresponding to all points on the surface %(r).

Consider now a simple volume V in physical space. Let ¥, (t) denote the part of the surface that lies within V, let
A, (?) be its area, and let %, () denote the region in the parameter space corresponding to points on &, (¢). Integrating

eqn (C.2) over V yields
flf Z'(x,t)dx = J;J{JII 6(x — X[u, v, 1]) dx}A(lf, v, t) du dv, (C.3)

(where dx is written for dx, dx, dx,). Now if the point X[u, v, ] lies within V the term in braces is unity, otherwise it is
zero. Thus, dividing by V, eqn (C.3) becomes

7l [[zana=1 ([ awvawa-a0m. C4)
1% s,

The left-hand side is the volume-average of X', while the right-hand side is the surface-to-volume ratio. Since this
equation is valid for any choice of V, ' must be the local surface-to-volume ratio,
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[By way of example, if the surface is the x, — x, plane (i.e. X5 =0), then from eqn (C.3) we obtain Z'(x, #) = 6(x3).]
Thus, as stated in eqn (C.1), the expected surface-to-volume ratio Z(x, t) is the expectation of Z'(x, £).

Surface means

If Q(x, f) is any field property (e.g. Us(x, t)), we define the surface mean (Q(x, t)); to be the mean of Q conditional
upon x being a surface point at time ¢. In order to obtain an expression for {Q(x, t)), consider the quantity

o*(x,t)= JI Q(x,)0(x — X[u, v, t]) du dv. (C.5)

Integrating eqn (C.5) over the volume V yields

jfj O*(x,1)dx = J’J’ UJI O(x, 1)6(x — X[u, v, t]) dx}A(u, v, £) du dv
v @ v
- [J{J]J ox=xtu v ax}O(Xlu, v, 1), DA, v, 1) du do

= JJ’ OX[u, v, t], )A(u, v, t) du dv. (C.6)
%,
The last expression is the surface integral of Q over the part of the surface ,(¢) within the volume V. Thus the

quantity
IJJ (Q*(x, 1)) dx/IIf =(x, f) dx,

is the expected surface integral of Q divided by the expected surface area; or, in other words, the surface average of
the expectation of Q. Since the volume V can be chosen arbitrarily, (Q*(x,))/=(x, t) must be the local surface mean
Q. Hence from eqn (C.5) we obtain the required expression for the unconditional surface mean:

(Q(x,0)), = ff (Q(x, )6 (x — X[u, v, {])A(u, v, t))du dv/Z(x, t). (C.7)

[Of course, if =(x, ?) is zero, (Q(x, t)), is undefined.]
A similar analysis can be performed to obtain an expression for the surface mean (R(f) | x), of a surface property

R(u, v, t). This again is the mean of R conditional upon x being a surface point at time ¢ The result equivalent to eqn
(CTis

(R(®) | x,) = [J (R(u, v, £)6(x— X[u, v, ())A(y, v, 1)) du dv/Z(x, t).

= j f (R°(t)8(x — X°(£))A°(t) Y du,, dv,/Z(x, t). ' (C.8)
L2
The final expression is obtained simply by replacing the integration variables u and v by u, and v,,. [Recall that the
superscript o indicates that the quantity is evaluated at the surface point X°(¢) = X(u,, v, f).]
Joint pdf of surface properties
The joint pdf £.(H, A; x, 1) is defined to be the probability density of the joint events C:
C={n2p(t) = hap, a;(t) = 4}, (€9

conditional upon x being a surface point at time ¢ (i.e. conditional upon X°(t) = x).

An expression for f, can be obtained as the surface mean of a delta-function product. If ¢ is a random variable, then
its pdf f,(y) can be written

fo(w)=(8(y - ¢)), (C.10)
[19, 35, 36). Similarly, taking the surface mean [eqn (C.8)] of the delta-function product
8- He[eOA - Af]) = ,!l . 8(hap — hl1])0(a; — a,t)), (C.11)
0j=1,3

we obtain [from eqn (C.8)]
£, A;x, 1) = (8(R - H[DSA - Alr]) | x),
= fj (S(H — H[))S(A — A[])8(x — X°[t])A°(?) Y du, du/Z(x, 8). (C.12)

U

To abbreviate the notation we introduce

G(1, A, x, u,, v, £) = 8(H — H[e]) 6 (A — Alr]) 8 (x — X°[F)A°(). (C.13)
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Then the joint pdf of surface properties can be written

fi= f f (G) dug dv /3(x, 1). (C.14)

a“

Here and below, the arguments of G are those given in eqn (C.13).

Surface density function

Expressions for the expected surface-to-volume ratio Z(x, ¢) and the joint pdf of surface properties f.(H, A; x, ) have
now been obtained [eqns (C.1), (C.2) and (C.12), (C.14)]. Together, £ and f, provide a complete one-point statistical
description of the surface. The same information is contained in the surface density function defined by

F(R,A, x;1) = f f (G du, dv,. (C.15)
a
From this definition it may be seen that Z(x, ¢) is obtained by integrating over all A and
f J’ F(A,A, x;t) dA dA = f I (8(x = X°[t])A°(r)) du, dv, = Z(x, ), (C.16)
u

[cf. eqns (C.1) and (C.2)]. Then, from eqn (C.14), £, is given by
£, A x, 1) = F(A, A, x; 1) /2(x, £). : -(C.17)

Conditional surface means

Let R°(¢) be a surface property (i.e. R°(t) = R(u,, v,,t)) or a field property (i.e. R°(f) = R(X°[t], t). We seek an
expression for the surface mean of R°(¢) conditional upon the events C [i.e. = H°, A=A, eqn (C.9)].

Now let fr(R, H, A; x, 1) be the joint pdf of R°(t), H°(¢) and A(¢), conditional upon x being a surface point at time ¢.
Then the pdf of R°(¢) conditional upon C is

f(R;x, ¢ | 0, A) = f(R, 11, A; x, OIf.@A, A; x, 1) (C.18)

And the required conditional surface mean of R°(r) is
(R°(1)). = (R°(t) | H, A\, x), = J'f,_,(R;x, t| A, AR dR. (C.19)

Writing fz in terms of delta functions [similar to eqn (C.12)] and then substituting eqn (C.18) into eqn (C.19) we
obtain:

(Ro@).= [ R{[[ (5@ - RUDS@- P 5(A - A1)

X 8(x — X°[t])A°(1)) du, dv,/Z(x, t)} / LA, A; x, 1) dR

- [[ Rems - wetsca - agn)
U
X 8(x — X°[(NA°(t)) du, du/F(H, A, x, 1)

- I f (R°()G) du, dv,/F, (C.20)
a
which is the required result.

Evolution equation for F

We proceed now to derive the evolution equation for the surface density function. The derivation is similar to that
used for joint pdf equations (see [19] for example). The method is to differentiate the defining equation for F[eqn
(C.15)] with respect to time. The derivatives of the delta functions can be written, for example,

3 & da; 3 _
° —A)= % ° —
adA-A=-7 aa,,.‘s(A A)
3 . ~
o {a,6(A - A)), (C.21)

where the summation convention applies as usual. (Note that A is independent of A which is independent of ¢.) Thus
differentiating eqn (C.15) with G defined by eqn (C.13) we obtain

oF 3 o 3 . 3 . A°
o J;u f <—_8fi,,ﬁ (52G) = 55 (4/0) - (%G} + A°G>duodvo. (C.22)
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The term in Iiﬁ’,,ﬂ can be re-expressed as:
[[(~ 57— th2063) dugdvo = = =2~ [ [ Gz dug dwy = == (2P, €23
3hyp 3hg 3hp
a a

the last line following from the expression for the conditional expectation, eqn (C.20). And recalling that A°/A° is the
rate of stretching S°, eqn (C.22) becomes

?:+i(<X°> F)+5— ((h %) cF) + 5 5, O ((ay)cF) = (§°).F. (C.24)

Expressions for the conditional expectatlons are obtained by taking the conditional expectations of eqns
(A.32)-(A.36):

(X°> = <le>c + (W)caB’ (CZS)
o\ _1/3U;  3U;

<haﬂ>c = <ax ax > {az3 3haﬁ - aly(hay B +hﬁy ]a)}

3*U, 3w . A A
+ {< 5, axk> 3+ <———-axj axk>c}af““"ﬂ + (W) hayhyp, (C.26)

. 3 | . 9
(Gi)c = <§:> {Eaiﬁ(aiﬂaka — 8 yg) + aBaiSaka} + <é¥> i38jc, (C.27)
c 7
ay; ow\ .
(4;3). = _< ]> 83l — <axj>caiaaja,
and
(8 = (32) Gate = (#) i €2
ox;/ .

It may be noted that the only conditional expectations in these equations are those of U, w and their first and second
derivatives.

Evolution equation for Z

Since the expected surface-to-volume ratio Z(x, ¢) is the integral of F (R, A, x; 1) over all /i and A [eqn (C.16)], the
evolution equation X can be obtained by integrating that for F [eqn (C.24)]. In this process, the terms in k34 and 4;
vanish. For the term in X? we have:

[[ oy aman= [[ G | A£G, Asx, 036 1) aR0A
= 2(x, ()(X3(0) | x),- (C.29)
With a similar treatment of the term in $°, from eqn (C.24) we obtain

(R (0D= (8|02 (C:30)



